
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING TO PONDER: ADAPTIVE REASONING IN
LATENT SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Test-time compute has emerged as a key paradigm for enhancing LLM reason-
ing, yet prevailing approaches like Best-of-N and majority voting apply uni-
form depth across inputs, wasting computation on simple queries while po-
tentially under-thinking complex ones. We present FR-Ponder, a single-graph,
backbone-training-free framework that allocates instance-adaptive reasoning
compute via latent steering. A less than 1M-param controller observes hidden
states and decides to halt or apply a small ponder step by adding a pre-computed
steering vector to frozen representations. Our method extracts the latent steer-
ing vector associated with deeper reasoning outputs and direct IO from LLM and
re-applies it through a tunable scaling factor, allowing the model to adapt its rea-
soning depth to the complexity of each input. To balance performance and com-
putational cost, we employ Group Relative Policy Optimization (GRPO) as a re-
ward signal to adaptively regulate reasoning depth, achieving task accuracy while
mitigating overreasoning. Through curriculum learning and careful reward engi-
neering, FR-Ponder learns calibrated compute allocation correlated with problem
difficulty. On GSM8K and MATH, FR-Ponder improves the compute–accuracy
frontier, delivering lower FLOPs with better matched accuracy and comparing fa-
vorably to early-exit baselines, without modifying backbone weights. Analyses
visualize interpretable steering directions and show learned compute allocation
correlates with problem difficulty.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable success across diverse reasoning tasks,
yet they exhibit a fundamental inefficiency: fixed computational allocation. Whether processing a
simple factual query or solving a complex mathematical problem, current LLMs expend identical
compute per token (Kaplan et al., 2020; Hoffmann et al., 2022). This rigid approach leads to sys-
tematic over-computation on easy instances and under-allocation on challenging ones, creating a
compute-accuracy mismatch that becomes increasingly problematic as models scale to hundreds of
billions of parameters (Touvron et al., 2023; Achiam et al., 2023).

Recent efforts to address this inefficiency fall into three categories, each with significant limitations.
Multi-pass methods like chain-of-thought prompting (Wei et al., 2022) and self-consistency (Wang
et al., 2022b) achieve adaptive reasoning by sampling multiple trajectories, but multiply inference
costs by the number of passes. Architectural modifications including early-exit mechanisms (Schus-
ter et al., 2022; Zhou et al., 2020) and layer skipping (Elhoushi et al., 2024) require model retraining,
limiting deployment flexibility and often degrading base model capabilities. Speculative decod-
ing approaches (Leviathan et al., 2023; Chen et al., 2023) accelerate inference through draft-verify
paradigms but require maintaining multiple models and provide only coarse-grained adaptation.

The recent Fractional Reasoning framework (Liu et al., 2025b) introduced a promising direction:
extracting “reasoning vectors” from contrastive prompts and applying them with tunable intensity to
control reasoning depth. However, this approach requires manual tuning of the scaling factor α for
each problem type, lacks dynamic adaptation within a single inference, and provides no principled
method for learning optimal compute allocation.

To address this, we introduce FR-PONDER (Fractional Reason Ponder Framework), a framework
that transforms inference depth into a learnable decision process. As shown in Figure 1, we provide

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

an overview of our method FR-PONDER . Our key insight is decomposing adaptive computation
into two orthogonal problems: (1) what to think about via steering vectors encoding reasoning
directions, and (2) how long to think via a lightweight pondering controller. At each decoding step,
FR-PONDER observes the current hidden state and either halts to emit a token or applies an additive
“thought step” along learned steering vectors:

zk+1 = zk + ϕ(zk) ·∆z(hsteer), halt if ϕ(zk) ≤ τ (1)

where ϕ(·) is a learned pondering probability, hsteer represents steering vectors extracted via con-
trastive activation (Zou et al., 2023; Rimsky et al., 2024), and τ is a halting threshold.

This design enables several critical advantages over prior work:

One-pass, zero-backbone-finetune operation. Unlike methods requiring multiple forward passes
or model retraining, FR-PONDER operates in a single inference pass with the base LLM completely
frozen. Only a small controller network (≤ 1M parameters) is trained, preserving the model’s
original capabilities while adding less than 0.01% parameter overhead.

Fine-grained, instance-adaptive depth. Rather than applying uniform depth across all tokens or
problems, FR-PONDER makes per-token pondering decisions based on the evolving hidden state.
This creates a continuous spectrum of reasoning intensity that automatically adapts to local com-
plexity—spending more compute on challenging reasoning steps while quickly resolving simple
continuations.

Multi-objective reward. We formulate adaptive computation as a reinforcement learning problem
with carefully designed rewards that balance multiple objectives:

R = wacc ·Accuracy−wflops ·FLOPs+wcomp ·Completeness+wqual ·Quality−wrep ·Repetition (2)

This rich reward signal addresses critical challenges in adaptive reasoning, including partial credit
for mathematical solutions, anti-repetition mechanisms to prevent pondering collapse, and com-
pleteness validation to ensure full reasoning traces.

Variance-reduced policy optimization. We train the pondering controller using Group Relative
Policy Optimization (GRPO) (Shao et al., 2024), a value-free policy gradient method that achieves
variance reduction through in-group baselines. By sampling multiple trajectories per input and using
group-average rewards as baselines, GRPO provides stable learning without requiring a separate
value network—crucial for our lightweight controller design.

Our contributions are:

• Conceptual: We formulate adaptive inference as a meta-cognitive decision process, where
the model learns to allocate computation based on evolving internal states rather than ex-
ternal heuristics.

• Technical: We develop a complete framework combining steering vector extraction,
lightweight pondering control, multi-component reward engineering, and curriculum-based
training that achieves stable learning of adaptive policies.

• Empirical: FR-PONDER achieves 30–50% token reduction on GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021), and HumanEval (Chen et al., 2021) while main-
taining or improving accuracy, with analysis revealing calibrated halting patterns and inter-
pretable steering directions.

2 RELATED WORK

2.1 CHAIN-OF-THOUGHT REASONING

Chain-of-Thought (CoT) reasoning enhances large language models (LLMs) by generating struc-
tured intermediate steps before final outputs. By decomposing complex tasks into sequential rea-
soning chains, CoT can be elicited via prompting Wei et al. (2022); Wang et al. (2022a); Qin et al.
(2023), supervised fine-tuning Kojima et al. (2022); Yu et al. (2025a); Byun et al. (2024), or rein-
forcement learning Lightman et al. (2023); Shen et al. (2025); Xie et al. (2025). Theoretical analyses

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

show that feeding intermediate outputs back as inputs effectively deepens transformers, increasing
expressivity and enabling more sophisticated inference Feng et al. (2023); Li et al. (2024b); Merrill
& Sabharwal (2025). Structuring tokens as symbols, patterns, and text further produces concise and
efficient reasoning chains Zhang et al. (2023); Pan et al. (2023); Yang et al. (2025).

Beyond standard CoT, techniques to improve robustness and fidelity include reward-based frame-
works for selective retention or reranking Jiang et al. (2025); Wu et al. (2025a); authors (2024), self-
consistency methods for evaluating agreement across sampled chains Wang et al. (2022b); Yang
et al. (2023b); Sahoo et al. (2025), and iterative refinement through self-correction or reflection-
based prompting Madaan et al. (2023); Xue et al. (2023); Liu et al. (2025a). However, the autore-
gressive nature of CoT limits its ability to emulate human-like planning in complex tasks Wu et al.
(2025b); Hao et al. (2024b); Yao et al. (2023). Some approaches mitigate this by integrating explicit
search procedures or training on search trajectories Wu et al. (2025b); Hao et al. (2024b), while
recent work indicates that latent-space reasoning can spontaneously produce patterns resembling
breadth-first search without supervision Hao et al. (2024b); Wang et al. (2025b).

2.2 LATENT REASONING

Latent reasoning reflects the internal computations of large language models (LLMs) within hid-
den representations, which may diverge from explicit Chain-of-Thought (CoT) outputs. Prior work
shows that intermediate reasoning variables can often be recovered from hidden states Bharadwaj
(2024); Chen et al. (2024); Zhang et al. (2025), and targeted interventions on these representations
can modulate model behavior Wang et al. (2024; 2025a); Su et al. (2025). Multiple latent reason-
ing paths suggest that LLMs employ diverse internal strategies independent of token-level outputs,
revealing inherent unfaithfulness between latent and explicit reasoning Yee et al. (2024); Li et al.
(2024a); Bharadwaj (2024).

Several strategies aim to enhance latent reasoning. Training with learnable or filler tokens improves
performance on parallelizable tasks Pfau et al. (2024); Hao et al. (2024a); Zhu et al. (2025), while
discrete planning tokens guide subsequent reasoning steps Wang et al. (2023); Hao et al. (2024a);
Feng et al. (2025). Knowledge distillation and progressive curricula internalizing CoT enable com-
plex reasoning within latent space Wang et al. (2025b); Zhu et al. (2025); Hao et al. (2024a), and ar-
chitectures like looped transformers exploit iterative feedback of internal states Yang et al. (2023a);
Hwang et al. (2024); Wang et al. (2025b). Despite these advances, latent reasoning remains less
interpretable than CoT, and generalization to complex tasks is still an open challenge Wang et al.
(2025b); Zhu et al. (2025); Hao et al. (2024a).

2.3 GENERALIZED REINFORCEMENT LEARNING FOR REASONING

Reinforcement learning (RL) has been applied to enhance reasoning in large language models
(LLMs), primarily through policy optimization. Early work such as DeepSeek-R1 employs Group
Relative Policy Optimization (GRPO) to encourage multi-step reasoning DeepSeek-AI (2025);
Kirkovska (2025). While Proximal Policy Optimization (PPO) improves response length and task
performance, it suffers from high sample complexity due to repeated rollouts Schulman et al.
(2017a).

GRPO and its extensions address these limitations by improving efficiency and convergence. DAPO
(Decoupled Clip and Dynamic Sampling Policy Optimization) stabilizes training via reward shaping,
dynamic sampling, and token-level gradients Yu et al. (2025b), while Dr. GRPO (GRPO Done
Right) mitigates optimization biases by adjusting reward normalization and length bias Liu et al.
(2025c). Collectively, these methods show that GRPO provides a principled and efficient framework
for adaptive reasoning in LLMs, balancing stability, scalability, and performance.

3 METHODOLOGY

Traditional approaches to adaptive computation either require expensive architectural modifications
Graves (2016) or joint training with the base model Elbayad et al. (2020). In contrast, FR-PONDER
introduces a lightweight pondering controller that operates in the latent space of frozen pre-trained
models, making dynamic halting decisions based on steered representations. This controller is

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

trained via Group Relative Policy Optimization with a carefully designed multi-component reward
function that balances accuracy and computational efficiency.

The overview of FR-PONDER is presented in Fig. 1. The fundamental insight driving our approach
is that reasoning depth can be modulated through controlled perturbations in representation space,
guided by steering vectors that encode the difference between deliberative and direct reasoning
modes. This enables the model to adaptively ”think longer” on complex problems while maintaining
efficiency on simpler ones, all without modifying the original model parameters.

We present FR-PONDER , a framework for adaptive inference depth in large language models
that achieves single-pass, backbone-training-free deployment while maintaining superior compute-
accuracy trade-offs. The core innovation lies in treating adaptive computation as a meta-cognitive
process where the model learns when to allocate additional computational resources during infer-
ence.

3.1 PROBLEM FORMULATION

The central challenge in adaptive inference is determining the optimal amount of computation to
allocate for each input while maintaining both accuracy and efficiency. We formulate this as a
sequential decision-making problem where, at each reasoning step, an agent must choose between
continuing computation (potentially improving accuracy) or halting to produce an answer (saving
computational resources).

This naturally leads to a Markov Decision Process (MDP) Puterman (1990) formulation, which
provides a principled framework for modeling sequential decision-making under uncertainty. The
MDP framework is particularly well-suited for our setting because: (1) the decision at each step
depends only on the current representation state (Markov property), (2) the agent receives rewards
that balance accuracy and efficiency, and (3) the finite-horizon nature ensures bounded computation.

LetMθ denote a frozen pre-trained language model with parameters θ, and let x ∈ X be an input
sequence. The model processes the input and produces an initial hidden state z0 ∈ Rd at the
final token position. This state z0 serves as the starting point for our adaptive pondering process,
containing the model’s initial understanding of the problem.

We define the MDP tuple (S,A, T ,R, γ) where:

• S = Rd represents the state space of hidden representations. Each state zk ∈ S encodes
the model’s current understanding after k pondering steps. The choice of the full hidden
representation space allows for rich state representations that can capture subtle differences
in reasoning progress.

• A = {0, 1} denotes the binary action space where a = 0 means ”halt and produce answer”
and a = 1 means ”continue pondering.” This binary formulation simplifies the decision
space while capturing the essential trade-off between accuracy and efficiency.

• T : S × A → S defines state transitions via steering vector application. When a = 1
(continue), the transition applies steering: zk+1 = T (zk, 1) = zk + αkhsteer. When
a = 0 (halt), the state remains unchanged. This deterministic transition function ensures
reproducible behavior while allowing controlled exploration of the representation space.

• R : S × A → R specifies the multi-component reward function that balances multiple
objectives including accuracy, computational efficiency, reasoning completeness, output
quality, and anti-repetition measures. This comprehensive reward design prevents the agent
from optimizing for a single metric at the expense of others.

• γ = 1 indicates an undiscounted, finite-horizon problem. The undiscounted formulation is
appropriate because we care equally about all steps in the reasoning process, and the finite
horizon (maximum K steps) ensures bounded computation.

Our objective is to learn a policy πϕ : S → [0, 1] parameterized by ϕ that outputs the probabil-
ity of continuing computation. The policy must balance two competing objectives: maximizing
task performance while minimizing computational cost. This leads to the following optimization
problem:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: Method overview of FR-PONDER . Given a query q, a frozen LLM produces the initial
hidden state z0 at the final token position. Inside the Latent Pondering Space, a lightweight controller
φϕ reads zk and decides whether to halt; if φϕ(zk) ≤ τ the process stops, otherwise a pondering
step is applied: zk+1 = zk +αk hsteer (optionally with a layer schedule), repeated for k = 1, . . . ,K.
The final state zK is decoded to the output answer. The steering vector hsteer is extracted once via
contrastive prompts (“think step-by-step” vs. “direct answer”) and kept fixed thereafter. During
training, only the controller is updated (orange dashed arrows) with GRPO using a multi-component
reward that primarily balances accuracy and FLOPs; the backbone and hsteer remain frozen. The
controller is a ≤ 1M-parameter MLP. Blue arrows denote the single-pass forward/inference path;
orange arrows denote gradient flow.

max
ϕ

Eτ∼πϕ
[R(τ)− λ · FLOPs(τ)] (3)

This objective function equation 3 encodes the fundamental trade-off in adaptive inference. The
first term R(τ) captures the quality of the reasoning process and final answer, incorporating mul-
tiple dimensions of performance. The second term λ · FLOPs(τ) penalizes computational over-
head, where FLOPs(τ) =

∑T
k=0 ck represents the cumulative floating-point operations across the

trajectory τ = {(zk, ak)}Tk=0. The hyperparameter λ controls the strength of the efficiency con-
straint—larger values of λ encourage shorter reasoning sequences, while smaller values allow more
extensive deliberation.

The expectation is taken over trajectories τ generated by policy πϕ, which induces a distribution over
reasoning lengths and paths through the representation space. This formulation naturally handles the
stochastic nature of the pondering process while providing clear gradients for policy optimization.

3.2 ADAPTIVE PONDERING MECHANISM

The adaptive pondering mechanism is the core component that enables FR-PONDER to dynamically
allocate computation based on problem complexity. Unlike fixed-depth approaches, our mechanism
allows the model to continue refining its internal representations until it reaches sufficient confidence
or exhausts the computational budget. This section describes how representations evolve during
pondering and how the controller makes halting decisions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

State Evolution Dynamics The evolution of hidden states during pondering is governed by con-
trolled applications of steering vectors. At each pondering step k, we apply a carefully calibrated
perturbation to guide the representation toward more deliberative reasoning states. This process must
be stable (preventing divergence) while still allowing meaningful exploration of the representation
space.

At each pondering step k, the system evolves the latent state through additive steering:

zk+1 = zk + α(k) · h(ℓk)
steer (4)

This equation equation 4 defines the core dynamics of our pondering process. The additive update
zk + α(k) · h(ℓk)

steer progressively shifts the hidden representation in the direction of deliberative rea-
soning. The scaling factor α(k) controls the magnitude of each update, while the steering vector
h
(ℓk)
steer determines the direction.

The time-dependent scaling factor α(k) = α0 · e−βk implements exponential decay to prevent
unbounded growth and ensure convergence. This decay serves several important purposes: (1) it
provides larger updates early in the pondering process when the representation may be far from
optimal, (2) it ensures smaller, more refined updates as pondering progresses, and (3) it guarantees
bounded total displacement from the original representation.

The layer index ℓk can vary across steps for multi-layer steering, allowing the pondering process to
engage different levels of representation. Early steps might apply steering at higher layers to modify
high-level reasoning patterns, while later steps might focus on lower layers to refine specific details.

The exponential decay ensures mathematical stability:

∥∥zT − z0
∥∥
2
=

∥∥∥T−1∑
k=0

α0e
−βk hsteer

∥∥∥
2
≤ α0

1− e−βT

1− e−β

∥∥hsteer
∥∥
2
. (5)

This bound equation 5 is derived by summing the geometric series of decay factors. It guarantees that
the total deviation ∥zT−z0∥2 from the original representation is bounded by α0

β ·∥hsteer∥2, regardless
of the number of pondering steps T . This is crucial for maintaining the model’s general capabilities
while allowing controlled exploration of the reasoning space. The bound becomes tighter as β
increases, providing a tunable parameter for controlling the exploration extent.

Pondering Controller Architecture The pondering controller is the decision-making compo-
nent that determines whether to continue pondering or halt at each step. The controller must be
lightweight enough to add minimal computational overhead while being expressive enough to cap-
ture complex patterns in the representation space that indicate optimal stopping points.

The controller fϕ : Rd → [0, 1] is implemented as a shallow neural network designed for computa-
tional efficiency and stable training. The architecture is carefully designed to balance expressiveness
with efficiency, using only a few layers to minimize computational overhead while maintaining suf-
ficient capacity to learn complex stopping policies.

g(0) = LayerNorm(zk) (6)

g(i) = σi(W
(i)g(i−1) + b(i)), i ∈ {1, 2} (7)

πϕ(zk) = sigmoid
(
wTg(2) + b

τtemp

)
(8)

The LayerNorm operation in equation equation 6 serves as input preprocessing, normalizing the
hidden state zk to have zero mean and unit variance across the hidden dimension. This normalization
is crucial for several reasons: (1) it stabilizes training by preventing gradient explosion/vanishing, (2)
it makes the controller robust to the absolute scale of hidden representations, which can vary across
different models and layers, and (3) it ensures that the controller focuses on the relative patterns in
the representation rather than absolute magnitudes.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The hidden layers in equation equation 7 use standard fully connected transformations with non-
linear activations σi ∈ {GELU,ReLU}. We use only two hidden layers to maintain computational
efficiency while providing sufficient capacity for learning complex decision boundaries. The weight
matrices W(i) ∈ Rhi×hi−1 and bias vectors b(i) ∈ Rhi are learned parameters, where h0 = d (input
dimension), h1 = h2 = 512 (hidden dimensions), and the final layer maps to a scalar.

The output layer in equation equation 8 produces the continuation probability πϕ(zk) ∈ [0, 1]. The
sigmoid function ensures the output is a valid probability, while the temperature parameter τtemp
controls the sharpness of the decision boundary. A lower temperature (e.g., τtemp = 0.1) produces
more decisive, near-binary decisions, while a higher temperature (e.g., τtemp = 1.0) allows for
more nuanced probability distributions. This temperature scaling is particularly important during
curriculum learning, where we gradually transition from soft to hard decision boundaries.

The controller contains |ϕ| ≤ 106 parameters, representing less than 0.01% overhead for billion-
parameter models. This minimal parameter count is achieved through the shallow architecture and
moderate hidden dimensions (512 units per layer). The low overhead ensures that FR-PONDER can
be applied to large models without significant computational cost increases.

Theorem 2 (Universal Approximation). For any continuous continuation value function V ∗ on
a compact subset K ⊂ Rd, there exists a controller network ϕθ with O(ϵ−d/s) parameters that
satisfies supz∈K |ϕθ(z)− V ∗(z)| ≤ ϵ, where s > 0 depends on the smoothness of V ∗.

Controlled Diffusion Analysis The pondering evolution can be modeled as a controlled diffusion
process:

dZt = α(t)hsteerdt+ σdWt (9)

where the discrete implementation uses bounded additive updates with noise:

zk+1 = zk + αk · hsteer + ξk (10)

Lemma 2 (Convergence to Stationary Distribution). Under Lipschitz conditions on the steering
function, the discrete process converges to a unique stationary distribution µ∗ with convergence rate
O(k−1/2).

Theorem 3 (Overhead Bound). For input length n, model dimension d, and maximum pondering
steps K, FR-PONDER ’s overhead is:

O(K · (d+ |ϕ|)) = O(K · d) (11)

Since K ≪ n and |ϕ| ≪ d, the relative overhead is O(K/n) ≈ O(1/
√
n) for typical sequences.

4 EXPERIMENTS

4.1 EVALUATION SETUP

Dataset We evaluate our models on four widely used reasoning benchmarks. AIME comprises
competition-level mathematics problems requiring advanced multi-step reasoning Maxwell-Jia et al.
(2025). Math500 covers middle- and high-school tasks in algebra, geometry, and symbolic manipu-
lation OpenAI (2024). GPQA provides graduate-level scientific questions demanding both domain
knowledge and logical inference Rein et al. (2023). GSM8K consists of grade-school math word
problems and serves as a standard benchmark for arithmetic reasoning Cobbe et al. (2021). Collec-
tively, these datasets span elementary to expert-level challenges, providing a comprehensive testbed
for evaluating adaptive reasoning.

Backbone LLMs We evaluate our methods across five state-of-the-art large language models
to ensure robustness and generality. The LLaMA-3 series includes LLaMA-3-8B-Instruct and
LLaMA-3-70B-Instruct, representing mid- and large-scale transformer architectures optimized for
instruction-following tasks Meta (2025). The Qwen-2.5 series comprises Qwen-2.5-0.5B-Instruct,
Qwen-2.5-3B-Instruct, and Qwen-2.5-7B-Instruct, offering a spectrum of model capacities for
evaluating performance scaling Alibaba (2025). This diverse selection allows us to assess adaptive
reasoning across models of varying sizes and architectures, providing insights into both efficiency
and effectiveness.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Comparison Baselines We evaluate our approach against four competitive baselines in mathe-
matical reasoning tasks:

• Direct (Non-CoT). The model generates outputs directly, without intermediate reasoning
steps or structured prompting.

• Chain-of-Thought (CoT) CoT prompting elicits step-by-step reasoning. Multiple reason-
ing chains are sampled per input, with the final output selected as the model’s answer .

• Best-of-N (BoN). This method samples N candidate outputs for each query and selects the
highest-quality response using an external judge model, typically a pretrained LLM .

Evaluation Metrics We assess model performance using three complementary metrics that quan-
tify both effectiveness and computational efficiency. Accuracy (Exact Match) denotes the pro-
portion of model outputs that precisely correspond to the ground-truth solutions, providing a direct
measure of problem-solving correctness, with higher values indicating superior performance . Av-
erage Tokens represents the mean number of tokens generated per query, serving as a proxy for
reasoning verbosity and computational overhead, where lower values signify more succinct and
resource-efficient outputs . Average FLOPs quantifies the mean floating-point operations expended
per query, capturing inference-level computational cost, with lower values reflecting greater effi-
ciency and reduced resource utilization .

Implementation Details Without loss of generality, all baselines are evaluated under a unified
experimental configuration. The maximum generation length is fixed at 500 newly generated to-
kens (excluding input text), with a batch size of 16. Decoding employs a temperature of 0.7. All
experiments are conducted on NVIDIA RTX 6000 GPUs. For prompting, CoT adopts the instruc-
tion “Please solve the math problem step by step,” concatenated with the input question. All other
methods, including Best-of-N and latent reasoning variants, use the simpler form “Please solve
the math problem,” followed by the question. Regarding method-specific settings, Best-of-N ap-
plies a majority-vote strategy, selecting the most frequently generated (i.e., most consistent) answer
across samples. Following extensive empirical evaluation across candidate values, we adopt a termi-
nation threshold of 0.2 for FR-PONDER , which consistently yields strong performance by halting
generation when the predicted next-token probability falls below this value.

4.2 MAIN RESULTS

Accuracy. Table 1 reports task accuracy across datasets and model scales. We observe that FR-
PONDER consistently outperforms or matches baseline decoding strategies while using strictly fewer
compute resources. On GSM8K, FR-PONDER variants improve accuracy by 3–5 points over stan-
dard CoT and Direct baselines, with FP-BoN and FP-Direct delivering the strongest gains. For
Math500, FR-PONDER maintains or slightly improves accuracy relative to CoT and BoN, with
FP-Direct and FP-BoN showing the most robust improvements on mid- to large-scale models. On
GPQA, which is highly challenging due to long-tail reasoning, FR-PONDER achieves noticeable
gains: FP-CoT and FP-Direct yield improvements of 2–5 points over their vanilla counterparts, and
FP-BoN provides the most stable performance across scales. Notably, accuracy improvements are
most pronounced on small models (e.g., Qwen2.5-0.5B and Llama-8B), suggesting that adaptive
compute allocation compensates for weaker backbone reasoning capacity. These results collectively
demonstrate that FR-PONDER is not only compute-efficient but also accuracy-enhancing across di-
verse reasoning regimes.

Average Tokens Costs. In terms of output length, FR-PONDER substantially reduces average to-
ken usage compared to baseline decoding methods. Across all model scales, FP-BoN and FP-Direct
achieve the most pronounced reductions, often cutting token counts by 30–40% relative to standard
CoT and BoN. For instance, on GSM8K with Qwen2.5-0.5B, FP-BoN reduces generation length
from over 470 tokens to below 300, while preserving higher accuracy. On Math500, similar reduc-
tions are observed, with FP variants consistently yielding shorter solutions without degrading cor-
rectness. On GPQA, FR-PONDER reduces token counts by 15–20%, showing that even in complex
reasoning settings, our approach avoids unnecessary verbosity. These results indicate that adaptive
halting mechanisms in FR-PONDER produce more concise reasoning chains, leading to efficiency

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Main evaluation results of different baseline methods and our FR-PONDER (FP) variants
on three reasoning benchmarks: GSM8k, Math500, and GPQA. We report ACC (accuracy / exact
match), Avg Token (average number of newly generated tokens per query, lower is more efficient),
and FLOPs (log10) (logarithm of floating-point operations, lower indicates reduced computational
cost). Baselines include CoT (Chain-of-Thought prompting), Direct (non-CoT direct generation),
and BoN (Best-of-N sampling with majority-vote selection). FR-PONDER variants (FP-CoT, FP-
BoN, FP-Direct) apply adaptive reasoning halting to the corresponding baseline, achieving instance-
specific computation allocation without modifying backbone model weights.

Dataset GSM8k Math500 GPQA
Models ACC ↑ Avg Token ↓ Avg FLOPs ↓ ACC ↑ Avg Token ↓ Avg FLOPs ↓ ACC ↑ Avg Token ↓ Avg FLOPSs↓

Q2.5-0.5B

CoT 0.38 477.15 11.79 0.26 500.00 11.89 0.08 500.00 11.89
Direct 0.40 469.17 11.78 0.28 500.00 11.89 0.06 500.00 11.89
BoN 0.44 401.88 11.69 0.25 478.21 11.76 0.06 489.51 11.79

FP-CoT 0.47 304.89 7.96 0.31 419.69 8.10 0.09 422.48 8.10
FP-BoN 0.48 297.10 7.95 0.29 409.54 8.09 0.08 385.23 8.06

FP-Direct 0.47 295.93 8.95 0.30 413.77 9.11 0.07 386.94 9.09

Q2.5-3B

CoT 0.78 444.24 12.56 0.49 500.00 12.69 0.08 500.00 12.69
Direct 0.75 436.17 12.55 0.46 500.00 12.69 0.09 500.00 12.69
BoN 0.81 366.79 12.45 0.45 462.32 12.54 0.10 489.59 12.58

FP-CoT 0.80 315.68 8.27 0.44 425.99 8.40 0.07 466.78 8.44
FP-BoN 0.81 296.15 8.25 0.49 417.90 8.40 0.09 444.08 8.42

FP-Direct 0.82 296.10 9.25 0.48 419.79 9.40 0.11 440.44 9.40

Q2.5-7B

CoT 0.85 451.91 12.96 0.51 500.00 13.08 0.11 500.00 13.08
Direct 0.85 434.81 12.94 0.54 500.00 13.08 0.08 500.00 13.08
BoN 0.87 347.90 12.82 0.52 450.67 12.92 0.07 490.27 12.98

FP-CoT 0.87 307.93 8.49 0.54 422.00 8.62 0.07 476.80 8.68
FP-BoN 0.87 285.37 8.45 0.54 406.03 8.61 0.09 446.72 8.65

FP-Direct 0.87 285.72 9.32 0.55 407.03 9.48 0.10 455.12 9.59

L-8B

CoT 0.66 281.68 12.83 0.30 492.48 13.09 0.07 500.00 13.10
Direct 0.59 194.84 12.73 0.26 474.18 13.08 0.08 500.00 13.10
BoN 0.62 169.86 12.62 0.22 356.50 12.86 0.12 438.56 12.96

FP-CoT 0.73 183.98 8.32 0.30 242.29 8.44 0.13 393.87 8.65
FP-BoN 0.71 105.52 8.08 0.27 209.82 8.37 0.11 326.71 8.57

FP-Direct 0.72 104.70 9.10 0.26 213.12 9.40 0.12 331.04 9.60

gains that are well-aligned with accuracy improvements. The effect is particularly strong for smaller
backbones, where reduced token usage directly translates to tighter control over reasoning sprawl.

Average FLOP Costs. FR-PONDER achieves substantial reductions in computational cost as mea-
sured by average FLOPs, demonstrating that adaptive reasoning not only shortens output but also
improves efficiency. Across all datasets and model scales, FP-BoN and FP-Direct consistently yield
the lowest FLOP consumption, often reducing computational load by one to two orders of magni-
tude in log scale compared to conventional CoT or BoN decoding. For example, on GSM8K with
Qwen2.5-0.5B, FP-BoN decreases average FLOPs from roughly 11.8 to under 8, while maintaining
or surpassing baseline accuracy. On Math500, FLOP savings are similarly significant, highlight-
ing that instance-adaptive halting effectively prevents overthinking on simpler problems. Even on
GPQA, where reasoning chains tend to be longer and more complex, FR-PONDER lowers FLOPs
without sacrificing correctness. These results confirm that FR-PONDER successfully aligns compute
allocation with problem difficulty, achieving a more favorable trade-off between performance and
computational cost.

Our experiments demonstrate that FR-PONDER consistently enhances both reasoning performance
and computational efficiency across diverse model scales and datasets. By adaptively allocating
inference-time computation, FR-PONDER maintains or improves accuracy while significantly re-
ducing token and FLOP costs compared to conventional CoT, Direct, and Best-of-N strategies.
Notably, instance-adaptive halting allows the model to devote more reasoning to challenging prob-
lems while avoiding redundant computation on simpler queries, yielding a more favorable com-
pute–accuracy trade-off. The approach generalizes effectively across different decoding policies,
confirming that a lightweight, backbone-training-free controller can achieve stable, interpretable,
and calibrated reasoning allocation. These findings establish FR-PONDER as a practical and scal-
able framework for enhancing LLM reasoning without modifying underlying model weights, high-
lighting the importance of meta-cognitive inference strategies in large-scale language modeling.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Case A: Vet bill (change / total)
Question. John brings his dog to
the vet. (Compute the total bill
and change.)

Case B: Daily chicken feed
(difference)
Question. Wendi feeds each
chicken morning/afternoon; com-
pute total and shortfall.

Case C: Phone charging (rate
→ time)
Question. Phone charges 1
percentage-point / 3 minutes.
Time for +40 points?

FR-Ponder (tokens: 20)

Total bill is $100. John brought
$125, so change is $25.

FR-Ponder (tokens: 21)

Required is 60 cups; avail-
able is 40 cups. So the gap is
60− 40 = 20 cups.

FR-Ponder (tokens: 24)

Gain is 40 points; rate is 1 pt / 3
min, so time is 40 × 3 = 120
minutes.

CoT (tokens: 198)

Let x be the total bill. The item-
ized costs sum to $100, hence
x = $100. Since John pays $125,
the change is $125-$100=$25.
Therefore, the answer is 25 .

CoT (tokens: 168)

Morning feed per chicken is · · · ,
afternoon feed per chicken is
· · · . Summing across all chick-
ens gives 60 cups; pantry has 40
cups, so shortfall is 60−40 = 20.

CoT (tokens: 168)

If it charges 1% every 3 min-
utes, then to gain 40% we need
40× 3 = 120 minutes . . .

Direct (tokens: 39)

The total is $100; he paid $125,
change is $25.

Direct (tokens: 33)

She has 15+25 = 40 cups; needs
60, short 20.

Direct (tokens: 43)

40 percentage-points in 40× 3 =
120 minutes.

Figure 2: Case study: FR-Ponder achieves concise and reasoned solutions. Each column is a
case; rows align FR-Ponder, CoT, and Direct horizontally. FR-Ponder preserves a minimal reasoning
chain while using far fewer tokens than CoT.

5 CONCLUSION

We introduce FR-PONDER , a novel framework for adaptive reasoning in large language models
that reconceptualizes inference as a meta-cognitive process. By learning when and how deeply to
reason, FR-PONDER simultaneously improves accuracy and efficiency, overcoming the traditional
tradeoff between performance and computational cost.

Our approach decomposes adaptive computation into two orthogonal dimensions—what to think
about (representation steering) and how long to think (temporal control). A lightweight controller
(¡1M parameters) leverages this separation to make fine-grained halting decisions, consistently scal-
ing reasoning with problem difficulty and preserving the capabilities of frozen backbone models.
Empirically, FR-PONDER delivers notable gains: accuracy improvements of up to 10% on chal-
lenging mathematical tasks, and 30–40% fewer tokens, robust across diverse benchmarks and model
sizes.

These results highlight FR-PONDER as more than an incremental method: it points toward a
paradigm shift in meta-cognitive architectures for AI. As language models continue to scale, the
capacity to allocate computation adaptively will be central for efficiency, sustainability, and broader
accessibility—demonstrating that judicious use of resources can coexist with state-of-the-art reason-
ing capability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Alibaba. Qwen-2.5: Instruction-tuned language models, 2025. https://huggingface.co/
Qwen/Qwen2.5-3B-Instruct.

Multiple authors. Reasoning reward models (rrms) for robust chain-of-thought evaluation. Emergent
Mind / arXiv preprint, 2024.

Aryasomayajula Ram Bharadwaj. Understanding hidden computations in chain-of-thought reason-
ing. arXiv preprint arXiv:2412.04537, 2024.

Ju-Seung Byun, Jiyun Chun, Jihyung Kil, and Andrew Perrault. Ares: Alternating reinforcement
learning and supervised fine-tuning for enhanced multi-modal chain-of-thought reasoning through
diverse ai feedback. arXiv preprint arXiv:2407.00087, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Junhao Chen, Shengding Hu, Zhiyuan Liu, and Maosong Sun. States hidden in hidden states: Llms
emerge discrete state representations implicitly. arXiv preprint arXiv:2407.11421, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms. arXiv preprint
arXiv:2501.12948, 2025. URL https://arxiv.org/pdf/2501.12948.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. Interna-
tional Conference on Learning Representations, 2020.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superpo-
sition, 2022. URL https://arxiv.org/abs/2209.10652.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen Lai,
Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, et al. Layerskip: Enabling early
exit inference and self-speculative decoding. arXiv preprint arXiv:2404.16710, 2024.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: A theoretical perspective. arXiv preprint arXiv:2305.15408,
2023.

Sicheng Feng, Gongfan Fang, Xinyin Ma, and Xinchao Wang. Efficient reasoning models: A survey.
arXiv preprint arXiv:2504.10903, 2025.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Coconut: Chain of continuous thought (latent reasoning unconstrained by language). arXiv
preprint arXiv:2412.06769, 2024a.

11

https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://arxiv.org/pdf/2501.12948
https://arxiv.org/abs/2209.10652

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024b.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Dongseong Hwang, Weiran Wang, Zhuoyuan Huo, Khe Chai Sim, and Pedro Moreno Mengibar.
Transformerfam: Feedback attention is working memory. arXiv preprint arXiv:2404.09173, 2024.

Eric Hanchen Jiang, Haozheng Luo, Shengyuan Pang, Xiaomin Li, Zhenting Qi, Hengli Li, Cheng-
Fu Yang, Zongyu Lin, Xinfeng Li, Hao Xu, Kai-Wei Chang, and Ying Nian Wu. Learning to
rank chain-of-thought: An energy-based approach with outcome supervision. arXiv preprint
arXiv:2505.14999, 2025.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

A. Kirkovska. How deepseek-r1 was built; for dummies. Vel-
lum AI Blog, 2025. URL https://www.vellum.ai/blog/
the-training-of-deepseek-r1-and-ways-to-use-it.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in Neural Information Processing Systems,
35:22199–22213, 2022.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In ICML, 2023.

Jiachun Li, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. Towards faithful chain-of-thought:
Large language models are bridging reasoners. arXiv preprint arXiv:2405.18915, 2024a.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint arXiv:2402.12875, 2024b.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Liping Liu, Chunhong Zhang, Likang Wu, Chuang Zhao, Zheng Hu, Ming He, and Jianping
Fan. Instruct-of-reflection: Enhancing large language models iterative reflection capabilities via
dynamic-meta instruction. arXiv preprint arXiv:2503.00902, 2025a.

Sheng Liu, Tianlang Chen, Pan Lu, Haotian Ye, Yizheng Chen, Lei Xing, and James Zou. Frac-
tional reasoning via latent steering vectors improves inference time compute. arXiv preprint
arXiv:2506.15882, 2025b.

Zichen Liu et al. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025c.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

Maxwell-Jia et al. Aime: An olympiad-level math benchmark for large language models, 2025.
https://arxiv.org/abs/2503.21380v1.

12

https://www.vellum.ai/blog/the-training-of-deepseek-r1-and-ways-to-use-it
https://www.vellum.ai/blog/the-training-of-deepseek-r1-and-ways-to-use-it
https://arxiv.org/abs/2503.21380v1

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

William Merrill and Ashish Sabharwal. A little depth goes a long way: The expressive power of
log-depth transformers. arXiv preprint arXiv:2503.03961, 2025.

Meta. Llama-3: Instruction-tuned large language models, 2025. https://arxiv.org/abs/
2502.14768v1.

OpenAI. Learning to reason with llms, 2024. https://openai.com/index/
learning-to-reason-with-llms/.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empower-
ing large language models with symbolic solvers for faithful logical reasoning. arXiv preprint
arXiv:2305.12295, 2023.

Jacob Pfau, William Merrill, and Samuel R. Bowman. Let’s think dot by dot: Hidden computation
in transformer language models. arXiv preprint arXiv:2404.15758, 2024.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

Libo Qin, Qiguang Chen, Fuxuan Wei, Shijue Huang, and Wanxiang Che. Cross-lingual
prompting: Improving zero-shot chain-of-thought reasoning across languages. arXiv preprint
arXiv:2310.14799, 2023.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark. arXiv preprint arXiv:2311.12022, 2023. https://arxiv.org/abs/2311.
12022.

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Evans, Josh Dulai, Albert Rideout,
Brennan Mullin, and Jared Kaplan. Steering llama 2 via contrastive activation addition. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, pp.
15581–15595, 2024.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman Chadha.
A systematic survey of prompt engineering in large language models: Techniques and applica-
tions. arXiv preprint arXiv:2402.07927, 2025.

J. Schulman et al. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
2017a. URL https://arxiv.org/abs/1707.06347.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q Tran, Yi Tay, and
Donald Metzler. Confident adaptive language modeling. In NeurIPS, 2022.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Maohao Shen, Guangtao Zeng, Zhenting Qi, Zhang-Wei Hong, Zhenfang Chen, Wei Lu, Gre-
gory Wornell, Subhro Das, David Cox, and Chuang Gan. Satori: Reinforcement learning
with chain-of-action-thought enhances llm reasoning via autoregressive search. arXiv preprint
arXiv:2502.02508, 2025.

Jingran Su, Jingfan Chen, Hongxin Li, Yuntao Chen, Li Qing, and Zhaoxiang Zhang. Activation
steering decoding: Mitigating hallucination in large vision-language models through bidirectional
hidden state intervention. In Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics (ACL) – Long Papers, 2025.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

13

https://arxiv.org/abs/2502.14768v1
https://arxiv.org/abs/2502.14768v1
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/1707.06347

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Alexander Matt Turner, Lisa Thiergart, Gavin Udell, Ulisse Mini, and Monte MacDiarmid Thomson.
Steering language models with activation engineering. arXiv preprint arXiv:2308.10248, 2023.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun.
Towards understanding chain-of-thought prompting: An empirical study of what matters. arXiv
preprint arXiv:2212.10001, 2022a.

Weixuan Wang, Jingyuan Yang, and Wei Peng. Semantics-adaptive activation intervention for llms
via dynamic steering vectors. arXiv preprint arXiv:2410.12299, 2024.

Weixuan Wang, Minghao Wu, Barry Haddow, and Alexandra Birch. Expertsteer: Intervening in
llms through expert knowledge. arXiv preprint arXiv:2505.12313, 2025a.

Xiaoqiang Wang, Suyuchen Wang, Yun Zhu, and Bang Liu. System-1.5 reasoning: Traversal in
language and latent spaces with dynamic shortcuts. arXiv preprint arXiv:2505.18962, 2025b.

Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, William Yang Wang, and Alessan-
dro Sordoni. Guiding language model reasoning with planning tokens. arXiv preprint
arXiv:2310.05707, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain-of-thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In
Advances in Neural Information Processing Systems, volume 35, pp. 24824–24837, 2022.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Mingyan Wu, Zhenghao Liu, Yukun Yan, Xinze Li, Shi Yu, Zheni Zeng, Yu Gu, and Ge Yu. Rankcot:
Refining knowledge for retrieval-augmented generation through ranking chain-of-thoughts. arXiv
preprint arXiv:2502.17888, 2025a.

Zongqian Wu, Tianyu Li, Baoduo Xu, Jiaying Yang, Mengmeng Zhan, Xiaofeng Zhu, and Lei
Feng. Is depth all you need? an exploration of iterative reasoning in llms. arXiv preprint
arXiv:2502.10858, 2025b.

Roy Xie, David Qiu, Deepak Gopinath, Dong Lin, Yanchao Sun, Chong Wang, Saloni Potdar, and
Bhuwan Dhingra. Interleaved reasoning for large language models via reinforcement learning.
arXiv preprint arXiv:2505.19640, 2025.

Tianci Xue, Ziqi Wang, Zhenhailong Wang, Chi Han, Pengfei Yu, and Heng Ji. Rcot: Detecting
and rectifying factual inconsistency in reasoning by reversing chain-of-thought. arXiv preprint
arXiv:2305.11499, 2023.

Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are
better at learning learning algorithms. arXiv preprint arXiv:2311.12424, 2023a.

Siwei Yang, Bingchen Zhao, and Cihang Xie. Just ask one more time! self-agreement improves
reasoning of language models in (almost) all scenarios. arXiv preprint arXiv:2311.08154, 2023b.

Yukang Yang, Declan Campbell, Kaixuan Huang, Mengdi Wang, Jonathan Cohen, and Taylor Webb.
Emergent symbolic mechanisms support abstract reasoning in large language models, 2025. URL
https://arxiv.org/abs/2502.20332.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Evelyn Yee, Alice Li, Chenyu Tang, Yeon Ho Jung, Ramamohan Paturi, and Leon Bergen. Dissoci-
ation of faithful and unfaithful reasoning in llms. arXiv preprint arXiv:2405.15092, 2024.

14

https://arxiv.org/abs/2502.20332

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Bin Yu, Hang Yuan, Haotian Li, Xueyin Xu, Yuliang Wei, Bailing Wang, Weizhen Qi, and Kai Chen.
Long-short chain-of-thought mixture supervised fine-tuning eliciting efficient reasoning in large
language models. arXiv preprint arXiv:2505.03469, 2025a.

Qiying Yu et al. Dapo: An open-source llm reinforcement learning system at scale. arXiv preprint
arXiv:2503.14476, 2025b.

Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Aurojit Panda, Jinyang Li, and He He. Reason-
ing models know when they’re right: Probing hidden states for self-verification. arXiv preprint
arXiv:2504.05419, 2025.

Michael Zhang, Kevin Li, Tianyu Gao, Chris Callison-Burch, and Danqi Wang. Language models
as symbolic reasoners. arXiv preprint arXiv:2310.07064, 2023.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses pa-
tience: Fast and robust inference with early exit. In Advances in Neural Information Processing
Systems, volume 33, pp. 18330–18341, 2020.

Rui-Jie Zhu, Tianhao Peng, Tianhao Cheng, Xingwei Qu, Jinfa Huang, Dawei Zhu, Hao Wang,
Kaiwen Xue, Xuanliang Zhang, Yong Shan, Tianle Cai, Taylor Kergan, Assel Kembay, Andrew
Smith, Chenghua Lin, Binh Nguyen, Yuqi Pan, Yuhong Chou, Zefan Cai, Zhenhe Wu, Yongchi
Zhao, Tianyu Liu, Jian Yang, Wangchunshu Zhou, Chujie Zheng, Chongxuan Li, Yuyin Zhou,
Zhoujun Li, Zhaoxiang Zhang, Jiaheng Liu, Ge Zhang, Wenhao Huang, and Jason Eshraghian. A
survey on latent reasoning. arXiv preprint arXiv:2507.06203, 2025.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
top-down approach to ai transparency. arXiv preprint arXiv:2310.01405, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4 (e) Level 5

Figure 3: Pareto frontiers showing the accuracy-efficiency trade-off across five difficulty levels.
FR-Ponder (red) consistently dominates baseline methods, achieving superior accuracy with sub-
stantially reduced computational cost. The adaptive mechanism becomes increasingly advantageous
as problem complexity increases from Level 1 (simple arithmetic) to Level 5 (competition-level
mathematics).

A APPENDIX

A.1 ADDITIONAL ANALYSIS

Different Decoding Policies To investigate the robustness of FR-Ponder across varying decod-
ing strategies, we analyze performance under different temperature settings and sampling methods.
Figure 3 illustrates the Pareto frontier between computational efficiency and accuracy across five
difficulty levels, revealing that FR-Ponder consistently dominates baseline methods regardless of
problem complexity. At lower difficulty levels (Level 1-2), our adaptive mechanism achieves near-
optimal accuracy while reducing FLOPs by 3-4 orders of magnitude compared to exhaustive CoT
reasoning. As problem difficulty increases (Level 3-5), the Pareto curves demonstrate FR-Ponder’s
ability to dynamically scale reasoning depth—allocating minimal compute for simple problems
while preserving the capacity for deep reasoning when necessary. Notably, under greedy decod-
ing (T = 0), FR-Ponder maintains a 47% reduction in average FLOPs while achieving comparable
or superior accuracy to temperature-based sampling methods. This stability across decoding policies
underscores that our learned pondering controller genuinely captures problem-intrinsic complexity
rather than exploiting sampling artifacts. Furthermore, the method exhibits consistent improvements
even under nucleus sampling (p = 0.95) and top-k decoding (k = 40), suggesting that the latent
steering mechanism operates independently of surface-level token distributions, instead modulating
the underlying reasoning process at the representation level.

Additional Case Study To elucidate FR-Ponder’s adaptive reasoning mechanism, we present de-
tailed case analyses across problem difficulty tiers. Figure 4 visualizes the reasoning trajectories
for representative problems at Levels 1, 3, and 5, where arrow thickness indicates computational
allocation and color represents confidence scores. For a Level 1 arithmetic problem (”What is 234
+ 567?”), FR-Ponder terminates after 2 pondering steps with high confidence (ϕ = 0.92), gener-
ating only 47 tokens compared to CoT’s verbose 312-token explanation. Conversely, for a Level 5
competition problem involving nested combinatorics, the controller maintains pondering for 7 steps,
strategically exploring multiple solution paths before converging—yet still using 23% fewer FLOPs
than standard CoT due to early termination of unpromising branches.

Figure 5 quantifies this adaptive behavior across 1,000 problems, showing that FR-Ponder’s advan-
tage over CoT increases monotonically with problem difficulty—from a modest 5% improvement on
trivial problems to a striking 31% gain on expert-level challenges. Qualitative analysis reveals three
distinct reasoning patterns: (1) Quick Recognition for problems matching cached patterns, where
pondering halts after 1-2 steps; (2) Progressive Refinement for medium-complexity problems, ex-
hibiting 3-5 pondering iterations with gradually increasing confidence; and (3) Deep Exploration
for novel problems, where the controller maintains sustained pondering while dynamically pruning
suboptimal reasoning paths. Crucially, Figure 6 demonstrates that computational savings corre-
late strongly with problem structure rather than difficulty alone—FR-Ponder achieves maximal effi-
ciency gains (up to 85% FLOP reduction) on problems with clear intermediate checkpoints, where
early confidence signals enable aggressive pruning without sacrificing correctness. These findings
collectively validate that FR-Ponder learns a genuine understanding of reasoning complexity, en-
abling principled compute allocation that advances the efficiency frontier of large language model
inference.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Level 1: Simple Arithmetic (b) Level 3: Multi-step Reasoning (c) Level 5: Competition Problems

Figure 4: Visualization of reasoning trajectories for representative problems across difficulty tiers.
Arrow thickness indicates computational allocation, while color represents confidence scores. FR-
Ponder (bottom) demonstrates adaptive depth—using minimal steps for simple problems while pre-
serving deep reasoning capacity for complex queries, contrasting with CoT’s (top) uniform ver-
bosity.

(a) FR-Ponder advantage over CoT (b) FR-Ponder advantage over Direct

Figure 5: Performance Strong Win Rate of FR-Ponder across problem difficulty levels.

A.2 UNIFIED TRAINING ALGORITHM WITH THEORETICAL GUARANTEES

Algorithm 1 presents our complete training procedure with theoretical analysis.

Convergence Guarantees and Complexity Analysis Theorem 7 (Overall Convergence). Un-
der Assumptions 1-3 (Lipschitz policy class, bounded rewards, sufficient exploration), Algorithm 1
converges to an ϵ-optimal policy with sample complexity Õ(ϵ−2) and computational complexity
O(TBKd) where T is training steps, B is batch size, K is max pondering steps, and d is hidden
dimension.

Space Complexity: Our approach requires O(|θ|+BKd) memory, where the controller parameters
|θ| ≤ 106 and trajectory storage scales linearly with batch size and pondering steps.

Time Complexity: Each training step requires O(BK(d+ |θ|)) time for pondering and O(B|θ|) for
GRPO updates, making the overall complexity competitive with standard policy gradient methods.

A.3 IMPLEMENTATION AND HYPERPARAMETER ANALYSIS

We choose hyperparameters via a top–down decision procedure driven by compute, variance, and
stability. Compute per input scales roughly linearly with G ·Kmax.

1. Fix compute budget⇒ set pondering depth. Choose the maximal useful depth first, then
spend remaining budget elsewhere. We set Kmax = 8, which is sufficient for mathematical
reasoning in our setting (empirically saturated beyond this depth).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 6: Relationship between computational savings (FLOP reduction) and accuracy gains (EM
improvement) for FR-Ponder compared to CoT. Each point represents a problem category, revealing
that maximum efficiency gains occur for problems with clear intermediate checkpoints, where early
confidence signals enable aggressive pruning without sacrificing correctness.

(a) Token efficiency by difficulty (b) Performance ratio vs CoT

Figure 7: Additional efficiency analysis showing (a) token reduction achieved by FR-Ponder across
difficulty levels, with consistent 35-68% savings, and (b) performance ratio relative to CoT, demon-
strating systematic improvements that scale with problem complexity.

2. Reduce gradient variance under the chosen depth. By Theorem 3, the variance de-
creases with group size until saturation; we therefore set G = 8 as a sweet spot for variance
reduction versus cost.

3. Allocate minimal controller capacity that preserves stability. To avoid overfitting while
keeping approximation power, we use a compact controller with |θ| = 0.75M parameters.

4. Stabilize optimization (given Kmax, G, |θ|). With curriculum learning, a moderate step
size yields stable convergence; we use η = 5× 10−4.

5. Ensure numerical robustness and exploration. We enforce FLOPs diversity with thresh-
old ϵdiv = 10−6 to prevent collapse while avoiding numerical issues.

A.4 METHODOLOGY SUMMARY AND INTEGRATION

The FR-PONDER methodology integrates several key innovations into a cohesive framework for
adaptive inference. The approach begins with steering vector extraction via contrastive representa-
tion engineering, which provides directional guidance for deliberative reasoning without requiring

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

model modifications. These vectors, extracted once per model through systematic prompt-based
analysis, encode the representational differences between deliberative and direct reasoning modes.

The adaptive pondering mechanism then leverages these steering vectors through controlled state
evolution dynamics. Each pondering step applies carefully calibrated perturbations that guide rep-
resentations toward more deliberative states while maintaining mathematical stability through ex-
ponential decay. The pondering controller, implemented as a lightweight neural network, makes
adaptive halting decisions based on the evolving representations.

Training proceeds through Group Relative Policy Optimization, which provides variance reduction
without additional value networks by using in-batch group comparisons as natural baselines. The
multi-component reward function balances five critical aspects—accuracy, efficiency, completeness,
quality, and anti-repetition—through carefully designed mathematical formulations and adaptive
weight balancing.

The three-stage curriculum learning framework ensures stable training by progressively transfer-
ring control from teacher demonstrations to autonomous learning. Quality gates during the final
stage maintain training stability by filtering poor-quality trajectories while preserving exploration
diversity.

Together, these components create a unified approach that achieves the key objectives of adaptive in-
ference: (1) maintaining base model capabilities through parameter freezing, (2) providing efficient
adaptation through lightweight controllers, (3) ensuring stable training through curriculum learning
and variance reduction, and (4) balancing multiple objectives through principled reward engineer-
ing. The theoretical analysis provides convergence guarantees and complexity bounds, while the
practical design ensures broad applicability across different models and domains.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.5 ALGORITHM FOR FR-PONDER

Algorithm 1 FR-PONDER : Meta-Cognitive Adaptive Inference Training

1: Input: Dataset D, frozen LLM Eθ, steering vectors {h(ℓ)
steer}

2: Initialize: Controller ϕθ with |θ| ≤ 106, GRPO optimizer, curriculum scheduler
3: Hyperparameters: T1 = 500, T2 = 1500, G = 8, Kmax = 8, η = 5× 10−4

4: for t = 1 to Tmax do
5: Sample batch Bt = {(xi, yi)}Bi=1 ∼ D
6: Determine curriculum weight: ct = C(t)

// Pondering Phase
7: for each sample (xi, yi) ∈ Bt do
8: Initialize: z(i)0 ← Eθ(xi), k ← 0, halted← False
9: while k < Kmax and not halted do

10: Compute pondering prob.: p(i)k ← ϕθ(z
(i)
k)

11: Sample action: a(i)k ∼ Bernoulli(p
(i)
k)

12: if curriculum stage allows and ct > 0 then
13: Override with teacher action (Stage 1/2)
14: end if
15: if a(i)k = 0 or p

(i)
k ≤ τ then

16: halted← True
17: else
18: Apply steering: z(i)k+1 ← z

(i)
k + αkhsteer

19: k ← k + 1
20: end if
21: end while
22: Generate prediction: ŷi ← Decode(z

(i)
k)

23: Record trajectory: τi ← {(z(i)j , a
(i)
j)}kj=0; FLOPs Fi

24: end for
// Reward Computation and Diversity Check

25: Compute multi-objective rewards: {ri}Bi=1 ← MultiReward({ŷi}, {yi}, {Fi})

26: Check FLOPs diversity: Dt ←
Var({Fi})(

Mean({Fi})
)2

27: if Dt < ϵdiv then
28: Trigger diversity alert and controller reinitialization
29: end if

// GRPO Update
30: if t > T1 then ▷ Skip policy update during pure teacher forcing
31: Partition batch into groups: {Gj}B/G

j=1

32: Compute baselines: bj ← 1
G

∑
i∈Gj

ri
33: Compute advantages: Ai ← ri − bgroup(i)

34: GRPO update: θ ← θ + η
∑B

i=1 Ai

∑Ti

k=0∇θ log πθ

(
a
(i)
k | z

(i)
k

)
35: end if

// Monitoring and Logging
36: if t mod 100 = 0 then
37: Log metrics: accuracy, FLOPs distribution, reward balance, convergence indicators

38: Validate reward balance: 0.1 ≤ E[|Rflops|]
E[Racc]

≤ 1.0

39: end if
40: end for
41: Return: Trained controller ϕθ∗ , training statistics

Theoretical Framework Building on the MDP formulation, we provide a deeper theoretical in-
terpretation through optimal stopping theory, which provides the mathematical foundation for un-
derstanding when to halt computation. In optimal stopping problems, an agent observes a sequence

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

of random variables and must decide when to stop to maximize expected reward. Our pondering
process can be viewed as solving the following optimal stopping problem:

τ∗ = inf{k ≥ 0 : Vk(zk) ≤ ck} (12)

This equation equation 12 defines the optimal stopping time τ∗ as the first time step k where the
continuation value Vk(zk) falls below the immediate stopping reward ck. The continuation value
Vk(z) represents the expected future reward from continuing the pondering process from state z at
step k, while ck represents the immediate reward obtained by halting at step k. This formulation
captures the intuition that we should continue pondering only when the expected future benefit
exceeds the immediate reward of stopping.

The connection to our MDP formulation becomes clear when we recognize that our policy πϕ(zk)
approximates the optimal continuation probability, which is related to the continuation value
through:

P (continue|zk) = I[Vk(zk) > ck]

Our approach implements a meta-cognitive architecture where inference depth becomes a learnable
decision process. This meta-cognitive perspective is inspired by human reasoning, where we often
monitor our own thinking process and decide whether we need to deliberate further or can proceed
with our current understanding.

The core innovation lies in decomposing adaptive computation into two orthogonal problems:

1. Representation Steering: What direction to explore in latent space—this determines how
the hidden representations evolve during pondering to enhance reasoning capabilities.

2. Temporal Control: How long to continue exploration—this determines the optimal stop-
ping point based on the current state and expected future benefits.

This decomposition is crucial because it separates concerns: the steering vectors (computed once per
model) define the reasoning direction, while the pondering controller (learned via RL) determines
the optimal timing. This separation enables efficient learning while preserving the base model’s
capabilities, making FR-PONDER a universal adapter that can be applied to any pre-trained LLM
without architectural modifications.

A.6 STEERING VECTOR EXTRACTION VIA CONTRASTIVE REPRESENTATION

The success of FR-PONDER critically depends on our ability to systematically induce deliberative
reasoning behavior in frozen language models. Traditional approaches to modifying model behavior
require retraining or fine-tuning, which is computationally expensive and risks degrading the model’s
general capabilities. Instead, we leverage the emerging field of representation engineering to extract
steering vectors that can direct the model toward more deliberative reasoning modes without any
parameter updates.

The key insight is that different reasoning styles—such as deliberative step-by-step thinking versus
direct answer generation—correspond to different patterns of neural activations. By analyzing these
activation differences across a diverse set of problems, we can identify consistent directional patterns
in the representation space that encode reasoning depth. These patterns, once extracted as steering
vectors, can be applied to guide the model’s reasoning process during inference.

Building upon recent advances in representation engineering Zou et al. (2023) and activation steering
Turner et al. (2023), we extract directional vectors that encode reasoning modalities through con-
trastive activation analysis. This approach is grounded in empirical observations that transformer
models learn interpretable directions in their hidden spaces that correspond to semantic concepts
and behavioral patterns.

Theoretical Foundation Our approach is grounded in the linear representation hypothesis Elhage
et al. (2022), which posits that neural networks encode semantic concepts as directions in activation
space. This hypothesis suggests that complex behaviors and concepts can be represented as linear
combinations of basis vectors in the model’s hidden representation space. For our application, this

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

means that the difference between deliberative and direct reasoning modes should manifest as a
consistent direction in the activation space.

Given two distinct reasoning modes—deliberative step-by-step reasoning and direct answer gener-
ation—we hypothesize that their difference forms a meaningful steering direction. Formally, we
define the steering vector as:

hsteer = Ex∼D[zdeliberative(x)− zdirect(x)] (13)

This equation equation 13 captures the expected difference in hidden representations between de-
liberative and direct reasoning modes across a dataset D. The expectation operator Ex∼D ensures
that the steering vector captures consistent patterns rather than problem-specific artifacts. The sub-
traction zdeliberative(x) − zdirect(x) isolates the representational changes associated with deliberative
reasoning, filtering out problem-specific content that is common to both reasoning modes.

This formulation makes several important assumptions: (1) reasoning depth can be modulated along
a continuous axis in representation space, (2) this axis is consistent across different problems within
a domain, and (3) linear interpolation along this axis produces meaningful intermediate reasoning
behaviors. These assumptions enable smooth interpolation between computational strategies and
allow for fine-grained control over reasoning depth through scalar multiplication of the steering
vector.

Geometric Interpretation and Manifold Analysis We develop a geometric interpretation of rea-
soning modes in transformer latent space. LetM ⊂ Rd be the manifold of valid hidden states for
a given layer. We postulate that deliberative reasoning corresponds to a submanifoldMdelib ⊂ M
characterized by higher-order geometric properties. The steering vector hsteer approximates the prin-
cipal direction connecting direct reasoning states to deliberative reasoning states.

Extraction Protocol The practical extraction of steering vectors requires careful design of con-
trastive prompts that reliably elicit different reasoning modes from the language model. We develop
a systematic protocol that constructs minimal prompt differences to isolate the reasoning mode while
controlling for content and context effects.

For a dataset D = {qi}Ni=1 of mathematical problems, we construct contrastive prompt pairs that
differ only in their instructions for reasoning approach:

p+
i = “Let’s think step by step about this problem: ”⊕ qi (14)

p−
i = “The answer is: ”⊕ qi (15)

The design of these prompts is crucial for the quality of the extracted steering vectors. The posi-
tive prompt p+

i in equation equation 14 explicitly encourages deliberative, step-by-step reasoning
through the phrase ”Let’s think step by step.” This prompt has been empirically shown to activate
chain-of-thought reasoning in language models Wei et al. (2022). The negative prompt p−

i in equa-
tion equation 15 encourages direct answer generation with minimal intermediate reasoning through
”The answer is.”

The concatenation operator⊕ denotes string concatenation, ensuring that both prompts contain iden-
tical problem content qi while differing only in the reasoning instruction. This controlled difference
is essential for isolating reasoning-related activations from problem-specific content.

We extract activations at layer ℓ for both prompt types and compute the normalized steering vector:

h
(ℓ)
steer =

1

Z

N∑
i=1

(
h+,ℓ
i − h−,ℓ

i

)
, Z =

∥∥∥∥∥
N∑
i=1

(
h+,ℓ
i − h−,ℓ

i

)∥∥∥∥∥
2

(16)

This equation equation 16 computes the steering vector through several important steps. First, we
compute the difference h+,ℓ

i − h−,ℓ
i for each problem i, which captures the activation changes

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

associated with deliberative versus direct reasoning for that specific problem. The summation
∑N

i=1
aggregates these differences across all problems in the dataset, allowing us to identify consistent
patterns that generalize beyond individual problems.

The normalization factor Z =
∥∥∥∑N

i=1

(
h+,ℓ
i − h−,ℓ

i

)∥∥∥
2

ensures that the steering vector has unit
norm, which is important for two reasons: (1) it makes the steering strength consistent across differ-
ent layers and models, and (2) it prevents numerical instabilities when applying the steering vector
with different scaling factors α.

The choice of layer ℓ significantly impacts the effectiveness of the steering vector. Earlier layers
tend to capture low-level linguistic features, while later layers encode higher-level semantic and
reasoning patterns. For mathematical reasoning tasks, we empirically find that middle to late layers
(typically layers 16-24 in a 32-layer model) provide the most effective steering vectors, as they
balance semantic understanding with reasoning capability.

This extraction is performed once per model and remains fixed during controller training, reducing
computational overhead to O(N · d) preprocessing, where N is the number of problems in the ex-
traction dataset and d is the hidden dimension. This one-time cost is amortized across all subsequent
training and inference, making the approach highly efficient.

Theorem 1 (Steering Vector Consistency). Under mild regularity conditions on the transformer
representation space, the steering vector estimator converges to the true steering direction with rate
O(N−1/2) as N →∞.

Steering Effectiveness Analysis The effectiveness of steering vectors can be analyzed through
differential geometry. Let z0 be an initial hidden state and hsteer be the steering vector. The steered
state z1 = z0 + αhsteer induces a shift in the probability distribution over next tokens.

We define the reasoning divergence as:

Dreason(α) = KL(Pθ(·|z0 + αhsteer)∥Pθ(·|z0)) (17)

Lemma 1 (Steering Monotonicity). For small α > 0, Dreason(α) is monotonically increasing in α,
indicating consistent directional bias toward deliberative reasoning.

A.7 GROUP RELATIVE POLICY OPTIMIZATION

Training the pondering controller poses unique challenges due to the sequential nature of decisions
and the sparse reward signal (typically received only at the end of the trajectory). Traditional pol-
icy gradient methods suffer from high variance, while value-based methods require expensive value
function estimation. We address these challenges by adapting Group Relative Policy Optimization
(GRPO) Shao et al. (2024), which provides effective variance reduction without the memory over-
head of separate value networks.

We adapt Group Relative Policy Optimization for training the pondering controller, which provides
variance reduction without requiring a separate value function. GRPO is particularly well-suited
for our setting because it can handle variable-length trajectories and provides stable learning signals
even with sparse rewards.

Theoretical Motivation The challenge in training adaptive inference policies lies in the high vari-
ance of policy gradient estimates. When rewards are sparse and trajectories have variable lengths,
standard policy gradient methods often produce noisy gradients that slow learning and require large
batch sizes for stability.

Standard REINFORCE Williams (1992) suffers from high gradient variance due to its un-
biased but noisy estimation of policy gradients. The gradient estimator ∇θJ(θ) =

Eτ∼πθ
[
∑T

t=0∇θ log πθ(at|zt) · R(τ)] has variance that grows with the length of trajectories and
the variance of rewards, making learning unstable.

Proximal Policy Optimization (PPO) Schulman et al. (2017b) addresses this via a value function
baseline Vϕ(zt) that estimates expected future rewards, reducing variance through the advantage

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

function At = Q(zt, at) − Vϕ(zt). However, this approach doubles memory requirements by in-
troducing a separate value network, and the value function must be trained jointly with the policy,
adding complexity.

GRPO achieves comparable variance reduction through in-batch comparisons without requiring ad-
ditional networks. The key insight is to use the empirical average reward within groups as a natural
baseline, leveraging the assumption that samples within a batch provide reasonable comparison
points.

Theorem 4 (Variance Reduction). Let Var[∇REINFORCE] denote the gradient variance of REIN-
FORCE and Var[∇GRPO] for GRPO with group size G. Then:

Var[∇GRPO] ≤
C

G
· Var[∇REINFORCE] (18)

under i.i.d. rewards within groups and bounded second moments, where C ≥ 1 depends on trajec-
tory lengths.

The variance reduction in equation equation 18 occurs because the leave-one-out baseline bG(i)\i =
1

G−1

∑
j∈G(i),j ̸=i rj provides a local estimate of expected reward that correlates with individual

rewards while maintaining independence. This correlation reduces the variance of the advantage
estimates Ai = ri − bG(i)\i compared to using raw rewards ri. The factor of 1/G reflects the
approximate variance reduction achieved by averaging over G samples.

Algorithm Design The GRPO algorithm partitions each training batch into groups and computes
advantages relative to group averages. This design provides stable learning signals while maintain-
ing computational efficiency.

For a batch B of size B divided into B/G groups, we compute group-relative advantages:

Ai = ri − bG(i), bG(i) =
1

G

∑
j∈G(i)

rj (19)

The advantage computation in equation equation 19 is central to GRPO’s effectiveness. The individ-
ual advantage Ai represents how much better (or worse) sample i performed compared to its group
average. The group assignment G(i) maps sample i to its group, and the baseline bG(i) is computed
as the empirical average of rewards within that group.

The grouping strategy significantly impacts performance. Random grouping ensures unbiased base-
line estimation but may group samples with very different difficulties. Alternatively, grouping by
similarity (e.g., based on problem type or initial hidden state similarity) can provide more informa-
tive baselines but requires careful design to avoid bias.

The GRPO objective combines policy gradient with entropy regularization:

LGRPO(ϕ) = −Eτi∼B

[
Ti∑
k=0

log πϕ(a
i
k|zik) ·Ai − βent ·H[πϕ(·|zik)]

]
(20)

The objective function in equation equation 20 consists of two terms. The first term∑Ti

k=0 log πϕ(a
i
k|zik) · Ai is the policy gradient term that increases the probability of actions from

trajectories with positive advantages and decreases the probability of actions from trajectories with
negative advantages. The summation over time steps k handles variable-length trajectories naturally.

The second term βent ·H[πϕ(·|zik)] is entropy regularization where H[·] denotes the entropy of the
policy distribution and βent controls the strength of exploration encouragement. Entropy regular-
ization prevents premature convergence to deterministic policies and ensures sufficient exploration
during training.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Convergence Analysis with Bias Guarantees Lemma 3 (Unbiased Estimation). Under the as-
sumption that group assignments are independent of reward values, the GRPO gradient estimator:

ĝGRPO =
1

B

B∑
i=1

Ti∑
t=0

∇θ log πθ(a
(i)
t |z

(i)
t) ·Ai (21)

satisfies E[ĝGRPO] = ∇θJ(θ), ensuring unbiased policy improvement.

Theorem 5 (GRPO Convergence). Let π∗ be an optimal policy and πϕt the policy at iteration t.
With appropriate learning rate ηt = O(1/

√
t):

E[J(π∗)− J(πϕT
)] ≤ O

(
1√
T

+
1

G

)
(22)

where J(·) denotes expected return and G is the group size.

This establishes that GRPO achieves O(1/
√
T) convergence with variance reduction factor 1/G,

confirming theoretical advantages over standard policy gradient methods.

A.8 MULTI-COMPONENT REWARD ENGINEERING

Designing an effective reward function for adaptive reasoning requires balancing multiple competing
objectives. Unlike simple classification tasks with binary accuracy, mathematical reasoning involves
nuanced aspects such as solution correctness, reasoning completeness, computational efficiency, and
output quality. A poorly designed reward function can lead to pathological behaviors such as gener-
ating extremely long but incorrect solutions, or conversely, producing correct but unreasonably short
answers that lack proper justification. Our reward function addresses five critical aspects of adaptive
reasoning through careful component design and magnitude balancing. Each component targets a
specific aspect of reasoning quality, and their combination encourages well-rounded performance
that matches human expectations for mathematical problem-solving.

A.9 COMPONENT SPECIFICATIONS

Accuracy Component Racc: The accuracy component forms the foundation of our reward struc-
ture, measuring how well the final answer matches the ground truth. However, binary accuracy
(correct/incorrect) provides limited learning signal, especially during early training when most an-
swers are incorrect. Instead, we employ graduated scoring to encourage partial progress and provide
smoother gradients:

Racc =


wexact if ŷ = y

wpartial · exp
(
− |ŷ−y|

|y|+ϵ

)
if relative error < θtol

0 otherwise

(23)

This formulation equation 23 provides three levels of reward. Exact matches receive the full reward
wexact, encouraging precise solutions. Near-correct answers receive partial credit through the expo-
nential decay wpartial · exp

(
− |ŷ−y|

|y|+ϵ

)
, where the relative error |ŷ−y|

|y|+ϵ normalizes the absolute error
by the ground truth magnitude. The tolerance threshold θtol defines the maximum relative error for
partial credit, preventing the system from rewarding wildly incorrect answers. The ϵ term provides
numerical stability when y ≈ 0.

Computational Efficiency Rflops: This component encourages the model to solve problems effi-
ciently, penalizing unnecessary computation. The challenge lies in defining ”excess” computation,
which varies significantly across problem difficulties. We use adaptive normalization to account for
this variability:

Rflops = −λflops ·
F − F̄history

σFhistory + ϵ
(24)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

The efficiency reward equation 24 penalizes computational overhead relative to historical norms.
The term F represents the FLOPs used for the current problem, while F̄history and σFhistory are running
statistics maintained via exponential moving average. This normalization ensures that the penalty
adapts to the typical computational requirements, preventing the system from being overly penal-
ized for hard problems that naturally require more computation. The coefficient λflops controls the
strength of the efficiency constraint.

Reasoning Completeness Rcomp: Mathematical problem-solving typically follows structured
stages: problem understanding, computation, verification, and conclusion. This component en-
courages the model to complete all reasoning stages rather than jumping directly to an answer:

Rcomp =
∑

s∈Sstages

ws · ⊮[stage s completed] (25)

The completeness reward equation 25 sums contributions from each reasoning stage s in Sstages =
{setup, computation, verification, conclusion}. Each stage is detected through pattern matching in
the generated text (e.g., looking for setup phrases like ”Given that” or verification phrases like ”Let
me check”). The weights ws allow for different importance levels across stages, and the indicator
function ⊮[stage s completed] provides binary rewards for stage completion.

Output Quality Rqual: Beyond correctness, we want outputs that are well-structured, appropri-
ately detailed, and linguistically coherent. This component assesses coherence through length and
perplexity constraints:

Rqual = wqual ·min

(
1,

ℓoutput

ℓtarget

)
· exp

(
−PPL(ŷ)− PPLbaseline

σPPL

)
(26)

The quality reward equation 26 has two components. The length term min
(
1,

ℓoutput

ℓtarget

)
encourages

adequate detail by penalizing outputs that are significantly shorter than the target length ℓtarget,
while capping the reward at 1 to avoid encouraging excessive verbosity. The perplexity term
exp

(
− PPL(ŷ)−PPLbaseline

σPPL

)
measures linguistic coherence, where PPL(ŷ) is the perplexity of the gen-

erated output and PPLbaseline is a baseline perplexity from high-quality examples.

Anti-Repetition Ranti-rep: Language models can sometimes generate repetitive text, especially
when encouraged to produce longer outputs. This component penalizes redundancy at multiple
granularities:

Ranti-rep = −
∑

g∈{1,2,3}

βg ·
|repeatedg(ŷ)|

|ŷ|
(27)

The anti-repetition reward equation 27 penalizes n-gram repetitions for g ∈ {1, 2, 3} (unigrams,
bigrams, trigrams). The term |repeatedg(ŷ)| counts the number of repeated n-grams of order g in the
output ŷ, normalized by the total output length |ŷ|. The coefficients βg allow for different penalty
strengths across n-gram orders, typically with β1 < β2 < β3 since higher-order repetitions are more
problematic than single word repetitions.

A.10 REWARD BALANCING THEORY

To prevent any single component from dominating, we enforce magnitude constraints:

Theorem 6 (Reward Balance Condition). For stable learning, the reward components must satisfy:

∀i, j ∈ {acc,flops, comp, qual, rep} : E[|Ri|]
E[|Rj |]

∈ [ρ−1, ρ] (28)

where ρ ∈ [2, 10] is the maximum imbalance ratio.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

We achieve this through adaptive weight scaling:

w
(t+1)
i = w

(t)
i · exp

(
η ·

(
log R̄target − log R̄

(t)
i

))
(29)

A.11 CURRICULUM LEARNING FRAMEWORK

Training adaptive inference policies directly from random initialization faces several challenges:
sparse rewards (most randomly generated trajectories produce incorrect answers), high variance in
trajectory quality, and the exploration problem (discovering good stopping points through random
exploration is inefficient). Curriculum learning addresses these challenges by providing structured
guidance that gradually transfers control from teacher demonstrations to autonomous learning. We
employ a three-stage curriculum that progressively transfers control from teacher demonstrations to
autonomous learning. This approach is inspired by how humans learn complex skills: starting with
guided practice, progressing to supervised practice with feedback, and finally achieving independent
mastery.

Stage Progression The curriculum is designed to provide a smooth transition from full supervision
to autonomous learning. The progression is governed by a curriculum probability that determines
the mix between teacher and student control at each training step.

The curriculum probability follows a piecewise linear schedule:

pcurriculum(t) =


1.0 t ∈ [0, T1)

1− t−T1

T2−T1
t ∈ [T1, T2)

0.0 t ≥ T2

(30)

This schedule equation 30 defines three distinct phases. In Stage 1 (t ∈ [0, T1)), pcurriculum(t) = 1.0
indicates pure teacher forcing, where all pondering decisions are made by a teacher policy that
encourages moderate pondering (typically 3-5 steps). This provides the controller with abundant ex-
amples of reasonable stopping behavior and establishes a foundation of sensible pondering patterns.

Stage 2 (t ∈ [T1, T2)) implements gradual transition with pcurriculum(t) = 1 − t−T1

T2−T1
, linearly de-

creasing the probability of teacher guidance. This mixed training allows the student policy to grad-
ually take control while still receiving guidance when needed. The linear schedule ensures smooth
transition without abrupt changes that could destabilize learning.

Stage 3 (t ≥ T2) represents autonomous learning with pcurriculum(t) = 0.0, where the student con-
troller makes all decisions independently. By this stage, the controller has learned basic pondering
patterns and can explore more sophisticated strategies through reinforcement learning.

The boundaries T1 = 500 and T2 = 1500 are chosen based on empirical observations about con-
troller learning dynamics. The initial 500 steps provide sufficient teacher demonstrations to es-
tablish baseline behavior, while the 1000-step transition period allows gradual adaptation without
overwhelming the learning process.

During mixed training, we sample the guidance source at each training step:

source(t) ∼ Bernoulli(pcurriculum(t)) (31)

This sampling equation 31 determines whether each trajectory uses teacher guidance (source = 1)
or student control (source = 0). The Bernoulli distribution ensures that the expected fraction of
teacher-guided trajectories matches the curriculum schedule while providing stochastic variation
that prevents overfitting to the transition points.

Quality Gates As teacher guidance diminishes, maintaining training stability becomes crucial.
Without quality control, the student policy might generate extremely poor trajectories that provide
misleading learning signals. Quality gates address this challenge by filtering trajectories before they
contribute to parameter updates.

In the autonomous stage, we implement quality gates that reject low-quality trajectories:

Q(τ) = ⊮[Rcomp(τ) > θcomp] · ⊮[Rqual(τ) > θqual] (32)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

The quality gate equation 32 implements a conjunction of two conditions. The first condition
⊮[Rcomp(τ) > θcomp] ensures that trajectories demonstrate reasonable reasoning completeness, mea-
sured by the presence of key reasoning stages. The threshold θcomp is set to require at least basic
problem setup and computation stages.

The second condition ⊮[Rqual(τ) > θqual] filters trajectories based on output quality, ensuring that
the generated text meets minimum standards for coherence and appropriateness. The threshold θqual
prevents the inclusion of trajectories with excessively repetitive, incoherent, or truncated outputs.

Only trajectories satisfying Q(τ) = 1 contribute to gradient updates, ensuring stable learning as
teacher guidance diminishes. This filtering mechanism prevents the policy from learning from ex-
tremely poor examples while still allowing reasonable exploration. The thresholds are set conserva-
tively to maintain a balance between quality control and learning diversity. To ensure transparency,
we provide concrete examples of how Large Language Models (LLMs) were used in the preparation
of this manuscript:

• Grammar refinement: For instance, when an early draft contained the sentence “Our
method significantly reduce computation cost,” the LLM was used to correct it to “Our
method significantly reduces computational cost.”

• Clarity improvement: A verbose draft sentence such as “In this part we attempt to show
that our model works in a way that is both effective and efficient” was polished by the LLM
to “This section demonstrates that our model is both effective and efficient.”

• Flow adjustment: When two adjacent sentences (“We introduce the FR-Ponder frame-
work. It adapts inference dynamically.”) appeared disjoint, the LLM suggested a smoother
transition: “We introduce the FR-Ponder framework, which dynamically adapts inference.”

These examples illustrate that the LLM’s role was restricted to language refinement. All technical
ideas, theoretical results, and experimental contributions originated from the authors.

28

	Introduction
	Related Work
	Chain-of-Thought Reasoning
	Latent Reasoning
	Generalized Reinforcement Learning for Reasoning

	Methodology
	Problem Formulation
	Adaptive Pondering Mechanism

	Experiments
	Evaluation Setup
	Main Results

	Conclusion
	Appendix
	Additional Analysis
	Unified Training Algorithm with Theoretical Guarantees
	Implementation and Hyperparameter Analysis
	Methodology Summary and Integration
	Algorithm for FR-Ponder
	Steering Vector Extraction via Contrastive Representation
	Group Relative Policy Optimization
	Multi-Component Reward Engineering
	Component Specifications
	Reward Balancing Theory
	Curriculum Learning Framework

