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Abstract

Deriving meaningful representations from complex, high-dimensional data in unsupervised
settings is crucial across diverse machine learning applications. This paper introduces a
framework for multi-scale graph network embedding based on spectral graph wavelets that
employs a contrastive learning approach. We theoretically show that in Paley-Wiener spaces
on combinatorial graphs, the spectral graph wavelets operator provides greater flexibility and
control over smoothness compared to the Laplacian operator, motivating our approach. A
key advantage of the proposed embedding is its ability to establish a correspondence between
the embedding and input feature spaces, enabling the derivation of feature importance. We
validate the effectiveness of our graph embedding framework on multiple public datasets
across various downstream tasks, including clustering and unsupervised feature importance.

1 Introduction

Graph Embeddings and Manifold Learning (Roweis & Saul (2000); Belkin & Niyogi (2003); Tenenbaum et al.
(2000); van der Maaten & Hinton (2008); Coifman et al. (2005b)) play a pivotal role in analyzing complex
data structures encountered in a wide range of machine learning applications. The representations learned by
these techniques uncover the intrinsic geometry of the data and support downstream tasks such as clustering
and visualization—especially in scenarios where labels are unavailable or unreliable. Most manifold learning
methods typically perform nonlinear dimensionality reduction to embed data into lower-dimensional spaces,
while some also explore high-dimensional embeddings (Gama et al. (2019); Sun et al. (2009)). Nonetheless,
most such methods lack a direct connection to the input features, preventing the evaluation of individual
feature contributions and resulting in embeddings with limited interpretability. This limitation is critical
in domains like finance, where key behavioral indicators must be traced back to individual features, or in
biology, where interpretability is vital for uncovering mechanisms within complex systems. To address these
limitations, this paper makes three primary contributions:

1. We introduce a framework that leverages multi-scale graph representation using a 3D tensor and con-
trastive learning. This enhances the expressiveness of the embedding by jointly optimizing over both low-
and high-frequency components, enabling the capture of fine-grained data structure.

2. We propose a manifold-based interpretation method for feature importance, allowing each dimension of
the learned embedding to be directly linked back to a unique original feature.

3. We characterize the theoretical representational capacity of the Spectral Graph Wavelet (SGW) operator
by analyzing functions from Paley-Wiener spaces (Pesenson (2008)) on combinatorial graphs. This analysis
demonstrates that SGW provides greater flexibility and smoother control compared to traditional Laplacian-
based operators.

Our method, MS-IMAP, is designed to associate each embedding coordinate with a unique input feature,
thereby enabling the estimation of feature importance relative to the learned embedding space. This inter-
pretability arises from a deliberate design choice: each embedding coordinate corresponds to a single, unique
input feature and is optimized through spectral graph wavelets to align with the underlying graph structure.
Unlike standard manifold learning and graph embedding methods, where each embedding dimension typi-
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Figure 1: Illustration of the proposed method. (Left) Initial encoding using SGW in (b) and regularized
embedding in (c). (Right) Feature embedding space representation, which has a one-to-one correspondence
with the input features, can be used along with clustering for interpretability models, such as feature im-
portance.

cally blends information from all input features, MS-IMAP preserves the semantic identity of each feature
by assigning it to a distinct embedding dimension.

Another key distinction of our approach—compared to both classical (Belkin & Niyogi (2003)) and modern
techniques (McInnes et al. (2018)), which typically rely on the low-frequency components of the graph
Laplacian and thus capture only coarse structural information—is the use of multi-scale graph representations
via Spectral Graph Wavelets (SGW) within a contrastive learning framework. This allows our method to
retain or even expand the dimensionality of the data, yielding richer and more expressive representations
while preserving interpretability. We further employ stochastic gradient descent (SGD) with a novel 3D-
tensor-based contrastive objective to optimize embeddings that capture both global and local graph structure.
We empirically demonstrate that applying feature importance techniques to MS-IMAP embeddings yields
more informative feature subsets for clustering than applying them to raw input data. This provides strong
evidence of semantic alignment—often absent in nonlinear methods such as deep networks or conventional
manifold learning. MS-IMAP achieves interpretable and semantically faithful embeddings, while remaining
competitive with state-of-the-art graph embedding techniques across a range of tasks.

2 Related Work

Extensive efforts have been dedicated to exploring manifold learning methods that aim to produce low-
dimensional embeddings while preserving the intrinsic structure of high-dimensional data. Classical manifold
learning techniques include Locally Linear Embedding (LLE) Roweis & Saul (2000), Laplacian Eigenmaps
(Belkin & Niyogi (2003)), Isomap (Tenenbaum et al. (2000)), Diffusion Maps (Coifman et al. (2005a)), and
t-distributed Stochastic Neighbor Embedding (t-SNE) (van der Maaten & Hinton (2008)).

One of the central challenges in these methods is maintaining a balance between local and global structure,
especially in the presence of noise. To address this, various denoising strategies have been developed (Hein
& Maier (2006); Deutsch et al. (2016; 2017); Deutsch & Medioni (2017); Deutsch et al.; 2018); Deutsch
& Medioni (2015b;a)), aiming to improve robustness and extend the applicability of these techniques to
real-world, noisy datasets.

UMAP (McInnes et al. (2018)) has shown strong empirical performance for visualization and cluster separa-
tion. It typically employs Laplacian Eigenmaps initialization, which emphasizes low-frequency graph signals
while neglecting higher-frequency patterns that may carry important information.

Recent work (Damrich & Hamprecht (2021)) has shown that negative and positive sampling in UMAP
significantly influences the effective loss function. These insights have led to studies on alternative sampling
schemes (Yan et al. (2023)), bounds on generalization error in embedding methods (Suzuki et al. (2021)),
and biases introduced by high-degree nodes during graph construction and sampling (Kojaku et al. (2021)).
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Manifold learning and non-linear dimensionality reduction serve purposes beyond visualization; one of their
key goals is to learn representations that capture intrinsic geometric structure and approximate geodesic
distances. The learned embedding space dimensionality can go beyond two or three dimensions. However,
increasing dimensionality does not necessarily improve robustness: noise and the curse of dimensionality
can introduce instability. These methods also suffer from computational limitations. Moreover, to compute
embedding in higher dimensions many algorithms—such as Laplacian Eigenmaps and UMAP—require com-
puting large portions of the Laplacian spectrum, making them computationally intensive for large datasets.
Our method addresses these issues by producing interpretable and efficient embeddings while leveraging
spectral information across multiple frequency scales.

A key limitation of many manifold learning and graph embedding methods is the absence of an explicit
and interpretable mapping, which prevents evaluating the contribution of each input feature to the resulting
low-dimensional embedding. This gap restricts their utility in domains where interpretability is crucial.
Providing such a link can enable improved feature selection, clearer interpretation of embeddings, and greater
robustness to noise (Hosseini & Hammer (2020); Frye et al. (2021); Zharmagambetov & Carreira-Perpinan
(2022)).

Spectral Graph Wavelets (SGW) are central to our method (see Section 3.1), offering localization in both
spectral and vertex domains. SGW apply a family of bandpass filters to the graph Laplacian’s spectrum,
allowing for multi-resolution analysis of graph signals and providing richer representations across frequency
bands. Our approach is also related to graph embedding methods that exploit multiscale structure, such
as Diffusion Wavelets (Ronald R. Coifman (2006)), Geometric Scattering for Graph Data Analysis (Gao
et al. (2018)), and the Graph Scattering Transform (Gama et al. (2019)), which extract graph features
for downstream tasks like classification. These methods often embed data in higher-dimensional spaces to
improve representation power.

2.1 Preliminaries

Consider a set of points x = {xi} , i = 1, ...N,xi ∈ RD, where each xi ∈ RD, sampled from an unknown
smooth manifold M ⊂ RD. To model the geometric structure of the data, we construct an undirected,
weighted graph G = (V,W) over the point set x, where V is the set of nodes and W = (wij) is the
weighted adjacency matrix encoding edge weights between nodes. The weights wij can be computed using
various techniques. A common approach is to apply a Gaussian kernel to pairs of points xi and xj within
the k nearest neighbors of xi, denoted as kNN(xi). In this work, we adopt the adaptive Gaussian kernel
construction proposed in McInnes et al. (2018), though other graph construction methods may also be
employed. Let L denote the combinatorial graph Laplacian defined as L = D − W, where D is the diagonal
degree matrix with entries dii = d(i), and the degree d(i) of vertex i is the sum of the weights of all edges
incident to i. We use the normalized graph Laplacian, defined as:

LN = D−1/2LD−1/2 = I − D−1/2WD−1/2

which has real eigenvalues in the interval [0, 2]. For simplicity, we refer to LN as L for the remainder of the
paper. Let λ1, . . . , λN and ϕ1, . . . ,ϕN denote the eigenvalues and corresponding eigenvectors of L. We denote
the matrix of eigenvectors as Φ ∈ RN×N and the diagonal matrix of eigenvalues as Λ = diag(λ1, . . . , λN ).
In our setting, each input coordinate fr ∈ RN — viewed as a graph signal—is defined across the N nodes
of the graph. The original data matrix x can thus be expressed as a collection of such signals: x =
(f1, f2, .., fr, ..fD). Our goal is to derive a multi-scale embedding from these signals that approximates the
intrinsic manifold coordinates, using spectral information derived from the graph Laplacian.

2.2 Multi-scale representations using SGW

In the past two decades, several multi-scale representations for data on irregular graphs have been developed,
including Spectral Graph Wavelets (SGW) Hammond et al. (2011) and Diffusion Wavelets Ronald R. Coifman
(2006). In this work, we focus on the SGW-based multi-scale graph transform. SGW offers a principled way
to balance spectral and spatial resolution, as its coefficients are localized in both domains. These wavelets
are constructed using a kernel function operator g(L), which acts on a signal by modulating each of its
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spectral components (i.e., Fourier modes) Hammond et al. (2011). This design enables a trade-off between
vertex-domain (spatial) and frequency-domain (spectral) localization. The spatial localization is implicitly
controlled by a single scale parameter defined in the spectral domain: greater localization in the vertex
domain corresponds to a broader spectral bandwidth. To represent a signal f ∈ RN at multiple scales
S = [s1, s2, . . . , sK ], the SGW transform is defined as follows. Let g(λ) be a bandpass filter in the spectral
domain. Let δi ∈ RN denote the delta function centered at vertex i ∈ G, where δi(j) = 1 if i = j, and
δi(j) = 0 otherwise. A wavelet centered at node i and scale s is then given by:

ψ(s, i) = Φg(sλ)ΦT δi

.The value of ψ(s, i) at vertex m can be written explicitly as:

ψ(s, i)(m) =
N∑
l=1

g(sλl)ϕ∗
l (i)ϕl(m)

. Given a graph signal f ∈ RN , the SGW coefficient at node i and scale s is defined as:

ψf (s, i) =
N∑
l=1

g(sλl)f̂(λl)ϕl(i) (1)

Fast computation using Chebyshev polynomials:
Direct computation of SGW coefficients is computationally expensive, requiring O(N3) operations for N
nodes. To address this, Hammond et al. Hammond et al. (2011) proposed an efficient algorithm based on
approximating the scaled generating kernels g(sλ) using low-order Chebyshev polynomials of the Laplacian
L, which are applied directly to the input signal. This significantly reduces computational cost (see Appendix
for further details).

3 Our Proposed framework: Multi-Scale IMAP

In this section, we introduce Multi-scale IMAP, a framework for interpretable embedding via manifold learn-
ing utilizing a multi-scale graph representation. This approach enables us to maintain global regularity and
preserve local structure without sacrificing interpretability. Our method imposes a differentiable structure
on the mapping h : x → ψx, supported on a discrete graph G = (V,W), where ψx represents the encoded
multi-scale graph transform of x. Multi-scale IMAP consists of two main steps: In Step 1, our approach
constructs a multi-scale graph representation by incorporating feature signals through the SGW Transform
across multiple scales and graph frequencies. We suggest a 3D tensor-based approach (detailed in Algorithm
1), where we construct a 3D tensor with dimensions K × N × D to provide an effective representation for
encoding multi-scale transform. We leverage the encoded 3D tensor structure to align the optimized embed-
ding with all scales simultaneously to enforce differentiable structure of the transformed features. The 3D
tensor-based approach (detailed in Algorithm 1) provides the most effective representation for the following
reasons:
(i) Joint and simultaneous optimization: using the 3D tensor-based method enables the joint and simulta-
neous optimization of all scales for each sample by leveraging the SGW coefficients of each spectral band
within the cross-entropy loss framework while adhering to the fixed graph structure. This approach ef-
fectively balances coarse and fine-grain resolutions, with summation performed only after the contrastive
learning optimization process is complete. By smoothing both low- and high-frequency information jointly
and simultaneously with respect to the graph structure, this method reduces the reliance on threshold-based
techniques for removing high-frequency spectral bands, which may be less efficient. Jointly optimizing across
scales ensures consistency in the optimization process for all scales with respect to a fixed pair of nodes. Al-
though there may be correlations between overlapping SGWs corresponding to different spectral bands, each
scale is associated with a distinct bandwidth of frequencies, effectively capturing graph structures at varying
levels of neighborhood information. By integrating multiple scales, SGWs capture neighborhood information
continuously across varying granularities, enabling a representation that strikes a balance between local and
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Algorithm 1: Encoding multi-scale structure in the optimized embeddings
Input: Set of points {xi}Ni=1.
Output: Initial Node Embeddings ψx .
Step 1: Construct G = (V,W) from {xi}Ni=1.
Step 2: Construct the Laplacian L.
Step 3: Compute λmax(L).
Step 4: Initial Embedding construction:
For r = 1, .., D associated with the feature signals {fr} do:
Compute ψfr

(sj , :) at scales sj , j = 1, ...K using Chebyshev approximation.
Step 5: Concatenate ψfr (sj , :) for r = 1, ..., D in a matrix form ψx(sj , :, :) for each fixed scale sj ,
representing all scales using 3D tensor ψx ∈ RK × RD × RN .

global structural details.
(ii) Enhanced Interpretability: the proposed representation establishes a one-to-one correspondence between
input features and the final embedding features, making feature interpretation more straightforward and
intuitive. This is demonstrated in Section 4, where we show that the embeddings produced enable effective
feature importance rankings. By ensuring this direct correspondence, our approach facilitates meaningful in-
terpretation of the embedding space. This combination of optimization efficiency and enhanced interpretabil-
ity highlights the clear advantages of the 3D tensor-based representation. We note that an alternative to the
3D tensor-based representation approach is to use simple concatenation, where all features are transformed
using SGW and each data point is represented by a vector formed by concatenating all corresponding SGW
coefficients. For completeness we describe this alternative in the Appendix. In Step 2, We integrate the
multi-scale representation within the SGD optimization framework, simultaneously leveraging both low and
high-frequency information. This integration leads to fine-grained manifold regularization and improved
robustness in downstream tasks.

3.1 Step 1: Feature Representation to encode multi-scale structure

To encode multi-scale representations used for subsequent optimization we focus on a 3D tensor based
method. Note that each dimension in the embedding space is constructed using a single feature in the original
feature set, which is an essential characteristic that can be leveraged for interpreting graph embeddings.
3D-Tensor Encoding: The 3D-Tensor Encoding method concatenates the multi-scale representation for
all features at a fixed scale, generating a matrix representation ψx(sj , :, :) ∈ RD × RN for each scale sj ,
encoding SGW coefficients across features and nodes. After concatenating all fi at a fixed scale sj , we have

ψx(sj , :, :) = ψf1(sj , :)∥ψf2(sj , :)∥...∥ψfD
(sj , :)

where we designate the concatenation using ||, with c(ψfi
(sk, :, :), ψfj

(sk, :, :)) = ψfi
(sk, :, :) ||ψfj

(sk, :, :).
The optimization can be performed separately for each scale sj , or jointly for all scales sj using the 3D
tensor ψx ∈ RK ×RD ×RN . We detail the proposed feature representation encoding methods in the pseudo
code algorithm 1.

3.2 Step 2: Optimization design using multi-scale network structure.

We propose to use optimization based on SGD that begins with the initial embedding within the spectral
graph domain. While employing positive and negative sampling, our aim is to optimize the embedding space
directly in the SGW domain, revealing the intrinsic structure of manifold data while retaining high-frequency
information associated with the graph Laplacian. This optimization within the SGW domain provides more
effective regularization, allowing for the direct removal of noise from each spectral band. We outline the
steps of the proposed approach.
3D-Tensor Based Optimization for graph Embedding Encoding the representation in a 3D tensor
offers two key advantages. First, is the computational efficiency: the update rule at each iteration, associated
with a pair of nodes, is performed jointly and simultaneously for all scales. This avoids the need for inde-
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pendent optimization per scale, which would significantly increase computational complexity. The second is
optimization alignment: jointly optimizing across scales ensures alignment in the optimization process for all
scales with respect to a fixed pair of nodes (positive or negative sample). This approach is more effective than
optimizing scales independently, as it maintains consistency and improves overall performance. While SGW
captures global graph structure, each embedding update remains feature-specific, preserving the one-to-one
correspondence between input features and embedding dimensions, which is essential for interpretability.
The encoded manifold representation is a 3D tensor ψx ∈ RK × RD × RN .
An SGD update rule at iteration t, applied to the 3D tensor, is:

(ψ̃(t+1)
x )i,j,k = (ψ̃(t)

x )i,j,k − α
∂L

∂(ψx)i,j,k
(2)

where α is the learning parameter. In this case, we employ the cross-entropy loss function:

L(ψ̃x|W) =
∑
i,j,k

(
wij log wij

v
ψx(sk,:,:)
ij

+(1 − wij) log 1 − wij

1 − v
ψx(sk,:,:)
ij

)
(3)

where vψx(sk,:,:)
ij = 1

1+||ψxi
(sk,:,:)−ψxj

(sk,:,:)||2 .
We apply the optimization based on SGD with respect to each scale sk, where the gradient of the loss is
approximated by:

∂L
(
ψ̃x(sk, :, :) | W

)
∂ψxi

(sk, :, :)
=
∑
j

wijv
ψx(sk,:,:)
ij rij(sk) (4)

−
∑
j

1
∥rij(sk)∥2 v

ψx(sk,:,:)
ij rij(sk) (5)

where rij(sk) = ψxi(sk, :, :) − ψxj (sk, :, :).
Feature updates: Our implementation employs an optimization process that operates jointly across all
scales using the 3D tensor, as described in the SGD update rule for iteration t in Eq.(2). The optimization
process uses SGD with positive and negative sampling for all scales sk given a pair of positive or negative
pair of nodes i, j. At each iteration t, associated with either a positive sample (an edge) or a negative sample
(a pair of unconnected nodes), the update rule from Eq.(2) is applied. The derivative of the loss function,
as detailed in Eq.(4), is computed for all scales (s1, ...sK), with the sign in Eq.(2) depending on whether
the sample is positive or negative. Once the optimization concludes, the final embedding is derived from
the 3D tensor by summing over the scales, as specified in Eq.(6). Recall that the term ψx(sk, :, :) ∈ RD×N

is a slice of the 3D SGW tensor at scale sk, representing spectral graph wavelet coefficients for all features
across all nodes N . The specific vector ψx(sk, j, :) ∈ RN corresponds to the SGW coefficients at scale sk for
input feature j across all nodes. Note that in Eq.(2), the j-th embedding coordinate—aligned with input
feature j—is updated via SGD using two components: (1) the current embedding value and (2) a structural
term involving v

ψx(sk,:,:)
ij , which integrates the graph structure and multiscale information from the SGW

tensor. At each iteration, updates for positive/negative node pairs are applied jointly across all scales, but
each scale’s contribution is weighted by its energy concentration—ensuring that more informative scales
have greater influence. We compute the final embedding by summing up all the optimized embeddings with
respect to each scale sk

ψ̃x =
∑
k

ψ̃x(sk, :, :) (6)

The dimensionality of the final embedding is ψ̃x ∈ RD × RN , maintaining the same dimensionality as the
original input, and thus there exists a one-to-one correspondence between the coordinates of the input features
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x and ψ̃x. This correspondence ensures that each dimension of the feature space is directly mapped to a
single dimension in the embedding space ψ̃x. Our optimization process involves using SGD with positive
and negative sampling, similar to recent graph embeddings methods (Tang et al. (2016); McInnes et al.
(2018)). Positive edge samples are associated with attraction (first term on the right hand side), while
negative samples (second term on the right hand side) refer to a pair of nodes that are not connected in the
graph, which create repulsion among dissimilar points.
Remark 1: While we adopt the SGW formulation by Hammond et al. (Hammond et al. (2011)), our
framework is compatible with other spectral graph wavelet and multiscale representations.
Remark 2: While the manifold hypothesis suggests the data lie near a lower-dimensional manifold, this does
not preclude learning meaningful structure in the ambient space. Our method incorporates high-frequency
graph information via spectral graph wavelets, enhancing stability and local structure capture, without
requiring expensive eigenspectrum computations as in Laplacian Eigenmaps or UMAP.

4 Feature Importance using Explicit Correspondence with Embedding Features

Feature importance is one of the simplest yet most fundamental tools for model interpretability. It
associates input features with model outputs, highlighting which features most strongly influence the
learned representations. We show that feature subsets selected from the MS-IMAP embedding lead to
superior clustering performance compared to those selected from the input space using the same feature
importance methods. Unlike competing approaches, MS-IMAP retains semantic alignment and supports
direct correspondence between embedding dimensions and original input features. This makes MS-IMAP
an interpretable alternative to black-box models. We empirically demonstrate that applying feature impor-
tance techniques to the MS-IMAP embedding yields more informative feature subsets for clustering than
applying the same techniques directly to the raw input. This provides evidence of the semantic consistency
preserved by our method—often absent in traditional nonlinear embeddings. We explore two alternative
approaches for estimating feature importance, leveraging the explicit correspondence in the embedding
space where each dimension maps back to a specific input feature. These methods are evaluated in an un-
supervised or self-supervised setting, where feature selection is performed without access to label information.

4.1 Assessing Embedding Feature Importance using the Laplacian Score:

The first method utilizes the Laplacian Score (LS) (He et al. (2005)), which assesses the importance of
each feature by examining its correlation with the eigenvalues of the graph Laplacian. The significance
of the variable corresponding to the l-th coordinate, represented by the feature fl ∈ RN , is inferred from
the relevance of its corresponding coordinate l in the embedding space, ψ̃xl

. Computing the Laplacian
score with respect to the embedding features ψ̃x. The Laplacian score is calculated with respect to
embedding features ψ̃x using the Laplacian graph L and the degree matrix D. To compute the Laplacian
Score, we first subtract the mean and then calculate it as follows:

Ls(ψ̃x)l = (ψ̃x)Tl L(ψ̃x)l
(ψ̃x)Tl D(ψ̃x)l

Smaller scores indicate that the embedding feature (ψ̃x)l has a greater projection onto the subspace of eigen-
vectors corresponding to the smallest eigenvalues, signifying higher importance concerning the global graph
structure. Therefore, the feature importance of (ψ̃x)l can be directly interpreted as the importance of the
corresponding original feature. Although the graph is typically constructed using local neighborhoods (e.g.,
via k-nearest neighbors), the Laplacian operator reflects global smoothness over the entire data manifold.

4.2 Assessing Importance of Embedding Features using Mutual Information

We also propose a self-supervised approach that uses Mutual Information (MI) to estimate the importance
of each dimension in the embedding space, which can then be explicitly linked to the original features. First,
we apply k-means to cluster the MS-IMAP embedding space and use the resulting clusters as pseudo-labels.
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Algorithm 2: MI-based Unsupervised Feature Selection
Input: MS-IMAP embeddings ψ̃x, number of clusters k
Output: MI scores for each feature
Step 1: Apply k-means clustering on the embedding space ψx to obtain cluster labels

clusters = k-means(ψ̃x, k)
Step 2: Use the resulting cluster labels as pseudo-labels

pseudo_labels = c(ψ̃x)
Step 3: Initialize an empty list to store mutual information (MI) values for each feature

mi_scores = []
Step 4: For each feature i in the original data or embedding space:

Step 4.1: Compute mutual information between feature ψ̃x(i) and the pseudo-labels
Step 4.2: MI_score = MI(ψ̃x(i), c(ψ̃x))
Step 4.3: Append MI_score to mi_scores

Step 5: Output the list of MI scores
Return mi_scores
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Figure 2: Clustering results using Adjusted Rand Index (ARI) on Cora and Zillions datasets with a subset
of features based on feature importance, comparing the MS-IMAP embedding space and the input features.

We then compute MI to quantify the shared information between features and these pseudo-labels, similar to
how MI would be computed with ground truth labels. This step allows MI to measure how much each feature
contributes to cluster assignments, highlighting those that are the most informative to distinguish clusters.
The MI-Based Feature Importance identify features that are informative about cluster assignments. Thus,
masking these features would especially degrade the clustering performance. We summarize the MI-based
unsupervised feature selection in Algorithm 2.

4.3 Comparison: Laplacian Score (LS) vs. Feature Importance Based-Mutual Information

The Laplacian Score (LS) and Mutual Information (MI)–based feature importance are two complementary
approaches to unsupervised feature selection, with LS focusing on geometric smoothness over a graph and
MI targeting feature relevance with respect to clustering structure. Laplacian Score (LS) evaluates how
smoothly a feature varies over a graph constructed from the data. It is a fully unsupervised, geometry-
driven criterion that does not require clustering or pseudo-labels. A feature receives a low score if it varies
slowly and consistently across the graph. This makes LS particularly effective for identifying features that
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Figure 3: Clustering results using Adjusted Mutual Information (AMI) on Cora and Zillions datasets with
a subset of features based on feature importance, comparing the MS-IMAP embedding space and the input
features.

align with smooth manifold structure. However, LS also has several limitations. It is not task-aware:
it does not assess whether a feature is relevant for a specific downstream objective such as clustering or
classification. Moreover, LS can overrate irrelevant but structured noise—for instance, a smoothly varying
but non-informative feature may receive a deceptively low score simply because it is smooth.
In contrast, Mutual Information–based feature importance measures how much information a feature
provides about cluster assignments. It quantifies the statistical dependency between each feature and the
resulting clusters (e.g., from k-means or MS-IMAP embeddings). A key strength of MI is that it is task-
aware: it is self-supervised (or can be seen as supervised with respect to pseudo-labels), capturing which
features are actually useful for distinguishing between clusters. MI scores are also directly interpretable—a
high MI score indicates that the feature contributes to separating groups—and the method is generally
robust to irrelevant noise features, which receive low MI if they do not correlate with clustering structure.
However, MI is sensitive to the quality of the clustering used to generate pseudo-labels—poor or unstable
clustering can diminish its effectiveness.

5 Experimental Results

We evaluated our approach in both synthetic and real datasets in two application domains. First, we
demonstrate the use of MS-IMAP embeddings for feature importance—a novel application that highlights
the interpretability of our method. Next, we assess the performance of MS-IMAP in clustering tasks using
the full embedding space, comparing it against a range of manifold learning-based embedding techniques.
Datasets We study the performance of MS-IMAP compared to other methods for real datasets. We chose a
mix of datasets from varied fields: the Census dataset (Dua & Graff (2017)) is a financial dataset containing
information about individuals extracted from the 1994 US Census; the Zilionis dataset (Zilionis et al. (2019))
is a biological dataset containing single-cell sequencing data from different types of cells; the Animals with
Attributes (AWA) (Xian et al. (2017)) dataset is an image dataset containing images of animals; The Human
Activity Recognition (HAR) (Anguita et al. (2013)) dataset which consists of sensor data collected from
subjects performing six different activities:; and the Cora dataset (Sen et al. (2008); McCallum et al. (2000))
is a graph dataset of a citation network consisting of scientific publications. Note that we only use the
features without the natural graph associated with Cora (see more information about each dataset in the
Appendix).
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5.1 Assessing Feature Importance via Embedding Correspondence

We demonstrate the application of MS-IMAP for feature importance selection by evaluating clustering per-
formance on subsets of the most significant features. Feature selection is performed with respect to both the
input space and the MS-IMAP embedding space, using two alternative unsupervised methods: Laplacian
Score and Mutual Information-based selection. We compare clustering results obtained by applying $k$-
means to subsets of features selected from the embedding, against those selected directly from the original
feature space using the same methods. Unlike most manifold learning and graph embedding techniques,
MS-IMAP produces embeddings in which each dimension corresponds directly to an input feature. This
one-to-one mapping enables direct assessment of individual feature contributions, preserving interpretabil-
ity.
Evaluation metrics: Clustering performance is measured using Adjusted Rand Index (ARI) and Adjusted
Mutual Information (AMI). In all experiments, k-means is applied in the embedding space. On the Cora
and Zillions datasets, Figures 2a, 2b, 3a, and 3b show that, for both feature selection methods and for both
evaluation metrics, clustering accuracy is consistently higher when using the MS-IMAP embedding compared
to the original features—across varying feature subset sizes. This improvement highlights the robustness of
the MS-IMAP embedding, while maintaining interpretability through its feature-wise alignment. Additional
experiments on the AWA and HAR datasets, presented in the Appendix, further confirm these gains.

5.2 Clustering Output Embedding Space

We evaluate our method by testing its clustering performance using the full output embedding and compar-
ing it to several representative methods, including UMAP, t-SNE, Diffusion Maps, ISOMAP, PHATE (Moon
et al. (2019)), PaCMAP (Wang et al. (2021)), TriMap (Amid & Warmuth (2019)) and HeatGeo (Huguet
et al. (2023)). While most of these methods perform dimensionality reduction, we emphasize that dimen-
sionality reduction is a methodological design choice, not an inherent advantage. Many manifold learning
techniques default to low-dimensional embeddings (e.g., 2D or 3D) due to computational constraints such as
eigendecomposition, yet this often comes at the cost of reduced expressiveness and, particularly for nonlinear
methods, diminished interpretability. However, since most baseline manifold learning methods we compare
rely on nonlinear dimensionality reduction, we include clustering results based on the embedding space of
the Graph Scattering Transform (Gama et al. (2019)) for completeness. The Graph Scattering Transform,
which is primarily used in graph classification and semi-supervised learning tasks, can be adapted for un-
supervised learning via simple vector-based concatenation. We note that the Graph Scattering Transform
offers less interpretability than MS-IMAP, which preserves a one-to-one correspondence between input fea-
tures and embedding dimensions. Additionally, the increased dimensionality of the embeddings produced by
the Graph Scattering Transform can lead to higher computational costs. As shown in Table 1, MS-IMAP
consistently delivers stable and competitive performance, ranking best or second-best across all benchmarks.
In contrast, state-of-the-art methods often underperform or show instability on at least one dataset. In
addition, MS-IMAP provides an interpretable embedding through its one-to-one correspondence with the
original features—unlike the other competing graph embedding methods.
Runtime and Computational Complexity The computational complexity of Multi-Scale IMAP is of
O(NDlog(N)). Experiments were performed on Virtual Server containers with 32 cores Intel Xeon 8259CL
running at 2.50Ghz and 256GB of RAM. Our method is practical for handling datasets with millions of
points and dozens to hundreds of features within a few hours, making the method well-suited for real-world
applications. For example, on the Cancer QC data-set of 48,969 samples and 306 features took 27 mins.
Additional details and running times on all datasets are provided in the Appendix. Note that the increase in
running times compared to methods such as UMAP is primarily due to our extension of manifold learning
to include interpretability.

6 Theoretical results: Sampling set for Smooth Manifolds with functions defined
over Paley-Wiener Spaces

In this section, we characterize the theoretical properties of the representation power of the SGW operator
by considering functions sampled from the Paley-Wiener spaces Pesenson (2008) on combinatorial graphs.

10
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Data HAR Census Zilionis AWA Cora
Method ARI AMI ARI AMI ARI AMI ARI AMI ARI AMI
Features 0.45±0.00 0.58±0.00 0.11±0.00 0.15±0.00 0.48±0.04 0.63±0.01 0.07±0.00 0.16±0.00 0.01±0.02 0.07±0.02
ISOMAP 0.55±0.00 0.65±0.00 0.18±0.00 0.09±0.00 0.44±0.03 0.56±0.00 0.52±0.00 0.60±0.00 0.12±0.02 0.17±0.02
DM 0.30±0.00 0.49±0.00 0.01±0.00 0.02±0.00 - - 0.22±0.00 0.42±0.00 0.06±0.00 0.07±0.00
UMAP 0.61±0.00 0.73±0.00 0.23±0.00 0.15±0.00 0.52±0.00 0.71±0.00 0.74±0.00 0.82±0.00 0.33±0.01 0.36±0.02
t-SNE 0.62±0.00 0.70±0.00 0.20±0.00 0.24±0.00 0.39±0.01 0.69±0.00 0.71±0.00 0.80±0.00 0.20±0.00 0.24±0.00
Scattering.T 0.45±0.00 0.58±0.00 0.12±0.00 0.16±0.00 0.46±0.04 0.64±0.02 0.67±0.00 0.75±0.00 0.06±0.03 0.14±0.03
PHATE 0.55±0.02 0.66±0.02 0.20±0.00 0.09±0.01 0.65±0.01 0.72±0.00 0.66±0.03 0.73±0.00 0.12±0.01 0.22±0.01
TriMap 0.59±0.02 0.72±0.01 0.20±0.00 0.14±0.00 0.62±0.08 0.77±0.01 0.74±0.04 0.81±0.01 0.15±0.00 0.20±0.00
PaCMAP 0.62±0.01 0.75±0.08 0.24±0.00 0.15±0.00 0.55±0.03 0.76±0.00 0.75±0.04 0.81±0.01 0.21±0.01 0.26±0.00
HeatGeo 0.60±0.00 0.69±0.00 0.15±0.00 0.10±0.00 - - 0.65±0.00 0.74±0.00 0.17±0.00 0.20±0.00
MS-IMAP 0.67±0.01 0.80±0.01 0.23±0.00 0.15±0.00 0.70±0.01 0.76±0.01 0.74±0.00 0.81±0.00 0.33±0.00 0.36±0.00

Table 1: Clustering results comparison using ARI and AMI on the Census, Zilionis, AWA, and Cora datasets.
Each entry report the mean clustering accuracy and standard deviation. The best performance is bolded.

Pesenson introduced the Paley-Wiener spaces and demonstrated that Paley-Wiener functions of low
type are uniquely determined by their values on certain subsets, known as uniqueness sets U . We show
that the SGW operator can represent functions f within the Paley-Wiener space more efficiently than
the graph Laplacian operator L. This efficiency is demonstrated by showing that the SGW operator is
more effective in representing functions with larger bandwidth ω in the Paley-Wiener spaces (i.e., with
higher frequencies) using subsets of nodes from the uniqueness sets U . To characterize the representation
properties of functions defined over PWω(G), we employ the notion of the Λ-set, introduced by Pesenson
which is central to our investigation. Formally, the Paley-Wiener space of ω-bandlimited signals is
defined as PWω(G) =

{
f | f̂(λ) = 0 ∀ λ > ω

}
. The space L2(G) is defined as the Hilbert space of all

complex-valued functions, and L2(S) is defined as the space of all functions from L2(G) with support in
S: L2(S) = {φ ∈ L2(G) | φ(v) = 0, v ∈ V (G) \ S}. The Λ-set is defined as follows: a set of vertices S ⊂ V
is a Λ(S)-set if any φ ∈ L2(S) satisfies the inequality ||φ|| ≤ Λ||Lφ|| for some constant Λ(S) > 0. The
infimum of all Λ > 0 for which S is a Λ-set is denoted by Λ. The ability of the SGW operator to efficiently
represent functions f ∈ PWω(G) can be summarized in the following theorem, which highlights the role of
the Λψ-set with respect to the operator ψ. We show that any signal f ∈ PWω(G), where λ1 ≤ ω < ΩG
for some ΩG < λN , can be uniquely represented by its samples on the uniqueness set U using the SGW
operator. Under certain conditions related to the SGW operator, its associated Λψ-set is smaller than the
Λ-set associated with the Laplacian operator.
Theorem 3 Let G = (V,W) be a connected graph with n vertices and f ∈ PWω(G) for λ1 ≤ ω < λmax.
The SGW operator ψ can be constructed such that the set S is a Λψ-set and the set U = V \ S is a
uniqueness set for any space PWω(G) with ω < 1/Λψ and Λψ < Λ for any φ ∈ L2(S), where Λ is the Λ-set
of the Laplacian operator.

The proof is provided in the Appendix (see Theorem 3 in A.13). Theorem 3 motivates our use of
SGW within the proposed framework. Specifically, it shows that SGW operators provide more compact and
effective representations of band limited functions in Paley-Wiener spaces on graphs than the traditional
Laplacian operator.

7 Discussion

Identifying the key factors in high-dimensional datasets is essential for leveraging unlabeled data in many
practical applications. In this work, we introduce a novel contrastive learning framework for interpretable
manifold learning via graph embeddings, leveraging both low- and high-frequency information to enhance
representation quality. Our method employs Spectral Graph Wavelets (SGW) to construct a multi-scale
graph representation of the input feature space. This representation is optimized using a stochastic gradient
descent (SGD)-based scheme, combined with a novel 3D tensor encoding strategy that enriches the embedding
process.
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MS-IMAP differs fundamentally from traditional dimensionality reduction or visualization techniques. While
many manifold learning methods (e.g., Laplacian Eigenmaps, Diffusion Maps, UMAP) aim to reveal intrin-
sic structure through low-dimensional embeddings, MS-IMAP targets a broader objective: constructing
structure-preserving, interpretable embeddings suitable for downstream tasks. By design, MS-IMAP pre-
serves input dimensionality and enforces a one-to-one correspondence between input features and embedding
dimensions.

To enhance the embedding with structural information, we introduce a 3D tensor that captures SGW co-
efficients across nodes, features, and frequency bands. This enables the model to encode both global and
local graph structure. Importantly, although SGW captures information across the graph, each embed-
ding coordinate is updated solely based on the SGW coefficients of its corresponding input feature. This
preserves the interpretability and separability of features throughout training. We demonstrate the utility
of these interpretable embeddings for both feature selection and traditional clustering tasks. Specifically,
we assess clustering performance based on features selected from both the input space and the embedding
space, using two unsupervised methods: Laplacian Score and Mutual Information-based selection. A key
advantage of our framework is its inherent linkage between the original and embedded feature spaces—a
property rarely offered by existing nonlinear manifold learning techniques. Furthermore, we show that the
resulting embeddings are highly competitive with state-of-the-art graph embedding methods.

To further justify the use of SGW for representation, we analyze its theoretical properties by studying
functions in Paley-Wiener spaces on combinatorial graphs. We show that the SGW operator enables more
expressive representations, characterized through the concept of the Λ-set.
Limitations and future directions include several aspects. First, our approach assumes that the
input features—and the similarity measures used—adequately capture the underlying manifold structure,
particularly geodesic distances. Second, extending the current SGD-based optimization framework to handle
out-of-sample generalization remains a challenge. Finally, while the embedding-feature correspondence facil-
itates global feature importance analysis, further improvements may be achieved by incorporating localized
importance estimation techniques.
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A Appendix

A.1 Encoding Method 1

In addition to the 3D-Tensor based encoding presented in the main body of the paper, one may also examine
a simple encoding method that involves concatenating the multi-scale representation of all features and filters
(associated with different scales) into a single vector representation for each point. This results in a matrix
representation denoted as ψx. We detail the encoding and optimization employed for this method (coined
method 1). Note that we designate the concatenation using ||, with

c(ψfi
(sk, :), ψfj

(sk, :)) = ψfi
(sk, :) ||ψfj

(sk, :)

denoting the concatenation of the vectors corresponding to the multi-scale representation ψfi
(sk, :) and

ψfj (sk, :). For method 1 all features and all scales are concatenated together, the resulting matrix ψx can
be represented as

ψx = ψf1(s1, :)∥ψf2(s1, :)∥....∥ψfD−1(sK , :)∥ψfD
(sK , :)

where ψx ∈ RKD × RN .

1. Optimize Embedding Method 1:
Given the encoded multi-scale representation ψx ∈ RKD × RN perform optimization in the SGW domain,
using the following fuzzy cross entropy loss function:

L(ψ̃x|W) =
∑
i,j

(
wij logwij

vψx
ij

+ (1 − wij)log 1 − wij

1 − vψx
ij

)
(7)

where vψx
ij = 1

1+||ψxi
−ψxj

||2 .

Dropping terms that do not depends on ψxi
, the gradient of the loss is approximated by:

∂L(ψ̃x|W)
∂ψxi

∼
∑
j

wijv
ψx
ij (rij) −

∑
j

1
||rij ||2

vψx
ij (ψxi

− ψxj
) (8)

where rij = ψxi
− ψxj

, and ψxi
corresponds to the vector associated with node i multi-scale representation

concatenated for all the graph signals and all spectral bands. since for method 1 all features and all scales
are concatenated together,

A.2 Additional details: Embedding Feature Importance using Mutual Information and Laplacian
Score

A.2.1 Computing the Laplacian Score with respect to the embedding features

The Laplacian score is calculated with respect to embedding features ψ̃x using the Laplacian graph L and the
degree matrix D. To compute the Laplacian Score, we first subtract the mean and then calculate it as follows:
Ls(ψ̃x)l = (ψ̃x)T

l L(ψ̃x)l

(ψ̃x)T
l

D(ψ̃x)l
. Smaller scores indicate that the embedding feature (ψ̃x)l has a greater projection

onto the subspace of eigenvectors corresponding to the smallest eigenvalues, signifying higher importance
concerning the global graph structure. Therefore, the feature importance of (ψ̃x)l can be directly interpreted
as the importance of the corresponding original feature. Although the graph is typically constructed using
local neighborhoods (e.g., via k-nearest neighbors), the Laplacian operator reflects global smoothness over
the entire data manifold.

A.2.2 Embedding Feature Importance using Mutual Information

We summarize the MI-based unsupervised feature selection procedure in Algorithm 2., as described in
Section 4. In comparison, applying the Laplacian Score(He et al. (2005)) to the embedding may be less
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Figure 4: The encoding step of our framework is illustrated as a mapping between each coordinate of the
input features and a corresponding dimension in the embedding space. This mapping is facilitated through
our proposed approach, which aligns the input dimensions of the features with the latent embedding space.
By establishing this correspondence, we acquire the capability to interpret each dimension in the embedding
space. Such interpretation allows for various analyses, including providing feature importance relative to the
latent space.

(a) HAR dataset (ARI) (b) HAR dataset (AMI)

Figure 5: Clustering results (AMI) on the HAR datasets using a subset of features based on feature impor-
tance, comparing MS-IMAP embedding space and the input features.

effective for feature importance, as the embedding process can mix original features in ways that obscure
their individual contributions. While the Laplacian Score prioritizes local neighborhood preservation, this
does not necessarily correspond to discriminative power for clustering. In contrast, the proposed MI-based
approach directly identifies features that are informative for distinguishing clusters. However, it relies on
the quality of the pseudo-labels derived from clustering, which may not always reflect true cluster structure.

We also include additional experiments that demonstrate the effectiveness of MS-IMAP for feature impor-
tance by evaluating clustering performance as a function of the number of selected features—complementing
the results presented in Section 4. Specifically, we assess the most significant features identified using
Laplacian Score and Mutual Information-based selection, applied to both the MS-IMAP embedding and the
original feature space.

Clustering results, evaluated using Adjusted Rand Index (ARI) and Adjusted Mutual Information (AMI),
are obtained by applying k-means to different subsets of embedding features selected by each method, and
compared to the corresponding subsets selected directly from the raw features.
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(a) AWA dataset (ARI) (b) AWA dataset (AMI)

Figure 6: Clustering results ARI and AMI on the AWA dataset using a subset of features based on feature
importance, comparing MS-IMAP embedding space and the input features.

On the HAR and AWA datasets, Figures 5, 6, show that, for both feature selection methods, clustering
accuracy is consistently higher when using the MS-IMAP embedding than when using the original fea-
tures—across a range of feature subset sizes and for both evaluation metrics. This improvement highlights
the robustness of the MS-IMAP embedding, while maintaining interpretability through its one-to-one corre-
spondence between embedding dimensions and original features.

A.3 Dataset Details

Two Moons. The two moons dataset depicts two interleaving half-circles. We sampled N = 600 points
and used a Gaussian noise level having standard deviation 0.12. An example is show in Figure 7. More
specifically, to produce these points we use Sci-kit Learn’s sklearn.datasets.make_moons function with
n_samples = 600 and noise = 0.12.

In Figure 7, we show example clusterings for each of the methods mentioned in the Experimental Results
section of the main paper.
Census. From the UCI Machine Learning Repository Dua & Graff (2017), this dataset contains 14 features
that are a mix of categorical, numerical, and binary. Such features include age, marital status, sex, etc. The
goal is to predict whether a sample makes less than or equal to $50, 000, or strictly more. We use 32, 561
samples in our dataset.
Lung Cancer. The Zilionis dataset is widely used, and consists of single-cell RNA sequencing data. It has
306 features, and 48, 969 samples. The data has 20 classes corresponding to cell type. More can be found at
Zilionis et al. (2019)
Animals with Attributes. The Animals with Attributes (AWA) dataset, contains 5,000 data points
corresponding to 10 unseen classes, where the testing image features are obtained from the pre-trained
ResNet architecture, with D = 2, 048 dimensions, and the semantic features are provided with D = 85
dimensions. More information can be found in Section 4.1 of Xian et al. (2017).
Cora. The Cora dataset has 2,708 scientific publications categorized into seven classes. The network has
5,429 links and each publication is described as a binary word vector indicating the presence or absence of a
word. The dictionary consists of 1,433 words. In our experiments, we do not use the given graph, and only
use the features. Sen et al. (2008); McCallum et al. (2000).
HAR. The Human Activity Recognition (HAR) dataset consists of sensor data collected from 30 subjects
performing six different activities: walking, walking upstairs, walking downstairs, sitting, standing, and
lying. The data was recorded using accelerometer and gyroscope sensors embedded in a smartphone worn
on the waist. Each activity is represented as a feature vector of 561 attributes and 7352 samples, extracted
from the raw sensor signals through signal processing techniques. In our experiments, we do not use the
temporal dependencies and only utilize the extracted features.
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Figure 7: Clustering results using two moons

A.4 Experimental Results on two moons Synthetic Dataset

Here we show further experiments on more data, where we assess the robustness of our method using the
two moons dataset, which is a 2D manifold depicting two interleaving half-circles. We sampled N = 600
points, and set the Gaussian noise standard deviation to 0.12. While spectral based methods such as UMAP
are effective under relatively “modest" noise levels, their performance deteriorates in the presence of larger
amounts of noise. As shown in Table 1 under the Moons column, our approach is robust and correctly
clusters most points despite the large noise level, and competitive with the competing methods.

Data Two Moons dataset
Method/Accuracy ARI AMI
Features 0.24 0.18
UMAP 0.54 0.51
t-SNE 0.42 0.35
ISOMAP 0.36 0.3
Scattering Geometric.T 0.26 0.19
Diffusion Maps 0.25 0.19
PHATE 0.42 0.35
HeatGeo 0.54 0.52
MS-IMAP 0.89 0.87

Table 2: Comparison of clustering performance on the two moons dataset.

A.5 Hyperparameter tuning details

We note that for UMAP, t-SNE, PHATE, PaCMAP, TriMap and HeatGeo, we hyperparameter tune the
performance on each dataset, running the method five times for each hyperparameter configuration and
taking the average. Then we report the best average score. Additional details regarding hyperparameter
are provided below.

We tune UMAP on each dataset in the Experimental Results section, by tuning over the parameter space
in Table 3.

Hyperparameter Set of values
n_neighbors 2, 10, 15, 20, 30, 50, 100
min_dist 0, 0.1, 0.5, 0.99
n_components 2, 3

Table 3: Space of parameters in which we tuned UMAP.
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A.6 TSNE Hyperparameter Tuning Details

We tune TSNE on each dataset in the Experimental Results section, by tuning over the parameter space in
Table 4.

Hyperparameter Set of values
perplexity 15, 30, 60, 200
early_exaggeration 12, 24
n_components 2, 3

Table 4: Space of parameters in which we tuned TSNE.

A.7 PHATE Hyperparameter Tuning Details

We tune PHATE on each dataset in the Experimental Results section, by tuning over the parameter space
in Table 5.

Hyperparameter Set of values
knn 3, 5, 10
decay (i.e. α) 6, 10, 14, 18, 40
t auto, 50, 100, 150, 200

Table 5: Space of parameters in which we tuned PHATE.

A.8 HeatGeo Hyperparameter Tuning Details

We tune HeatGeo on each dataset in the Experimental Results section, by tuning over the parameter space
in Table 6,

Hyperparameter Set of values
knn 5, 10, 15
lap_type normalized, combinatorial
harnack_regul 0, 0.5, 1

Table 6: Space of parameters in which we tuned HeatGeo.

A.9 Ablation Studies of Hyperparameters for MS-IMAP

Here we study what effect the hyperparameters – the number of nearest neighbors, and the number of filters
– have on the clustering performance of MS-IMAP with method 2. In table 7, we demonstrate the effect of
varying the number of neighbors, between 10, 15, and 20 neighbors. We see that the results are mostly the
same, thus showing MS-IMAP is robust on real datasets.

We also study the effect of varying the number filters. In table 8, we also see similar results when using
different filters, showing the stability of MS-IMAP.

A.10 Ablation Studies of Hyperparameters for t-SNE, Isomaps

We study the effect of varying the number of neighbors for the methods: t-SNE, Isomaps, and Diffusion
Maps. For t-SNE this would be the perplexity hyperparameter, for Isomaps this would be the number of
neighbors, and for diffusion maps, this would be the parameter that affects the width of the Gaussian kernel,
i.e. exp(·/α).
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Dataset Census Zilionis AwA
Number of Neighbors / Accuracy ARI AMI ARI AMI ARI AMI
10 0.22 0.15 0.71 0.78 0.73 0.80
15 0.23 0.15 0.70 0.76 0.74 0.81
20 0.22 0.15 0.70 0.77 0.71 0.79

Table 7: Ablation study on MS-IMAP with varying the number of neighbors. The number of filters is kept
at 5.

Dataset Census Zilionis AwA
Number of Filters / Accuracy ARI AMI ARI AMI ARI AMI
5 0.23 0.15 0.70 0.76 0.74 0.81
6 0.22 0.15 0.70 0.76 0.73 0.81
7 0.22 0.15 0.72 0.78 0.74 0.81

Table 8: Ablation study on MS-IMAP with encoding method 2, varying the number of filters. The number
of neighbors is kept at 15.

In Table 9, we see choosing a smaller perplexity of 15 does worse than the perplexity of 30, 60 and 200.

Dataset Census Zilionis AwA
Perplexity / Accuracy ARI AMI ARI AMI ARI AMI
15 0.03 0.04 0.37 0.67 0.69 0.76
30 0.15 0.15 0.38 0.68 0.73 0.80
60 0.17 0.17 0.38 0.69 0.73 0.80
200 0.2 0.24 0.39 0.69 0.71 0.80

Table 9: Ablation study on t-SNE, varying the perplexity.

In Table 10, we see a similar pattern to t-SNE, where choosing too low causes reduction in performance.
But performance stabilizes around choosing the number of neighbors as 5-10+.
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Dataset Census Zilionis AwA
Neighbors / Accuracy ARI AMI ARI AMI ARI AMI
2 -0.05 0.02 0.41 0.55 0.43 0.58
5 0.18 0.09 0.44 0.56 0.52 0.60
10 0.18 0.09 0.44 0.57 0.51 0.62

Table 10: Ablation study on Isomap, varying the number of neighbors.

A.11 Fast computation using Chebyshev polynomials

We provide additional details regarding the fast computation of SGW coefficients Hammond et al. (2011).
Directly computing the SGW coefficients above requires calculating the entire eigensystem of the Laplacian,
which is computationally intensive - O(N3) for N points. Instead, Hammond et al. Hammond et al. (2011)
suggested computing the SGW using a fast algorithm based on approximating the scaled generating kernels
through low-order polynomials. The wavelet coefficients at each scale are then computed as a polynomial of
L applied to the input data, using approximating polynomials given by truncated Chebyshev polynomials.

The Chebyshev polynomials Tk(y) are computed using the recursive relations: Tk(y) = 2yTk−1(y) −Tk−2(y)
for k ≥ 2, where T0 = 1 and T1 = y.

The SGW coefficients are then approximated using wavelet and scaling function coefficients as follows:

ψf (sj , i) ∼

(
1
2cj,0f +

K∑
k=1

cj,kT̄j,k(L)f
)
i

(9)

where cj,k, j > 0 are the Chebyshev coefficients and T̄j,k are the shifted Chebyshev polynomials
T̄k(x) = Tk

(
x−a
a

)
for x ∈ [0, λmax], where x = a(y + 1), a = λmax. The scaling function coefficients,

which are corresponding to a low-pass filter operation, are approximated in a similar way using Chebyshev
polynomials. Note that the scaling kernel function is a low pass filter h satisfying h(0) > 0 and h(x) → 0
when x → ∞. If the graph is sparse, we obtain a fast computation of the matrix-vector multiplication
T̄j,k(L)f , where the computational complexity scales linearly with the number of points, resulting in a
complexity of O(N) for an input signal f ∈ RN . The SGWs efficiently map an input graph signal (a vector
of dimension N) to NK scaling and wavelet coefficients.

A.12 Runtime and Computational Complexity

We have performed experimental runtime studies on empirical datasets. The execution time of our method
with Python code implementation with 32 cores Intel Xeon 8259CL running at 2.50Ghz and 256GB of
RAM on the Cancer QC data-set of 48,969 samples and 306 features took 27 mins, on Cora 5 min, on
the AWA dataset 1.35 mins and on Census 7 min. In fields such as finance and genomics/biology, where
typical dataset sizes range from under 100,000 to several million data points, analysis is often conducted
offline once the graph embedding is computed. Runtimes of up to a few hours are generally acceptable
and do not present a significant challenge, making the method well-suited for real-world applications. The
computational complexity of Multi-Scale UMAP is of O(NDlog(N)) for construction of the multi-scale
representations which includes the k nearest neighbor graph using k-d tree, the SGW transform which is
O(N) for each dimension of the manifold for sparse graphs. The optimization stage has a complexity which
scale with the number of edges in the graph, which has a complexity of O(kDN). Note that our approach
generally requires the embedding dimensionality to be at least equal to the input dimensionality of the
features, which adds computational complexity.
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A.13 Theoretical results: Sampling set for Smooth Manifolds with functions defined over
Paley-Wiener Spaces

In this section, we characterize the theoretical properties of the representation power of the SGW operator
by considering functions sampled from the Paley-Wiener spaces Pesenson (2008) on combinatorial graphs.
The Paley-Wiener spaces were introduced on combinatorial graphs in Pesenson (2008) and a corresponding
sampling theory was developed which resembles the classical one. Pesenson proved in Pesenson (2008) that
Paley-Wiener functions of low type are uniquely determined by their values on certain subgraphs (which are
composed from a set of nodes known as the uniqueness sets) and can be reconstructed from such sets in a
stable way. We demonstrate that the SGW operator can represent functions f that reside in the Paley-Wiener
space on combinatorial graphs more efficiently than the graph Laplacian operator L. The effectiveness of
the SGW operator representation in this case can be understood in several ways. In one way, by the ability
of the SGW operator to accurately represent functions with larger bandwidth, i.e., f ∈ PWω′(G) where
ω < ω′. We first summarize the main notions and definitions. The space L2(G) is the Hilbert space of all
complex-valued functions f : V → C with the following inner product ⟨f, g⟩ =

∑
v∈G f(v)g(v) and the norm

||f || =
(∑
v∈V

|f(v)|2
)1/2

(10)

The Laplace (normalized) operator L is defined by the formula Pesenson (2008):

Lf(v) = 1√
d(v)

∑
u∼v

(
f(v)√
d(v)

− f(u)√
d(u)

)
, f ∈ L2(G) (11)

In order to prove these results, we will first need the following definitions:
Definition 1. The Paley-Wiener space of ω -bandlimited signals f ∈ L2(G) is defined as follows:

PWω(G) =
{
f |f̂(λ) = 0 ∀ λ > ω)

}
(12)

We consider a simple, undirected, unweighted, and connected graph G = (V,W), where V is its set of N
vertices and W is its set of edges. The degree of v is number of vertices adjacent to a vertex v is and is
denoted by d(v). We assume that degrees of all vertices are bounded by the maximum degree denoted as

d(G) = maxv∈V d(v) (13)

The following definition Pesenson (2008) explains the uniqueness set.
Definition 2. A set of vertices U ⊂ V is a uniqueness set for a space PWω(G) if for every two functions
from PWω(G) that coincide on U , then they coincide on V .
Definition 3. For a subset S ⊂ V , denote L2(S) as the space of all functions from L2(G) with support in
S:

L2(S) = {φ ∈ L2(G), φ(v) = 0, v ∈ V (G) \ S}
Definition 4. Pesenson (2008) We say that a set of vertices S ⊂ V is a Λ -set if for any φ ∈ L2(S) it
admits a Poincare inequality with a constant Λ = Λ(S) > 0

||φ|| ≤ Λ||Lφ||, φ ∈ L2(S) (14)

The infimum of all Λ(S) > 0 for which S is a Λ -set will be called the Poincare constant of the set S and
denoted by Λ.

The definition above provides a tool to determine when bandlimited signals in Paley-Wiener spaces PWω(G)
can be uniquely represented from their samples on a given set. The role of Λ-sets was explained and proved in
the following Theorem by Pesenson Pesenson (2008), that shows that if S ⊂ V then any signal f ∈ PWω(G)
can be uniquely represented by its function values in the complement set U = V (G) \ S:
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Theorem 1. Pesenson (2008) If S ⊂ V is a Λ- set, then the set U = V (G) \ S is a uniqueness set for any
space PWω(G) with ω < 1

Λ .

Remark: Note that non-trivial uniqueness sets can not exist for functions from any Paley-Wiener subspace
PWω(G) with any λ0 ≤ ω ≤ λN , but they can exist for some range λ0 ≤ ω < Ω, as was shown in Pesenson
(2008).

We state one of our main results, in which we employ the SGW operator ψ to characterize the uniqueness
set using the Λψ-set, therefore extending the Λ-set concerning the graph Laplacian operator L.
Theorem 2. Let G = (V,W) be a connected graph with N vertices. Assume that there exist a set of vertices
S ⊂ V for which the conditions (1)-(2) in Lemma 1 below hold true. Let ψ be the SGW operator using a
polynomial p(L) with the coefficients {ak}Kk=0 such that ψf =

∑K
k=0 akLkf . Then, for any φ ∈ L2(S), we

have that the following inequality holds:
||φ|| ≤ Λψ ||ψφ|| (15)

and thus the set S is a Λψ-set for the operator ψ with Λψ = 1√∑K

k=0

a2
k

Λ2k

.

We recall the following results from Pesenson (2008). Note that Pesenson (2008) established the construction
of a Λ-set by imposing specific assumptions on the sets S and U . Our result Theorem 2 holds similar
assumptions as in Pesenson (2008).
Lemma 1 (Lemma 3.6 of Pesenson (2008)). Given a connected graph G = (V,W), a set of vertices S ⊂ V ,
its complement U = V \ S, for which the following conditions hold true

1. For every s ∈ S there exists u ∈ U that is a neighbor of s, i.e., w(u, s) > 0.

2. For every s ∈ S there exists at least one neighbor node u ∈ U whose adjacency set intersects S only
over s.

Then there exist a set of vertices S ⊂ V which is a Λ-set, with Λ = d(G).

We require one more property of the Laplacian operation, Lemma 3 below. To this end, we use a lemma
from Pesenson (2008),
Lemma 2 (Lemma 3.9 of Pesenson (2008)). If S is a Λ-set, then for any φ ∈ L2(S) and all t ≥ 0, k = 2l,
l = 0, 1, 2, ...

1
Λk ∥Ltφ∥ ≤ ∥Lk+tφ∥, φ ∈ L2(S)

Now we are ready to prove a modification of Lemma 3.9 from Pesenson (2008):
Lemma 3. Let S be a Λ-set, φ ∈ L2(S), and let m ≥ 1 be an integer. Then

1
Λm ∥φ∥ ≤ ∥Lmφ∥.

Proof: Because every positive integer has binary representation, then we have for some ji ∈ {0, 1, 2, ...}, i =
1, 2, ..., N , that

m =
N∑
i=1

2ji .

Using Lemma 2, let k = 2j1 and t = 2j2 + · · · + 2jN , so m = k + t. Then we have

∥Lmφ∥ = ∥Lk+tφ∥

≥ 1
Λk ∥Ltφ∥

= 1
Λ2j1

∥L2j2 +···+2jN
φ∥
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We can now let k2 = 2j2 and t2 = 2j3 + · · · + 2jN so that,

∥Lmφ∥ ≥ 1
Λ2j1

∥L2j2 +···+2jN
φ∥ = 1

Λ2j1
∥Lk2+t2φ∥

≥ 1
Λ2j1

1
Λk2

∥Lt2φ∥

= 1
Λ2j1 +2j2

∥L2j3 +···+2jN
φ∥

Continuing in this way, we eventually get,

∥Lmφ∥ ≥ 1
Λm ∥φ∥.

completing the proof. □

In the next theorem, we expand the characterization of the uniqueness set using the Λ-set concerning the
graph Laplacian operator L to include cases where we employ the SGW operator ψ. We thereby characterize
the uniqueness set using the Λψ-set for the SGW operator.
We now turn to prove Theorem 2, which was stated earlier.
Proof of Theorem 2:
Let S ⊂ V be a set satisfying the conditions in Lemma 1, so S is Λ-set. Then by Lemma 3, for any integer
k ≥ 1,

1
Λk ∥φ∥ ≤ ∥Lkφ∥.

The SGW operator of φ has the form,

ψφ :=
∑
i,j

K∑
k=0

akLkφ

for some K ≥ 1, ak ∈ R are coefficients, and where the summation over i and j represents the summation
over the nodes of the graph. Now we calculate,

∥ψφ∥ =

∑
i,j

K∑
k=0

∣∣ak(Lkφ)ij
∣∣21/2

=

∑
i,j

K∑
k=0

a2
k

∣∣(Lkφ)ij
∣∣21/2

=

 K∑
k=0

a2
k

∑
i,j

∣∣(Lkφ)ij
∣∣21/2

=
(

K∑
k=0

a2
k∥Lkφ∥2

)1/2

≥

(
K∑
k=0

a2
k

1
Λ2k ∥φ∥2

)1/2

= ∥φ∥

(
K∑
k=0

a2
k

1
Λ2k

)1/2

Letting
Λψ := 1√∑K

k=0
a2

k

Λ2k
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Then we have ∥φ∥ ≤ Λψ∥ψφ∥, so S is also a Λψ-set.

□

From the assumptions and proof of Theorem 2, we get the immediate result:

Let S ⊂ V be a Λ-set. Then S is also a Λψ-set.

Remark 1: An important property which can be observed from Theorem 2 is the following: given the SGW
ψf as a spectral representation operator applied on f , we can choose coefficients {ak}Kk=0 such that we obtain
a Λψ - set associated with the operator ψ, which is smaller than the Λ - set associated with the Laplacian
operator L. This implies that the operator ψ provides more flexibility and better control over smoothness
properties in comparison to the Laplacian operator.
Remark 2: Since the Λψ - set can be chosen to be smaller than Λ - set (for a proper choice of the
coefficients {ak}Kk=0 using the operator ψ) then the SGW operator ψ provides a more efficient representation
for f ∈ PWω′(G) with ω < ω′ using the same subsets of nodes from the uniqueness set U in comparison to
the Laplacian operator L.
Remark 3: Note that the characterization of the the uniqueness set does not rely on a reconstruction
method of the graph signal values of f(S) from their known values on U .
The next Theorem demonstrates the role of the Λψ -set with respect to the operator ψ, where we show that
any signal f ∈ PWω(G) can be uniquely represented by its samples on the uniqueness set U . This results
resembles the role of Λ-sets with respect to the graph Laplacian operator L, yet with a different bound then
Lemma 1.
Theorem 3. Let G = (V,W) be a connected graph with N vertices and f ∈ PWω(G) for λ1 < ω < λmax.
Given the SGW operator ψ, and a set S which is a Λψ - set. Then the set U = V \S is a uniqueness set for
any space PWω(G) with ω < 1/Λψ.

Proof: Given f, f̃ ∈ PWω(G), then f − f̃ ∈ PWω(G). Assume that f ̸= f̃ . If f, f̃ coincide on U = V \ S,
then f − f̃ ∈ L2(S) and therefore

||f − f̃ || ≤ Λψ||ψf−f̃ || (16)

Since ψf ∈ RN , we have that by properties of a vector space in RN , using the Cauchy–Schwarz inequality
and assuming |ak| ≤ 1 ∀k, we have:

||ψf−f̃ || ≤ ω||f − f̃ || (17)

Combining the inequalities above and using the inequality Λψω < 1 we have that

||f − f̃ || ≤ Λψ||ψf−f̃ || ≤ Λψω||f − f̃ || < ||f − f̃ || (18)

which is a contradiction to the assumption that f ̸= f̃ . Thus, the set U = V \ S is a uniqueness set for any
space PWω(G) with ω < 1/Λψ. □

Remark 1: Note that Λω < 1 implies that Λψω < 1 given Λψ < Λ, then we can increase the size
number of nodes in the uniqueness set U for PWω(G) (for a proper choice of the coefficients {ak}Kk=0 using
the operator ψ). In other words, we may increase the size of S (thus reducing the size of U) and still obtain
a uniqueness set with a smaller size for the graph signals in PWω(G).
Remark 2: We note that the results of Theorem 3 concerning the uniqueness set are independent from the
stability properties of the representation. In order to achieve stability which is important for reconstruction,
it is required to construct a wavelet operator using multiple scales tj , j = 1, ...J , as proposed in Hammond
et al. (2011). More specifically, we can express the function φ using multiple scales tj (here we replace the
previous notation of scale sj with tj , j = 1, ..J , not to confuse with nodes s ∈ S). Then for a fixed scale tj
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we have that the SGW is given by ||ψφ(tj)|| =
(∑N

i=1
∑K
k=0 |atj ,k(Lkφ(i))|2

)1/2
and

||ψφ||=

∑
j

N∑
i=1

K∑
k=0

|atj ,k(Lkφ(i))|2
1/2

(19)

In a similar way to the arguments provided in Theorem 2 we can choose coefficients atj ,k associated with
the Laplacian polynomial such that the inequality ||φ|| ≤ Λψ ||ψφ|| is satisfied.
Remark 3: Optimal Choice of coefficients ak for Minimizing Λψ for optimal choice of Λψ in the multi-scale
setting.
To find the coefficients atj ,k that minimize Λψ where:

Λψ = 1√∑J
j=1

∑K
k=0

a2
tj ,k

Λ2k

(20)

subject to the constraint:
∑J
j=1

∑K
k=0 a

2
tj ,k

= 1, we optimize the coefficients atj ,k, which control how
much of the signal at scale tj and power k is captured by the SGW operator. We use the Lagrangian F ,
incorporating the energy constraint into the optimization problem and Define:

F(at1,0, . . . , atJ ,K , µ) = 1√∑J
j=1

∑K
k=0

a2
tj ,k

Λ2k

+ µ

 J∑
j=1

K∑
k=0

a2
tj ,k − 1

 (21)

whereµ is the Lagrange multiplier that ensures the total energy of the coefficients is equal to 1.
Taking partial derivatives, solving for atj ,k, and differentiating L with respect to each coefficient atj ,k:

∂F
∂atj ,k

=
−atj ,k/Λ2k(∑J

j=1
∑K
k=0

a2
tj ,k

Λ2k

)3/2 + 2µatj ,k = 0. (22)

rearranging the equation above we obtain:

atj ,k

Λ2k = 2µatj ,k

 J∑
j=1

K∑
k=0

a2
tj ,k

Λ2k

3/2

assuming atj ,k ̸= 0, we can divide both sides of the equation by atj ,k, yielding:

1
Λ2k = 2µ

 J∑
j=1

K∑
k=0

a2
tj ,k

Λ2k

3/2

(23)

thus the sum
∑J
j=1

∑K
k=0

a2
tj ,k

Λ2k is proportional to the inverse of Λ2k, implying that the optimal wavelet
coefficients should decay proportionally to the inverse powers of the Laplacian eigenvalues atj ,k ∝ 1

Λk .

Next, applying the energy constraint:
∑J
j=1

∑K
k=0 a

2
tj ,k

= 1 and substituting atj ,k = 1
Λk , we obtain:

J∑
j=1

K∑
k=0

1
Λ2k = 1 (24)
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Thus, the normalized optimal coefficients atj ,k are:

atj ,k =
1

Λk√∑J
j=1

∑K
k=0

1
Λ2k

. (25)

Note that the wavelet energy is distributed across all scales and powers of the Laplacian, with a decay that
prioritizes low-frequency components (small k).
Using the form of the coefficients atj ,k above, the expression for Λψ is:

Λψ = 1√∑J
j=1

∑K
k=0

1
Λ4k

(26)

which is the minimized value of Λψ, showing that the optimal choice of coefficients reduces the overall
constant, improving the localization and efficiency of the SGW operator. Thus, the optimal choice of wavelet
coefficients atj ,k that minimizes Λψ in the multi-scale SGW operator is proportional to 1

Λk , prioritizing
low-frequency components.
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