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Abstract

While spatial transcriptomics captures the spa-
tial localization of transcriptional signatures, its
analysis demands significant bioinformatics ex-
pertise. We investigate whether a collaborative
multi-agent system can automate this complex
workflow. We present Transcriptomic Agents
for Classification via Thoughtful Inference and
Coordination (TACTIC), for interpretable cell
type annotation in spatial transcriptomics. TAC-
TIC integrates graph autoencoders and large lan-
guage models in a chain-of-thought architecture
featuring specialized agents, a junior and a senior
bioinformatician, engaging in structured dialogue
to deliver accurate, human-interpretable annota-
tions. Evaluated on MERFISH, MIBI-TOF, and
Drosophila Stereo-seq datasets, TACTIC achieves
F1-scores of 0.80, 0.94, and 0.46, respectively,
without task-specific fine-tuning across diverse
platforms. Ablation studies show that agent col-
laboration enhances interpretability, reinforcing
the value of structured reasoning. These results
position TACTIC as a generalizable and explain-
able AI framework for spatial omics, requiring no
task-specific fine-tuning.
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1. Introduction

Spatial transcriptomics (Stahl et al., 2016) enables the in
situ analysis of cellular interactions, offering critical insights
into processes such as tissue development and cancer pro-
gression. Central to the interpretation of spatial omics data
is accurate cell type annotation, which requires the integra-
tion of gene expression profiles with spatial localization
cues (Shen et al., 2022; Shi et al., 2023; Khan et al., 2025;
Lu et al., 2025). However, existing methods often operate as
black boxes, offering limited interpretability, an important
shortcoming in biomedical contexts where transparency is
essential for trust, reproducibility, and clinical validation.

The emergence of large language models (LLMs) presents a
promising avenue for addressing this limitation. LLMs have
demonstrated an ability to extract latent structure and logic
from natural language (Zenil et al., 2023; Didolkar et al.,
2024; Yang et al., 2024; Zhang et al., 2025), and their util-
ity has been further expanded through the development of
chain of thought (CoT) prompting and agentic frameworks.
These systems transform LLMs from passive responders
into autonomous agents capable of planning, reasoning, and
task execution (Wei et al., 2022; Wu et al., 2025).

To harness these capabilities in spatial omics, we intro-
duce TACTIC, a novel multi-agent framework designed
specifically for cell type annotation in spatial transcrip-
tomics. TACTIC employs multiple specialized agents that
collaborate to deliver accurate annotations alongside human-
readable justifications. This multi-agent approach enhances
both the reliability and transparency of the annotation pro-
cess.

TACTIC integrates Graph Autoencoder (GAEs) to generate
spatial embeddings from gene expression data and spatial re-
lationships, which are then processed through a multi-agent
Chain-of-Thought (CoT) workflow. In this workflow, agents
engage in dialogue, reconcile diverse perspectives, and pro-
duce robust, interpretable conclusions. Our contributions
are:

* We present TACTIC, a collaborative multi-agent frame-
work that models a principal—assistant bioinformatics
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workflow to annotate cell types in spatial transcrip-
tomics data accurately.

* We leverage GAE-generated spatial context embed-
dings, gene expression levels, and marker genes, using
CoT prompting for LLMs reasoning to generate trans-
parent, biologically grounded predictions.

* Through extensive ablation studies, we identify the key
factors shaping the reliable annotation of the cell types
in the different spatial transcriptomic datasets, by re-
moving or randomizing spatial embeddings, modifying
the agent collaboration and delegation protocols, and
evaluating alternative model configurations.

2. Methods

2.1. Spatial Transcriptomics Datasets & Preprocessing

We evaluated TACTIC - a multi-agent system on three spa-
tial omics datasets, MERFISH (Moffitt et al., 2018), MIBI-
TOF (Hartmann et al., 2021), and Drosophila Stereo-seq
(Qiu et al., 2024), spanning diverse organisms and mea-
surement technologies. For each cell, we extracted spatial
coordinates, cell type labels, and top marker genes iden-
tified via Wilcoxon analysis (top 20 for MERFISH and
Stereo-seq, top 10 for MIBI-TOF). These features serve as
the primary inputs to our multi-agent annotation pipeline.
Detailed dataset statistics and the exact marker-selection
procedures are described in the Appendix A and Appendix
B.1.

2.2. Spatial Context Embedding Generation

To capture each cell’s local microenvironment, we first
built a 30-nearest-neighbor graph based on spatial coor-
dinates. We then reduced each cell’s high-dimensional gene-
expression vector to its first 30 principal components via
PCA. These components and the graph structure were com-
bined into a single data object for input to a graph autoen-
coder with two GCN layers. The resulting 30-dimensional
embeddings capture spatial-transcriptomic structure. We
further summarize each cell’s context by computing the L2
norm of its embedding; this scalar, together with marker-
gene evidence, is passed to our language models. Figure A.4
shows the generated embeddings. Appendix B.2 presents a
detailed description of the spatial context encoding step.

2.3. Multi-Agent Chain-of-Thought Workflow

We designed a two-agent system following a princi-
pal—assistant architecture, implemented using the crewai
package' and Gemini 2.5 Pro (Gemini, 2025) as base LLMs
for both agents. The first agent assumes the role of a ju-
nior bioinformatics researcher; it combines marker-gene

1https ://www.crewai.com

profiles and spatial embeddings to propose a cell-type label,
along with a confidence score reflecting data support. Com-
plementing this role, the second agent is a senior quality
assurance bioinformatician with domain expertise in tran-
scriptomics. This Agent critically evaluates the junior’s
annotations, verifying their biological plausibility by cross-
referencing known gene markers and contemporary litera-
ture. In doing so, it refines the predicted labels and adjusts
confidence scores to enhance the robustness and accuracy
of the overall system. When necessary, the senior Agent can
delegate the task back to the junior Agent, prompting further
analysis or context gathering. This iterative loop continues
until sufficient biological evidence is collected to support a
confident and well-justified cell type classification.

While both agents can optionally query the web via the
Serper API?, we found that disabling external lookups
yields faster inference with no loss in accuracy, so the oper-
ational TACTIC runs without web access.

Together, the agents emulate a human-in-the-loop anno-
tation pipeline that blends exploratory reasoning with ex-
pert validation. We provide a detailed breakdown of each
Agent’s responsibilities and objectives in Appendix B.4. Fi-
nally, we measure annotation performance using standard
classification metrics: accuracy and F1-score.

3. Results & Discussion

3.1. Benchmarking TACTIC across different spatial
technologies

We first benchmarked TACTIC on three spatial-omics
datasets: MIBI-TOF, MERFISH, and Drosophila Stereo-seq.
On the MIBI-TOF dataset, TACTIC showed consistently
strong performance as reported in Table 1, even when de-
tecting rare cell types (Figure A.2). Notably, Fibroblasts
were associated with higher classification error rates. Gene
expression embeddings revealed a clear separation between
major cell types, while spatial embeddings, although broadly
aligned, exhibited signs of overfitting, suggesting potential
limitations in spatial resolution or model generalizability.

Using the MERFISH dataset, which features higher tran-
scriptomic and spatial complexity, agents exhibited a modest
drop in overall performance (Figure A.1). Here rare cell
types were more often mislabeled, reflecting the combined
challenges of class imbalance and greater tissue heterogene-
ity. While gene expression embeddings successfully cap-
tured distinct cell identities, the spatial embeddings failed
to delineate smaller cell populations, possibly reflecting
limitations from tissue-level variability. The Drosophila
Stereo-seq dataset, marked by complex cellular heterogene-
ity, revealed similar trends,again driven down by misclassi-

https://serper.dev
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Figure 1. An overview of the TACTIC workflow for cell type classification: Spatial transcriptomic datasets from multiple databases
and platforms are A) pre-processed to extract cell centroid coordinates and identify the top marker genes per class via differential
expression;(B) a k-nearest-neighbor graph (k=30) is built on those centroids and, together with PCA-reduced expression (30 PCs), fed
into a Graph Autoencoder (GAE) to generate low-dimensional spatial context embeddings; (C), the resulting embeddings, combined with
marker-gene summaries, are assembled into Chain-of-Thought (CoT) prompts for the downstream multi-agent cell-type classification.

Full details of the framework can be seen in Appendix B.4.

fications in rare cell groups.

Table 1. TACTIC Performance metrics across different datasets.

Dataset Accuracy F1 Score
MERFISH 0.83 0.80
MIBI-TOF 0.95 0.94
Drosophila Stereo-seq 0.46 0.46

In general, misclassifications across all datasets stem primar-
ily from class imbalance and high transcriptomic similarity
among certain rare cell types, as observed in (Alsabbagh
et al., 2023), even in agents leveraging merely linguistic
LMMs. This pattern is particularly evident in the MER-
FISH dataset, as shown in Figure C.5 and further supported
by the class distribution in Figure A.lc. Rare cell pop-
ulations such as Endothelial, Ependymal, Microglia, and
Pericytes exhibit either substantial misclassification or com-
plete absence from the predictions. Notably, OD Immature,
arare cell type, is consistently and accurately classified. We
hypothesize that this exception is due to its well-defined tran-
scriptomic signature, characterized by distinct marker genes,
in contrast to the substantial overlap observed among the
other misclassified rare cell types. The same phenomenon
is depicted in the MIBI-TOF and Drosophila stereo-seq

datasets, in Figures C.6 (A.2c) and C.7 (A.3c), respectively.

3.2. Ablation Studies

To understand which components of our pipeline (i.e., spa-
tial context, agent architecture, and model selection) con-
tribute most to these outcomes, we ran a series of ablation
experiments on the MERFISH data. To this end we removed
or randomized spatial embeddings, altered the agent collab-
oration and delegation structure, and evaluated different
model pairings for inference and QA. For each experiment,
we evaluated both agents using the same underlying lan-
guage models, either Google 2.0 Flash (referred to inter-
changeably as the Flash LLM) or Google 2.5 Pro (referred
to as the Pro LLM). The Flash LLM is optimized for low la-
tency, efficient reasoning, and real-time interaction, making
it well-suited for speed-critical tasks. In contrast, the Pro
LLM offers enhanced reasoning capabilities, multimodal
comprehension, and advanced coding proficiency, making
it better equipped for more complex, context-rich scenar-
ios. Due to computational limitations, all ablations were
performed on the MERFISH dataset, which exhibits the
highest degree of spatial stochasticity among the datasets in
our evaluation.

When the spatial norm is removed from the CoT prompt
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provided to the junior agent (Table 2), performance remains
comparable to that of the control experiment. This contrasts
with the findings reported in (Khan et al., 2025), where
spatial norm was shown to have a significant impact. We
attribute this discrepancy to the nature of our multi-agent
setup, where agents engage in collaborative dialogue that
tends to compensate for the absence of this specific con-
textual cue implicitly. The same phenomenon can be seen
when completely randomizing the spatial norm in Table 3.
Multi-agent justifications offer insight into the underlying
reasoning processes that may explain this behavior. As illus-
trated in Listings in Appendix C, the agent’s conversations
often overlook certain pieces of contextual information, such
as the spatial normalization, suggesting that key details can
be diluted or lost during collaborative reasoning.

Table 2. Spatial context ablation results on MERFISH

Model Accuracy F1 Score
Gemini 2.0 Flash 0.680 0.657
Gemini 2.5 Pro 0.840 0.804

Table 3. Randomized spatial control results on MERFISH

Model Accuracy F1 Score
Gemini 2.0 Flash 0.670 0.630
Gemini 2.5 Pro 0.830 0.786

Next, we evaluated the role of the senior QA
agent(Bioinformatician Agent) by (a) removing it entirely
and (b) revoking its ability to delegate back to the junior
agent. As shown in Table 4, neither scenario led to a signif-
icant quantitative change in performance. However, from
a qualitative standpoint, the QA agent’s authority proves
essential. Its ability to demand more thorough and inter-
pretable justifications from the junior agent enhances the
transparency and explainability of the final classifications,
an important factor for downstream validation and scientific
trust.

Table 4. QA Agent ablation results on the MERFISH

Ablation Model Accuracy F1 Score
No QA Agent  Gemini 2.0 Flash 0.750 0.708
No QA Agent Gemini 2.5 Pro 0.830 0.791
No Delegation ~ Gemini 2.0 Flash 0.710 0.664
No Delegation ~ Gemini 2.5 Pro 0.840 0.814

Finally, we evaluated four LLM configurations by varying
the assignment of Flash and Pro models to the Inference and
QA agents. Our goal was to identify the most effective pair-
ing of models for overall performance. As anticipated, the

configuration with both agents running on the Pro model
yielded the highest accuracy (Table 5). Interestingly, as-
signing Pro to the Inference agent and Flash to the QA
agent outperformed the inverse setup. This finding aligns
with our earlier results in Table 4, reinforcing that the QA
agent contributes less to quantitative performance metrics,
despite its qualitative importance to ensure explainability
and oversight.

Table 5. Agent architecture model combinations on the MERFISH
dataset

Configuration Accuracy F1 Score
Flash Inference + Flash QA 0.710 0.681
Pro Inference + Flash QA 0.790 0.771
Flash Inference + Pro QA 0.760 0.725
Pro Inference + Pro QA 0.820 0.779

4. Conclusion & Future Directions

We introduced TACTIC, a novel multi-agent system for ex-
plainable and collaborative cell type classification in spatial
transcriptomics.

TACTIC integrates gene expression and spatial context
through a team of specialized agents, enabling accurate
cell type annotation across diverse platforms. Beyond per-
formance, it generates transparent, human-readable justifi-
cations, tracing the reasoning behind each prediction. This
interpretability makes TACTIC particularly well-suited for
complex, multimodal spatial data, where multiple perspec-
tives and conflicting evidence must be reconciled.

As spatial technologies evolve to capture information across
molecular, cellular, and physiological scales, the need for
systems that can synthesize such data and explain how it
becomes critical. TACTIC’s agentic design is uniquely po-
sitioned to address this surfacing tensions in data and con-
structing a rational path toward resolution.

Looking ahead, TACTIC offers a foundation for broader
applications, including cell-cell communication inference
and spatial neighborhood enrichment, where agent special-
ization and coordination can be further leveraged.

In summary, TACTIC showcases the power of multi-agent
systems to improve classification accuracy and to deliver
interpretable, modular, and extensible solutions for the next
generation of spatial and single-cell transcriptomic chal-
lenges.
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Appendix

A. Supplementary Dataset Information

To evaluate the TACTIC multi-agent system, we employed three diverse and well-established spatial omics datasets:
MERFISH (Moffitt et al., 2018), MIBI-TOF (Hartmann et al., 2021), and Drosophila Stereo-seq (Qiu et al., 2024). These
datasets span a range of organisms, tissue types, molecular modalities, and spatial complexities, allowing us to assess model
generalizability and robustness across different biological contexts comprehensively.

A.1. MERFISH Dataset

The MERFISH (Multiplexed Error-Robust Fluorescence In Situ Hybridization) dataset (Figure A.1) profiles single-cell
spatial transcriptomics in the hypothalamic preoptic region of the mouse brain. It includes 73,655 spatially resolved spots,
each described by 161 transcriptomic features. The original cell type annotations were aggregated into nine macro-labels
to account for biologically meaningful groupings and reduce noise from rare subpopulations. MERFISH serves as a
representative of large-scale, high-resolution transcriptomic spatial data with complex cell-type heterogeneity and spatial
structure.
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Figure A.1. Visualization of the MERFISH dataset via A) Principle Component analysis, B) UMAP, and C) the fraction of cell types
according to the annotation provided in the original publication.
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A.2. MIBI-TOF Dataset

MIBI-TOF (Multiplexed Ion Beam Imaging by Time-of-Flight) captures spatial proteomic data from the immune microen-
vironment at the invasive margin of human colorectal carcinoma. The dataset (Figure A.2) consists of 3,309 spots, each
characterized by 36 protein expression features. Cell types were grouped into five macro-labels to reflect higher-order
immune and stromal cell categories. This dataset presents unique challenges in spatial immune profiling due to high cell-type
similarity and the complex tumor-immune interface.
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Figure A.2. MIBI-TOF dataset: PCA, UMAP, embeddings, and cell counts.
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A.3. Drosophila Stereo-seq Dataset

The Drosophila Stereo-seq dataset (Figure A.3) captures the spatial transcriptomic landscape of Drosophila melanogaster
embryos during developmental stages E9—10 h. It contains 24,327 spatial spots, each annotated with 8,484 gene expression
features. Cell type annotations were aggregated into 13 macro-labels based on developmental lineages and spatial domains.
With its high dimensionality and dynamic spatial organization, this dataset presents a unique opportunity to test model
performance in early developmental biology and non-mammalian systems.
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Figure A.3. Stereo-seq dataset: PCA, UMAP, embeddings, and cell counts.



2 TACTIC: An Explainable Multi-Agent Architecture for Classification & Interpretable Reasoning in Spatial Transcriptomics

UMAP of GAE Embeddings Colored by Cluster

« 0D Mature
< 0D Immature
= Inhibitory
«  Excitatory
«  Microglia
« Astrocyte
«  Endothelial

Pericytes
Ependymal
o
e
=
=
UMAPL
(a) MERFISH
UMAP of GAE Embeddings Colored by Cluster
124 «  Epithelial
~ - A o «  Myeloid
A
10 4 A~ "’.n‘,-' + Teell
t&i Ve ’- "' «  Fibroblast
yl R & «  Endothelial
, AN :
4 2 ) ;\
<\ L% !
H 4
57 \; i
A .
> Ly R
[ <'.a\ FIARY 3
= 9 - i, e
3 54“ L \:jf H f\ "~
2 AF H A 1
#“1\ J ¥ o v . - Y'.';
a . TIR i
- ..
04 F-. “ .\‘“_ \';f'? j
/ e ;
“ Y AW
24 F) ‘,
—44 .
s 0 5 10 15
UMAPL

(b) MIBI-TOF

UMAP of GAE Embeddings Colored by Cluster

204 + Tracheal System
Somatic Muscle
+ Head Sensory Complex
+  Neuren
Plasmatocytes
151 < Yok
Salivary Gland
Amnioserosa
Epidermis
10 4 Ventral Epidermis
~ +  Visceral Muscle
% Midgut
3 +  Crystal Cell
54
oA
—5

(c) Stereo-seq

Figure A.4. UMAP of Spatial Embeddings for Different Spatial Transcriptomics Datasets



£ TACTIC: An Explainable Multi-Agent Architecture for Classification & Interpretable Reasoning in Spatial Transcriptomics

B. Multi-Agent System Details

The multi-agent system inputs a spatial transcriptomic dataset and outputs a predicted cell type label for each cell iteratively.
For each cell, a CoT prompt is generated with cell markers and spatial encoding sc res. Markers and spatial encoding are
generated beforehand.

In the following section, we expand on each step and how it was done, including: DE Analysis and Marker identification,
Spatial graph encoding, CoT prompting, Agent assembly and task assignment, and Outputs.

B.1. Spatial Transcriptomics Datasets & Preprocessing

To comprehensively assess the classification capabilities of multi-agent system with TACTIC framework, we employed
three spatial omics datasets: MERFISH (Moffitt et al., 2018), MIBI-TOF (Hartmann et al., 2021) as curated by (Palla et al.,
2022), and the Drosophila Stereo-seq dataset (Qiu et al., 2024). Each dataset offers distinct biological contexts and spatial
complexities, enabling a rigorous evaluation across varied modalities and organ sms. More information about these datasets
can be seen in Appendix A.

From each dataset, we extracted three key pieces of information per cell: spatial coordinates, cell type annotation, and
transcriptomic markers. To address the inherent sparsity of single-cell transcriptomic profiles, we performed differential
expression analysis using the Wilcoxon signed-rank test and identified top marker genes for each cell type. Specifically,
we selected the top 20 marker genes for the MERFISH and Drosophila Stereo-seq datasets, and the top 10 for MIBI-TOF,
which contains a considerably smaller gene set.

B.2. Spatial Context Embedding Generation

To incorporate spatial context into our classification framework, we begin by constructing an undirected k-nearest neighbor
(k-NN) graph based on the spatial coordinates of individual cells, linking each cell to its 30 nearest neighbors. This graph
structure effectively captures local spatial topology and is encoded as an adjacency matrix representing proximal cellular
relationships.

Simultaneously, we apply Principal Component Analysis (PCA) to the gene expression profiles, preserving the top 30
components to reduce dimensionality while retaining key variance. These reduced expression features, together with the
spatial graph, are integrated into a PyTorch Geometric object.

We then employ a Graph Autoencoder (GAE) architecture, composed of two Graph Convolutional Network (GCN) layers,
to learn low-dimensional representations that encapsulate the combined structure of gene expression and spatial organization.
The GAE is optimized to reconstruct the graph’s edge structure, ensuring that the learned embeddings faithfully represent
each cell’s local neighborhood. The resulting 30-dimensional latent vectors serve as compact encodings of each cell’s spatial
and transcriptomic context.

B.3. Multi-Agent Chain-of-Thought Workflow

To enhance interpretability within the language model-driven classification pipeline, we compute the norm of each embedding
vector, using it as a scalar summary of a cell’s spatial environment, such as local density or isolation. This scalar is
incorporated into the CoT prompt provided to the Agent, enriching the input with spatial cues that augment the raw gene
expression data. By translating complex spatial relationships into a form that can be naturally integrated into textual
reasoning, this method effectively bridges the domains of spatial transcriptomics and natural language processing.

The customized CoT prompt is described as follows:

Listing B.1. CoT Prompt Template iteratively modified with results of Cell Markers and Spatial Embedding score for each cell.
"We are classifying a {dataset_name} cell using known marker genes and
spatial context.\n”
”Chain—of-thought:\n”
f71. The cell expresses the following marker genes: {marker_genes}.\n’
f72. GAE embedding norm is “{spatial_-norm:.2f}, indicating local
neighborhood structure.\n”

f73. Possible cell classes are: {str(cell_classes)}\n”

i
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)

”4. Combining the marker genes, spatial distribution , and possible cell
classes , search the web if needed, and generate the most probable
cell class based on the given information. If you have multiple
strong guesses, write each with a thorough justification.\n”

With that in hand, the three components (1) the marker list, (2) the spatial embeddings, and (3) the generated prompt, are
then used as foundational inputs for the rest of our multi-agent system, TACTIC.

B.4. Multi-Agent Assignments

TACTIC consists of a two-agent system following a principal—assistant architecture. In our architecture, we name the
principal ”Senior Quality Assurance Bioinformatician” and the assistant “Bioinformatics Researcher”. We outline the tasks
assigned from each, their goals, backstory, whether they can delegate, the under-the-hood LLM, and the description of their

outputs:

¢ Bioinformatics Researcher

Goal: Generate the most probable cell type(s) for a given dataset cell using a combination of known marker genes,
spatial context, and reference databases. Additionally, provide a justification for each proposed label with clear
biological reasoning.

Backstory: A junior computational biologist at a spatial genomics lab. Your focus is on decoding cellular identity.
You are trained in marker gene databases, cell ontology, and spatial neighborhood anal sis. You are precise and
cautious, always providing thorough justifications. When uncertain, you prefer to suggest multiple plausible
options with confidence scores. You know how to search databases like NCBI, PanglaoDB, CellMarker, and more
to support your findings.

Can Delegate? No.

LLM Used: Gemini-2.5-pro-preview-05-06.

Output Description: Given the predefined prompt described in section B.3, produce a dictionary of possible cell
type predictions, each with a confidence score and justification based on marker gene expression and spatial con
ext. If multiple hypotheses are plausible, include all and explain the ambiguity. All results are to be stored in a
prediction.json file.

¢ Senior Quality Assurance Bioinformatician

Goal: Review and refine the output of the junior Agent. Ensure all predicted cell types are biologically plausible,
appropriately justified, and consistent with known gene markers and spatial distributions.

Backstory: You are a senior scientist and quality assurance expert with 15+ years of experience in transcriptomics,
including single-cell and spatial omics technologies. You scrutinize every prediction for accuracy, check against
the latest gene marker studies, and adjust both labels and confidence scores where needed. Your mission is
scientific precision and trustworthy results.

Can Delegate? Yes.

LLM Used: Gemini-2.5-pro-preview-05-06.

Output Description: Carefully evaluate the proposed cell types from the Bioinformatics Researcher agent. Check
the accuracy of gene marker claims, confidence score calibration, and biological plausibility. Revise, reorder, or
remove entries if needed. Include review notes explaining any changes or criticisms. Finally, present a single
word, just the predicted class label.

B.5. Evaluate the Results

Finally, for each predicted cell label, the accuracy and F1-scores are computed, and the confusion matrix and classification
report are generated and visualized. Additionally, we visualize the gene expression embeddings as well as the latent spatial
embeddings.

11
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C. Detailed Presentation of Results
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Figure C.5. Classification performance of the MERFISH dataset
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Figure C.6. Classification performance of the MIBI-TOF dataset
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Figure C.7. Classification performance of the Drosophila Stereo-seq dataset
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Listing C.2. Example of cell classification reasoning output on the bioinformatician researcher agent on the MERFISH dataset.
# Agent: Bioinformatics Researcher
## Final Answer:
{
“predictions ”: [
{
“cell_type”: ”OD Mature (Mature Oligodendrocyte)”,
”confidence”: 0.55,
“justification”: “This cell expresses multiple canonical and highly
specific markers for mature oligodendrocytes: Mbp (Myelin Basic Protein
), Ermn (Ermin), Gjc3 (Connexin 29), and Opalin (Oligodendrocytic
Myelin Paranodal And Nodal Axon ensheathing Protein). These genes are
fundamental to oligodendrocyte identity and their primary function of
myelination. Additional markers like Ndrgl (N-Myc Downstream Regulated
1) and Sox8 (SRY-Box Transcription Factor 8) can also be associated
with the oligodendrocyte lineage (Sox8 more with development, Ndrgl
with myelination). The GAE embedding norm of ~14.43, indicating local
neighborhood structure , is consistent with the organized nature of
oligodendrocytes forming myelin sheaths around axons within brain
tissue . \n\nAmbiguity/Challenges: The primary challenge to this
classification is the concurrent expression of a significant number of
potent neuronal markers: Cck (Cholecystokinin), Trh (Thyrotropin
Releasing Hormone), Gnrhl (Gonadotropin Releasing Hormone 1), Sema4d (
Semaphorin 4D, though also in ODs), Ucn3 (Urocortin 3), Omp (Olfactory
Marker Protein), Sst (Somatostatin), Etvl (ETS Variant Transcription
Factor 1), and Adcyapl (Adenylate Cyclase Activating Polypeptide 1).
The co—expression of such a diverse suite of neuronal genes,
particularly neuropeptides and the highly specific Omp, is highly
atypical for a canonical mature oligodendrocyte. This unusual gene
signature could suggest a specific reactive state of the
oligodendrocyte , a rare or uncharacterized subtype, or potential
contamination/doublet if the input data preparation allowed for it (
though we assume a single cell as per the task). The Omp marker is
especially puzzling if the tissue sample is not from an olfactory -
related brain region, as it’s a hallmark of olfactory sensory neurons.”
}
{

“cell_type”: ”Neuron (Excitatory or Inhibitory)”,
”confidence”: 0.40,
”justification”: “This cell expresses a broad array of genes

characteristically associated with neuronal identity and function.
These include several neuropeptides such as Cck, Sst, Trh, Gnrhl, Ucn3,
and Adcyapl, which are synthesized and released by neurons.
Furthermore , it expresses Etvl, a transcription factor often found in
specific excitatory neuron populations, and Omp (Olfactory Marker
Protein), a highly specific marker for olfactory sensory neurons (its
relevance is high if the tissue is from an olfactory area). Sema4dd is
also expressed in neurons. The GAE embedding norm of 7"14.43, suggesting
local neighborhood structure , is consistent with the organization of
neurons into circuits , layers, or nuclei within the brain. The neuronal
markers suggest a metabolically active neuron, possibly peptidergic.
The mix of markers like Etvl (often excitatory) and Sst (typically
inhibitory) makes a more precise Excitatory/Inhibitory sub-
classification difficult without further information.\n\nAmbiguity/
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Challenges: The most significant challenge to this classification is
the strong expression of canonical oligodendrocyte markers: Mbp, Ermn,
Gjc3, and Opalin. These genes are integral to myelin formation and are
defining features of oligodendrocytes, not typically expressed by
neurons. For this cell to be a neuron, it would represent a highly
unusual or aberrant state characterized by the ectopic expression of
these myelin—associated genes. Such a profile is not consistent with
known neuronal subtypes.”

}
I,

“reasoning _for_exclusion_of_other_types”: ”Other cell types from the provided
list (> Astrocyte’, ’Endothelial ’, ’'Ependymal’, ’Microglia’, ’OD Immature ’,
"Pericytes ) are considered significantly less probable due to the lack of
strong positive marker gene expression for these lineages. For instance:\n-
Astrocyte: No clear expression of canonical markers like Gfap, Aldhlll, or
Slcla2.\n- Endothelial: No clear expression of markers like Cldn5, Pecaml,
or Fltl.\n- Ependymal: No clear expression of markers like Foxjl or
Ccdcl153.\n— Microglia: While Semad4d can be found in microglia, core
microglial markers like Aifl (Ibal), Tmemll9, or Cx3crl are absent.\n- OD
Immature (Oligodendrocyte Precursor Cell): While Lparl and Sox8 are
expressed (consistent with OPCs/immature ODs), the strong expression of
late —stage maturation markers like Mbp and particularly Opalin points more
towards a mature oligodendrocyte rather than an OPC. OPCs typically do not
express high levels of Opalin.\n- Pericytes: No clear expression of markers
like Pdgfrb, Rgs5, or Cspgd4.\n\nThe gene expression profile is
overwhelmingly dominated by markers strongly associated with either mature
oligodendrocytes or neurons, making these two categories the most plausible
, albeit conflicting , hypotheses.”,

“overall_assessment”: ”"The gene expression profile for this cell is highly
ambiguous, presenting strong evidence for both mature oligodendrocyte and
neuronal identities. This could be indicative of a rare cell state, a cell
undergoing a highly unusual transcriptional program, or potentially a
technical artifact such as a doublet (signal from two closely apposed cells
, one oligodendrocyte and one neuron). Given the task to classify as a
single cell from the provided list, both ’OD Mature’ and ’Neuron (
Excitatory or Inhibitory)’ are presented as possibilities , with
justifications highlighting the supporting and conflicting evidence for
each. The GAE embedding norm indicates a structured local environment but
does not strongly differentiate between these two possibilities without
further dataset-specific context.”

Listing C.3. Example of cell classification reasoning output on the senior quality assurance bioinformatician agent on the MERFISH
dataset.

# Agent: Senior Quality Assurance Bioinformatician

## Final Answer:

OD Mature

True=0OD Mature, Pred=0OD Mature
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Listing C.4. Example of cell classification reasoning output on the bioinformatics researcher agent on the MIBI-TOF dataset.
# Agent: Bioinformatics Researcher
Final Answer:

{

"Tcell”: {

}

2

”confidence”: 0.90,
”justification”: “The cell is most probably a T-cell based on the strong

expression of the pan-leukocyte marker CD45 and the definitive T-cell
lineage marker CD3. Further supporting a T-cell identity is the
expression of CD4 and CD8. While mature peripheral T-cells are typically
CD4+ (helper) or CD8+ (cytotoxic), the co—expression could indicate a CD4
+CD8+ double—-positive (DP) T-cell (which can be found peripherally , often
highly activated or in specific pathological states), or it may signify
that one of these markers is dominantly expressed while the other is
present at a lower, yet detectable, 1 vel. The expression of PDI (
Programmed Death—-1) and CD57 points towards an activated , terminally
differentiated , and potentially exhausted or senescent T-cell phenotype.
This state is common in chronic antigenic stimulation, such as in tumor
microenvironments or chronic infections. The metabolic markers HKI (
Hexokinase 1) and PKM2 (Pyruvate Kinase M2) are consistent with a high
metabolic activity , characteristic of activated T-cells. Vimentin
expression , while classically mesenchymal, is also found in activated
lymphocytes, including T-cells. The GAE embedding norm of 71.30 suggests
the cell is integrated within a local neighborhood structure , indicative
of its presence in an organized tissue microenvironment where cell —cell
interactions occur. The primary confounding marker is CDI4, which is a
canonical marker for monocytes and macrophages. However, its presence on
a cell with such a strong T-cell signature can be explained by atypical
expression. Literature suggests that T-cells can acquire CDI4 from
myeloid cells via trogocytosis (antigen—-presenting cells in close contact
, plausible given the GAE norm) or, more rarely , express CDI4 de novo
under specific inflammatory conditions. Given the overwhelming evidence
for a T-cell lineage and activation state , this atypical CDI4 expression
is considered the most parsimonious explanation. Therefore, the cell is
classified as a T-cell, likely in an activated/exhausted state , with an
unusual CDI4 expression profile potentially influenced by its
microenvironment.”

yeloid”: {
”confidence”: 0.08,
“justification”: “This cell expresses CD45 (pan—leukocyte) and CDI14 (monocyte

/macrophage marker), which are characteristic of the myeloid lineage.
Additionally , CD4 can be expressed by some myeloid cells (e.g.,
macrophages, some dendritic cells), and PDI, vimentin, HKIl, and PKM2 can
also be found on activated myeloid cells. However, the strong expression
of CD3, a definitive T-cell co-receptor, is highly uncharacteristic of
myeloid cells. Furthermore, the presence of CD8 (typically cytotoxic T-
cells/NK cells) and CD57 (marker of terminal differentiation/senescence
on T-cells/NK cells) is also not typical for conventional myeloid
populations like monocytes or macrophages. For this cell to be of myeloid
origin, it would require the aberrant expression of multiple key T-cell
lineage and differentiation markers (CD3, CD8, C57). This scenario is
considered less probable than a T-cell atypically expressing a single
myeloid marker (CDI14), especially in a complex tissue microenvironment
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suggested by the GAE embedding norm.”
t
"Endothelial ”: {

”confidence”: 0.005,

“justification”: “Endothelial cells are typically CD45 negative. The strong
expression of CD45, along with T-cell specific markers like CD3, CD4, and
CD8, makes an endothelial cell identity highly unlikely.”

}
"Epithelial ”: {

”confidence”: 0.005,

“justification”: “Epithelial cells are typically CD45 negative and express
cytokertins. The strong expression of CD45, along with T-cell specific
markers like CD3, CD4, and CD8, makes an epithelial cell identity highly
unlikely .”

}
”Fibroblast”: {

”confidence”: 0.01,

”justification”: “Fibroblasts are mesenchymal cells, typically CD45 negative,
and express markers like vimentin (which this cell has) but not
hematopoietic lineage markers. The strong expression of CD45, along with
T-cell specific markers like CD3, CD4, and CD8, makes a fibroblast
identity highly unlikely , despite vimentin expression, which can be
shared .”

Listing C.5. Example of cell classification reasoning output on the senior quality assurance bioinformatician agent on the MIBI-TOF
dataset.

# Agent: Senior Quality Assurance Bioinformatician

## Final Answer: Tcell

True=Tcell , Pred=Tcell
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Listing C.6. Example of cell classification reasoning output on the bioinformatician researcher agent on the Drosophila Stereo-seq dataset.
# Agent: Bioinformatics Researcher
## Final Answer:

{

“predictions ”: [
“cell_type”: ”Plasmatocytes”,
”confidence_score”: 0.90,
“justification”: “The gene expression profile strongly supports the

identification of this cell as a Plasmatocyte, a type of Drosophila
hemocyte. \n\n#+Key Supporting Marker Genes:x=\nl. *x«NimC4:xx This
gene encodes a Nimrod C family protein, which is a well-established
marker for plasmatocytes and is involved in phagocytosis. Its
expression is a strong indicator of plasmatocyte identity.\n2. =#xPpn (
Pericardin):x% Encodes a collagen IV-like extracellular matrix (ECM)
protein. Plasmatocytes are known to synthesize and secrete ECM
components, and Pericardin is associated with hemocytes and basement
membranes. \n3. #xCG6310 (Glutactin):** Another ECM protein known to
be expressed by hemocytes, including plasmatocytes, and the fat body.\n
\n=xx Additional Supporting Evidence:xx\ns= #*xHigh Secretory Activity ==
The expression of multiple genes associated with the endoplasmic
reticulum and protein folding/secretion (Pdi, Calr, CG43799 (PDI-like 1
A), Fkbpl4, ERp60) suggests high activity in protein synthesis and
secretion. This is consistent with plasmatocytes producing and
secreting BCM proteins , antimicrobial peptides, and other immune
effector molecules.\n= #* Phagocytic/Lysosomal Activity:%% Expression
of xxSap—-r*% (Sphingolipid activator protein receptor), involved in
lysosomal function, aligns with the phagocytic role of plasmatocytes.\n
* xxDynamic Cytoskeleton:xs Expression of #xchic#x (Profilin) and ==
sn*#* (fascin), both involved in actin cytoskeleton organization,
supports cell motility , morphological changes, and phagocytosis, which
are characteristic functions of plasmatocytes.\nx #x General Actin
Expression:x* *xxActS5C#% and #xAct42Ax**x are abundant actin isoforms,
providing the structural components for these cytoskeletal activities.)\
ns #xscf (stem cell factor):xx While its role in Drosophila is less
defined than in vertebrates , its vertebrate homolog is involved in
hematopoiesis , which could be relevant for hemocyte maintenance or
function.\n\n=xSpatial Context (GAE embedding norm ~ 1.41):sx\nThis
value indicates that the cell possesses a defined local neighborhood
structure within the GAE embedding. This means the cell is likely

surrounded by cells with similar transcriptional profiles (e.g., other
plasmatocytes in a cluster) or cells with which it is functionally
interacting (e.g., at a site of inflammation, injury, or tissue

surveillance). This context is consistent with the known behavior of
plasmatocytes.\n\n#+Discussion of xfaxs (failed axon connections)
Expression:xx\nThe expression of xfax=, typically a neural-specific
marker involved in cholesterol esterification , is an interesting
finding in a cell otherwise strongly identified as a plasmatocyte.
Several possibilities could explain this:\nl. =xNeuro—immune
Interaction:*x The plasmatocyte might be interacting with neural tissue
(neurons or glia). Drosophila hemocytes are known to interact with the
nervous system, especially during development, injury , or infection.
The GAE norm supports such localized interactions.\n2. =xSpecific
Plasmatocyte Subtype/State:xx This could represent a specific subtype
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s
{

of plasmatocyte or a particular activation state that involves =faxs=
expression , possibly related to functions at the interface with the
nervous system or specific metabolic requirements.\n3. =xUndocumented
Expression:x* sfaxs might have broader expression patterns or roles
than currently documented, including low-level or context—-dependent
expression in certain hemocyte populations.\n\nDespite the =fax=
expression , the collective weight of evidence from multiple canonical
plasmatocyte markers (NimC4, Ppn, CG6310) and functional pathway
indicators (secretion, phagocytosis, motility) makes ’Plasmatocytes’
the most probable cell type. The =fax+ expression warrants further
investigation as it might highlight a specific functional context or
subtype of plasmatocyte.”

“cell_type”: ”Neuron”,
”confidence_score”: 0.15,
”justification”: "The expression of =xxfax (failed axon connections)=:x, a

known neural-specific marker involved in cholesterol esterification and
axon guidance, provides some evidence for a neuronal identity. =
Akap200#% is also expressed in the nervous system, among other tissues.
\n\ns+However, this hypothesis is significantly weaker due to:xx\nl.
#%Presence of Strong Non-Neural Markers:s* The cell strongly expresses
#*%NimC4 %%, a canonical plasmatocyte (hemocyte) marker. It also
expresses =xPpn (Pericardin)=* and #+xCG6310 (Glutactin)=*=+, ECM proteins
typically produced by hemocytes and fat body, not primarily neurons.\
n2. =«xHigh Secretory and Phagocytic Profile:x% The suite of genes
indicating high ER activity (Pdi, Calr, ERp60, etc.) and potential
phagocytic/lysosomal activity (Sap-r) is more characteristic of
secretory immune cells like plasmatocytes than typical neurons,

although some neuronal subtypes can be secretory.\n3. =xLack of Other
Core Neuronal Markers:xx While =faxs* is present, a broader signature of
neuronal identity (e.g., specific neurotransmitter pathway genes, ion

channels , other pan—neuronal markers like =xelavx or #nSybx) is not
evident from the provided list, which would be expected for a
definitive neuronal classification.\n\n#*xSpatial Context (GAE embedding
norm ~ 1.41):xx\nIf this cell were a neuron, its neighborhood might
consist of other neurons or glial cells. The =fax* expression could be
consistent with this. \n\n#x*Conclusion:*+ While xfax=* is a notable
neural marker, its presence is overshadowed by a much stronger and
broader signature for plasmatocytes. The neuronal hypothesis is less
likely unless =fax# is considered in isolation , which would ignore
substantial contradictory evidence.”

Listing C.7. Example of cell classification reasoning output on the senior quality assurance bioinformatician agent on the Drosophila
Stereo-seq dataset.

# Agent:

Senior Quality Assurance Bioinformatician

## Final Answer:
Plasmatocytes
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True=Plasmatocytes , Pred=Plasmatocytes

21



