

000 HOW HARD IS LEARNING TO CUT?

001

002 TRADE-OFFS AND SAMPLE COMPLEXITY

003

004 **Anonymous authors**

005 Paper under double-blind review

006 ABSTRACT

007 In the recent years, branch-and-cut algorithms have been the target of data-driven
 008 approaches designed to enhance the decision making in different phases of the
 009 algorithm such as branching, or the choice of cutting planes (cuts). In particular, for
 010 cutting plane selection two score functions have been proposed in the literature to
 011 evaluate the quality of a cut: branch-and-cut tree size and gap closed. In this paper,
 012 we present new sample complexity lower bounds, valid for both scores. We show
 013 that for a wide family of classes \mathcal{F} that maps an instance to a cut, learning over an
 014 unknown distribution of the instances to minimize those scores requires at least
 015 (up to multiplicative constants) as many samples as learning from the same class
 016 function \mathcal{F} any generic target function (using square loss). Our results also extend
 017 to the case of learning from a restricted set of cuts, namely those from the Simplex
 018 tableau. To the best of our knowledge, these constitute the first lower bounds for
 019 the learning-to-cut framework. We compare our bounds to known upper bounds
 020 in the case of neural networks and show they are nearly tight, suggesting that
 021 both scores (gap closed and tree size) are of comparable difficulty from a learning
 022 standpoint. Guided by this insight, we provide empirical evidence – by using
 023 a graph neural network cut selection evaluated on various integer programming
 024 problems – that gap closed is a practical and effective proxy for minimizing the
 025 tree size. Although the gap closed score has been extensively used in the integer
 026 programming literature, this is the first principled analysis discussing both scores
 027 simultaneously both theoretically and computationally.

031 1 INTRODUCTION

032 Branch-and-cut algorithms form the cornerstone of integer programming solvers. In recent years,
 033 machine learning has been playing a growing role in enhancing those solvers by enabling data-driven
 034 decision-making in various components of the algorithm. Recent attempts aim at augmenting those
 035 solvers, which often rely on handcrafted heuristics, by training models on data obtained from solved
 036 instances, to predict decisions that lead to faster convergence (which cutting plane – or cut, for
 037 short – to choose, or which variable to branch on). Specifically referring to cuts, there has been a
 038 growing body of work recently. Paulus et al. (2022) proposed a neural architecture that employs
 039 imitation learning to select cutting planes in mixed-integer linear programs (MILPs). By mimicking
 040 a lookahead expert that evaluates the potential impact of cuts on future bounds, their method aims to
 041 improve the efficiency of cut selection. In Huang et al. (2022), the authors trained a neural network to
 042 learn a scoring function evaluating the quality of candidate cuts based on instance-specific features.
 043 Tang et al. (2020) explored the use of deep reinforcement learning to adaptively select cutting planes
 044 in integer programming. By formulating cut selection as a Markov Decision Process, their method
 045 trains an agent to make the right cut selection among the Tableaux cuts. Subsequently, Ling et al.
 046 (2024) addressed the challenge of determining when to stop generating cuts, using reinforcement
 047 learning and different features of MILPs to make informed decisions. We refer the reader to the
 048 excellent survey Deza & Khalil (2023) for a more exhaustive list on previous contributions.

049 A fundamental question in any learning-based approach for generating cutting planes or making
 050 branching decisions during the solving process is how many training samples are needed to ensure
 051 good performance across an entire (and potentially unknown) distribution of problem instances. This
 052 issue – referred to as *sample complexity* – is critical, as it determines the scale of the learning task
 053 and directly impacts the feasibility of effectively training models. Understanding sample complexity

054 helps address the inherent challenges of data-driven approaches by indicating how many instances
 055 must be solved to learn patterns that generalize reliably across a distribution. Establishing such
 056 bounds is therefore central to providing rigorous scientific foundations for data-driven techniques in
 057 integer programming. For instance, learning effective cut generation might require so many samples
 058 that the approach becomes impractical, or, in a more favorable case, only a moderate and affordable
 059 number of samples, scaling reasonably with the number of variables and constraints. Recent upper
 060 bounds have been obtained in the case of a fixed cut selection across a distribution of instances,
 061 Balcan et al. (2021), and more recently in the setup where neural networks map an instance to a cut,
 062 with a polynomial-logarithmic dependence on the size of the problems Cheng et al. (2024). Our
 063 investigation asks whether those bounds are tight for broader architectures and how the given ways
 064 of measuring the effectiveness of the cut affect sample complexity. If one metric were intrinsically
 065 harder to learn than another, this would shape both the design of learning algorithms and the choice
 066 of evaluation criteria. Our lower bounds provide clarity here, showing that – at least for unknown
 067 distributions – gap closed and tree size exhibit comparable sample complexity, thus preventing
 068 misleading conclusions about relative difficulty.

069 While these theoretical insights are important, they do not resolve on their own the practical challenges
 070 of implementing learning-based strategies. In particular, even if two performance measures are
 071 comparable from the standpoint of sample complexity, the computational effort required to optimize
 072 them may differ substantially. Our second contribution addresses this gap by showing that the gap
 073 closed score, despite being a proxy, aligns closely enough with tree size to serve as a practical
 074 surrogate. Taken together, these results provide a coherent picture: the first establishes that gap closed
 075 and tree size are theoretically equivalent in terms of learnability, while the second demonstrates that
 076 gap closed is a computationally tractable and empirically reliable alternative to tree size for guiding
 077 cut selection. In summary, the motivation for our work stems from the following two groups of
 078 observations, leading to two main results.

079 1. The existing studies applicable to sample complexity of learning-to-cut provide upper
 080 bounds for specific learning algorithms, formally referred to as *concept classes*. Those
 081 studies are applied to a special family of cutting planes, namely Chvátal-Gomory (CG) cuts
 082 Gomory (1958); Chvátal (1973). Specifically, in Balcan et al. (2021), the concept class is
 083 restricted to functions that return *constant* CG weights applied to any instance. In Cheng
 084 et al. (2024), the CG weights are generated by a neural network taking as input an integer
 085 linear program (ILP) instance.

086 *Our contribution* is to provide the first quantitative lower bounds on sample complexity,
 087 and study lower bounds that are valid for a wide family of classes. Our lower bounds are
 088 discussed in Section 3 and anticipated in Table 1.

089 2. There are two main scores proposed in the literature to evaluate the quality of a cut. The
 090 first one is based on the relative size reduction (or increase) of the branch-and-cut (B&C)
 091 tree size. The second one is the relative improvement in the objective function of the relaxed
 092 problem (gap closed, where the gap for a MILP is the relative difference between the value
 093 of its linear programming, LP, relaxation and that of its optimal solution). The first score
 094 correlates well with the overall running time of the algorithm as it corresponds roughly to
 095 the number of LPs solved. However, it is easy to see that it is very expensive to train using
 096 the tree size because it requires to solve the problem to optimality to be evaluated. So, the
 097 second one could be considered as a proxy of the first, and the natural question we aim at
 098 discussing is how good the proxy is both in theory and in practice.¹

099 *Our contribution* is to empirically show the quality of the gap closed proxy and assess the
 100 ability of a graph neural network to learn both score functions in practice. Although the
 101 gap closed score has been extensively used in the integer programming literature, this is
 102 the first principled analysis discussing both scores at the same time both theoretically and
 103 computationally. The computational evaluation is conducted in Section 4.

104 Our first contribution sheds light on the learning difficulty of generating CG cuts from an instance
 105 when using two of the most common and theoretically grounded scores: gap closed and tree size. In
 106 particular, for classes such as neural networks, our bounds show that – absent further assumptions on
 107 the distributions – it is not theoretically harder to learn one score than the other, as our lower bounds

¹From the theory side, the upper bounds in Balcan et al. (2021); Cheng et al. (2024) are obtained for the branch-and-cut tree size score, although similar approach would yield the same upper bound for both scores.

108
 109 Table 1: Illustration of sample complexity bounds in the case of ReLU neural networks with
 110 W weights and L layers, for IP instances with n variables and m constraints, verifying $M \geq$
 111 $\sum_{i=1}^m \sum_{j=1}^n |A_{ij}| + \sum_{i=1}^m |b_i|$. Here, $\bar{W} = W - w_1(n+1)m$ where w_1 is the number of neurons
 112 in the first hidden layer. The bounds in blue are our main theoretical contribution.
 113
 114

Setting	B&C tree or gap closed scores	
	Lower Bound	Upper Bound
all CG-cuts	$\Omega(\bar{W}L \log(\frac{\bar{W}}{L}))$	$\mathcal{O}(LW \log(U+m) + W \log M)$
tableau cuts	$\Omega(\bar{W}L \log(\frac{\bar{W}}{L}))$	$\mathcal{O}(LW \log(U+t))$

115
 116 nearly match known upper bounds. Our results can be put more broadly in the spectrum of *algorithm*
 117 *selection*, where selecting algorithms based on specific instances is allowed. For example, this is
 118 the case of Rice (1976); Gupta & Roughgarden (2016) where the sample complexity of learning
 119 mappings from instances to algorithms for particular problems is explored. Our approach is also
 120 related to recent work on algorithm design with predictions, see, e.g., Mitzenmacher & Vassilvitskii
 121 (2022) and the references therein.
 122

123 Our second contribution highlights that, beyond this insight, the gap closed score remains a useful
 124 practical proxy for minimizing the more challenging tree size score over distributions of instances.
 125 For example, in the case of cuts generated by neural networks, our bounds indicate that there is no
 126 significant theoretical distinction between the two scores, and our numerical experiments further
 127 support that gap closed is a reasonable proxy across a wide range of instance families for cut selection.
 128

129 The remainder of the paper is organized as follows. In Section 2, we properly define ILPs and its most
 130 successful solution method, i.e., branch and cut, as well as we give the basic definitions of learning
 131 theory. In Section 3, we discuss our main theoretical result on sample complexity lower bounds.
 132 An outline of the the proofs is given in Appendix A, and full proofs are deferred to Appendix B. In
 133 Section 4, we report on the computational investigation involving the two different score functions to
 134 evaluate cut quality. The full description and report of our experiments is included in Appendix C,
 135 due to space limitations. Finally, in Section 5, we draw some conclusions and outline open research
 136 questions.
 137

2 PRELIMINARIES

140 In this section, we provide preliminaries for both ILP cutting plane methodology and learning theory.
 141

2.1 BRANCH AND CUT AND CUTTING PLANES

142 We consider the ILP in the form
 143

$$\max\{\mathbf{c}^T \mathbf{x} : A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0, \mathbf{x} \in \mathbb{Z}^n\}, \quad (1)$$

144 where $m, n \in \mathbb{N}_+$, and $A \in \mathbb{Q}^{m \times n}$, $\mathbf{b} \in \mathbb{Q}^m$, $\mathbf{c} \in \mathbb{R}^n$.²
 145

146 The algorithms implemented in every (M)ILP solver are variations of a framework called *branch*
 147 and *cut*. In that algorithm, each iteration maintains: 1) a current best (integral) solution guess,³ and
 148 2) a list of polyhedra, each a subset of the original ILP relaxation. At each step, one polyhedron is
 149 selected and its continuous LP solution is computed. If the objective is worse than the current guess,
 150 the polyhedron is discarded. If the solution is integral, the guess is updated and the polyhedron is
 151 removed. Otherwise, the algorithm either adds *cutting planes* – valid inequalities that tighten the
 152 polyhedron – or *branches*. In branching, a variable \mathbf{x}_i whose current value \mathbf{x}_i^* is fractional is chosen,
 153 and the polyhedron is split using $\mathbf{x}_i \leq \lfloor \mathbf{x}_i^* \rfloor$ and $\mathbf{x}_i \geq \lfloor \mathbf{x}_i^* \rfloor + 1$. These two new polyhedra replace
 154 the original one. This process builds a branch-and-cut tree, with each node representing a polyhedron.
 155 The algorithm stops when the list is empty, returning the best guess as optimal. Often, a bound B is
 156 set on the tree size; if exceeded, the algorithm terminates early and returns the current best guess.
 157

158 ²The ILP equation 1 is called MILP if a subset of the variables is allowed to take continuous values.
 159

³Such guess would likely be $-\infty$ initially.

162 There are many different strategies to generate cutting planes in branch-and-cut Conforti et al. (2014);
 163 Nemhauser & Wolsey (1988); Schrijver (1986). The oldest one is due to Gomory Gomory (1958)
 164 and later generalized by Chvátal Chvátal (1973), so the family of resulting cutting planes is called
 165 Chvátal-Gomory cuts. Namely, for any $\mathbf{x} \in \mathbb{Z}^n$ satisfying $A\mathbf{x} \leq \mathbf{b}$, then the inequality $\mathbf{u}A\mathbf{x} \leq \lfloor \mathbf{u}\mathbf{b} \rfloor$
 166 is valid for S for all $\mathbf{u} \geq \mathbf{0}$ such that $\mathbf{u}A \in \mathbb{Z}^n$ and is called a CG cut. Gomory suggested to read \mathbf{u}
 167 as the inverse of the basis of the tableau when the LP relaxation is solved by the Simplex method
 168 Gomory (1958). Chvátal generalized the procedure to any \mathbf{u} Chvátal (1973).

169 Since the number of CG cuts that can be derived at any iteration of the branch-and-cut algorithm is
 170 very large, any MILP solver implements its own cut selection strategy, i.e., decides which cuts are
 171 added to the current LP relaxation. The cut selection is performed by sophisticated, handcrafted
 172 heuristics and, as anticipated, the use of modern statistical learning to enhance these heuristics has
 173 been recently studied. The standard approach that has been used and that we inherit here is to decide
 174 the *single* next cut to be added within the CG family (or part of it). To do so, we need a score function
 175 that evaluates the quality of the cut, and two such functions have been investigated. Ideally, the
 176 branch-and-cut tree size *after* the addition of the cut is the right measure since most of the computing
 177 time is spent on solving the individual LPs in the nodes of the algorithm. However, this scoring
 178 function is very expensive to evaluate and, so far, has been used for theoretical purposes only. Instead,
 179 MILP technology generally measures the quality of a cut using the gap closed, i.e., the measure
 180 of the improvement of the LP relaxation after the addition of the cut. Of course, this is cheaper to
 181 evaluate (requires to solve one single LP per cut), but still too expensive in practice for performing
 182 cut selection, so the idea of *learning* such a score.⁴

183 It is interesting to note that, although the gap closed could be seen as a proxy of the branch-and-cut
 184 tree size, the two scores are hard to properly compare. More precisely, a cut could reduce significantly
 185 the tree size without even cutting off the optimal (fractional) solution of the LP relaxation, while a
 186 cut that does cut it off could have no effect long term, i.e., in reducing the tree size.

187 For example, consider the ILP $\{\max 5x_1 + 8x_2 \mid x_1 + x_2 \leq 6, 5x_1 + 9x_2 \leq 45, x_1, x_2 \geq 0, x_1, x_2 \in \mathbb{Z}\}$, whose fractional solution is $x^* = (\frac{9}{4}, \frac{15}{4})$. It can be shown that one of the CG cuts derived from
 188 the optimal tableau leads to the constraint $4x_1 + 7x_2 \leq 35$. Adding this constraint leads to a new
 189 fractional solution $(\frac{7}{3}, \frac{11}{3})$, located on the right (i.e., with greater x -coordinate) of the solution of the
 190 original formulation. Hence, supposing branching is performed first on x_1 then x_2 , this leads to a
 191 larger branch-and-cut tree, with more LPs to be solved. However, this CG cut actually cuts off the
 192 fractional solution, hence improves the gap closed score.

2.2 LEARNING THEORY

197 We are interested in a statistical supervised learning problem of the following form, given a fixed
 198 parameterized function class defined by some h with output space $\mathcal{O} = \mathbb{R}$:

$$\min_{f \in \mathcal{F}} \mathbb{E}_{(I, s_I) \sim \mathcal{D}} [(h(I, f(I)) - s_I)^2], \quad (2)$$

200 for an unknown distribution \mathcal{D} , given access to i.i.d. samples $(I_1, s_1), \dots, (I_t, s_t)$ from \mathcal{D} . We
 201 restrict to learning problems of a function f to minimize a given functional measuring the quality of
 202 a cutting plane in a branch-and-cut type of algorithm, where s_I is a score of a “best cut” (according
 203 to this score), collected for instance I . In this problem, one tries to learn the best decision $f \in \mathcal{F}$
 204 for minimizing an expected error compared to the best encountered “cut score”, with respect to an
 205 unknown distribution from which samples are drawn. In our branch-and-cut framework, we assume
 206 that we have access to an oracle returning the performance of the cutting plane after adding it to the
 207 ILP instance, that will be accounted for in the choice of the function h . We are interested in two
 208 performance scores: (i) the relative variation of the size of the branch-and-cut tree after adding the
 209 cut, and (ii) the gap closed score. Both will be formally defined in Section 2.1.

210
 211
 212
 213
 214
 215
⁴It is worth mentioning that no solver adds one cutting plane at a time, but cuts are instead added in groups,
 called rounds. Analyzing such a procedure would be way harder, so literature studies – as well as our paper –
 concentrate on this simplified version.

216 In this context, a *learning algorithm*⁵ L for \mathcal{F} is a function taking as input a fixed (but arbitrary)
 217 amount of samples, and returning a function in \mathcal{F}

$$219 \quad L : \bigcup_{m=1}^{\infty} (\mathcal{I} \times \mathbb{R})^m \rightarrow \mathcal{F}$$

220 Given $\epsilon \in (0, 1)$, $\delta \in (0, 1)$, the *sample complexity of learning* $m_0(\epsilon, \delta) \in \mathbb{N}$ of L is the smallest
 221 integer (allowed to be $+\infty$) such that for any $m \geq m_0(\epsilon, \delta)$, for any probability distribution \mathcal{D} on
 222 \mathcal{I} , the algorithm L evaluated at “test time” on instance I is in average close to the solution on the
 223 entire distribution up to ϵ :

$$224 \quad \left| \mathbb{E}_{(I, s_I) \sim \mathcal{D}}[(h(I, L(I_1, \dots, I_m)(I)) - s_I)^2] - \min_{f \in \mathcal{F}} \mathbb{E}_{(I, s_I) \sim \mathcal{D}}[(h(I, f(I)) - s_I)^2] \right| < \epsilon$$

225 with probability $1 - \delta$ over i.i.d samples I_1, \dots, I_m drawn following \mathcal{D} . The following two definitions
 226 are needed in order to formulate a fundamental result concerning the sample complexity of learning.

227 **Definition 2.1** (VC-dimension of a real output concept class). For any positive integer t , we say that
 228 a set $\{I_1, \dots, I_t\} \subseteq \mathcal{I}$ is shattered by a concept class \mathcal{E} defined on \mathcal{I} taking $\{0, 1\}$ -values if

$$229 \quad 2^t = |\{(f(I_1), \dots, f(I_t)) : f \in \mathcal{E}\}|$$

230 The *VC dimension* of \mathcal{E} , denoted as $\text{VCdim}(\mathcal{E}) \in \mathbb{N} \cup \{+\infty\}$, is the size of the largest set that can be
 231 shattered by \mathcal{E} .

232 If \mathcal{F} is a non-empty collection of functions from an input space \mathcal{I} to \mathbb{R} . Let $\text{sgn}(\mathcal{F}) := \{\text{sgn}(f) \in \mathcal{F}\}$
 233 where $\text{sgn}(x) = \mathbf{1}_{x>0}$. Then, $\text{VCdim}(\mathcal{F})$ is by definition $\text{VCdim}(\text{sgn}(\mathcal{F}))$ where we adopt the
 234 standard defintion of VCdim for $\{0, 1\}$ -function described above.

235 **Definition 2.2** (Fat-shattering dimension). Let $\gamma > 0$. With the same notations as Definition B.3,
 236 we say that the function class \mathcal{F} fat-shatters I_1, \dots, I_t with precision γ provided there exists $r \in \mathbb{R}^t$
 237 such that for every labeling $(y_1, \dots, y_t) \in \{-1, 1\}^t$, there exists $g \in \mathcal{F}$, such that $g(I_i) \geq r_i + \gamma$ if
 238 $y_i = -1$ and $g(I_i) \leq r_i - \gamma$ if $y_i = 1$. In such conditions, r is called the witness of the shattering.
 239 The fat-shattering dimension of \mathcal{F} with precision γ , noted $\text{fat}_{\mathcal{F}}(\gamma)$ is the size of the largest that can
 240 be fat-shattered by \mathcal{F} .

241 In the case of binary functions, VC-dimension gives a direct way to bound *from above and below*
 242 learning sample complexity (Anthony & Bartlett, 2009, Theorem 5.4). For real output functions, the
 243 pseudo-dimension remain useful to find an upper bound on *uniform convergence* (UC). Typically, UC
 244 requires the absolute difference between the empirical mean and the full expectation to be bounded
 245 from above by ϵ for every $f \in \mathcal{F}$ and for every distribution. However, the sample complexity of
 246 learning can be smaller than that of UC. This leads to the sample complexity of UC to be an upper
 247 bound on the sample complexity of learning via Empirical Risk Minimization (ERM), which is
 248 itself greater than the sample complexity of learning in general, as there could be other algorithms
 249 performing better than ERM. In other words, uniform convergence guarantees that ERM will perform
 250 well, since the sample average closely matches the true expectation across all hypotheses. Good
 251 performance from ERM can still occur without full uniform convergence, and there may exist other
 252 learning algorithms that outperform ERM.

253 Therefore, lower bounds on Pseudo-dimension or VC-dimensions mainly apply to UC, and do not
 254 necessarily reflect the true sample complexity of learning. This surprising gap was first highlighted in
 255 Shalev-Shwartz et al. (2009) and further explored in Feldman (2016). As a consequence, to obtain
 256 lower bounds of learning sample complexity, one cannot *a priori* use standard traditional lower
 257 bounds of VC-dimension, and the analysis has to be performed carefully depending on the concept
 258 class considered. In this article, we will rely on the following result giving a general lower bound on
 259 the sample complexity of learning.

260 **Theorem 2.3.** (Anthony & Bartlett, 2009, Theorem 19.5) Let \mathcal{F} be a class of functions from X to
 261 $[0, 1]$. Then for any $0 < \epsilon < 1$, $0 < \delta < 10^{-2}$, any learning algorithm L for \mathcal{F} has sample complexity
 262 $m_L(\epsilon, \delta)$ satisfying for every $0 < \alpha < \frac{1}{4}$,

$$263 \quad m_L(\epsilon, \delta) \geq \frac{\text{fat}_{\mathcal{F}}(\frac{\epsilon}{\alpha}) - 1}{16\alpha}$$

264 ⁵In unsupervised learning, the domain is typically formed by $\bigcup_{m=1}^{\infty} \mathcal{I}^m$.

270 Thus, any learning algorithm will have to use at least $\frac{\text{fat}_{\mathcal{F}}(\frac{\epsilon}{16\alpha})-1}{16\alpha}$ samples to guarantee that the average
 271 solution at test time, independently of the distribution, will be at most at ϵ distance from the best
 272 solution of the function class, with probability $1 - \delta$. Note that the lower bound is rigorously valid
 273 only when $\delta < \frac{1}{100}$ (and the bound becomes independent of δ in that regime).
 274

275 3 STATEMENT OF RESULTS

278 For any positive integer $d \in \mathbb{Z}_+$, $[d]$ refers to the set $\{1, 2, \dots, d\}$. The sign function $\text{sgn} : \mathbb{R} \rightarrow$
 279 $\{0, 1\}$, is defined such that for any $x \in \mathbb{R}$, $\text{sgn}(x) = 0$ if $x < 0$, and 1 otherwise. This function is
 280 applied to each entry individually when applied to a vector. The elementwise floor function $\lfloor \cdot \rfloor$ is
 281 used to indicate the rounding down of each component of a vector to the nearest integer.
 282

283 3.1 OVER THE POOL OF ALL CG-CUTS

284 We first present results in the case where the generation of CG-cuts is unrestricted, i.e., except the
 285 limitations brought by the cut generation process, the whole pool of CG-cuts is considered. We
 286 assume the following structure on the underlying concept class \mathcal{F} : each function of \mathcal{F} incorporates
 287 an encoder function to transform each ILP to be processed further. For Neural networks, an example
 288 of such an encoder is the concatenation of all the instance's numerical data into a single vector. In
 289 the case of Graph Neural Networks (GNNs), one can choose a graph based representation (cf. for
 290 example Chen et al. (2024)). For ease of presentation, we will suppose that the stacking encoder
 291 is used (our results naturally extend to every encoder which is surjective onto the domain of each
 292 coordinate function of \mathcal{F}), and functions of \mathcal{F} have domain $\mathbb{R}^{n \times m + m + n}$ and codomain \mathbb{R}^m where n
 293 is the number of variables of the ILP, and m its number of constraints.
 294

295 **Assumption 1.** \mathcal{F} is a non empty concept class closed under translation of the input, i.e.,
 296 for every $\mu \in \mathbb{R}^{n \times m + m + n}$, $f \in \mathcal{F} \implies x \mapsto f(x + \mu) \in \mathcal{F}$, and under scaling of the
 297 output of every coordinate, i.e., for every real λ and $i \in [m]$, and $f = (f_1, \dots, f_m) \in \mathcal{F}$
 298 implies that $(f_1, \dots, \lambda f_i, \dots, f_m) \in \mathcal{F}$. Note that is true for (graph) neural networks (for
 299 any activation function that is not identically zero).

300 **Assumption 2.** (Same shattering power by restriction to some row). Let $r = m \times$
 301 $n + m + n$. For every $i \in [m]$ representing the index of the associated CG-weight,
 302 $c \mapsto \text{VCdim}(\mathcal{F}_i[n](c))$ is constant (cf. Definition B.1, here \mathcal{F}_i refers to the concept class
 303 formed by the i - coordinate of $f \in \mathcal{F}$). This is for example true for (graph) neural networks
 304 with any activation function⁶. In those conditions, we refer to this constant as $\text{VCdim}(\mathcal{F}[n])$.
 305

306 **Definition 3.1.** Let $s : \mathcal{I} \times [0, 1]^m \rightarrow \mathbb{R}$ be a score function, mapping each pair formed by an
 307 ILP instance and a weight vector of a CG cut to a real value. Let \mathcal{F} be a concept class following
 308 assumptions described above. Let $\sigma' : \mathbb{R}^m \rightarrow [0, 1]^m$ be a *squeezing function* so that $\sigma' \circ f$ (where
 309 $f \in \mathcal{F}$) returns a vector in $[0, 1]^m$ used as weights of the CG-cuts. We also suppose that σ' is
 310 continuous at $\frac{1}{2}$ and verifies $\sigma'((-\infty, 0)) \subset [0, \frac{1}{2})$, $\sigma'([0, +\infty)) \subset [\frac{1}{2}, 1]$ and $(0, 1) \subset \sigma'(\mathbb{R})$. Let
 311 $\mathcal{F}_{\sigma'}$ be the concept class obtained. We define $\mathcal{F}_{s, \sigma'}$ as the final resulting concept class
 312

$$\mathcal{F}_{s, \sigma'} := \{I \mapsto s(I, h(I)) : h \in \mathcal{F}_{\sigma'}\}$$

313 **Theorem 3.2.** Under those assumptions, for both gap-closed and branch-and-cut tree size scores, the
 314 sample complexity of learning CG-cuts via the class $\mathcal{F}_{s, \sigma'}$ verifies

$$315 \quad m_L(\epsilon, \delta) = \Omega\left(\frac{\text{VCdim}(\mathcal{F}[n])}{\epsilon}\right)$$

318 According to the notion of learnability, Theorem 3.2 provides a lower bound on the minimum number
 319 of samples required to guarantee with probability $1 - \delta$ that for any distribution \mathcal{D} , the solution of
 320 any *learning algorithm* (in particular, this is true for the Empirical Risk Minimizer (ERM) algorithm)
 321 returns a solution whose predictions are at most ϵ far from the optimal neural network with high
 322 probability over the entire distribution.
 323

⁶This can be seen by adjusting the bias of the neurons in the first layer.

324 **Corollary 3.3.** For any concept classes verifying Assumptions 1 and 2, $m_L(\epsilon, \delta)$ is bounded from
 325 below by the sample complexity of learning from \mathcal{F}_n to a generic target function. In particular, with
 326 the same notation of Theorem 3.2, for every $\gamma > 0$, we have
 327

$$328 \quad m_L(\epsilon, \delta) = \Omega\left(\frac{\text{fat}_{\mathcal{F}[n]}(\gamma)}{\epsilon}\right) = \Omega\left(\frac{\text{VCdim}(\mathcal{F}[n])}{\epsilon}\right)$$

330 where similarly $\text{fat}_{\mathcal{F}[n]}(\gamma) := \max_{i \in [m]} \text{fat}_{\mathcal{F}_i[n]}(\gamma)$.
 331

332 Corollary 3.3 applies in particular to neural networks (and to graph neural networks as well), up to
 333 adding an extra neuron on each layer.⁷
 334

335 We now compare to the known upper bound in the case of neural networks (i.e., when \mathcal{F} is composed
 336 of neural networks of a certain depth and width). The upper bound of the pseudo-dimension of this
 337 concept class given by (Cheng et al., 2024, Proposition 3.3) is $\mathcal{O}(LW \log(U + m) + W \log M)$
 338 for ReLU neural networks and a squeezing function to constrain their outputs in $[0, 1]$, M is an
 339 upperbound on the coefficients in A and b , where U is the *size* of the neural network, defined as
 340 $w_1 + \dots + w_W$, and are also imposed the conditions that $\sum_{i=1}^m \sum_{j=1}^n |A_{ij}| \leq a$ and $\sum_{i=1}^m |b_i| \leq b$
 341 for any $(A, b, c) \in \mathcal{I}$, and $M := 2(a + b + n)$.
 342

343 Hence, ignoring logarithmic factors in $\frac{1}{\delta}$ and $\frac{1}{\epsilon}$, the best known upper bounds for $m(\epsilon, \delta)$ is given
 344 by $\mathcal{O}\left(\frac{1}{\epsilon^2}(LW \log(U + m) + W \log M)\right)$, for the BC tree size score. Since the result only use the
 345 invariance by the number of regions where the CG-cuts remain constants, their proof can adapted for
 346 the gap closed score, although we suspect that a better upper bound should be achievable in that case.
 347

348 We now state our lower bound in the case of neural networks in the next proposition. Note that our
 349 lower bound does not use any amplitude on the input data of the problem.
 350

351 **Proposition 3.4.** Suppose \mathcal{F} is composed of ReLU neural networks with $\leq L$ layers, and $\leq W$
 352 weights, with the concatenation encoder $I \in \mathcal{I} \mapsto (A, b, c) \in \mathbb{R}^{n \times m + m + n}$. There is a universal
 353 constant C such that the following holds. Suppose $W > CL > C^2$ Consider both gap-closed and
 354 branch-and-cut tree size scores. Let $\bar{W} := W - w_1(n + 1)m$. Then, the sample complexity of
 355 learning CG-cuts via the class $\mathcal{F}_{s, \sigma'}$ verifies

$$356 \quad m_L(\epsilon, \delta) \geq \frac{1}{\epsilon C} \bar{W} L \log\left(\frac{\bar{W}}{L}\right)$$

357 A few comments are in order:

- 358 • The correction term of $w_1(n + 1)m$, where w_1 is the number of neurons in the first layer,
 359 accounts for the restriction of the concept class to n inputs, $\mathcal{F}[n]$. Our approach “ignores”
 360 $n \times m + m = (n + 1)m$ inputs. This leads to an amount of $w_1(n + 1)m$ weights that are
 361 being removed in the neural network.
- 362 • Recall that $W = \sum_{i=1}^L w_{i-1} w_i$ where $w_0 := n \times m + m + n$ is the input dimension, and
 363 the other w_i ’s are the widths (number of neurons) of the Neural network considered on each
 364 layer. In particular $\bar{W} = W - w_1(n + 1)m$ is always positive, and furthermore the ratio $\frac{\bar{W}}{W}$
 365 is greater than $1 - \frac{w_1 w_0}{1 + \bar{W}} \geq 1 - \frac{W}{1 + \bar{W}}$.
 366
- 367 • The lower bound supposes some structure on the layers and parameters given by $W > CL$.
 368 This loss of generality does not take place in our proof technique, but in the bit-extraction
 369 technique to give a lower bound the VCdim of the class of neural networks Bartlett et al.
 370 (2019). Therefore, in order to remove that assumption, one would have to either obtain
 371 a general lower requiring no particular structure, or adopt an entirely different approach,
 372 specific to shattering ILPs, that would not require a general VC dimension lower bound on
 373 neural networks.

374 Hence, supposing a regime where the number of weights in the neural network are large compared
 375 to the variables n and number of constraints m , the gap of is of order $\frac{1}{\epsilon}$, between our lower bound
 376

377 ⁷There is no asymptotic difference between Pseudo-dimension and VC-dimension of real output neural
 378 networks, up to adding one layer or one neuron per layer.

378 and the best upper bound, ignoring logarithmic factors in $\frac{1}{\delta}$ and $\frac{1}{\epsilon}$. In a general learning framework,
 379 this gap is inevitable: see for instances discussions in (Anthony & Bartlett, 2009, Section 19.5).
 380 We suspect that this gap transfers for learning CG cuts, if no further assumption is made on the
 381 distribution of instances.
 382

383 3.2 OVER THE POOL OF ALL CG-CUTS FROM THE TABLEAU

385 We now restrict to the pool of CG-cuts obtained from the tableau, so the concept class has to be
 386 changed slightly. We show that despite our restriction, the sample complexity is still driven by the VC-
 387 dimension of the underlying concept class. To make this formal, we suppose the following structure:
 388 each function of the concept class is decomposable as the composition of a function that takes as
 389 input an ILP instance $I \in \mathcal{I}$ and returns the m CG-cuts from the tableau $(a_1, b_1), \dots, (a_m, b_m)$. This
 390 can be performed using the simplex algorithm. We also suppose that each function $g \in \mathcal{G}$ maps
 391 (I, a_i, b_i) to a real value. The cut selected to be added to the instance is the one maximizing each of
 392 the m scores, the concept class after selecting the maximum is $\tilde{\mathcal{G}}$ (ties are broken by alphabetical
 393 order of the constraints).
 394

395 Definition 3.5. Let $s : \mathcal{I} \times [0, 1]^m \rightarrow \mathbb{R}$ be a score function, mapping each pair formed by an
 396 ILP instance and a weight vector of a CG cut to a real value. Let \mathcal{G} be a concept class described
 397 above such that Assumptions 1 and 2 hold. We define \mathcal{G}_s as the final resulting concept class
 $\mathcal{G}_s := \{I \mapsto s(I, g(I)) : g \in \tilde{\mathcal{G}}\}$.
 398

399 Theorem 3.6. Under those conditions, for both gap-closed and branch-and-cut tree size scores, the
 400 sample complexity of learning CG-cuts via the class $\mathcal{G}_{s, \sigma'}$ verifies

$$401 m_L(\epsilon, \delta) = \Omega\left(\frac{\text{VCdim}(\mathcal{G}[n])}{\epsilon}\right)$$

402 Proposition 3.7. Suppose \mathcal{G} is composed of neural networks with $\leq L$ layers, and $\leq W$ layers, with
 403 the concatenation encoder $I \in \mathcal{I} \rightarrow (A, b, c) \in \mathbb{R}^{n \times m+m+n}$. There is a universal constant C such
 404 that the following holds. Suppose $W > CL > C^2$. Let $\bar{W} := W - w_1(n+1)(m+1)$. Then the
 405 sample complexity of learning CG-cuts via the class \mathcal{F}_s from the optimal Tableau verifies
 406

$$407 m_L(\epsilon, \delta) \geq \frac{1}{\epsilon C} \bar{W} L \log\left(\frac{\bar{W}}{L}\right)$$

410 In comparison with the upper bounds (Cheng et al., 2024, Corollary 2.8), ignoring logarithmic factors
 411 in $\frac{1}{\delta}$ and $\frac{1}{\epsilon}$, we have that $m(\delta, \epsilon) = \mathcal{O}\left(\frac{WL \log(Um)}{\epsilon^2}\right)$. where $U = w_1 + \dots + w_L$ is the total number
 412 of neurons. In the regime where the number of weights in the neural network are large compared to
 413 the variables n and number of constraints m , which implies \bar{W} to be of the order of W , our bound
 414 could be improved by integrating logarithmic factors in m and U .
 415

416 4 NUMERICAL EXPERIMENTS

417 Our experiments start by comparing two metrics: B&C tree-size reduction, the true but costly
 418 performance measure, and gap closed, a computationally cheaper yet noisier proxy. This raises the
 419 central question of whether training on gap closed can generalize to improvements in tree size. To
 420 investigate that, we model (ILP instance, cut) pairs with a GNN trained on CG cuts from the Simplex
 421 optimal tableau. The model is then used to predict cut quality, so as to guide cut selection. The entire
 422 methodology, including loss formulation and inference procedure, is provided in Appendix C.
 423

425 4.1 EXPERIMENTAL SETUP

427 Modeling ILP as GNN. Each ILP instance augmented by a cut gets encoded by E unambiguously
 428 as a weighted graph G with a three dimensional feature vector on its vertices as follows: (i) The
 429 vertices of G are split between the variables and constraint vertices. Each variable gets associated to
 430 a vertex, and each constraint as well, leading to a bipartite graph with $n+m$ vertices. Furthermore,
 431 each variable vertex receives a three-dimensional feature vector corresponding to the objective vector
 entry, plus the coefficient of the cut for that variable, as well as the right-hand side (same for all

variables). The other vertices corresponding to constraints get the vector $(1, 1, 1)$ as feature (for dimensional homogeneity purposes). (ii) One edge is created between each variable vertex i and constraint vertex j provided the variable i appears in constraint j . The associated edge has weight a_{ij} ; the number of edges in the graph depends on the sparsity of A .

Data. We consider the very well-known Set Cover, Uncapacitated Facility Location, Knapsack, and Vertex Cover problems with their natural ILP formulations. The 1,000 set cover instances have 50 subsets and 30 base elements. The 1,000 uncapacitated facility location instances have 10 facilities and 10 clients. The knapsack instances have 2 knapsacks and 16 items. The vertex cover instances have 20 vertices and 50 edges. The details for randomly generating the instances are detailed in the supplementary material.

Training. The experiments were conducted on a Linux machine with a 24-core Intel Xeon Gold 6126 CPU, with 745Gb of RAM, and an NVIDIA Tesla V100-PCIE with 32GB of VRAM. We used Gurobi 12.0.1 Gur to solve the ILPs, with default cuts, heuristics, and presolve settings turned off. The GNNs were implemented using PyTorch 2.6.0 and Pytorch Geometric 2.6.1. The details of the implementation are detailed in the supplementary material.

4.2 EMPIRICAL RESULTS

The GNN is trained using the B&C tree size vs. gap closed as a proxy. We report the average tree size after adding the chosen tableau cut. A subset of the results is reported in Table 2, and full results are in Table 3 in Appendix C. For all benchmarks except the GNN one, only the branch-and-cut tree size is reported, as it is the final quantity of interest in this experiment. The results refer to 250 test instances for each problem class. The table compares six strategies: the perfect predictor (Optimal) always using the CG tableau cut that results in the smallest B&C tree size, a classical heuristic that selects a cut according to its parallelism with respect to the objective function (Parallelism, see, e.g., Lodi (2009); Deza & Khalil (2023)), the cut efficacy (Efficacy), a mix of the cut efficacy and parallelism (Mix), a uniform random selection (Random), and the GNN using either the B&C tree size or the gap closed in training (GNN). The results show that the GNNs are able to learn and provide a solid improvement (facility location, knapsack) or stay on par (set cover, vertex cover) with respect to a state-of-the-art cut selection heuristic (cf. full table in Appendix C). The GNN trained by the gap closed score function provides a good proxy, though there is room for improvement for both GNNs with respect to the perfect predictor.

Table 2: A subset of the results: average tree size on 250 test instances of the GNN trained using either the B&C tree size or gap closed as a proxy vs. four simple benchmarks.

(a) Set cover			(b) Facility location		
Setting	B&C tree	gap closed	Setting	B&C tree	gap closed
Optimal	—	4.95	Optimal	—	86.31
Parallelism	—	8.29	Parallelism	—	144.09
Efficacy	—	9.90	Efficacy	—	123.63
Mix	—	9.30	Mix	—	133.72
Random	—	9.71	Random	—	152.46
GNN	8.27	8.65	GNN	128.85	134.61

5 DISCUSSION AND OPEN PROBLEMS

In this paper, we have presented the first sample complexity lower bounds on the learning-to-cut task and we have empirically analyzed the relationship between two score functions used to assess the quality of a cut. In the sample complexity bounds, no analysis was conducted on the cut candidates that actually close the gap, i.e., cut off the fractional solution. This could give additional information to give better sample complexity bounds in the case of gap closed. Therefore, we conjecture that it is possible to obtain a better upper bound of the sample complexity for the gap closed score because, implicitly, a restricted number of cuts (only those cutting off the fractional solution) are required.

486 REFERENCES
487488 *Gurobi Optimization, LLC.*489 Martin Anthony and Peter L Bartlett. *Neural network learning: Theoretical foundations*. cambridge
490 university press, 2009.
491492 Maria-Florina F Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. Sample com-
493 plexity of tree search configuration: Cutting planes and beyond. *Advances in Neural Information*
494 *Processing Systems*, 34:4015–4027, 2021.495 Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension
496 and pseudodimension bounds for piecewise linear neural networks. *Journal of Machine Learning*
497 *Research*, 20(63):1–17, 2019.
498499 Ziang Chen, Jialin Liu, Xiaohan Chen, Wang Wang, and Wotao Yin. Rethinking the capacity of
500 graph neural networks for branching strategy. *Advances in Neural Information Processing Systems*,
501 37:123991–124024, 2024.502 Hongyu Cheng, Sammy Khalife, Barbara Fiedorowicz, and Amitabh Basu. Data-driven algorithm
503 design using neural networks with applications to branch-and-cut. *arXiv preprint arXiv:2402.02328*,
504 2024.
505506 V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. *Discrete Mathematics*, 4:
507 335–337, 1973.508 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. *Integer programming*, volume 271.
509 Springer, 2014.
510511 Arnaud Deza and Elias B Khalil. Machine learning for cutting planes in integer programming: A
512 survey. *arXiv preprint arXiv:2302.09166*, 2023.513 Vitaly Feldman. Generalization of erm in stochastic convex optimization: The dimension strikes
514 back. *Advances in Neural Information Processing Systems*, 29, 2016.516 R.E. Gomory. Outline of an algorithm for integer solutions to linear programs. *Bulletin of the*
517 *American Mathematical Society*, 64:275–278, 1958.519 Rishi Gupta and Tim Roughgarden. A pac approach to application-specific algorithm selection. In
520 *Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science*, pp.
521 123–134, 2016.522 Zeren Huang, Kerong Wang, Furui Liu, Hui-Ling Zhen, Weinan Zhang, Mingxuan Yuan, Jianye Hao,
523 Yong Yu, and Jun Wang. Learning to select cuts for efficient mixed-integer programming. *Pattern*
524 *Recognition*, 123:108353, 2022.526 Haotian Ling, Zhihai Wang, and Jie Wang. Learning to stop cut generation for efficient mixed-integer
527 linear programming. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38,
528 pp. 20759–20767, 2024.529 Andrea Lodi. Mixed integer programming computation. In *50 years of integer programming 1958–*
530 *2008: From the early years to the state-of-the-art*, pp. 619–645. Springer Berlin Heidelberg Berlin,
531 Heidelberg, 2009.533 Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. *Communications of*
534 *the ACM*, 65(7):33–35, 2022.535 George L Nemhauser and Laurence A Wolsey. *Integer and combinatorial optimization*, volume 18.
536 Wiley New York, 1988.
537538 Max B Paulus, Giulia Zarpellon, Andreas Krause, Laurent Charlin, and Chris Maddison. Learning to
539 cut by looking ahead: Cutting plane selection via imitation learning. In *International conference*
on *machine learning*, pp. 17584–17600. PMLR, 2022.

540 John R Rice. The algorithm selection problem. In *Advances in computers*, volume 15, pp. 65–118.
 541 Elsevier, 1976.

543 Alexander Schrijver. *Theory of Linear and Integer Programming*. John Wiley and Sons, New York,
 544 1986.

546 Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Stochastic convex
 547 optimization. In *COLT*, volume 2, pp. 5, 2009.

548 Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning for integer programming:
 549 Learning to cut. In *International conference on machine learning*, pp. 9367–9376. PMLR, 2020.

551 **A OVERVIEW OF THE PROOFS**

552 We now give an overview of the proof of Theorem 3.2, and expand in Appendix B. A very similar
 553 approach will be used for Theorem 3.7. Our proof builds a collection of instances that can be shattered
 554 by the concept class that integrates the cut generating process as well as the scoring mechanism. We
 555 carefully handcraft instances making use of the assumptions made on the cut-generation mechanism,
 556 by integrating an uninformative constraint, used to be shattered by the underlying concept class \mathcal{F} .
 557

558 The first observations and steps are:

559

- 560 • We start with a collection of vectors that are shattered by \mathcal{F} (as many as the VC-dimension
 561 of \mathcal{F}). Since the concept class \mathcal{F} is closed under scaling and translation, the entries of those
 562 vectors (redundant constraint vectors) can be considered to be non-negative. This allows us
 563 to ensure redundancy of the constraint.
- 564 • The VC-dimension coordinate invariance (Assumption 2) allows us to use the redundant
 565 constraint without loss of shattering power. Note that our approach could still work without
 566 that assumption, but this allows to make the original lower-bound statements as crisp as
 567 possible, in particular for the special case of neural networks, where upper bounds are
 568 known.
- 569 • We then *analyze* the space of weights of the corresponding CG cuts and the impact of the
 570 CG cuts on the increase/decrease of objective after adding one of those CG cuts. We focus
 571 on two particular regions that are sufficient to fat-shatter our instances. These regions are
 572 given by

$$573 \frac{1}{2} \leq u_2 \leq 1 - \frac{5}{36} \left(\frac{5}{2} + 2\gamma \right) \quad \text{and} \quad \frac{3 - (4 - \frac{5}{4} - \gamma)}{\frac{5}{2} + 2\gamma} \leq u_3 < \frac{1}{2}$$

$$574 \frac{1}{2} \leq u_2 \leq (1 - \frac{5}{16}) - \frac{\gamma}{4} \quad \text{and} \quad \frac{3 - (4 - \frac{5}{4} - \gamma)}{\frac{5}{2} + 2\gamma} \leq u_3 < \frac{1}{2}$$

575 where γ is a *fixed* positive (but arbitrary) real between 0 and $\frac{1}{2}$. Both regions of those CG
 576 weights lead to objective values that are at least $\Omega(\gamma)$ apart.

577 The key reason this approach succeeds in achieving the final goal is that the constraint vectors are
 578 first shattered by \mathcal{F} , yielding positive or negative outcomes for the redundancy constraints. In turn,
 579 this produces CG weights that lie in the distinct regions described above.

580 **B PROOFS OF MAIN RESULTS**

581 **Definition B.1** (Restriction of a concept class). Let \mathcal{F} be a concept class (i.e., set of functions) from
 582 $\mathbb{R}^d \rightarrow \mathbb{R}$. For any $i \in [d]$ and $c \in \mathbb{R}^{d-i}$, we refer to $\mathcal{F}_i(c)$ as a shorthand for

$$583 \mathcal{F}[i](c) := \{x \mapsto f(x_1, \dots, x_i, c) : f \in \mathcal{F}\}$$

594 *Proof of Theorem 3.2.* Theorem 2.3 guarantees that
 595

$$596 \quad m_L(\epsilon, \delta) \geq \frac{\text{fat}_{\mathcal{F}_{s,\sigma'}}\left(\frac{\epsilon}{\alpha}\right) - 1}{16\alpha}$$

$$597$$

598 holds for any $0 < \epsilon < 1$, $0 < \delta < 10^{-2}$ and $0 < \alpha < \frac{1}{4}$. Since \mathcal{F} verifies Assumptions 1 and 2, we
 599 first use Lemma B.2 and select $\alpha = 4\epsilon$ with $\epsilon < \frac{1}{16}$ so that $\frac{\epsilon}{\alpha} \in (0, \frac{1}{2})$ to get
 600

$$601 \quad m_L(\epsilon, \delta) \geq \frac{\text{VCdim}(\mathcal{F}[n]) - 1}{64\epsilon} \geq \frac{\text{VCdim}(\mathcal{F}[n])}{128\epsilon}$$

$$602$$

$$603$$

604 where the last inequality holds provided $\text{VCdim}(\mathcal{F}[n]) \geq 2$. \square
 605

606 **Lemma B.2** (Transfer Lemma). With the same notations and assumptions made on the concept class
 607 described in Subsection 3.1 and verifying Assumptions 1 and 2, then for every $\gamma \in (0, \frac{1}{2})$
 608

$$609 \quad \text{fat}_{\mathcal{F}_{s,\sigma'}}(\gamma) \geq \text{VCdim}(\mathcal{F}[n])$$

$$610$$

611 *Proof.* Let $0 < \gamma < \frac{1}{2}$ and let $r := \text{VCdim}(\mathcal{F}[n]) = \max_{i \in [m]} \text{VCdim}(\mathcal{F}_i[n])$. Without loss of
 612 generality, we will suppose that a coordinate maximizing the VC-dimension is the last one ($i = m$).
 613 Therefore, for every labeling $(y_1, \dots, y_r) \in \{-1, 1\}^r$, there exists $g \in \mathcal{F}$ such that $(g(a_i))_m \geq 0$ if
 $y_i = 1$ and $(g(a_i))_m < 0$ if $y_i = -1$.

614 Assumption 1 guarantees that we can consider that the vectors a_1, \dots, a_r **do intersect the positive**
 615 **orthant** because the concept class is closed under translation of the input. This guarantees that we
 616 can restrict to a list of instances whose admissible region is in the positive orthant.

617 We construct r instances, described by linear equalities, to be fat-shattered by $\mathcal{F}_{s,\sigma'}$ with margin γ as
 618 follows:

$$619 \quad P_i := \{x \in \mathbb{R}^2 : a_i^t x \leq 0, 2x_1 \leq 4, 2x_2 \leq \frac{5}{2} + 2\gamma, x \geq 0\},$$

$$620$$

$$621 \quad I_i := \max\{x_1 + x_2 : x \in P_i, x \in \mathbb{Z}^2\}.$$

$$622$$

623 Those instances can be lifted to n variables and m constraints, simply by adding redundant constraints
 624 and keeping the same objective. We retain the constraint under the form $2x_1 \leq 4$ rather than
 625 simplifying it to $x_1 \leq 2$, since this representation is more convenient for our choice of regions.

626 First, since the a_i 's are intersecting the positive orthant, the first constraint is redundant, and we will
 627 use the vectors a_i to shatter the instances. For each instance, the objective of the relaxed problem at
 628 the optimum is $2 + \frac{5}{4} + \gamma$, and one solution is given by $x_1^* = 2$ and $x_2^* = \frac{5}{4} + \gamma$.

629 In the following, we suppose that $0 \leq u_1 < \frac{1}{2}$ to eliminate the impact of the first constraint on the
 630 CG cut.
 631

632 Consider the two regions in the u_2, u_3 space associated with the second and third constraint, giving
 633 rise to the CG cuts

$$634 \quad \bullet \text{ corresponding to the weights } \frac{1}{2} \leq u_2 \leq 1 - \frac{5}{36} \left(\frac{5}{2} + 2\gamma \right) \text{ and } \frac{1}{2} \leq u_3 < \frac{20}{36}. \text{ For each}$$

$$635 \quad \text{instance, this yields the inequality: } \lfloor 2u_2 \rfloor x_1 + \lfloor 2u_3 \rfloor x_2 \leq \lfloor 4u_2 + u_3 \left(\frac{5}{2} + 2\gamma \right) \rfloor \iff$$

$$636 \quad x_1 + x_2 \leq 3 \text{ since } \gamma < \frac{1}{2}.$$

$$637$$

638 Then, the two new vertices of the feasible region are $(2, 1)$ and $(2 - \gamma, 1 + \gamma)$, and for both
 639 of them the objective value is 3, so the amount of gap closed is $\frac{1}{4} + \gamma$ (the improvement
 640 ratio is $\frac{\frac{1}{4} + \gamma}{2 + \frac{5}{4} + \gamma} \geq \frac{\gamma}{5}$ since $0 < \gamma < 1$, i.e., here, the cut actually gives the integral solution).
 641

$$642 \quad \bullet \text{ For any } \frac{1}{2} \leq u_2 \leq (1 - \frac{5}{16}) - \frac{\gamma}{4} \text{ and } 0 \leq \frac{3 - (4 - \frac{5}{4} - \gamma)}{\frac{5}{2} + 2\gamma} \leq u_3 < \frac{1}{2}, \text{ the CG-cut associated}$$

$$643 \quad \text{with } (u_1, u_2, u_3) \text{ yields the inequality } x_1 \leq 3: \text{ this cut is redundant, the solution is the same}$$

$$644 \quad \text{as before and the gap closed is 0.}$$

$$645$$

646 Hence, we have two CG-cuts that yield for each instance two gap closed scores that are at least $\Omega(\gamma)$
 647 away from each other.

648 **In the case of B&C-tree size score:** The same CG cuts can also be used for the B&C tree size
 649 score: on the one hand, it is clear that the branch-and-cut tree size after adding the first CG-cut is one
 650 (solving the LP only once gives an optimal solution that is integral). On the other hand, adding the
 651 redundant cut associated with the second cut at the root gives a branch-and-cut tree size of at least 3
 652 nodes since one needs to branch at least once on a variable to obtain the integral solution. Therefore,
 653 we have two CG cuts that will yield two scores that are at distance 1 for any of the n instances.

654 For any function \tilde{g} in \mathcal{F} , $\tilde{g} : \mathbb{R}^8 \rightarrow \mathbb{R}^3$, we refer to \tilde{g} as $\begin{pmatrix} A \\ b \\ c \end{pmatrix} \mapsto \begin{pmatrix} g_1(A_1, \dots) \\ g_2(A_1, \dots) \\ g_3(A_1, \dots) \end{pmatrix}$, where A_1 is the
 655 first row of A . Since the vectors a_i are shattered by \mathcal{F} , for every $y \in \{-1, 1\}^n$ and for every $i \in [n]$,
 656 there exists $\tilde{g} \in \mathcal{F}$ such that $\tilde{g}(P_i) = \begin{pmatrix} g_1(a_i, \dots) \\ g_2(a_i, \dots) \\ g_3(a_i, \dots) \end{pmatrix} = \begin{pmatrix} q_i \\ r_i \\ \eta_i \end{pmatrix}$, where $\eta_i \geq 0$ if $y_i = 1$ and $\eta_i < 0$ if
 657 $y_i = -1$.

658 Above, we implicitly use Assumption 2 by supposing that the VC dimension of all the coordinates
 659 of the functions in \mathcal{F} , when restricted to the first n entries, is the same. Remind that we now need
 660 to apply on top of \tilde{g} the squeezing function σ' to each coordinate. Using again the Assumption 1,
 661 we rescale the first and second component to 0 and add the appropriate bias to g_1 and g_2 so that the
 662 following conditions are satisfied (the following intervals correspond to the CG weights computed
 663 previously):

- 664 • Condition on $u_1 = \sigma'(q_i)$: for every $i \in [n]$, $0 \leq \sigma(q_i) < \frac{1}{2}$ and $0 \leq \sigma(q'_i) < \frac{1}{2}$. This can
 665 be achieved by multiplying g_1 (hence q_i) by 0 and adding, for example, the bias $\sigma^{-1}(\frac{1}{4})$.
- 666 • Conditions on $u_2 = \sigma'(r_i)$:
 - 667 – If $y_i = 1$: $\sigma'(r_i) \in [\frac{1}{2}, 1 - \frac{5}{36}(\frac{5}{2} + 2\gamma)]$.
 - 668 – If $y_i = -1$: $\sigma'(r_i) \in [\frac{1}{2}, 1 - \frac{5}{16} - \frac{\gamma}{4}]$.

669 Both can be achieved by multiplying the shattering function g_2 (hence r_i) by 0 and adding
 670 the bias $\sigma^{-1}(x_\gamma)$, where $x_\gamma := \min(1 - \frac{5}{36}(\frac{5}{2} + 2\gamma), 1 - \frac{5}{16} - \frac{\gamma}{4})$.

- 671 • Conditions on $u_3 = \sigma'(\eta_i)$: Let $\mu := \frac{3 - (4 - \frac{5}{4} - \gamma)}{\frac{5}{2} + 2\gamma}$. We add the bias μ to g_3 so that $\forall i \in [n]$:
 - 672 – If $y_i = 1$: $\frac{1}{2} \leq u_3 < \frac{20}{36}$.
 - 673 – If $y_i = -1$: $0 \leq \frac{3 - (4 - \frac{5}{4} - \gamma)}{\frac{5}{2} + 2\gamma} \leq u_3 < \frac{1}{2}$.

674 With u_1 and u_2 verifying the above conditions, u_3 is the weight deciding which cut is being
 675 selected. Since $(0, 1) \subset \sigma'(\mathbb{R})$, $\sigma'((-\infty, 0)) \subset [0, \frac{1}{2})$, $\sigma'([0, +\infty)) \subset [\frac{1}{2}, 1]$ (cf. Definition
 676 3.1), we only need to verify for some appropriate positive reals δ_1 and δ_2 :

- 677 – If $y_i = 1$: $\eta_i \in [0, \delta_1]$ such that $\sigma'([0, \delta_1]) \subset [\frac{1}{2}, \frac{20}{36}]$.
- 678 – If $y_i = -1$: $\eta_i \in [-\delta_2, 0)$ such that $\sigma'([- \delta_2, 0)) \subset [\frac{3 - (4 - \frac{5}{4} - \gamma)}{\frac{5}{2} + 2\gamma}, \frac{1}{2}]$.

679 Such δ_1 and δ_2 exist by *continuity* of σ' in $\frac{1}{2}$. Using closeness of \mathcal{F} under scaling, we can multiply
 680 the function g_3 by the appropriate scalar to ensure those conditions.

681 In summary, when $y_i = 1$, the weights obtained after applying the squeezing function generate a first
 682 CG-cut \mathbf{u} whose coordinates are in the first region, and when $y_i = -1$, the weights generating the
 683 CG-cut \mathbf{u}' are in the second region.

684 In the first part of the proof, we have shown that the two corresponding regions in the CG cut weight
 685 space lead to two scores (for both the gap closed and tree size) that are $\Omega(\gamma)$ apart: therefore, the
 686 instances P_1, \dots, P_n with $n = \text{VCdim}(\mathcal{F})$ are γ -fat shattered (with a witness that depends on the
 687 score considered), so $\text{fat}_{\mathcal{F}_{s, \sigma'}}(\gamma) \geq \text{VCdim}(\mathcal{F}[n]) = \max_{i \in [m]} \text{VCdim}(\mathcal{F}_i[n])$. \square

702 **Definition B.3** (Pseudo-dimension). Let \mathcal{F} be a non-empty collection of functions from an input
 703 space \mathcal{I} to \mathbb{R} . For any positive integer t , we say that a set $\{I_1, \dots, I_t\} \subseteq \mathcal{I}$ is pseudo-shattered by \mathcal{F}
 704 if there exist real numbers s_1, \dots, s_t such that

$$705 \quad 2^t = |\{(\text{sgn}(f(I_1) - s_1), \dots, \text{sgn}(f(I_t) - s_t)) : f \in \mathcal{F}\}|.$$

707 The *pseudo-dimension* of \mathcal{F} , denoted as $\text{Pdim}(\mathcal{F}) \in \mathbb{N} \cup \{+\infty\}$, is the size of the largest set that
 708 can be pseudo-shattered by \mathcal{F} .

710 *Proof of Corollary 3.3.* We use here the following fact (see Definition above) that for any concept
 711 class \mathcal{F} with real outputs, $\text{Pdim}(\mathcal{F}) \geq \text{fat}_{\mathcal{F}}(\gamma)$ for all $\gamma > 0$, see for example (Anthony & Bartlett,
 712 2009, Theorem 11.13).

713 Also, by assumption each $\mathcal{F}_i[n]$ is closed under translation of the input so if a set of vectors x_1, \dots, x_n
 714 are pseudo-shattered, there are also shattered, leading to

$$715 \quad \text{VCdim}(\mathcal{F}_i[n]) \geq \text{Pdim}(\mathcal{F}_i[n]) \geq \text{fat}_{\mathcal{F}_i[n]}(\gamma)$$

717 proving the claim. \square

719 *Proof of Proposition 3.4.* This is a direct application of Theorem 3.2 combined with state-of-the art
 720 VC-dimension lower bound for ReLU neural networks (Bartlett et al., 2019, Theorem 3). \square

722 *Proof of Theorem 3.7.* We perform a similar reasoning as in the proof of Theorem 2.3 with the
 723 following ingredients and similar notations:

724

- 725 • we first invoke Lemma B.4, that can be lifted up to more variables if needed. We create a
 726 collection of instances by adding to instance i composed of the same instance of Lemma
 727 B.4, the redundant constraint $a_i^t \mathbf{x} \leq 0$, where a_i is in the nonnegative orthant.
- 728 • The underlying concept class maps the vector to one CG cut or the other (CG1 or CG2 in
 729 the proof of Lemma B.4), depending on the label for that instance.

731 This allows us to shatter a collection of instances by choosing one or the other CG cut, given the
 732 arbitrary $\{0, 1\}$ labels. \square

733 **Lemma B.4.** There exists a two-variable ILP instance with two constraints such that the two cuts
 734 from the tableau have both scores (tree size and gap-closed) apart from a constant, positive distance.

736 *Proof.* Consider the following instance (same as in Section 2.1):

$$\begin{aligned} 738 \quad \max \quad & 5x_1 + 8x_2 \\ 739 \quad \text{subject to} \quad & x_1 + x_2 \leq 6 \\ 740 \quad & 5x_1 + 9x_2 \leq 45 \\ 741 \quad & x_1, x_2 \geq 0 \\ 742 \quad & x_1, x_2 \in \mathbb{Z} \end{aligned}$$

744 and the linear program obtained by relaxation of the above, where the last constraint is replaced by
 745 $x_1, x_2 \in \mathbb{R}^2$. Our goal is to show that two CG cuts derived from the tableau yields two improvements
 746 over the initial objective that are far apart by a constant value.

747 After two iterations of the simplex method, the optimal solution is given by $(\frac{7}{4}, \frac{17}{4})$, with an optimal
 748 cost of 42.75. The final optimal tableau of the simplex method (in the original space of two variables)
 749 is given by $\begin{pmatrix} 4 & 7 & 35 \\ 2 & 3 & 15 \end{pmatrix}$, so that the two CG cuts are:

751

- 752 1. **(CG1):** $2x_1 + 3x_2 \leq 15$. We list all the vertices obtained by intersecting with the two
 753 constraints. The first one obtained with the constraint $x_1 + x_2 = 6$, gives the vertex $(3, 3)$.
 754 The objective value at that point is $15 + 24 = 39$. The other vertex is $(0, 5)$ with an objective
 755 value of 40, and a change of 1.25 in objective (corresponding to the absolute gap closed).
 Since the other vertices $(0, 0), (6, 0)$ have an objective of 0 and 30 respectively, hence $(0, 5)$

756 is the actual optimal integral solution (it has integral entries). Furthermore, the tree size after
 757 adding the cut is 1, whereas is it at least 2 without the cut.
 758

759 2. **(CG2):** $4x_1 + 7x_2 \leq 35$. Similarly, the two new vertices with greatest objective are
 760 $(\frac{9}{4}, \frac{15}{4})$, and $(0, 5)$, with objective value 41.25 and 40 respectively. The gap closed is 1.5
 761 in absolute value, and the tree size is at least 2 after adding the cut (one needs to do an
 762 additional round of branching because the solution is fractional).

763 Therefore, the two CG cuts have a tree size and gap closed scores and gap close that are distant by a
 764 positive constant. \square
 765

780 Figure 1: Example of 2D instance used to construct the lower-bound and prove Lemma B.4. The
 781 optimal fractional solution is $x_{LP} = (\frac{7}{4}, \frac{17}{4})$ with objective value 42.75. Both cuts CG1 (red) and
 782 CG2 (green) are two CG cuts derived from the Optimal Tableau. The red cut gives directly the
 783 integral optimum $x_{IP} = (0, 5)$ (objective value of 40), after solving one LP (the vertex $H = (3, 3)$
 784 has an objective value of 39). The green CG cut gives a optimal fractional solution $G = (\frac{9}{4}, \frac{15}{4})$
 785 with objective value 41.25 , and at least one additional LP has to be solved to reach the integral
 786 solution. Therefore, both cuts lead to distinct (constant) improvements for both the tree size and the
 787 gap closed score. With respect to our original proofs in the tableau case, the vectors of the redundant
 788 constraints are mapped to one CG cut vector or the other, to γ -shatter the instances according to the
 789 score considered.
 790

791 *Proof of Proposition 3.7.* This is a direct application of Theorem 3.7 combined with state-of-the art
 792 VC-dimension lower bound for ReLU neural networks (Bartlett et al., 2019, Theorem 3). \square
 793

794 C NUMERICAL EXPERIMENTS

797 To start the sample complexity analysis computationally, we wish to investigate how both scores in
 798 the literature relate empirically, based on the premise that (i) the reduction in the B&C tree size is
 799 ultimately the score of interest but is costly to obtain and learn, and (ii) the gap closed is easier to
 800 compute but less reliable as a training signal for the end-task of minimizing the B&C tree size.

801 A potential trade-off emerges: cuts that close large gaps may not always reduce tree size due to some
 802 situations where both are incomparable (see end of Section 2.1), or from branching decisions that
 803 change the impact of one cut overall. This setup mirrors classic proxy optimization challenges in
 804 machine learning, where we want to learn for a costly target (tree size), but we use a cheaper, noisier
 805 proxy (gap closed), hoping for performance generalization to the target.

806 Our computational methodology is based on the two key building blocks: (1) We represent each pair
 807 (ILP instance, cut) as a graph, i.e., we encode variables and constraints by a GNN, with proper edges
 808 and features. GNNs naturally encode ILP instances well because the solution of an ILP does not
 809 depend on the order of the rows, which is captured by the isomorphism invariance of the associated
 representation. (2) At training time, we generate all the CG cuts from the optimal Simplex tableau

810 with corresponding scores, for any considered ILP instance. The GNN is trained to match the scores
 811 returned for each CG cut via a cross-entropy loss.
 812

813 Having collected the (up to) m CG cuts from the optimal Simplex tableau, and their corresponding
 814 scores s_1, \dots, s_m (either gap closed or B&C tree size reduction), for each of the t instances, we
 815 approximate a solution of the problem

$$816 \min_W \frac{1}{t} \sum_{i=1}^t \ell((H_W(E(I_i, o_i)))_{j \in [m]}, (s_j)_{j \in [m]}), \quad (3)$$

819 where E is the instance and cut encoder (described in the next subsection), H_W is a GNN parametrized
 820 by the weights W , which takes as input a graph and vectors o_i of size $m+1$ representing the collected
 821 cut from the tableau (left-hand side and right-hand side), and ℓ is the cross entropy loss $\ell : \mathbb{R}^m \times \mathbb{R}^m \rightarrow$
 822 \mathbb{R} , $(x, y) \mapsto \ell(x, y) := \frac{1}{m} \sum_{k=1}^m y_k \log\left(\frac{x_k}{\sum_{l=1}^m x_l}\right)$. At inference time, suppose the trained parameters
 823 is given by W . On a new instance I , the CG cut will be selected as $\arg \max_{i \in [m]} H_W(I, o_i)$, and
 824 ties are broken in an uniformly random manner.
 825

826 Table 3: Average tree size on 250 test instances of the GNN trained using either the B&C tree size or
 827 gap closed as a proxy vs. four simple benchmarks. **For all benchmarks except the GNN one, only**
 828 **the branch-and-cut tree size is reported, as it represents the final quantity of interest in this**
 829 **experiment.**

(a) Set cover			(b) Facility location		
Setting	B&C tree	gap closed	Setting	B&C tree	gap closed
Optimal	–	4.95	Optimal	–	86.31
Parallelism	–	8.29	Parallelism	–	144.09
Efficacy	–	9.90	Efficacy	–	123.63
Mix	–	9.30	Mix	–	133.72
Random	–	9.71	Random	–	152.46
GNN	8.27	8.65	GNN	128.85	134.61

(c) Knapsack			(d) Vertex cover		
Setting	B&C tree	gap closed	Setting	B&C tree	gap closed
Optimal	–	425.44	Optimal	–	8.54
Parallelism	–	576.55	Parallelism	–	10.15
Efficacy	–	582.83	Efficacy	–	9.36
Mix	–	572.55	Mix	–	9.55
Random	–	583.43	Random	–	10.10
GNN	570.55	571.34	GNN	9.70	9.71