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Abstract

We propose to scale RL to unverifiable data with a novel algorithm JEPO (Jensen’s
Evidence lower bound for Policy Optimization). While most prior effort on scaling
RL for LLMs focuses on verifiable data where ground truth answers are typi-
cally short-form and can be matched easily, we investigate the case where such
assumptions are less valid (e.g., when answers are long-form such as mathematical
proofs). To scale RL training to unverifiable data with contemporary training
constraints, we propose JEPO. JEPO applies Jensen’s evidence lower bound, a
pragmatic simplification of the evidence lower bound which views chain-of-thought
as a latent variable in the generative process. We show that on verifiable datasets
(math), JEPO is as effective as RL with verifiable reward; on semi-verifiable and
unverifiable datasets (numina and numina-proof), JEPO improves on soft-match
based evaluations compared to RL with verifiable reward which can only leverage
a subset of the data source as well as test set likelihood evaluations.

1 Introduction
Reinforcement learning from verifiable reward (RLVR) has proved effective at endowing language
models with capabilities beyond canonical pre-training and supervised fine-tuning [1, 2, 3, 4, 5, 6].
At its core, reinforcement learning (RL) allows for the training of chain-of-thought at scale, which
can elicit significant performance improvements especially for reasoning intensive tasks [7, 8]. In the
case of mathematical reasoning, it encourages step-by-step solutions that lead up to a final answer
[9, 10], whose correctness can be verified to produce a reward signal for RL training.

However, a main limitation of current RLVR is the data source: verifiable rewards are mostly derived
from datasets where ground truth answers are short-form and can be checked in relatively easy ways
[4, 5, 6]. For example, most answers to popular benchmarks MATH [11] and AIME [12] are integers
and can be verified using simple string match. Yet, for many data sources, the ground truth answers
are less verifiable or even unverifiable by current standards. For example, for long-form data with the
answer being the whole proof, its inherent correctness is hard to assess without human raters [13].

The boundary between verifiable and unverfiable data, though often blurry in practice, can be made
actionable: we define data as unverifiable, if its ground truth answer cannot be verified with a
reasonably simple automatic procedure. It is of interest to scale RL to such data sources, for a
few notable practical reasons: (1) some data have inherently long answers which cannot be cast
into short-form answers in a straightforward way; (2) data sources with long-form answers exist in
abundance, and it is sub-optimal not to leverage such data for training. In this work, we seek to tackle
the problem of scaling RL to these unverifiable data sources.

We propose JEPO (short for Jensen’s Evidence lower bound for Policy Optimization), a novel RL
algorithm that can equally post-train models on verifiable or unverifiable data. The design of the
algorithm is inspired by a latent variable view of chain-of-thought [14, 15]. Different from prior work,
we make use of Jensen’s evidence lower bound, a novel pragmatic simplification of the full evidence
lower bound [16, 17], named after Jensen’s inequality [18]. Optimizing a simplified objective
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forgoes the complication of training expensive auxiliary models, making JEPO more suitable for
contemporary large-scale training [19, 20].

The final algorithm consists of an hybrid online RL and SFT-like loss. When viewed as an alternative
to online RL, the lower bound method does not require any external verifiable reward, forgoing the
need for the ground truth to be easily verifiable. In sum, our technical contributions are as follows:

Algorithm Followed by a brief background on latent variable modeling, we derive the Jensen’s
evidence lower bound in Section 3, the stochastic optimization algorithm. In Section 4, we show
how its multi-sample extension [21] tightens the theoretical bound and alludes to better performance
in practice. While JEPO works similarly as regular online RL baselines, we detail a few important
aspects of its implementations in Appendix B.2.

Theoretical Connections We offer an intriguing graphical model view of a few important al-
gorithms connecting probabilistic inference with chain-of-thought optimization. See details in
Appendix A. We further discuss the practical trade-offs and connections between JEPO and online
RL algorithms. Due to space limits, such results are presented in Appendix D.

Empirical Results Finally in Section 6, Section 7, and Section 8, we show that for verifiable
data, JEPO is competitive compared to online RL with verifiable rewards. For semi-verifiable and
unverifiable data, JEPO has performance advantage over online RL or SFT baselines. As a by-product,
we also showcase the utility of generating chain-of-thought for long-form proofs, an observation that
is interesting in its own right.

2 Reinforcement learning for language models

A language model can be understood as a policy πθ in the context of reinforcement learning. Given a
prompt x, the policy generates a response y, which then gets assessed by a human user. Usually, the
objective is to optimize πθ such that certain reward function r(x, y) that captures human preference
is maximized [22, 23]. Formally, consider the maximization problem

max
θ

Ey∼πθ(·|x) [r(x, y)]− βKL (πθ(·|x), πref(·|x)) (1)

with a KL regularization that encourages πθ to stay close to the reference policy. The reward r(x, y)
captures the human preference of response y in response to prompt x and can take various forms: for
example, it can be extracted from human annotations [22, 24, 23], generated atuomatic feedback such
as code execution [25]. We focus on a specialized setting where the reward is derived from access to
certain ground truth of the problem.

2.1 RL from ground truth feedback
We focus on applications where the prompt x typically specifies a question and there is an example of
an desirable ground truth a∗. Such a formulation is applicable to mathematical reasoning [11, 26, 10]
where x is a question and a∗ is the ground truth answer. When the correctness of model generated
answer a can be easily verified against the ground truth a∗, a verifiable reward r is available by
matching a∗ against the answer a. As another example, when a∗ is a long-form proof, such a reward
is not immediately available and such cases are considered less verifiable. In broader context, RLVR
also includes code applications where the reward is computed via unit tests [25, 27]. We do not
consider such use cases in this work.

2.2 Chain-of-thought
For aforementioned applications where the model is required to reason about the question x and
generate an answer a, getting the model to generate chain-of-thoughts - a sequence of reasoning
steps c leading up to the final conclusion [7, 8]. Henceforth, we can decompose the generation
y = (c, a) into a chain-of-thought c and an answer a. The generative process for the response
y ∼ πθ(·|x) is made more concrete as c ∼ πθ(·|x), a ∼ πθ(·|x, c). Given a prompt x, the intuitive
role of chain-of-thought is such that it makes the marginal likelihood of the ground truth answer a∗
higher. As such, we can interpret chain-of-thought as a latent variable and formulate the optimization
of chain-of-thought as latent variable modeling [15, 14].

2



3 A Jensen’s lower bound for chain-of-thought as latent variable modeling
We start with the initial motivation to increase the marginal likelihood of the ground truth answer a∗
(i.e., the evidence) given the generative process with chain-of-thought

max
θ

log πθ(a
∗|x). (2)

Directly optimizing the log likelihood is not tractable because its gradient cannot be estimated via
samples in an unbiased way (see, e.g., discussion on this in the probabilistic inference literature [17]).
As the main contribution of this work, we propose a tractable lower bound objective by directly
applying the Jensen inequality to lower bound the log likelihood

log πθ(a
∗|x) = logEc∼πθ(·|x) [πθ(a

∗|x, c)] ≥ Ec∼πθ(·|x) [log πθ(a
∗|x, c)]︸ ︷︷ ︸

Lθ(x,a∗)

, (3)

where we exchange the order of the concave log function and expectation E [·]. There are conditions
under which the lower bound Lθ(x, a

∗) is tight. For example, if all chain of thoughts c in the
support of πθ(·|x) induce the same probability of predicting the ground truth answer πθ(a

∗|x, c),
i.e., πθ(a

∗|x, c) = πθ(a
∗|x, c′),∀c, c′ ∈ supp (πθ(·|x)). In practice when the optimization is approx-

imate, such conditions are not likely to hold. As a result, there might be a gap between the lower
bound and log πθ(a

∗|x) and we will examine its empirical impact in practice.

The gap between the marginal log likelihood and the lower bound can be expressed as the KL
divergence between πθ and the posterior distribution [17]

log πθ(a
∗|x)− Lθ(x, a

∗) = KL (πθ(·|x), pπθ (·|x, a∗)) ,

where pπθ (c|x, a∗) := πθ(a
∗|x,c)πθ(c|x)∑

c′ πθ(a∗|x,c′)πθ(c′|x) . The posterior defines a distribution over chain-of-
thought, and effectively denotes how likely is the chain-of-thought c given that the ground truth
answer is a = a∗ and the prompt is x. For experienced readers, this lower bound is closely related to
the evidence lower bound [28, 17], which we will elaborate more below.

3.1 Stochastic gradient estimate
The lower bound permits stochastic gradient estimates. Concretely, given samples from the current
policy c ∼ πθ(·|x), we can construct an estimate of ∇θLθ(x, a

∗) as

log πθ(a
∗|x, c)∇θ log πθ(c|x)︸ ︷︷ ︸

g1

+∇θ log πθ(a
∗|x, c)︸ ︷︷ ︸

g2

. (4)

The gradient has two terms: g1 is a REINFORCE gradient estimate with log πθ(a
∗|x, c) as the

reward function for sampled chain-of-thought c [29]. The second gradient g2 is reminiscent of a
supervised learning loss that encourages the model to predict ground truth answer a∗ given sampled
chain-of-thought c.

In practice, we can add a control variate to the REINFORCE gradient estimate to reduce variance.
One option is to learn a prompt-answer dependent function [30]; another sample-based alternative is
to generate n i.i.d. chain-of-thoughts in parallel ci ∼ πθ(·|x), and construct leave-one-out control
variates vi = 1

n−1

∑
j ̸=i log πθ(a

∗|x, cj) [31, 32]. The overall gradient estimate is the average over
n samples:

1

n

n∑
i=1

[
(log πθ(a

∗|x, ci)− vi)∇θ log πθ(ci|x)
]
+

1

n

n∑
i=1

[
∇θ log πθ(a

∗|x, ci)
]
. (5)

Note the control variates vis do not introduce any bias to the gradient estimate since they are
statistically independent from ∇θ log πθ(ci|x).

Connections to supervised fine-tuning In the very special case where there is no chain-of-thought,
the gradient estimate reduces to just the SFT part ∇θ log πθ(a

∗|x) which is effectively the supervised
fine-tuning loss from prompt x to answer a∗. Here, the key difference is that the loss πθ(a

∗|x, ci)
further conditions on the chain-of-thoughts cis whose distribution changes over time and introduce
more non-stationarity to the optimization process.
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4 Tightening the objective via multi-sample Jensen’s lower bound
If the Jensen’s lower bound is loose, it will induce a sizable discrepancy from the true objective of
interest. We need strategies to tighten the lower bound for policy optimization.

A similarly simple yet a tighter lower bound alternative, is an extension to the multi-sample case [21].
Indeed, consider the n-sample Jensen’s lower bound

L(n)
θ (x, a∗) := E(ci)ni=1∼πθ(·|x)

[
log

(
1

n

n∑
i=1

πθ(a
∗|x, ci)

)]
. (6)

Importantly, the log function is outside of the n-sample average to tighten the bound. It is straightfor-
ward to verify that L(1)

θ (x, a∗) recovers the Jensen’s lower bound as defined before in Eqn (3). As
shown in [21], the lower bound becomes tighter as n increases L(n)

θ (x, a∗) ≤ L(n+1)
θ (x, a∗) for any

n ≥ 0. As n → ∞, the bound approaches the marginal likelihood L(n)
θ (x, a∗) → log πθ(a

∗|x), the
ultimate objective of interest, under certain regularity conditions on πθ.

To maximize the multi-sample lower bound L(n)
θ (x, a∗) with gradient ascent, we can construct the

REINFORCE stochastic gradient estimate as follows,

n∑
i=1

log

 1

n

n∑
j=1

πθ(a
∗|x, cj)

 · ∇θ log πθ(ci|x)︸ ︷︷ ︸
g
(n)
1

+∇θ log
1

n

n∑
i=1

πθ(a
∗|x, ci)︸ ︷︷ ︸

g
(n)
2

. (7)

Empirically, the first term g
(n)
1 tends to have high variance as n increases [33], since the objective

log 1
n

∑n
j=1 πθ(a

∗|x, cj) correlates updates to all n samples. Akin to before, we can introduce the
leave-one-out control variate without incurring any bias for variance reduction [31, 32]

n∑
i=1

log

 1

n

n∑
j=1

πθ(a
∗|x, cj)

− ṽi

 · ∇θ log πθ(ci|x)

where ṽi = log 1
n−1

∑
j ̸=i πθ(a

∗|x, cj). Note that the second term g
(n)
2 , though can be estimated via

random samples, is unlike a regular SFT loss since it is the log average of multiple probabilities, in-
stead of the average of log probabilities. As n → ∞, since log 1

n

∑n
i=1 πθ(a

∗|x, ci) → log πθ(a
∗|x),

we see that at least conceptually g
(n)
2 can be understood as directly maximizing the marginal likeli-

hood, where the average over probabilities effectively marginalize the chain-of-thought conditional
distribution. As we will show in Section 6, multi-sample lower bound generally improves the single
sample Jensen’s lower bound. This means that tightened lower bound improve training objectives
both in theory and in practice . Due to space limit, we detail important technical details of the
practical implementation in Appendix B.

5 Connections to related algorithms and prior work
The JEPO algorithms bear close connections to a number of algorithmic alternatives, which we
discuss in Appendix D due to space limit. See Algorithm 1 for the pseudocode of the full algorithm.

Training with unverifiable data A natural way to generalize RL training to unverifiable data is
to make use of LLM feedback, e.g., LLM-as-judge uses LLM to assess the quality of the generated
response [34, 35, 36]. However, despite its conceptual simplicity, LLM-as-judge might not produce
reliable assessment for domain-specific or long-form data [10, 13]. When optimizing against judge
scores, it is also more likely to over-optimize [37]. As a result, in this work we apply LLM-as-judge
only for short-form evaluations and not for training.

Closely related to our work is the concurrent VR-CLI (verifiable reward with completion likelihood
improvement) [38] where they apply log probs of golden generations as reward. Using our terminol-
ogy, their approach resembles the first part of the gradient in Eqn (5) of the Jensen’s evidence lower
bound. Without a SFT-like component, their update does not optimize for the marginal likelihood
only partially. JEPO also applies the multi-sample technique to tighten the lower bound, achieving
better empirical performance, which we will demonstrate in Section 6.
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Figure 1: Short-form answer experiments with MATH. We compare three baselines: online RL with access to
the oracle Sympy-based reward and JEPO. In the left plot, we monitor the reward on the training dataset. Online
RL obtains the best training time trade-off, followed by multi-sample lower bound and the single-sample lower
bound; In the middle plot, we monitor the evaluation on a test set during training. Multi-sample lower bound
and online RL obtains similar performance; In the right plot, we graph training reward against the lower bound
objectives, averaged over training tokens. The two signals bear positive correlations overall and multi-sample
lower bound yields better correlations.

Likelihood-based scoring Prior work showcased the utility of Likelihood-based scoring in filtering
of chain-of-thought [39, 40]. The algorithms mostly proceed in an iterative fashion akin to expectation-
maximization [41], which in theory can also maximize the evidence of the desirable final answers.
Complementary to such work, since we extend the training process to fully online RL settings,
we forgo the need of variational posteriors which allows for training on unverifiable data at scale.
To understand the limitations, we compare reward-free JEPO and RL with verifiable reward in
Appendix D.4 where we highlight a genuine trade-off.

Chain-of-thought as latent variable modeling The idea of casting optimizing chain-of-thought as
latent variable modeling is not new. Previously, [14] proposed an algorithm motivated by maximizing
ELBO to tackle reasoning problems. Such an algorithm also draws close connections to prior work
[42, 43, 44, 45] all of which resemble a hybrid offline-online RL training loop, where they alternate
between sampling and filtering via a reward. They also have an interpretation as EM algorithmic
variants [41].

Despite the appeal of a full ELBO formulation, it is rarely implemented in practice due to the
requirement of learning the posterior distribution. Indeed, despite the formulation of [14] they ended
up approximating the posterior with MCMC, which effectively made use of an explicit reward to
filter samples. This also marks a key difference from our work - we do not apply any explicit
reward scoring throughout our algorithmic design and practical implementation. In addition, [15] has
proposed a more systemic hierarchical latent variable modeling view of chain-of-thought. Similar
to our motive, [46] optimized an ELBO inspired objective for prompt selection, where they did not
resort to an external reward. We discuss additional connections beteen JEPO and full ELBO approach
to chain-of-thought in Appendix D.1 and Appendix D.3.

Evidence lower bound and RL The connections between evidence lower bound and RL has been
extensively studied in both the variational inference [47, 17] and RL community [48, 49]. In the
RL literature, much of the variational inference view has been used to better interpret and improve
existing algorithms with much focus on the goal-conditional problems, where a single reward is
assigned at the end of a trajectory. Such a setting is quite akin to the RLHF case, where a sequence
terminates with a single reward [50, 51, 52]. Our formulation also naturally incorporates the tighter
multi-sample lower bound [21, 33] as special cases, which has seen little adoption in prior RL
literature. In Appendix D.2, we discuss how JEPO relates to a variance reduced policy gradient
algorithm akin to RLOO, defined as follows

1

n

n∑
i=1

∇θ log πθ(ci) · (πθ(a
∗|ci)− w̃i) +∇θπθ(a

∗|ci),

where w̃i =
1

n−1

∑
j ̸=i πθ(a

∗|cj) is the leave-one-out baseline akin to similar constructs in JEPO.
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(a) Ablation with number of samples n for JEPO (b) Ablation with mumina test set NLL

Figure 2: Figure (a): Ablation of number of samples n for multi-sample lower bounds. As we increase the
number of samples, the multi-sample lower bound seems to further improve the training-time efficiency. This
corroborates the theoretical insight that as n increases, the multi-sample lower bound objectives become tighter.
Figure (b): Test set proxy NLL evaluation for training on the numina dataset. We evaluate the proxy NLL of the
trained models on the numina test set, approximated with n = 4 samples lower bound defined in Eqn (8). Both
JEPO and the combined algorithm sees improvement in the NLL (lower the better), while online RL does not
improve on test set NLL. This hints at different solutions found by the online RL and JEPO algorithms, despite
similar improvement trend in the sampling based evaluations.

6 Experiments with verifiable data
We start by comparing JEPO against RL baselines on verifiable data. We focus on the mathematical
reasoning dataset MATH [11] where the prompt x asks the model a mathematical question with a
short form answer a∗. We mainly focus on the two algorithmic variants proposed in this work: the
JEPO defined through the gradient estimate in Eqn (4) as well as its multi-sample variant Eqn (7). As
a strong baseline, we consider the online policy gradient RL algorithm which applies Sympy [53] to
automatically match the answers. The RL algorithm applies leave-one-out for variance reduction,
as is commonly practiced [54, 2]. Our main experiments are based on the 8B and 70B model from
the Llama 3 model family [55]. All algorithmic variants apply identical hyper-parameters which we
detail in Appendix B.

We highlight again that the RL baseline is at an advantage in this setting, since the reward is fairly
accurate and is itself being used as evaluation signals too [56]. We do not compare with other
baselines developed in prior work (e.g., [14]) as they can be interpreted as variants of online RL
algorithms with certain low-level implementation differences.

6.1 Comparion on MATH
During RL training, we use a reward of r = 1 when there is an answer match and r = 0 otherwise.
Note that JEPO does not require access to such a reward, but we monitor the reward scores during
training. Figure 1 left plot shows the training performance of all baselines. For the x-axis, we use the
KL divergence KL(πθ, πref) calculated over the training set. Following the practice in [37], we adopt
the KL divergence as a certain measure of the optimization budget that the algorithm has consumed.
Note that here all experiments are run with the same regularization coefficient β = 10−3 since it
achieves a good trade-off for all algorithmic variants over all.

Training performance Figure 1 left plot shows that online RL achieves a good KL-performance
trade-off on the training set. This is probably not a big surprise since online RL optimizes for the
very same objective that we monitor here. In the meantime, JEPO enjoys reasonable performance: as
the policy deviates from the reference policy, the reward performance improves despite not explicitly
training for it (in theory JEPO optimizes for a hard string match rather than Sympy match). (2) the
multi-sample JEPO obtains noticeably better performance than the one-sample lower bound baseline,
despite using the same n = 4 generations per update.

Evaluation Figure 1 middle plot shows the evaluation performance on an held-out test set. We note
that the reward on the training set is higher than the test set, because the model has been SFT’ed on
on the training prompts. For evaluation, observe that the multi-sample lower bound method obtains
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Figure 3: Evaluation comparison of training 70B models on semi-verifiable Numina dataset. We show evaluation
results during the course of training. Left plot shows the combined accuracy on the unverifiable subset (about
40%) of the test set; middle plot shows the combined accuracy on the full test set; right plot shows the Sympy
score on the full test set. While JEPO progresses more slowly on the Sympy scores compared to online RL, it
gains on the combined accuracy; the combined algorithm seems to achieve the best of both worlds.

similar performance as online RL, despite being outperformed during training. We conjecture that
this is because online RL tends to overfit the training prompts more significantly, producing a high
training reward that does not transfer as well to the evaluation time. This shows that even without
training on the reward signal explicitly, JEPO can obtain a similar evaluation performance as RL.

Statistical correlation between objectives Figure 1 right plot graphs the training time reward
against the lower bound objectives. If we consider the training reward as a ground truth objective
to optimize for, we see that the multi-sample lower bound displays a stronger correlations between
the surrogate objective and the ground truth. Due to space limit, we show a comprehensive set of
ablations in Appendix C.1.

7 Experiments with semi-verifiable data

We now consider semi-verifiable data where a good proportion of the dataset contains answers which
are not easily verifiable. We focus on a post-processed Numina dataset [57] where prompts are
mathematical questions and ground truth answers are partly verifiable. For instance, one example
of the ground truth answer is the whole expression: ∀x ∈ R, x2 + (a − 1)x + 1 ≥ 0. Given a
model generated answer, it is hard to verify whether it is equivalent to the above expression without
case-specific parsing. See Appendix B for details on how we post-process the dataset.

RL baseline and reward For the RL baseline, we apply the Sympy reward as introduced in
the previous section. Because the dataset contains answers which are hard to verify, the reward
is effectively only applicable to a subset of the data. The default training set contains about 22k
examples. We estimated at least 40% of such examples cannot be verified by the automatic scorer. We
consider online RL with such reward as a baseline, as it has access to a highly specialized verifiable
reward but only applicable to a subset of the data.

Combining JEPO and RL baseline We also compare with an algorithm that combines the loss
function of JEPO and RL baseline with the Sympy reward. When we sample n generations from a
single prompt, and if none of the generation obtains a positive score (note this does not mean that the
example is necessarily unverifiable), we apply the JEPO loss; otherwise, we apply the baseline RL
loss. This allows for a dynamic combination of two losses, and still leverages the whole dataset.

Evaluation We have an held-out Numina test set consisting of 640 examples. The test set contains
both verifiable and unverifiable examples, which we evaluate in two ways: (1) Sympy reward
rsympy(a, a

∗) ∈ {0, 1}, which generally underestimates the true accuracy when ground truth is
semi-verifiable; (2) Sympy combined with LLM-as-judge rcombined(a, a

∗), which combines two
sources of scores rcombined(a, a

∗) := rsympy(a, a
∗) + rllm(a, a

∗)1{rsympy(a,a∗)=0}. The LLM-as-judge
score rllm(a, a

∗) is also binary: it is based on a 5-time majority voted decision of a prompted 70B
instruction-tuned model [55]. Though imperfect, we observe that LLM-as-judge reasonably mitigates
some false negatives caused by rigid Sympy scoring. Importantly, we reiterate that we do not train on
such combined scores - they are used for evaluations only.
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7.1 Comparison on Numina
Unless otherwise stated, we will experiment with the multi-sample algorithm given its performance
gains in Section 6. Below, Figure 3 shows the evaluation performance comparing the RL baseline,
JEPO and their combined algorithm. Since the Numina dataset is more challenging, we experiment
throughout with 70B models.

Sympy scoring evaluation Figure 3 right plot shows the evaluation accuracy using the Sympy
score. Overall, all algorithms make steady progress as the training progresses. However, since online
RL baseline trains with the same reward signal, it achieves slight acceleration compared to JEPO.
The combined algorithm achieves a similar rate of progress with the Sympy scores on the test set.

Due to the abundance of symbolic expressions as ground truth in the Numina dataset, here the Sympy
reward is a much more specialized scoring method than e.g., string match compared to the MATH
case. This partly explains why the online RL baseline is competitive, as it trains on the same signal.

Combined scoring evaluation Figure 3 left plot and middle plot shows the combined accuracy
which alleviates some false negatives due to the Sympy scoring. As seen from the overall metrics, the
accuracy increases by about 25% compared to the Sympy scores. The left plot shows the performance
on the unverifiable test subset (40% of the test set) while the middle plot shows the full set. We
observe that both JEPO and the combined algorithm achieves faster rate of progress and asymptotes
to slightly better performance than the online RL baseline with this combined metric, especially on
the unverifiable subset. Interestingly, note that by training on verifiable rewards, online RL can also
make progress on the unverifiable test set.

Though the Sympy scoring is quite specialized, it is only applicable to a subset of the full Numina
training set. Meanwhile, JEPO can leverage the full dataset, despite with less specialized signals. The
combined algorithm seems to achieve the best of both worlds.

7.2 Ablation study
We carry out additional ablations to better understand the performance difference.

Assessment with set negative likelihood: lower the better We further evaluate the proxy negative
log likelihood (NLL) that the trained model produces on test set, computed via the n-sample lower
bound [21, 40]

proxy-NLL(πθ) = −E(ci)ni=1∼πθ(·|x),(x,a∗)∼Dtest

[
log

(
1

n

n∑
i=1

log πθ(a
∗|x, ci)

)]
Figure 2(b) shows such proxy NLL during training, where we see a different pattern for the online
RL baseline and JEPO. For JEPO, the proxy NLL decreases over time. We expect such a result
because JEPO optimizes for the same objective on the training set, and before overfitting, we expect
improvement on the test set. Meanwhile, maybe surprisingly, online RL does not make progress on
the test set NLL. The combined algorithm is in between the two extremes.

There are maybe good reasons for online RL not to make progress on test set NLL. Particularly, for
each ground truth answer in the dataset a∗, the Sympy scorer defines a sizable collection of correct
answers A = {a : rsympy(a, a

∗) = 1} whose aggregate probability πθ(A|x) increases under online
RL (evidenced by test set accuracy improvement in Figure 3 right plot). In other words, online RL
might not improve the proxy NLL of a particular a∗ inside A. The above observation means that the
policy found by online RL and JEPO can produce different answers to the same question. This is
related to the model calibration issue for RL post-training in general [20].

Comparison with SFT baseline on golden chain-of-thought To assess another option to improve
semi-verifiable performance, we carry out another comparison against a SFT baseline, which trains on
the golden chain-of-thought dataset [57]. We observe performance improvements across evaluation
metrics as well, though generally underperforming RL. See Appendix B for full results.

8 Experiments with unverifiable data
Finally, we experiment with unverifiable data, where the full dataset has long-form ground truth and
cannot be easily verified with hard-coded programs. We consider a post-processed Numina-proof,
extracted from the original Numina dataset where all ground truth answers are full proof. The proof

8



(a) Test set NLL on numina-proof (b) Ablation with algorithmic components

Figure 4: Figure (a): Test set proxy NLL evaluation for training on the unverifiable Numina-proof dataset. For
JEPO outperforms the SFT baseline at the same data budget (measured in epochs) and achieves asymptotically
better test performance. Figure (b): Comparison of different baselines on numina-proof test set NLL, across
various algorithmic variants, with the 70B model. We observe that the supervised component of the JEPO loss
plays a key role at learning efficiency and achieving good asymptotic performance.

often contains multiple sentences of paragraphs, without a final short-form answer as in MATH or
the verifiable subset of Numina.

Baselines and evaluation Since the ground truth is long-form and cannot be verified easily, we do
not have a RL baseline with verifiable reward. Instead, SFT on the raw dataset (x, a∗) is a reasonable
baseline. Through a few ablations, we also compare with methods akin to VR-CLI [38], which
corresponds to the REINFORCE part of the single-sample lower bound gradient in Eqn (5). We
evaluate NLL on the test set, akin to the ablations in Section 7. We do not carry out sampling based
evaluations as long-form answers are hard to assess even for frontier models [13].

8.1 Comparison on Numina-proof
As main experiments, we compare JEPO with SFT. Note that we always started with instruction-tuned
models [55] and the SFT baseline can be understood as a continued SFT. We show the curve after an
initial transient phase where the test set NLL drops significantly for all runs, which can be attributed
to that the modes learn to format answer correctly. Figure 4(a) shows the test set NLL comparison
between SFT and JEPO, with both 8B and 70B models. At both scales, JEPO outperforms SFT with
test set NLL at the same training data epoch. Also, JEPO is asymptotically better than SFT.

8.2 Ablation study on the importance of JEPO supervised loss
To better understand the role of different algorithmic components, we compare with additioanl
baselines: recall that JEPO update contains two parts: a REINFORCE component, whose single-
sample variant is akin to VR-CLI [38]; and a supervised loss component. We compare with a variant
where the supervised loss is down-weighted (βsup = 0.01) and another where it is removed (βsup = 0).

Figure 4(b) shows the comparison on the test set NLL. We see that by downweighting the supervised
loss, JEPO makes much less progress on the test NLL given the same training epochs. Specifically,
when the supervised loss is removed (βsup = 0), test NLL also seems to plateau at a worse level.
Interestingly, this contrasts the observation in MATH experiments (Section 6) where small values of
βsup works better. We speculate that the key difference is that nature of the chain-of-thoughts differs:
for MATH, the chain-of-thought details solution steps and a final answer can be readily inferred. For
long-form data, the chain-of-thought is a high-level outline, and it still takes extra effort to produce
the full answer (e.g., proof), hence the importance of the supervised loss.

9 Limitations and future work
Possible directions for future research include studying the impact that various loss components
(e.g., the REINFORCE and the supervised loss) have on overfitting; more organic ways to combine
verifiable rewards and JEPO losses; ways to scale such methods, to more general purpose data (e.g.,
in the form of meta-thought [1, 58] or to pre-training [40].
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Figure 5: Graphical models for various algorithmic formulations discussed in this work. Solid lines represent
generative models and dashed lines represent inference models. Circles represent random variables and squares
represent parameters. Shading indicates that the random variable is observed, and is used for providing feedback
for the learning process. For CoT optimization, a∗ is a simplified notation for the binary optimality variable
1{a=a∗} from the random variable a.

A Review of the graphical model perspective
We make a more extended discussion about the graphical model shown in Figure 5.

Probabilistic inference with a learnable prior Figure 5(a) shows the generic structure for proba-
bilistic inference with a learnable prior, with latent variable z and observable o. Here, θ controls both
the prior and observation generation:

z ∼ pθ(·), o ∼ pθ(·|c).
The inference parameter ϕ denotes a the posterior inference distribution qϕ(z|o) that seeks to approx-
imate the true posterior pθ(z|o) := pθ(c)pθ(o|c)∑

c′ pθ(c′)pθ(o|c′) . Together, they can form an ELBO that lower
bounds the marginal log likelihood [17]

log pθ(o) ≥ Ez∼qθ(·|o)

[
log pθ(z|o) + log

qϕ(z|o)
pθ(z)

]
︸ ︷︷ ︸

Lθ,ϕ(o)

.

The right hand side Lθ,ϕ(o) can be optimized via stochastic gradient descent on the joint variable
(θ, ϕ). The lower bound is tight when the inference distribution is exactly the posterior qϕ(z|o) =
pθ(z|o). A learnable prior refers to the fact that the prior distribution over latent pθ(z) depends on θ
too, while in much of the prior literature is is kept constant [59, 17]. For the transition from generic
probabilistic inference to our use case, a learnable prior is also fundamentally important.

Chain-of-thought with full ELBO Figure 5(b) shows a direct mapping of the probabilistic infer-
ence structure to the case of optimizing chain-of-thought. Here, the chain-of-thought c is the latent
variable and the ground truth answer a∗ is the observable. A more precise mathematically definition
would be to consider yet another binary optimality variable O = 1{a=a∗} that determines whether the
random variable answer a is optimal. Here, we directly replace it with a∗ for notational simplicity.

If we further introduce a general conditional dependency on the prompt x, we arrive at the lower
bound defined in Eqn (3)

log πθ(a
∗|x) ≥ Ec∼qθ(·|x,a∗)

[
log πθ(a

∗|x, c)− log
qϕ(c|x, a∗)
πθ(c|x)

]
︸ ︷︷ ︸

Lθ,ϕ(x,a∗)

.

Chain-of-thought with Jensen’s lower bound In Figure 5(c), we replace the variational posterior
qϕ by the prior distribution itself πθ. As discussed in the main paper, this looses the lower bound
but make the optimization objective much simpler. See detailed derivations in Section 3. We see
there there appears to be a duplicated arrow that goes from θ to the latent variable c. We make
such duplication to distinguish between the inference distribution (dashed arrow) and the generative
distribution (solid arrow); in this particular case, we deliberately make the two distributions identical.

Jensen’s lower bound with regularization Finally, Figure 5(d) presents the graphical model for
the case where a KL regularization is added to the Jensen’s lower bound (see Lemma D.6 for formal
statements). In this case, the generative prior distribution is computed from the reference policy πref
parameterized by θref which is kept fixed during training, while the rest of the distributions are still
parameterized by θ.
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Algorithm 1 JEPO: chain-of-thought optimization with Jensen’s lower bound (or its multi-sample
extension)

1: INPUT policy πθ

2: while t = 0, 1, 2... do
3: (i) For each sampled prompt x, collect n generations (yi)ni=1 and extract their corresponding

chain-of-thoughts (ci)ni=1 ∼ πθ(·|x).
4: (ii) Evaluate πθ(a

∗|x, ci) with a forward pass; calculate gradients
∇θ log πθ(ci),∇θ log πθ(a

∗|x, ci) with backprop.
5: (iii) Update θ with n-sample average of gradient estimate Eqn (4) or its multi-sample variant

Eqn (7).
6: end while

B Hyper-parameters and experimental settings
We experimented with the Llama 3 model of size 8B and 70B. All experiments are conducted with
identical hyper-parameter settings: we always apply a batch size of B = 64 prompts per update, and
sample n = 4 distinct generations per prompt. All training and evaluation sampling are conducted at
a temperature of τ = 1 and with top-p = 1.

We train on the MATH training set with 7500 examples and evaluate on the test set with 2500
examples. A supervised fine-tuning on the training set is conducted to warm up the RL training,
hence the gap between training and test set accuracy.

For both training and evaluation, we provide system instructions that ask the model to generate a
response with step-by-step solution, followed by a final conclusion phrased as the final answer is
followed by the answer predicted by the model. This is consistent with the prompt structure discussed
for Llama models [55, 56].

All experiments are conducted with an entropy regularization coefficient β > 0 which we have
ablated in the main paper.

B.1 Dataset post-processing
We use unverifiable proofs data from Numina 1.5 [60] for our experiments. We clean and filter
the questions and their corresponding solutions using some simple regex heuristics. For example,
we replace leading blanks, markdown headings like ##, prefixes like “Problem:” and “Solution”,
letter-digit combinations like “A1” / “G5” / “ROU”, and trailing dots and blanks. After cleaning, we
have 58088 proofs from the Numina dataset.

B.2 Important technical details of JEPO implementations
We detail the implementation details of the JELB-RL algorithm. We highlight a few key technical
elements in the implementation, which we have found to be important in getting the best performance.

Formatting penalty We find it useful to have an additional RL loss with the reward as rreg(x, y) =
−p if y does not follow the formatting requirement (that the identifier phrase the final answer is is
in y) and zero otherwise. We find that this generally helps stabilize the training process. This is
especially useful for small models (8B) where under temperature sampling, it can often not follow
instructions strictly. For large models (70B), we also found that its formatting might be inconsistent
after multi-epoch training. We find a value of p = 10 suffices while smaller values tend to make the
training less stable due to weaker penalties.

Per-sequence log probabilities During the log-ave-exp operation that defines the lower bound in
Eqn (3), it is important to apply the per-sequence log probs without average over the sequence length.
Concretely, the bound is calculated as follows

log

 1

n

n∑
j=1

∑
t<|a∗|

πθ(a
∗
t |x, cj , a∗<t)


where |a∗| denotes the sequence length of the ground truth a∗. It is important not to average the
sequence level log probs

∑
t<|a∗| πθ(a

∗
t |x, cj , a∗<t) with a factor of 1/|a∗| as suggested in other

contexts [61, 2], as it can modify the objective landscape significantly especially when |a∗| is large.
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Figure 6: Ablation of regularization coefficient β. As β increases, all algorithmic variants seem to obtain better
efficiency in the training performance-KL divergence trade-off. However, strong regularization also prevents the
policy from deviating much from the reference policy, preventing bigger training improvements.

Advantage normalization Both the baseline RL and the JEPO apply advantage post-processing,
following common practice [30, 62]. For example, in the multi-sample JEPO, the advantage for the
i-th generation is

Ai = log

 1

n

n∑
j=1

πθ(a
∗|x, cj)

− ṽi.

A further normalization is applied to the advantage Ãi = clip(Ai/std (A) ,−1, 1) such that the
outcome Ãi is applied in the actual update. Advantage normalization is especially important for
JEPO because its raw advantage takes a wider range of numerical values.

Weighted supervised learning loss We also introduce a weighting coefficient for the supervised
loss βsup useful for ablations. We find that small values 0 ∼ 10−2 tends to work for short-answer
applications (e.g., MATH) while a large value 1 is important for semi long-form data (e.g., numina
and numina-proof).

KL-regularization In our early investigation, we found it useful to have a KL regularization at
a very small coefficient β = 10−3. The regularization helps prevent formatting collapse, and also
prevents the policy from drifting too much in case the updates are noisy [24, 23].

Put together, given n samples, the JEPO update is

1

n

n∑
i=1

((
Ãi + Ã(ref)

i

)
∇θ log πθ(ai|x, ci)

)
+ βsup∇θ log

(
1

n

n∑
i=1

πθ(a
∗|x, ci)

)
− β∇θKL (πθ(·|x), πref(·|x)) ,

where Ãref
i is the normalized advantage for the formatting penalty. The normalization makes it such

that the ultimate update optimizes for a lower bound more akin to the weighted lower bound [63]
though the underlying algorithmic motivations differ.

The lower bound loss is applied only to generations with correct format, otherwise, the loss is masked
out. Also, we find that the sequence level normalization with a factor of 1/ (|ci|+ |a∗|) or 1/|ci|
does not make a significant difference [2, 64].

C Additional ablations
We now provide ablation results on a few important dimensions of the algorithm.

C.1 Ablations for verifiable data
We detail additional ablations for the verifiable data.
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Figure 7: Ablation of model size (8B vs. 70B). We find that the multi-sample JEPO is fairly competitive against
the online RL algorithm in the 70B scale. Both algorithm traces out a similar KL-performance trade-off, with
multi-sample JEPO obtaining a slightly better performance given a similar compute budget as online RL.

Multi-sample ablation on sample size n We ablate on the number of sample n used for con-
structing per gradient update. In theory, as n increases, the multi-sample lower bound becomes
tighter and asymptotically approaches the marginal likelihood objective (which is equivalent to the
RL objective). We vary the sample size n ∈ {1, 2, 4, 8} and compare the performance. Figure 2(a)
shows that as n increases, the algorithm becomes more KL-efficient: with a fixed budget on KL,
the model obtains better performance. Intriguingly, we also observe a training performance akin to
reward over-optimization [37] - as the optimization progresses, the training reward drops slightly (for
blue curve). We can interpret this as the result of the fact that JEPO does not optimize for the same
indicator matching function as the reward we monitor.

Regularization ablation We investigate the impact of the regularization coefficient β ∈
{0, 10−3, 10−2, 10−1}. Figure 6 shows the training performance of the single-sample lower bound
vs. online RL. One observation is that as β increases, the trade-off efficiency for both algorithms
improves - however, in general the algorithm also makes less deviation from the reference policy,
hence leading to less improvement for a fixed training steps.

Scaling up model size Since the multi-sample JEPO appears more competitive, we compare it
against the online RL in the 70B case. Figure 7 shows that the JEPO obtains competitive performance
against online RL in terms of the KL-performance trade-off. With roughly the same amount of
compute budget, we find that the JEPO seems to drift further from the reference policy, hence
extending the trade-off curve to a performance of 70% test set accuracy, which outperforms online
RL modestly.

Supervised loss We find that a low value of βsup generally works better for the JEPO algorithms.
The speculation is that when βsup is large, the supervised loss encourages the policy to place weights
on the ground truth a∗ despite that the chain-of-thought c has low quality. This leads to overfitting
the training set, in a more severe way than online RL.

C.2 Ablations on semi-verifiable data
Comparison with SFT baseline on golden chain-of-thought See ablation results in Figure 8.
A few observations are in order: (1) SFT generally is not as good as the RL jobs, but it improves
over time as we train more; (2) There is an initial drop in performance, which can be explained
by the fact that the golden chain-of-thought does not conform to the familiar "step-by-step" that
the starting model has been post-trained with [55]. Through SFT, the model needs to unlearn the
step-by-step format and learns the more freeform hybrid format in the golden chain-of-thought data;
(3) Asymptotically, SFT performs lower than RL runs.

D JEPO’s connections with alternative algorithmic variants
We discuss detailed connections between JEPO and alternative algorithmic formulations below.
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Figure 8: Additional comparison against a SFT baseline which trains on golden chain-of-thought data from
the numina dataset. We show that the SFT baseline also improves upon various metrics, despite generally
underperforming RL algorithms.

D.1 Evidence lower bound
The evidence lower bounds (ELBO) [16, 28, 21] control for the tightness of the lower bound with
an inference distribution qϕ(c|x, a∗) which defines a distribution over chain-of-thoughts. The lower
bound takes the following form

Lθ,ϕ(x, a
∗) = Ec

[
log πθ(a

∗|x, c)− log
qϕ(c|x, a∗)
πθ(c|x)

]
, (8)

where the expectation is under c ∼ qϕ(·|x, a∗). It lower bounds the marginal log likelihood
Lθ,ϕ(x, a

∗) ≤ log πθ(a
∗|x) and it is tight if and only if the inference distribution equals the posterior

distribution qϕ(c|x, a∗) = pπθ (c|x, a∗). Since ELBO is a function of both policy parameter θ and
inference distribution parameter ϕ, we can optimize both with stochastic gradient estimates: given a
chain-of-thought sample c ∼ qϕ(·|x, a∗),

gθ = ∇θ log πθ(a
∗|x, c) +∇θ log πθ(c|x),

gϕ = ∇ϕ log qϕ(c|x, a∗)
(
log πθ(a

∗|x, c)− log
qϕ(c|x, a∗)
πθ(c|x)

)
−∇ϕ log qϕ(c|x, a∗).

Juxtaposing the form of the gradient here and the gradient to the Jensen’s lower bound defined in
Eqn (4), we observe that the inference distribution gradient gϕ bears resemblance to the REINFORCE
gradient; while the policy distribution gradient gθ bears resemblance to the SFT gradient. In fact,
we can show that under the special parameterization qϕ(c|x, a∗) := πθ(c|x), the two gradients are
exactly equivalent. Such an observation is stated formally below.
Lemma D.1. (Jensen’s lower bound as a special case of ELBO) When qϕ(c|x, a∗) := πθ(c|x),
ELBO is equivalent to the Jensen’s lower bound Lθ,ϕ(x, a

∗) = Lθ(x, a
∗) gradient esimtates are

equivalent to the Jensen’s lower bound’s stochastic gradient estimates.

Proof. The proof follows from the fact that when qϕ = πθ, we have

gϕ = ∇θ log πθ(c|x) · log πθ(a
∗|x, c)−∇θ log πθ(c|x)

Adding this gradient to gθ, a simple manipulation shows that the aggregate gradient is equivalent to
the gradient of the lower bound defined in Eqn (4).

By introducing an inference distribution qϕ, ELBO is much expressive than the Jensen’s lower bound
and allows for a tighter approximation to the marginal log likelihood. However, this also introduces
additional complexity of having to learn the approximate posterior distribution. In our applications
of interest, training a posterior model of a large size can be a major computational overhead. In
practice, [14] approximates the posterior via a few steps of MCMC and forgoes learning with such
a distribution altogether. We take a different approach with a similar motivation: by tightening the
lower bound with multiple samples, we also avoid the need for an explicit posterior.
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D.2 Reinforcement learning
We show that there is a close connection between the lower bound formulation and the expected
reward (return) maximization objective in RL [65]. Concretely, we will see how the lower bound
objectives are closely related to a conditional expectation trick that produces a RL policy gradient
estimate with lower variance. First, we show that (up to a log transform) RL optimizes for the same
target as the lower bound objectives, given the indicator reward.
Lemma D.2. (RL optimality is equivalent to maximum likelihood optimality) When r(x, y) =
1{a=a∗}, the optimal policy to the RL objective is equivalent to the optimal policy of the maximum
likelihood objective Eqn (2).

Proof. The conclusion follows from the fact that E
[
1{a=a∗}

]
= πθ(a

∗|x). Hence the two objectives
differ by a log operation and yield the same optimal solution.

Assuming access to n i.i.d. trajectories (yi)ni=1 ∼ πθ(·|x), we start with the classic RL policy gradient
with leave-one-out baseline (i.e., RLOO [54])

gvanilla-pg =
1

n

n∑
i=1

∇θ log πθ(yi|x) ·
(
1{ai=a∗} − wi

)
, (9)

where wi = 1
n−1

∑
j ̸=i 1{aj=a∗} is the leave-one-out baseline. Now, we present a new policy

gradient estimate of the RL objective with guaranteed variance reduction, which is also feasible to
implement with sample-based learning.
Definition D.3 (A variance-reduced RL policy gradient estimate). Given n trajectories (yi)ni=1
from a single prompt x, we define gvar-reduced-pg as

1

n

n∑
i=1

∇θ log πθ(ci) · (πθ(a
∗|ci)− w̃i) +∇θπθ(a

∗|ci), (10)

where w̃i =
1

n−1

∑
j ̸=i πθ(a

∗|cj) is the leave-one-out baseline akin to similar constructs in the lower
bound case.

We show that the variance-reduced policy gradient estimate is closely related to the classic gradient
estimate via the conditional expectation trick.
Lemma D.4. (Conditional expectation) Under the same assumption as Lemma D.2 and denoting
a ∼ πθ(·|c) as the sampling process ai ∼ πθ(·|ci), it holds that gvar-reduced-pg is a conditional
expectation of gvanilla-pg

gvar-reduced-pg = Ea∼πθ(·|c) [gvanilla-pg | (ci)ni=1] . (11)

We note that without the leave-one-out baselines w̃i, w̃i, the conclusion Eqn (11) is straightforward
as both estimates Eqn (10) and Eqn (9) become plain averages of i.i.d. terms. Now, using Lemma
D.4, we immediately see that the new gradient estimate yields smaller variance.
Theorem D.5. (Variance reduction) Under the same assumption as Lemma D.2, we have guaranteed
variance reduction

V(yi)ni=1∼πθ(·|x) [gvar-reduced-pg] ≤ V(yi)ni=1∼πθ(·|x) [gvanilla-pg] . (12)

The proof is provided in Appendix E. Putting gvar-reduced-pg from Eqn (10) and the gradient estimate of
the Jensen’s lower bound (Eqn (4)) side-by-side, we identify intriguing similarities. Both gradient
estimates employ two terms that update either the chain-of-thought component πθ(·|x) or the answer
component πθ(·|x, c), with the only subtle difference being the extra log-transform needed for
obtaining the Jensen lower bound. This alludes to the fact that the lower bound gradient has intrinsic
built-in variance reduction. We provide additional discussions of a few practical trade-offs in using
the variance-reduced estimate gvar-reduced-pg in Appendix E.
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D.3 Optimizing Jensen’s lower bound with regularization is optimizing a special ELBO
When optimzing the lower bound objectives, we also apply the KL regularization motivated from
the regularized RL formulation (Eqn (1)). Though this combination seems ad-hoc, we will see that
optimizing such an hybrid objective is in fact equivalent to maximizing a special ELBO.

Incorporating the regularization into the lower bound formulation, we have an aggregate objective

Lθ(x, a
∗)− βKL(πθ, πref). (13)

If we refine the regularization a little more: instead of the generation level regularization, we apply
regularization at the chain-of-thought: KLc (πθ, πref) := Ec∼πθ(·|x)

[
log πθ(c|x)

πref(c|x)

]
, then the resulting

aggregate objective can be interpreted in a more coherent way, as an ELBO to a concrete generative
process.
Lemma D.6. (Regularized lower bound as an ELBO to a special generative process) Assume a
generative process c ∼ πref(·|x), a ∼ πθ(·|x, c) that defines a marginal distribution pπθ,πref(a|x) :=∑

c πref(c|x)πθ(a
∗|x, c). Then the regularized objective Lθ(x, a

∗)−KLc(πθ, πref) is a lower bound
to the log likelihood log pπθ,πref(a|x).

Proof. Applying the same derivation as the regular ELBO, log likelihood log pπθ,πref(a|x) is lower
bounded as

≥ max
ϕ

Ec∼qϕ(·|x,a∗)

[
log πθ(a

∗|x, c)− log
qϕ(c|x, a∗)
πref(c|x)

]
≥(a) Ec∼πθ(·|x)

[
log πθ(a

∗|x, c)− log
πθ(c|x)
πref(c|x)

]
= Lθ(x, a

∗)−KLc(πθ, πref),

where inequality (a) is due to choosing qϕ = πθ and the last equality is by definition. Hence the proof
is complete.

Note that the aggregate objective Eqn (13) can also be optimized via stochastic gradient ascent. We
just need to add an additional term associated with the KL regularization, to the original gradient
estimate to Lθ(x, a

∗) defined in Eqn (4). An example of such a gradient estimate usually takes the
following form

log
πθ(c|x)
πref(c|x)

∇θ log πθ(c|x), c ∼ πθ(·|x).

Though our lower bound interpretation (Lemma D.6) is under a regularization only on the chain-of-
thought, in practice, we still apply the full generation level regularization following common practice
[22, 24, 23].

D.4 Practical trade-offs compared to RL
As discussed earlier, JEPO does not require an external verifiable reward, as it can be understood
as adopting the indicator reward r(x, y) = 1{a=a∗}. In practice, this can be instantiated as a strict
string match float(answer == gt_answer). However, such a reward function will likely induce
false negatives, as semantically equivalent generations might be vastly different strings. In practice, a
more lenient match is typically applied to better balance the false negative. For example, for math
problems [11, 56], usually programmtic checks are implemented to check for equivalence of two
short expressions, such that e.g., pi and 3.1415926 might be considered equivalent.

More formally, consider a general reward function r(x, y) = match(a, a∗) calculated as a binary
match between a and a∗. We can rewrite the RL objective as E[match(a, a∗)]. In order to adapt
the formulation in this work to the lower bound case, we need to work explicitly with the equiva-
lent set A := {a|match(a, a∗) = 1}. We will need to calculate quantities such as the probability
πθ(A|x, c) :=

∑
a∈A πθ(a|x, c), which reduces to πθ(a

∗|x, c) in case we use exact match. Com-
puting such probabilities is expensive since we need to enumerate all a ∈ A if inverting the match
function is feasible at all. As a result, the lower bound formulation cannot be adapted to generic
match function or reward function.
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In summary, when a good (verifiable) reward is available (Sympy vs. string for certain math datasets,
see Section 7), online RL is at an advantage. There are also cases where good rewards are not easy to
come by, and JEPO is a decent default strategy. An example is where the ground truth answer takes
a rather long form, in which case string match or programmatic check will produce too much false
negatives, see Section 8.

E Variance-reduced RL gradient estimate
We provide more discussion on the variance-reduced RL gradient estimate.

E.1 Proof of variance reduction
Recall that we denote (yi)

n
i=1 as the set of generations and (ci)

n
i=1 be the set of chain-of-thoughts

generated from prompt x. We drop the dependency on prompt x wherever the context is clear.

Proof of Theorem 12. A direct computation shows that

V(yi)ni=1∼πθ(·|x) [gvanilla-pg] =E(yi)ni=1∼πθ(·|x)
[
gvanilla-pg − gvar-reduced-pg + gvar-reduced-pg − E(yi)ni=1∼πθ(·|x) [gvanilla-pg]

]
=E(yi)ni=1∼πθ(·|x)

[
∥gvanilla-pg − gvar-reduced-pg∥2

]
+ V(yi)ni=1∼πθ(·|x) [gvar-reduced-pg] ,

(14)

where the cross-term vanishes due to Eqn (11). From this, Eqn (12) follows immediately.

Proof of Lemma D.4. We begin by computing the conditional expectation
Ea∼πθ(·|c) [gvanilla-pg | (ci)ni=1], which yields

Ea∼πθ(·|c)

[
1

n

n∑
i=1

∇θ log πθ(yi) · 1{ai=a∗} | (ci)ni=1

]
︸ ︷︷ ︸

I

+Ea∼πθ(·|c)

[
1

n

n∑
i=1

∇θ log πθ(yi) · w̃i

]
︸ ︷︷ ︸

II

.
(15)

where we use the notation a ∼ πθ(·|c) to indicate that each answer ai ∼ πθ(·|ci) is i.i.d. sampled
from its corresponding chain-of-thought. Expanding the first term I, we have

I =(a)
1

n

n∑
i=1

∑
a

(
∇θ log πθ(a|ci) +∇θ log πθ(ci)

)
· 1{a=a∗} · πθ(a|ci)

=(b)
1

n

n∑
i=1

(
∇θπθ(a

∗|ci) +∇θ log πθ(ci) · πθ(a
∗|ci)

)
,

(16)

where (a) is by definition of the expectation and a ∈ A denotes a dummy answer variable; (b) is due
to the definition of the indcator function. Now recalling the definition of wi as leave-one-out baseline
to simplify term II:

II =
1

n

n∑
i=1

Ea∼πθ(·|c) [∇θ log πθ(yi) · wi | (ci)ni=1] =
1

n(n− 1)

n∑
i=1

∑
j ̸=i

Ea∼πθ(·|c)
[
∇θ log πθ(yi) · 1{aj=a∗} | (ci)ni=1

]
. (17)

Note we can explicitly compute each summand on the right hand side of Eqn (17) as product of two
conditional expectations, thanks to the fact that when i ̸= j:

Ea∼πθ(·|c)[∇θ log πθ(yi) · 1{aj=a∗} | (ci)ni=1] =(a)

(
Eai∼πθ(·|ci)[∇θ log πθ(ai|ci)|ci] +∇θ log πθ(ci)

)
· πθ(a

∗|cj)
=(b) ∇θ log πθ(ci) · πθ(a

∗|cj),
(18)

where (a) is due to the definition of the indicator function; (b) is based on the zero-mean property of
score functions. Plugging Eqn (18) into the right hand side of Eqn (17), we have

II =
1

n

n∑
i=1

∇θ log πθ(ci) ·
1

n− 1

∑
j ̸=i

πθ(a
∗|cj) =

1

n

n∑
i=1

∇θ log πθ(ci) · w̃i, (19)

where we used the definition of w̃i from Eqn (10). Lastly, we combine Eqn (16) and Eqn (19) and
obtain

I + II =
1

n

n∑
i=1

(
∇θπθ(a

∗|ci) +∇θ log πθ(ci) ·
(
πθ(a

∗|ci)− w̃i

))
= gvar-reduced-pg. (20)

Thus we have concluded the proof of Lemma D.4.
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or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]

Justification: We confirm the conforming to ethics guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is algorithmic and theoretical in nature and does not produce
immediate societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work is algorithmic and theoretical and hence does not impose risks for
misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not release assets and hence no need for the accompanying licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not provide additional assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There is no human study nor crowd sourcing in this work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We make use of no LLM in this work.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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