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Abstract

Understanding long text is of great demands in practice but beyond the reach of
most language-image pre-training (LIP) models. In this work, we empirically
confirm that the key reason causing such an issue is that the training images are
usually paired with short captions, leaving certain tokens easily overshadowed by
salient tokens. Towards this problem, our initial attempt is to relabel the data with
long captions, however, directly learning with which may lead to performance
degradation in understanding short text (e.g., in the image classification task). Then,
after incorporating corner tokens to aggregate diverse textual information, we
manage to help the model catch up to its original level of short text understanding
yet greatly enhance its capability of long text understanding. We further look into
whether the model can continuously benefit from longer captions and notice a
clear trade-off between the performance and the efficiency. Finally, we validate the
effectiveness of our approach using a self-constructed large-scale dataset, which
consists of 100M long caption oriented text-image pairs. It is noteworthy that, on
the task of long-text image retrieval, we beat the competitor using long captions
with 11.1% improvement (i.e., from 72.62% to 83.72%). The project page is
available here.

1 Introduction

Understanding long texts plays a key role in natural language processing (NLP) field, e.g., text
generation [23, 28, 33]. Inspired by these works, in the multi-modality field, some text-to-image
generation works (e.g., DALLE-3 [1] and Pixel-art [4, 5]) employ pre-trained captioners (e.g.,
LLaVA [21]) to generate more accurate and detailed captions-in other words, long captions—for
images. These long captions significantly reduce the generative model’s tendency to hallucinate,
thereby enhancing the quality of text-image alignment. However, in the realm of language-image
pre-training, scant research has been conducted on modeling long texts in a way that effectively
aligns with image representations. Despite the lack of exploration, this is a critical problem with
practical demands because multi-modality models are increasingly common in applications that
require nuanced understanding of textual descriptions corresponding to images.

There are two primary challenges hinder the effective integration of long-text understanding in
language-image pre-training. The first one is the lack of large-scale long-caption image-text paired
datasets. Most existing datasets focus on short captions (i.e., average text length in CC12M [3] is
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Figure 1: Illustration of the impacts of long v.s. short captions on image-language pre-training, as
observed in the cross-attention maps of CLIP. Training images are usually paired with short captions,
leaving certain tokens (e.g., garden token) easily overshadowed by salient tokens (e.g., castle token).
Fortunately, the usage of long captions can help bring the overshadowed tokens back into the light,
and this phenomenon is not influenced by the order of tokens within the sentence.

about 17), which limits the model’s exposure to longer text forms. Consequently, the models trained
on these datasets tend to neglect certain tokens that are easily overshadowed by salient tokens. As
shown in Fig. 1, the model trained on short captions can be good at understanding the content of
short captions (i.e., garden and castle). But when increasing the length of caption, we can see that
‘garden token’ is overshadowed by ‘castle token’, even if we move the ‘garden token’ front. This
bias towards the salient tokens (‘castle token’ in Fig. 1) of texts can severely restrict the model’s
ability to comprehend and generate responses based on the full context of longer inputs. The second
challenge is the token length limitation of the text encoder. While directly increasing the token number
limitation that a model can process appears to be a straightforward solution for accommodating longer
texts, it does not automatically translate into better understanding for long captions. The fundamental
issue remains the model’s inability to effectively interpret long texts, primarily due to the lack of
appropriate training data that includes long captions.

To address these challenges, we have undertaken an extensive project to re-caption 100 million data
with long captions, aiming to enrich the training environment for our models. This initiative allows
us to explore the effects of increased text length in image-text pre-trained models and its impacts
on model performance. Based on these experiments, we empirically confirm that the key reason
causing such an issue is that the training images are usually paired with short captions, leaving
certain tokens easily overshadowed by salient tokens. However, directly learning with long captions
may improve the long-text understanding of image-text pre-trained models, but lead to performance
degradation in understanding short texts (e.g., in the image classification task) as shown in Fig. 2.
After integrating corner tokens to aggregate diverse textual information, we successfully enable the
model to regain its original proficiency in understanding short texts while significantly improving its
ability to comprehend long texts. We also explore whether the model can continue to benefit from
longer captions and observe a clear trade-off between performance and efficiency. It is noteworthy
that, on the task of long-text image retrieval, we beat Long-CLIP [39], a competitor using long
captions for fine-tuning, with 11.1% improvement (i.e., from 72.62% to 83.72%).

2 Related work

2.1 Language-Image Pre-training

Recently, using language-image pre-trained models to do zero-shot prediction has attracted a lot
of attention. CLIP [24] and ALIGN [14] demonstrate contrastive pre-trained models can learn
rich visual-language correspondence knowledge from large-scale image-text pairs on the Internet
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and achieve good performance on zero-shot predictions, including image-text retrieval [18] and
classification [9]. Following their success, various studies [16, 34, 36, 17] have been devoted to
improving image-text alignment. Among them, FILIP [34] focuses on fine-grained expressiveness
between text tokens and image patches by modifying the training loss. While LiT [37] finds that apply
contrastive-tuning to the pre-trained models with locked image encoder and unlocked text encoder can
further improve the alignment. It is recognized that larger batch size brings better performance. For
this reason, SigLIP [38] proposes to replace the softmax normalization among the standard contrastive
loss with the sigmoid loss to scale up training batch size. In addition, LaCLIP [11], RLEG [40] and
some other works [19, 13, 22, 30] utilize multi-modality generative models to improve data quality
for enhancing pre-training.

2.2 Long-text Understanding

Detailed long texts are necessary for many artificial intelligence tasks (e.g., human-computer
interaction). Therefore, modeling and parsing long texts has become one of the most important
research directions in natural language processing. Many studies in fields such as text generation [23,
32, 33] have shown that advanced transformer structures have the ability to interpret long texts.
However, in the field of language-image pre-training, research on using long-text descriptions of
images to enhance multimodal representations is still very scarce. DreamLIP [41] utilizes multi-
modality large language model to re-caption image data with detailed descriptions and then use them
in language-image pre-training. In fact, during training, DreamLIP randomly extracts sub-captions
from the detailed description for training and does not completely use all the information of the long
text. One of the reasons why previous language-image pre-training rarely directly applied long texts
for training is the text encoder of traditional CLIP [24] is restricted by the token number limit (≤ 77).
Then, Long-CLIP [39] firstly introduces long captions into CLIP model to finetune, where the model
is pre-trained on short-text-image datasets. The fine-tuning process equips the model with the ability
to comprehend long texts, albeit at the expense of its proficiency in understanding shorter texts. In
contrast, we incorporate long captions during the pre-training stage, which can not only enable the
model to regain its original competency in interpreting short texts but also significantly improves its
understanding of long texts. We further explored the trade-off between the benefit of long texts to the
model and the training efficiency.

3 Preliminary of Language-Image Pre-training

Language-image pre-training models, i.e., CLIP [24] and LiT [37], typically consist of two parts:
an image encoder and a text encoder. In the pre-training stage, the language-image model takes
image-text pairs as input, and the image encoder and text encoder are used to extract embeddings
from images and texts, respectively. Then, two encoders are trained with contrastive objectives,
ensuring that paired image and text embeddings are close in the embedding space, while unpaired
pairs are far apart. Specifically, a batch of images {I1, I2, · · · , IN} and the corresponding short
texts {T1, T2, · · · , TN} are randomly sampled from the pre-training dataset. Each image and its
corresponding text are treated as a positive pair, while others in the same batch are negative pairs.
Then, the image encoder extracts image global feature vi from the i-th image Ii within the batch,
while the text encoder obtains text feature tj from the j-th text Tj . These two encoders are then
optimized using contrastive loss L, which consists of image-to-text loss Li2t and text-to-image loss
Lt2i. It can be formulated as follows:

L = Li2t + Lt2i, (1)

Li2t = −
N∑
i=1

log
exp

(
cos⟨vi, ti⟩/τ

)∑N
j=1 exp (cos⟨vi, tj⟩/τ)

, (2)

Lt2i = −
N∑
i=1

log
exp

(
cos⟨ti,vi⟩/τ

)∑N
j=1 exp (cos⟨ti,vj⟩/τ)

, (3)

where τ is a learnable temperature parameter, and cos⟨·, ·⟩ means the cosine similarity between two
normalized feature vectors.
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Table 1: Dataset details of long-text-image retrieval and short-text-image retrieval tasks. We use
BERT tokenizer for tokenization. ShareGPT4V-1k and 10k are selected from the ShareGPT4V dataset.
For DCI and IIW, all images with human-authored long descriptions are used while evaluating.

Dataset #Images #Texts #Sub-captions per Text #Tokens per Text

Long-text-image Retrieval Dataset

DCI [31] 7,805 7,805 10.81 172.73
IIW [12] 612 612 10.16 239.73

ShareGPT4v-1k [6] 1,000 1,000 8.15 173.24
ShareGPT4v-10k [6] 10,000 10,000 8.24 173.66

Short-text-image Retrieval Dataset

MSCOCO [18] 5,000 25,000 1.0 11.77
Flickr30k [35] 1,000 5,000 1.0 14.03

4 Long Texts in Language-Image Pre-training

Currently available image-text pair datasets, e.g.CC12M [27], typically include short texts that have
an average length of approximately 17 tokens. Language-image models pre-trained on these datasets
perform well on short-text comprehension tasks. However, we find that they struggle to comprehend
long texts for text-image alignment. Concretely, they tend to overlook or neglect some tokens or
sub-captions in long texts, as shown in Fig. 1. A potential reason for such a situation is the lack
of long-text-image pairs in pre-training. Thus, we collected and re-captioned 100M images with
long texts. In this section, we provide details of re-captioning and explore the usage of long texts in
language-image pre-training.

4.1 Long Text-Image Pair Dataset

Training Dataset. To construct long text-image pairs for language-image pre-training, we re-
captioned 100 million images with long texts. Specifically, we collected the images from CC3M [27],
CC12M [27], YFCC15M [29], LAION [26], and COYO [2] dataset. Then, we instructed three multi-
modality large language models (MLLMs), i.e., InstructBLIP [7], LLaVA [20], and ShareGPT4V [6]
to generate diverse and descriptive long texts based on the collected images. In this step, we used
“Describe the image in detail.” as the text prompt, following DreamLIP [41]. Finally, each image
in the collected datasets is paired with four texts: a raw text from the original dataset and three
re-captioned long texts. The raw texts exhibit an average length of approximately 18 tokens, whereas
the re-captioned long texts consist of around 136 tokens.

Evaluation Dataset. Most zero-shot evaluation tasks for language-image pre-training primarily
rely on short textual input. For example, in short-text-image-retrieval tasks, the textual inputs contain
fewer than 15 tokens on average, as shown in Table 1. Given the short texts, these tasks are not
suitable to access the long text comprehension ability of pre-trained models. Therefore, we collected
long text-image pairs from DCI [31], IIW [12], and ShareGPT4V [6] datasets for constructing
long-text-image retrieval evaluation task. Specifically, for DCI and IIW datasets, we use images with
human-annotated long descriptions for retrieval. For ShareGPT4V dataset, we sample 1,000 and
10,000 data from ShareGPT4V dataset to construct ShareGPT4V-1k and ShareGPT4V-10k retrieval
dataset, respectively. The ShareGPT4V-1k dataset is constructed following Long-CLIP [39]. All
images in ShareGPT4V-1k and ShareGPT4V-10k are from SA-1B [15] dataset, and all long texts
are generated by ShareGPT4V-Captioner [6]. As shown in Table 1, each image within these datasets
has one paired long text, which consists of more than 8 sub-captions and 170 tokens on average.
Here, a sub-caption is a complete sentence ending with a period. The long-text-image retrieval
task necessitates the alignment of text features from long texts with the image features from the
corresponding images, which thereby evaluates the model’s ability to comprehend long texts.

4.2 Exploring the Influence of Text length

Long-CLIP [39] enables long text processing ability by fine-tuning CLIP model with long text-image
pairs. However, the benefits and drawbacks of using long texts in pre-training are still unknown. It
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Figure 2: The influence of text length. A significant improvement is observed across all tasks
when we added one randomly sampled sub-caption from generated texts to the pre-training stage.
As the number of sub-captions increases, the performance of the pre-trained model on long-text-
image retrieval tasks consistently improves and becomes stable (a). However, there is a performance
degradation in MSCOCO retrieval task (b) and ImageNet classification task (c).
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Figure 3: Overview of LoTLIP. We add multiple learnable corner tokens ([Cor 1], [Cor 2], . · · · )
after [CLS] token. These corner tokens are initialized differently for aggregating diverse token features.
Besides, an attention mask mechanism is used to limit the interaction between [CLS] and corner
tokens to ensure the diversity of gathered features.

is also unknown how the length of the text affects the performance of the pre-trained model. To
explore the influence of using texts in different lengths for pre-training, we change the length of
long texts by selecting different numbers of consecutive sub-captions. Each sub-caption in the long
texts has an average of approximately 22 tokens. The experiment is conducted on 3M scale dataset
and the results are illustrated in Fig. 2. Sub-caption number equals 0 indicates that the model is
trained without long texts. When introducing one sub-caption, a noticeable gain is achieved across
all tasks. The results also indicate that longer texts, composed of more sub-captions, enhance the
performance of the pre-trained model on long-text-image retrieval tasks. But it tends to stabilize when
the number of sub-captions reaches three. It confirms that using long text-image pairs for pre-training
improves pre-trained models’ understanding of long texts. However, longer texts in language-image
pre-training degrades the performance on short-text-image retrieval and image classification tasks.

4.3 Method

As presented in Sec. 4.2, directly incorporating long texts into pre-training negatively impacts the
performance of model in short-text comprehension tasks. In order to find a solution that well balances
both long and short texts, we design to add extra text tokens for text encoders, termed corner tokens,
which can aggregate diverse text features. This strategy benefits the class (i.e., [CLS]) token by
extracting more representative features for long and short text. Next, we will describe the details.

Corner Tokens. Different text encoder architectures (e.g., BERT [10], T5 [25]) can be utilized
in language-image pre-training. In this section, we take BERT [10] as an example of our approach.
Given a long text, it is expressed as [CLS], · · · [SEP], · · · [SEP], where the first token of every text input
is its class token [CLS], and all sub-captions are separated by a special token [SEP]. The omitted

5



part in · · · denotes the tokens obtained after tokenizing words within the sub-caption. Based on the
tokenized long text, we insert multiple learnable corner tokens C = {[Cor 1], · · · , [Cor m]} after
the class token, where m is the number of corner tokens. In this way, the form of the tokenized
text input is [CLS], [Cor 1] . . . [Cor m], · · · [SEP], · · · [SEP]. Moreover, we design an attention mask
mechanism A for the text encoder to promote the diversity of the aggregated features. Specifically,
when calculating the attention scores, the corner tokens and [CLS] token are guided to neglect each
other but attend to all other sub-caption tokens. Meanwhile, in the attention mask mechanism, each
text tokens are designed to only interact with other text tokens and the [CLS] token, to keep the
interactions between local and global information. The attention mask A is formulated as:

A(q, k) =

{
0, if (k ∈ C or q, k ∈ C ∪ {[CLS]}) and q ̸= k
1, otherwise

where q and k represent the query and key tokens in attention block, respectively. The features of the
[CLS] and corner tokens are regarded as text global feature tg and corner features tc1 , tc2 , ..., tcm ,
respectively.

Optimization. The short-text-image contrastive loss Lshort is calculated in the same way as Eq. (1).
Meanwhile, the long-text-image contrastive loss Llong between image global feature v and
tg, tc1 , tc2 , ..., tcm of long text is as follows:

Llong = Li2t
long + Lt2i

long, (4)

Li2t
long = −

N∑
i=1

(log
exp

(
cos⟨vi, tig⟩/τ

)
∑N

j=1 exp
(
cos⟨vi, tjg⟩/τ

) +

m∑
k=1

log
exp

(
cos⟨vi, tick⟩/τ

)∑N
j=1 exp

(
cos⟨vi, tjck⟩/τ

) ), (5)

Lt2i
long = −

N∑
i=1

(log
exp

(
cos⟨tig,vi⟩/τ

)∑N
j=1 exp

(
cos⟨tig,vj⟩/τ

) +

m∑
k=1

log
exp

(
cos⟨tick ,v

i⟩/τ
)∑N

j=1 exp
(
cos⟨tick ,vj⟩/τ

) ), (6)

The total training loss is LLoTLIP = Llong + Lshort.

5 Experiments

5.1 Implementation Details and Datasets

Pre-training Datasets. As presented in Sec. 4.1, we collected 100M data from five publicly available
image-text pair datasets and re-captioned the collected images with long texts. Based on this dataset,
we construct 4 scales of pre-training data: (1) 3M, including CC3M. (2) 12M, including CC12M.
(3) 30M, including CC3M, CC12M, and YFCC15M. (4) 100M, including all re-captioned data. We
conduct ablation studies to validate our model on the 3M scale pre-training data. The performance of
LoTLIP pre-trained with 12M and 30M scale datasets is shown in the Supplementary Material.

Downstream Datasets. To assess the ability of the pre-trained models on short-text and long-text
understanding, we select 3 downstream tasks for evaluation under the zero-shot setting, including
long-text-image retrieval, short-image-text retrieval, and image classification. For long-text-image
retrieval, we present the Recall at 1 (R@1) metric of the pre-trained models on DCI, IIW, and
ShareGPT4V-1k, and ShareGPT4V-10k long-text-image retrieval tasks. For short-image-text
retrieval, we evaluate on MSCOCO [18] and Flickr30k Caption [35] and report Recall at 1/5
(R@1/5) metric for comparison. For image classification, we use ImageNet1k [9] for evaluation
and present top-1 accuracy (Acc@1) on image classification. Following [24], we use class names
incorporated with pre-defined text prompts as text inputs for zero-shot classification.

Implementation Details. Following LiT [37], we use a vision transformer pre-trained on ImageNet
21K as the image encoder and Bert [10] as the text encoder. The architecture of the image encoder
is ViT-B/16. We report other variants of vision transformers in the Supplementary Material. The
images are resized to 224× 224. The maximum text token length is set to 128 unless specifically
stated. Three consecutive sub-captions are randomly selected to from long texts as text input. We
train 10 epochs on the 3M and 100M scale datasets. For the 3M dataset, the batch size is set to 2560,
while that of 100M is set to 16384. The other pre-training hyperparameters are under the same setting,
e.g.learning rate, warmup steps, and weight decay.
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Table 2: Analyze the effectiveness of LoTLIP in language-image pre-training with long texts. The
architecture of the image encoder is ViT-B/16. I2T and T2I indicate R@1 on text and image retrieval,
respectively. We use 3M scale dataset for pre-training. “✓" indicates we add long texts in the training
stage.

Method Long Texts

Long-text-image Retrieval Short-text-image Retrieval Classification

DCI IIW ShareGPT4v-10k MSCOCO ImageNet

I2T T2I I2T T2I I2T T2I I2T T2I Acc@1

LiT - 27.14 24.13 65.20 58.50 32.73 27.01 34.20 24.07 43.76

LiT ✓ 47.96 44.92 84.97 81.70 73.66 66.73 43.52 30.06 48.87

LiT+Long-CLIP* ✓ 47.21 46.61 83.82 83.01 74.60 67.49 43.78 26.74 46.82

LoTLIP ✓ 49.46 47.82 84.97 83.33 76.49 69.72 46.56 31.59 50.34

* We apply the primary Component matching strategy proposed by Long-CLIP [39] to LiT and train the
model with the same training setting using 3M data for fair comparison.

5.2 Ablation Studies
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Figure 4: Influence of token number limitation
on LoTLIP. The performance of the pre-trained
model on different tasks improves when the token
number limitation increases up to 192, which
exceeds the commonly used 77. Meanwhile, the
FLOPs of the text encoder (red stars) rapidly
increase with the text token number limitation.

Exploring the Influence of Token Number
Limitation. Token number limitation is the
maximum length of text input that the text
encoder can process at a time. For language-
image pre-training models, the token number
limitation of text encoder can be arbitrarily
set to any positive integer, which is typically
set to 77 [24, 38, 41]. The benefits derived
from using long texts in pre-training might be
constrained by the 77 token limitation. To
investigate this hypothesis, we incrementally
raise the token number limitation from 32 to
512. The results are illustrated in Fig. 4, which
indicate a limitation of 77 tokens is insufficient
for a model training with long texts. On DCI
and ShareGPT4V-10k retrieval tasks, the best
results are observed when the token number
limitation is set to 192. Meanwhile, the highest
performance on the IIW retrieval task is reached
when the text token length limitation is 256.
Since the average text length of the evaluation datasets is less than 240 tokens, as shown in Table 1.
When the text token length limitation gets larger than 256, these datasets can’t well prove the long-text
understanding ability of the model. In Fig. 4, we also illustrate the FLOPs of the text encoder, which
increases with the text token number limitation. To balance the training efficiency and performance,
we set the token number limitation to 128 for the text encoder of LoTLIP.

Compare LoTLIP with Other Methods in Pre-training with Long Texts. LoTLIP aims to
enhance the long-text and short-text comprehension ability of language-image pre-training. To
demonstrate the effectiveness of LoTLIP, we compare it with other approaches that train with long
text-image pairs. The first approach is directly using long texts in the training stage of LiT. The
second approach is based on another contrastive learning method related to long texts, namely Long-
CLIP [39]. Concretely, we incorporate the primary component matching strategy and losses proposed
by Long-CLIP to LiT (LiT+Long-CLIP). For a fair comparison, all models are trained with 3M
scale dataset. As shown in Table 2, directly using long texts in pre-training procedural significantly
improves LiT over all tasks. Moreover, LiT+Long-CLIP exceeds LiT on the long-text-image retrieval
tasks when both models incorporate long texts during pre-training. But on short-text comprehension
tasks, i.e., short-text-image retrieval and image classification, the performance of LiT+Long-CLIP is
inferior to that of LiT. Instead, LoTLIP improves LiT and LiT+Long-CLIP on both long and short
text comprehension tasks. Concretely, LoTLIP surpasses LiT and LiT+Long-CLIP by 1.97% and
1.51% on average over three long-text-image retrieval tasks. Besides, LoTLIP improves LiT by 2.29%
and 1.47% on MSCOCO retrieval and ImageNet classification, respectively. The results demonstrate
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Table 3: Analyze the influence of the number of corner tokens and the attention mask mechanism.
We use 3M scale dataset for training. The architecture of the image encoder is ViT-B/16.

#Corner Token Attention
Mask

Long-text-image Retrieval Short-text-image Retrieval Classification

DCI IIW ShareGPT4v-10k MSCOCO ImageNet

I2T T2I I2T T2I I2T T2I I2T T2I Acc

0 - 47.96 44.92 84.97 81.70 73.66 66.73 43.52 30.06 48.87

1 ✓ 49.57 46.55 84.97 82.68 74.91 68.41 45.68 31.51 49.62

2 ✓ 49.46 47.82 84.97 83.33 76.49 69.72 46.56 31.59 50.34

3 ✓ 49.58 47.70 87.09 84.31 76.51 70.20 46.48 31.60 50.36

4 ✓ 49.58 48.30 86.76 84.15 76.25 70.14 47.70 31.88 50.59

2 - 48.61 47.17 86.11 81.86 76.14 69.31 47.70 31.34 49.88

2 ✓ 49.46 47.82 84.97 83.33 76.49 69.72 46.56 31.59 50.34

Table 4: Zero-shot evaluation of different models on long-text-image retrieval tasks. I2T and T2I
indicate R@1 on text and image retrieval, respectively.

Data Scale
Model

DCI IIW ShareGPT4v-1k ShareGPT4v-10k
Avg.

Short Long I2T T2I I2T T2I I2T T2I I2T T2I

3M - FILIP [34] 10.85 11.36 31.54 29.08 26.50 26.80 8.94 8.64 19.21

3M - LaCLIP [11] 14.84 14.71 41.01 38.89 40.90 37.10 15.81 14.84 27.26

3M - SigLIP [38] 11.66 13.11 29.25 29.58 27.30 25.10 9.92 9.30 19.40

3M - LiT [37] 27.14 24.13 65.20 58.50 63.60 56.80 32.73 27.01 44.38

3M LoTLIP 49.46 47.82 84.97 83.33 93.20 90.00 76.49 69.72 74.37

400M - CLIP [24] 45.45 43.01 88.24 87.58 84.50 79.80 60.22 56.16 68.12

100M - LiT [37] 41.78 40.90 88.07 82.68 86.00 80.00 61.41 50.69 66.44

700M - ALIGN [14] 56.54 57.41 92.65 90.68 86.30 85.30 65.13 62.73 74.59

12B - SigLIP [38] 57.78 56.22 91.99 91.01 85.80 83.40 83.40 63.08 76.59

400M 1M Long-CLIP* [39] 47.43 44.18 89.22 86.93 90.60 87.40 73.16 62.03 72.62

100M LoTLIP 62.10 61.06 93.95 92.48 96.50 95.50 86.84 81.40 83.72
* Long-CLIP fine-tunes pre-trained CLIP model with ShareGPT4v-10k data from ShareGPT4v datasets
except ShareGPT4v-1k.

that LoTLIP benefits from long texts and corner tokens, thereby exhibiting a better understanding of
the long and short texts.

Implementation of Corner Tokens. In this part, we study the influence of the attention mask
mechanism and the number of corner tokens on different downstream tasks as shown in Table 3.
LoTLIP pre-trained without the pre-defined attention mask encounters performance degradation on
most tasks compared to when using the pre-defined attention mask. It indicates that direct interaction
between the CLS token and corner tokens limits their ability to aggregate diverse textual features.
On short-text-image retrieval and image classification tasks, the performance of LoTLIP improves
when introducing more corner tokens. It proves that the corner tokens help with enhancing the short
text understanding ability of LoTLIP. When the number of corner tokens is set to more than two,
the performance improvement across all tasks is relatively small. Thus, we use two corner tokens in
LoTLIP.

5.3 Main Results

We compare LoTLIP with the state-of-the-art methods on downstream tasks involving long texts and
short texts. The experimental results are shown in Table 4 and Table 5, respectively. On 3M data
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Table 5: Zero-shot evaluation of different models on short-text-image retrieval and classification
tasks.

Data Scale
Model

IN MSCOCO I2T MSCOCO T2I Flickr30k I2T Flickr30k T2I

Short Long Acc. R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

3M - FILIP [34] 18.69 14.98 34.88 11.86 28.98 30.40 56.80 20.76 44.20

3M - LaCLIP [11] 21.50 18.94 40.40 12.42 31.04 37.00 63.90 29.32 56.04

3M - SigLIP [38] 21.28 16.30 37.36 13.22 31.65 31.00 61.10 23.76 48.64

3M - LiT [37] 43.76 34.20 61.52 24.07 48.37 61.30 89.50 48.06 75.36

3M LoTLIP 50.34 46.56 72.02 31.59 57.65 75.20 94.20 58.20 83.58

400M - CLIP [24] 68.34 51.68 76.72 32.70 57.76 82.20 96.60 62.14 85.72

100M - LiT [37] 73.70 51.92 75.72 32.74 57.84 80.00 95.90 60.86 84.62

700M - ALIGN [14] 65.89 60.42 82.50 42.36 67.38 88.90 98.00 74.12 92.40

12B - SigLIP [38] 76.04 65.46 86.22 47.14 72.10 89.10 98.00 74.66 92.30

400M 1M Long-CLIP [39] 67.10 57.28 80.78 40.34 65.92 85.90 98.50 70.66 90.60

100M LoTLIP 72.16 59.66 81.50 38.06 63.81 86.90 97.80 65.22 87.98

scale, LoTLIP significantly improves the state-of-the-art methods on all tasks. Specifically, LoTLIP
improves the second best method LiT by 29.99% on average over four long-text-image retrieval tasks.
Moreover, LoTLIP improves the second competitor LiT by 6.58% and 10.98% on image classification
task and short-text-image retrieval tasks, respectively. It proves that LoTLIP significantly enhances
language-image model for understanding short and long captions by involving long captions in
pre-training and incorporating corner tokens in text inputs. It is worth noting that LoTLIP trained
with 100M data exceeds all state-of-the-art methods on long-text-image retrieval tasks, even though
these methods are pre-trained on a larger scale of data. Concretely, LoTLIP (trained on 100M data)
exceeds SigLIP (trained with 12B) by an average of 7.13% over four long-text-image retrieval tasks.
Moreover, compared to Long-CLIP, which first uses long texts in CLIP for fine-tuning, LoTLIP
improves averaged performance by 11.1% on long-text-image retrieval tasks.

6 Conclusion

In this work, we empirically confirm that a key issue arises because training images are typically
paired with short captions, which can cause certain tokens to be overshadowed by more salient ones.
To address this issue, our initial strategy involved relabeling the data with long captions. However,
directly learning from these long captions might lead to degraded performance in tasks requiring
an understanding of short text, such as image classification. Subsequently, by incorporating corner
tokens to aggregate diverse textual information, we are able to help the model regain its original
proficiency in understanding short texts while significantly enhancing its capability to comprehend
long texts. We also investigated whether the model could continue to benefit from longer captions and
observed a clear trade-off between performance and efficiency. Finally, we validated the effectiveness
of our approach using a self-constructed large-scale dataset, which consists of 100 million long-
caption-oriented text-image pairs. It is noteworthy that in the task of long-text image retrieval, our
method outperforms the long caption-related competitor, Long-CLIP, with a significant improvement
of 11.1%.
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8 Appendix

8.1 Data Statistics

As shown in Table 6, we report the data statistics of our dataset and other text-image paired datasets.
Compared to the texts in the source datasets, which were used to collect images, the re-captioned texts
are significantly longer, averaging 136 tokens v.s. 18 tokens. To the best of our knowledge, LoTLIP
dataset is the largest dataset consisting of long texts for multi-modal learning. We are continuing
to expand the size of LoTLIP by integrating additional MLLMs, as well as gathering more publicly
available datasets for long text generation.

Table 6: Data statistic of LoTLIP dataset and other text-image paired dataset. Our dataset is the
largest dataset consisting of long texts for multi-modal learning.

Dataset #Images #Texts #Sub-captions per Text #Tokens per Text

Short-text-image Pairs Dataset

CC3M [27] 3,018,175 3,018,175 1.01 11.29

CC12M [27] 10,445,969 10,445,969 1.00 17.48

YFCC15M [29] 14,772,456 14,772,456 1.23 13.61

LAION47M [26] 49,677,119 49,677,119 1.28 18.99

COYO24M [2] 24,658,004 24,658,004 1.21 17.07

Long-text-image Pairs Dataset

DCI [31] 7,805 7,805 10.81 172.73

IIW [12] 612 612 10.16 239.73

ShareGPT4v [6] 1,246,901 1,246,901 8.23 174.95

LoTLIP 102,571,723 307,715,169 6.16 136.14

8.2 More Experimental Analysis

8.2.1 Influence of Sub-caption Number on LoTLIP and LiT

During the pre-training stage, we randomly select multiple consecutive sub-captions from long texts
in LoTLIP as long text inputs. In Fig. 5, we show the influence of the number of sub-captions when
the length of text input is limited to 128. With the number of sub-captions increasing, LiT and
LoTLIP reaches better performance in both text retrieval and image retrieval on the ShareGPT4v-10k
and DCI datasets. There are small improvements when the number of sub-captions gets larger than
3. Moreover, both methods exhibit performance degradation on text-image retrieval and image
classification tasks as the number of sub-captions increases. But the decline in performance of
LoTLIP is more gradual. It further proves that LoTLIP can make better use of long texts to enhance
the understanding of long texts while retaining the short-text understanding ability.

8.2.2 Compare Corner Tokens with Register Tokens

In LoTLIP, we employ learnable tokens, namely corner tokens, to help the model regain its original
proficiency in understanding short texts while significantly enhancing its capability to comprehend
long texts. Existing method [8] also adds learnable tokens in the encoder, which they refer to as
registered tokens. The register tokens are used to get rid of artifacts in image feature maps. In order to
fairly compare corner tokens with register tokens, we implement the same number of register tokens
on the text encoder and train the model with the same scale of dataset as LoTLIP. As shown in Table 7,
register tokens can’t enhance the ability of the language-image pre-trained model to understand short
and long texts. Instead, corner tokens improve the performance of the baseline model over all tasks.

8.2.3 Contrastive Learning without Pre-trained Weights

In Table 8, we present the performance of LoTLIP without loading pre-trained weights for text and
image encoder on long and short-text related tasks. The results show that directly involving long
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Figure 5: Influence of the number of sub-captions used in the pre-training stages. Both LiT and
LoTLIP are trained with long texts. The performance on ShareGPT4v and DCI retrieval are shown in
(a)(b). (c)(d) represent the performance on MSCOCO retrieval. (e) shows the performance of image
classification on ImageNet.

Table 7: Compare corner tokens with register tokens. The models are trained with 3M scale dataset.

Learnable
Token Type

Long-text-image Retrieval Short-text-image Retrieval Classification

DCI IIW ShareGPT4v-10k MSCOCO ImageNet

I2T T2I I2T T2I I2T T2I I2T T2I Acc.

- 47.96 44.92 84.97 81.70 73.66 66.73 43.52 30.06 48.87

Register 45.62 44.65 83.99 81.37 74.42 68.78 44.18 30.34 48.78

Corner 49.46 47.82 84.97 83.33 76.49 69.72 46.56 31.59 50.34

texts in the pre-training stage can also enhance the performance of the language-image model with
randomly initialized weights over all tasks. Besides, LoTLIP further improves CLIP on long and
short text understanding ability, when they are both pre-trained with long texts. In our methodology,
we opt to load pre-trained weights and fix the image encoder during training, following LiT. This is
because LiT is a strong baseline and such a training setting significantly conserves computational
resources.

Table 8: Analyze the effectiveness of LoTLIP without loading pre-trained weights for image and text
encoder. The architecture of image encoder is ViT-B/16. We use 3M scale dataset for pre-training.
“✓" indicates we use long texts in the training stage.

Method Long Texts

Long-text-image Retrieval Short-text-image Retrieval Classification

DCI IIW ShareGPT4v-10k MSCOCO ImageNet

I2T T2I I2T T2I I2T T2I I2T T2I Acc.

CLIP - 11.67 11.01 33.17 31.37 10.69 8.77 14.74 10.93 16.54

CLIP ✓ 42.92 42.23 77.29 75.98 66.78 64.70 32.14 22.33 23.28

LoTLIP ✓ 43.91 43.83 78.76 75.98 70.20 67.91 34.40 24.11 24.65
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8.2.4 Utilizing Long Captions from Different MLLMs

We use three MLLMs, i.e., InstructBLIP [7], LLaVA [20], and ShareGPT4V [6], to generate diverse
long captions for 100M images. In this part, we conduct experiments to analyze the influence of using
long texts generated by different MLLMs in pre-training. As shown in Table 9, LoTLIP trained with
all generated long texts reach the best performance on average over all tasks. It means that diverse
long texts help language-image pre-trained models to better comprehend texts to align with images.
Moreover, LoTLIP trained with long captions generated by ShareGPT4V reaches higher scores on
long-text-image retrieval tasks than other MLLMs. This indicates that the long captions generated
by ShareGPT4V are of higher quality, which can enhance the long-text comprehension ability of
LoTLIP.

Table 9: Utilizing long captions generated by different MLLMs in the training statge.

Method MLLM

Long-text-image Retrieval Short-text-image Retrieval Classification

DCI IIW ShareGPT4v-10k MSCOCO ImageNet

I2T T2I I2T T2I I2T T2I I2T T2I Acc.

LoTLIP

InstructBLIP [7] 39.94 38.54 78.43 75.33 57.90 55.17 44.60 30.94 50.32

LLaVA [20] 41.67 40.37 78.26 72.22 54.50 50.49 44.74 31.10 48.10

ShareGPT4V [6] 47.21 46.71 85.78 83.17 77.93 72.30 44.98 30.96 49.34

All 49.46 47.82 84.97 83.33 76.49 69.72 46.56 31.59 50.34

8.2.5 Pre-training with different scale of dataset

We compare LoTLIP and LiT on different scales of the pre-training dataset, i.e., 3M, 12M, 30M,
and 100M on long-text-image retrieval, text-image retrieval, and image classification. The results
on long-text and short-text centered tasks are shown in Table 10 and Table 11, respectively. LoTLIP
significantly improves LiT on all tasks in both ViT-B/32 and ViT-B/16 under different pre-training
settings. It proves that involving long captions in the pre-training stage can help the language-image
model to better deal with both long and short-comprehension tasks.

8.3 Visualization

We visualize the attention map of LiT, LiT trained with long texts, Long-CLIP (our implementation),
and LoTLIP in Fig. 6. Given the long caption in the first column, the attention visualization map of
LiT can only activate regions corresponding to partial objects mentioned in the long caption, e.g., flat
rock. This situation is alleviated after incorporating long captions in LiT pre-training. Benefiting
from corner tokens, the highlighted image regions of LoTLIP are well aligned with the given long
caption.

8.4 Limitation

We re-wright the captions of 100M images using three popular open-sourced multi-modal large
language models (i.e.InstructBLIP [7], LLaVA [20] and ShareGPT4V [6]), but we observed
hallucination elements in the synthesized long captions. The hallucinations in captions, which
do not correspond with the image information, may restrict the full potential of long captions in
enhancing the understanding of lengthy texts by language-image pre-trained models.

8.5 Experiment Hardware

To obtain our LoTLIP trained with 100M scale dataset, we apply A100 GPU with 80G memory for
training, which costs about 133 GPU days. For models trained on datasets of other scales (i.e.3M,
12M, 30M), the training duration decreases linearly with the amount of training data.

8.6 Social Impact

The 100M images used for pre-training are publicly accessible, and the re-annotated long captions
are synthesized using public multi-modal large language models on these public datasets, posing no
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An person is washing clothes by scrubbing 
them on a flat rock with both hands . The 

flat rock is long enough for both of the 
person's feet to be side by side. It must be 

chilly because a mist is rising off the water, 
and the person is wearing long sleeves. the 

person probably belongs to a group that 
believes the head should be covered.

There is a reg and gray bird in a tree. It is 
perched on a branch and looking to its left 

side. Around it are other branches that have 
green leaves. The branches vary in size, but 

they are mostly tan. There is a blue sky in the 
background. It is sunny and dappled sunlight 

is on the plants and the bird.

LiT LiT+Long Texts LoTLIPLong-CLIP

Figure 6: Visualize the attention map of LiT, LiT trained with long texts (LiT+Long Texts), Long-
CLIP, and LoTLIP. Here, both Long-CLIP (our implementation) and LoTLIP are trained with long
texts. Benefiting from long texts and corner tokens, the highlighted image regions of LoTLIP are
better aligned with the given long caption compared to other methods.

ethical risk in the data source. Our LoTLIP is incapable of generating images and text, thus there is
no need for concern regarding the negative social impact resulting from fake, violent, pornographic,
or discriminatory content. Moreover, LoTLIP has the potential for positive social impact, considering
its excellent image-text retrieval performance, it may serve as a valuable asset in image retrieval
libraries in the future.

8.7 Ethic Statement

We have conducted a thorough review to ensure that there has been no violation of the NeurIPS Code
of Ethics in this paper.
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Table 10: Zero-shot evaluation of different models on long-text-image retrieval.

Data Scale Model
DCI IIW ShareGPT4v-1k ShareGPT4v-10k

Avg.
I2T T2I I2T T2I I2T T2I I2T T2I

Model Architecture: ViT-B/32

3M
LiT 24.11 20.56 59.48 53.92 57.80 51.00 28.19 22.73 39.72

LoTLIP 44.46 41.78 83.99 79.90 91.40 87.10 71.17 63.85 70.45

12M
LiT 38.73 33.91 78.59 77.12 73.00 69.20 43.69 38.27 56.56

LoTLIP 47.35 45.86 89.87 87.58 93.80 91.90 79.01 73.00 76.04

30M
LiT 39.41 33.71 85.13 76.63 79.40 67.70 52.09 36.47 58.82

LoTLIP 51.12 49.25 89.87 89.05 94.40 92.80 82.66 76.93 78.26

100M
LiT 42.54 39.12 86.27 83.17 82.10 76.90 57.69 47.99 64.47

LoTLIP 58.64 55.20 92.81 91.67 95.10 93.10 82.81 77.46 80.84

Model Architecture: ViT-B/16

400M+1M Long-CLIP 47.43 44.18 89.22 86.93 90.60 87.40 73.16 62.03 72.62

3M
LiT 27.14 24.13 65.20 58.50 63.60 56.80 32.73 27.01 44.38

LoTLIP 49.46 47.82 84.97 83.33 93.20 90.00 76.49 69.72 74.37

12M
LiT 44.04 39.86 83.01 80.88 79.60 74.80 52.93 45.79 62.61

LoTLIP 52.24 50.72 92.16 89.87 95.80 93.80 83.78 77.51 79.48

30M
LiT 38.68 34.81 85.29 79.41 81.40 68.50 54.63 39.27 60.24

LoTLIP 56.04 55.90 93.79 91.50 96.90 94.10 86.72 81.57 82.06

100M
LiT 41.78 40.90 88.07 82.68 86.00 80.00 61.41 50.69 66.44

LoTLIP 62.10 61.06 93.95 92.48 96.50 95.50 86.84 81.40 83.72
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Table 11: Zero-shot evaluation of different models on image-text retrieval and classification tasks.

Data Scale Model
IN MSCOCO I2T MSCOCO T2I Flickr30k I2T Flickr30k T2I

Acc. R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

Model Architecture: ViT-B/32

3M
LiT 38.83 30.94 57.02 21.25 44.60 44.60 83.80 41.66 71.70

LoTLIP 45.50 41.98 68.44 28.00 53.36 72.00 91.10 52.76 79.16

12M
LiT 59.84 40.70 66.52 26.48 51.47 66.90 89.00 49.52 76.58

LoTLIP 61.07 50.84 76.20 33.19 58.89 77.30 94.60 57.46 83.08

30M
LiT 64.95 42.48 68.36 25.70 50.50 67.80 89.80 47.64 76.14

LoTLIP 65.41 52.52 76.72 32.51 57.90 78.40 95.00 56.16 81.14

100M
LiT 68.26 47.98 72.80 29.69 55.24 75.60 93.90 54.52 81.34

LoTLIP 67.20 55.62 79.30 34.98 60.80 82.60 95.30 59.58 84.56

Model Architecture: ViT-B/16

400M+1M Long-CLIP 67.10 57.28 80.78 40.34 65.92 85.90 98.50 70.66 90.60

3M
LiT 43.76 34.20 61.52 24.07 48.37 61.30 89.50 48.06 75.36

LoTLIP 50.34 46.56 72.02 31.59 57.65 75.20 94.20 58.20 83.58

12M
LiT 65.97 44.78 70.46 29.57 54.58 72.90 92.90 54.18 81.18

LoTLIP 66.70 55.18 78.54 36.22 62.05 82.60 96.30 62.74 86.78

30M
LiT 69.91 45.46 70.48 27.66 51.96 73.40 93.10 53.16 78.94

LoTLIP 70.60 55.58 79.68 34.34 59.85 81.80 95.70 60.52 84.22

100M
LiT 73.70 51.92 75.72 32.74 57.84 80.00 95.90 60.86 84.62

LoTLIP 72.16 59.66 81.50 38.06 63.81 86.90 97.80 65.22 87.98
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we explicitly state that our initial attempt
is to relabel the data with long captions to facilitate the understanding of long text by the
language-image pre-training (LIP) model.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: In the appendix, we discuss the limitations regarding the the potential
harmfulness of the hallucination elements in long captions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [No]

Justification: We primarily demonstrate through experimentation that short captions fail to
unlock the potential of LIP in understanding long texts, and that our approach effectively
models long captions in a way that aligns with image representation, as described in Sec. 4
and Sec. 5.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: In both the description of our method in Sec. 4 and the details of experimental
implementation in Sec. 5, we disclose the information needed to reproduce the main
experimental results. We will also release our code, model, and the new dataset to facilitate
the reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [No]
Justification: The code for this paper requires approval before it can be made open source,
hence it is not provided in this submission. However, the code, models, and datasets of this
paper will be made publicly accessible after this submission to ensure the reproducibility of
the experiments and to foster research progress within the community.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes]

Justification: In Sec. 5, we explicitly present the implementation details, including the
training data, pretraining hyperparameters, the settings of comparison methods, etc.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: This paper proposes a foundation model that incurs significant training
expenses, so we fixed the random seed and trained it only once. During the evaluation, we
also fixed the random seed to ensure the constant results. Consequently, the fluctuation and
error in our experimental results are slight.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?
Answer: [Yes]
Justification: In the appendix, we have specified the GPU type, the memory, the numbers of
GPUs required for one training session, and the training duration for our model.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have conducted a thorough review to ensure that there has been no violation
of the NeurIPS Code of Ethics in this paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our model has the potential for positive social impact, given its strong image-
text retrieval performance, it may serve as a valuable asset in image retrieval libraries in the
future.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The image data used for training is publicly accessible, and the long captions
were synthesized using public models on public datasets, posing no security risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original paper that produced the code and dataset in the
paper. The image data used for training is publicly accessible, and the long captions were
synthesized using public models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: We have rewritten captions for 100M images, but the new data requires
approval before release. The new data will be made available to the public with our code
after submission.
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Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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