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Abstract—This paper summarizes an abstraction-based formal
verification framework for unknown dynamical systems. At its
core, it uses Gaussian process regression to learn unmodelled
dynamics from a given data set of noisy system measurements.
While this paper envisions such a framework, details can be
found in [8].

I. INTRODUCTION

As the capabilities and complexities of autonomous systems
grow, the ability to provide guarantees for safety-critical
systems becomes more challenging. Conventional methods for
the formal verification of control systems generate guarantees
with respect to a given system model [5, 2]. In many appli-
cations, a system may have unmodelled dynamics in order to
reduce complexity (e.g. linearization) or because the resources
required to obtain a high-fidelity model are unavailable. Both
of these factors may apply to a black-box system, such
as a closed-source autopilot or an off-the-shelf component.
Factors that were unaccounted for, including control actuator
changes and environmental impacts, may render initial safety
guarantees inapplicable.

Data-driven verification approaches can overcome these
limitations if we can account for the modelling error. Haesaert
et al. [7] and Kenanian et al. [9] focus on learning linear
systems from data and computing a measure of safety, though
their method is limited to linear systems. Similarly, Ahmadi
et al. [1] use a piece-wise polynomial approximation to fit a
potentially nonlinear model for safety assessment. While they
produce safety guarantees using barrier certificates, the safety
result is not applicable to the underlying system.

Recently, Gaussian process (GP) regression has become
popular for learning dynamics from data, as the procedure
can produce probabilistic error bounds between the regression
and unknown system [13, 4]. GP regression has been used in
the context of reachability and policy learning with stability
guarantees [14, 3]. This highlights the opportunity for formal
verification approaches that use a data-driven model and
incorporate the modelling error to make safety guarantees with
respect to the unknown system.

Our work combines GP regression with an extension of
model-based formal verification [10] to generate safety guar-
antees for systems learned from data. For example, one may
ask if the state safety property “Do not enter the unsafe
region with a minimum probability of 99% over the next

1 hour” is satisfied from a subset of possible initial states.
We accomplish this by using GP regression to learn the
unknown dynamics, then build an uncertain Markov decision
process whose transitions are defined using the probabilistic
error bounds from the regression, and finally employ a worst-
case and best-case solver to find a lower-bound probability
of satisfying the safety property over a (possibly unbounded)
time horizon. For a more in-depth discussion of the presented
concepts, we refer interested readers to the full version of our
paper [8].

II. PROBLEM AND APPROACH

We consider a discrete-time control system

x(k + 1) = f(x(k),u(k)),
y(k) = x(k) + v(k, u(k − 1)),

where

x(k) ∈ Rn, u(k) ∈ U , y(k) ∈ Rn, v(k, u(k− 1)) ∼ Du(k−1),

f : Rn × U → Rn is the unknown dynamics function, U =
{a1, . . . , a|U|} is a finite set of actions or control laws, and for
each a ∈ U , v(k, a) is a noise term sampled from distribution
Da.

The problem is summarized as follows. Let Xsafe ⊂ Rn be
a compact safe set. The safety probability Psafe(x) ∈ [0, 1]
measures the chance that a trajectory beginning at an ini-
tial state x ∈ Xsafe remains in the safe set over a time
horizon T ∈ N+ ∪ {∞}. Given a data set D of state-
action-observation tuples, find pmin(x) and pmax(x) such that
Psafe(x) ∈ [pmin(x), pmax(x)] for every initial state x ∈ Xsafe
under any choice of control u(k) for all k ≤ T .

Our framework uses GP regression and probabilistic error
analysis to learn the latent function f from noisy observa-
tions [12]. We assume that f is a member of the reproducing
kernel Hilbert space (RKHS) associated with the prior kernel
function used for the GP regression. Let fi denote the ith
component of the dynamics, and let µi and σi denote the
posterior mean and covariance functions, respectively, derived
from measurements of fi. We use a result from Chowdhury
and Gopalan [4] that (informally) states with probability at
least 1− δ,

|fi(x)− µi(x)| ≤
(
Bi +R

√
2(1 + γD + log(1/δ))

)
σi(x),



where Bi is an upper bound on the RKHS norm of fi,
R is a parameter related to the noise distribution, and γD
is the maximal information gain term. We note that the
proposed framework is also applicable to the case of f being
drawn directly from the GP using different probabilistic error
bounds [11].

We create an interval (uncertain) Markov decision process
(IMDP) [6] abstraction of the system over a discretization
of the state space. The decisions correspond to the control
actions afforded to the system, and the discrete state labels are
consistent with the continuous space. The transition probability
bounds between two IMDP states q, q′ are computed by
checking the intersection between the image of q under the
posterior mean function and q′. We incorporate the probabilis-
tic model error into the transition bounds to tie the IMDP to
the underlying system.

Finally, we find bounds for pmin(x) and pmax(x) by using
an existing method for solving IMDPs that results in best-
and worst-case analyses. The verification procedure finds a
lower and upper bound of the probability of satisfaction by
finding those transition probabilities and control actions of
the IMDP that are minimizing and maximizing, respectively.
These double minimization and maximization problems can
be formulated as Bellman equations that are evaluated at
every step [10]. This method can be used for both finite- and
infinite-horizon problem statements, and the complexity of the
algorithm is polynomial in the size of the IMDP.

III. EXAMPLES

We demonstrate the framework on a two-mode switched
linear system and a nonlinear system. The safe set is defined as
the square [−4, 4]× [−4, 4], and the verification task is staying
inside the safe set over a time horizon. One-thousand random
data points with additive noise were used for the regression.

A. Switched Linear System

The switched system x(k + 1) = Aix(k) where i ∈
{upper, lower} uses the matrices in Figure 2(a) and is per-
mitted to switch between the two modes at each time step.
With two actions available to the system, the worst-case result
occurs if one action can drive the system to an “unsafe” region
of the other mode. Figure 1 shows the minimum probability
of safety after one and 1000 steps. Notably, the system is
guaranteed to remain in the safe set after 1000 steps regardless
of the applied control so long it starts in a cell with a minimum
safety probability of one.

B. Nonlinear System

The nonlinear system is given by

f(x(k)) = [ x1(k)− 0.05 x2(k), x2(k) + 0.1 sin(x1(k)) ]T .

The vector field for the true system is shown in Figure 2(b).
Many vectors flow away and out of Xsafe near parts of the
border, while the field slowly spirals away from the origin.
After 1 step, the minimum probability of safety is zero around
parts of the field that flow out of Xsafe shown in Figure 2(c).

(a) T = 1 step (b) T = 1000 steps

Fig. 1: Minimum probability of safety for a switched system
comprised of the upper and lower triangular system modes.

Alower =

[
0.5 0
−0.5 0.8

]

Aupper =

[
0.8 0.5
0 0.5

]

(a) Switched-system matrices (b) Nonlinear vector field

(c) T = 1 step (d) T = 6 steps

Fig. 2: Matrices for the linear switched system, nonlinear
vector field and the minimum safety probability for multiple
steps of the nonlinear system.

The non-zero maximum probability of transitioning to parts of
the field that flows out of Xsafe cause the initially-large set to
shrink after successive steps. After 6 steps, safety can only be
guaranteed if the system starts in regions around the origin.

IV. CONCLUSION

In this short paper, we summarize our framework for
the verification of unknown dynamical systems from noisy
measurements.



REFERENCES

[1] Mohamadreza Ahmadi, Arie Israel, and Ufuk Topcu.
Safety assessemt based on physically-viable data-driven
models. In 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), pages 6409–6414. IEEE,
2017.

[2] Christel Baier and Joost-Pieter Katoen. Principles of
Model Checking. The MIT Press, Cambridge, MA, 2008.

[3] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig,
and Andreas Krause. Safe model-based reinforcement
learning with stability guarantees. In Advances in neural
information processing systems, pages 908–918, 2017.

[4] Sayak Ray Chowdhury and Aditya Gopalan. On ker-
nelized multi-armed bandits. In Proceedings of the 34th
International Conference on Machine Learning-Volume
70, pages 844–853. JMLR. org, 2017.

[5] E. M. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 1999.

[6] Robert Givan, Sonia Leach, and Thomas Dean. Bounded
parameter markov decision processes. In European
Conference on Planning, pages 234–246. Springer, 1997.

[7] Sofie Haesaert, Paul MJ Van den Hof, and Alessandro
Abate. Data-driven and model-based verification via
bayesian identification and reachability analysis. Auto-
matica, 79:115–126, 2017.

[8] John Jackson, Luca Laurenti, Eric Frew, and Morteza
Lahijanian. Safety verification of unknown dynamical
systems via gaussian process regression. arXiv preprint
arXiv:2004.01821, 2020.

[9] Joris Kenanian, Ayca Balkan, Raphael M Jungers, and
Paulo Tabuada. Data driven stability analysis of black-
box switched linear systems. Automatica, 109:108533,
2019.

[10] Morteza Lahijanian, Sean B. Andersson, and Calin
Belta. Formal verification and synthesis for discrete-
time stochastic systems. IEEE Transactions on Automatic
Control, 60(8):2031–2045, Aug. 2015.

[11] Armin Lederer, Jonas Umlauft, and Sandra Hirche. Uni-
form error bounds for gaussian process regression with
application to safe control. In Advances in Neural
Information Processing Systems, pages 657–667, 2019.

[12] Carl Edward Rasmussen. Gaussian processes in machine
learning. In Summer School on Machine Learning, pages
63–71. Springer, 2003.

[13] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and
Matthias W Seeger. Information-theoretic regret bounds
for gaussian process optimization in the bandit setting.
IEEE Transactions on Information Theory, 58(5):3250–
3265, 2012.

[14] Yanan Sui, Alkis Gotovos, Joel W Burdick, and Andreas
Krause. Safe exploration for optimization with gaussian
processes. Proceedings of Machine Learning Research,
37:997–1005, 2015.


	Introduction
	Problem and Approach
	Examples
	Switched Linear System
	Nonlinear System

	Conclusion

