
Under review as a conference paper at ICLR 2023

ATTENTION FLOWS FOR GENERAL TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we study the computation of how much an input token in a Trans-
former model influences its prediction. We formalize a method to construct a flow
network out of the attention values of encoder-only Transformer models and extend
it to general Transformer architectures, including an auto-regressive decoder. We
show that running a maxflow algorithm on the flow network construction yields
Shapley values, which determine a player’s impact in cooperative game theory. By
interpreting the input tokens in the flow network as players, we can compute their
influence on the total attention flow leading to the decoder’s decision. Additionally,
we provide a library that computes and visualizes the attention flow of arbitrary
Transformer models. We show the usefulness of our implementation on various
models trained on natural language processing and reasoning tasks.

1 INTRODUCTION

The Transformer (Vaswani et al., 2017) is the dominant machine learning architecture in recent
years, finding application in NLP (e.g., BERT (Devlin et al., 2019), GPT-3 (Brown et al., 2020), or
LaMDA (Collins and Ghahramani, 2021)), computer vision (see Khan et al. (2021) for a survey),
mathematical reasoning (Lample and Charton, 2019; Han et al., 2021), or even code and hardware
synthesis (Chen et al., 2021; Schmitt et al., 2021). The Transformer relies on attention (Bahdanau
et al., 2015) that mimics cognitive attention, which sets the focus of computation on a few concepts at a
time. In this paper, we rigorously formalize constructing a flow network out of attention values (Abnar
and Zuidema, 2020) and generalize it to models, including a decoder. While theoretically yielding a
Shapley value (Shapley, 1953) quite trivially, we show that this results in meaningful explanations for
input tokens’ influence on the total flow affecting a Transformer’s prediction.

Its applicability in various domains has made the Transformer architecture incredibly popular. Models
are easily accessible for developers around the world, for example at huggingface.co (Wolf
et al., 2019). However, blindly using or fine-tuning these models might lead to mispredictions
and unwanted biases, which will have a considerable negative effect on their application domains.
The sheer size of the Transformer models makes it impossible to analyze the networks by hand.
Explainability and visualization methods, e.g., Vig (2019), aid the machine learning practitioner and
researcher in finding the cause of a misprediction or revealing unwanted biases. The training method
or the dataset can then be adjusted accordingly.

Abnar and Zuidema (2020) introduced Attention Flow as a post-processing interpretability technique
that treats the self-attention weight matrices of a Transformer encoder as a flow network. This
technique allows analyzing the flow of attention through the Transformer encoder: Computing the
maxflow for an input token determines the impact of this token on the total attention flow. Ethayarajh
and Jurafsky (2021) discussed a possible relation of the maxflow computation through the encoder
flow network to Shapley values, which is a concept determining a player’s impact in cooperative
game theory and can be applied to measure the importance of a model’s input features. However, the
lack of a clear formalization of the underlying flow network has made it difficult to assess the validity
of their claims, which we aim to address in this work.

We extend our formalization of the approach to a Transformer-model-agnostic technique, including
general encoder-decoder Transformers and decoder-only Transformers such as GPT models Radford
et al. (2018). While, after applying a positional encoding, the encoder processes the input tokens as
a whole, the decoder layers operate auto-regressively, i.e., a sequence of tokens will be predicted
step-by-step, and already predicted input tokens will be given as input to the decoder. This results in a

1

huggingface.co

Under review as a conference paper at ICLR 2023

...

s

t

(a) With |L|+1 node columns, |L| edge columns, I ′ =
{i5} and J = {1, 3, 5, 6}. The red node depicts the
input token for which the maximum flow is computed.
The blue node represents the terminal node t.

...

t

s

(b) Input token set O′ = {o2} and embedding t,
where the output token o5 is currently predicted. The
first “input” token, i.e., o1 is the special start token of
the decoder.

Figure 1: Encoder attention in a flow network (left) and decoder attention in a flow network (right).

significantly different shape of the flow network and, in particular, requires normalization to account
for the bias towards tokens that were predicted later than others. We account for the auto-regressive
nature of the decoder by ensuring positional independence of the computed maxflow values. We
implemented our constructions as a Python library, which we will publish under the MIT license.
In summary, our contributions are the following. We formalize encoder-only attention flow and
generalize the approach to encoder-decoder and decoder-only Transformers in Section 2. Furthermore,
we use the formalization to construct an explicit algorithm for attention flow computation and analyze
its complexity. In Section 3, we show that the computed attention flow values are Shapley values for
all three architectures. Section 4 introduces a tool to compute and visualize attention flow for arbitrary
Transformers. We report on qualitative and quantitative experiments that show the effectiveness of
our approach, including token bias and single-head attention analyses.

Related Work. We would like to emphasize the work on which we build: Abnar and Zuidema (2020)
introducing attention flow for Transformer encoders and Ethayarajh and Jurafsky (2021) drawing a
possible connection between encoder attention flows and Shapley values. An explainability overview
is given by Samek et al. (2017) and Burkart and Huber (2021). An overview over Shapley value
formulations for machine learning models is given by Sundararajan and Najmi (2020), which are not
restricted to Transformer models and do not include attention flow (Lindeman, 1980; Grömping, 2007;
Owen, 2014; Owen and Prieur, 2017; Štrumbelj et al., 2009; Štrumbelj and Kononenko, 2014; Datta
et al., 2016; Lundberg and Lee, 2017; Lundberg et al., 2018; Aas et al., 2019; Sun and Sundararajan,
2011; Sundararajan et al., 2017; Agarwal et al., 2019). Shapley values are also used for the valuation
of machine learning data (Ghorbani and Zou, 2019). Raw attention values can be visualized, e.g., Vig
(2019) and Wang et al. (2021). Chefer et al. (2021) assign local relevance based on the Deep Taylor
Decomposition principle (Montavon et al., 2017).

2 ATTENTION FLOW

Attention Flow (Abnar and Zuidema, 2020) is a post-processing interpretability technique that treats
the self-attention weight matrices of the Transformer encoder as a flow network and returns the
maximum flow through each input token. Formally, a flow network is defined as follows.

Definition 1 (Flow Network). Given a graph G = (V,E), where V is a set of vertices and E ⊆ V ×V
is a set of edges, a flow network is a tuple (G, c, s, t), where c : E → R∞ is the capacity function
and s and t are the source and terminal (sink) nodes respectively. A flow is a function f : E → R
satisfying the following two conditions: Flow conservation: ∀v ∈ V \{s, t}. xf (v) = 0, where
xf : V → R is defined as xf (u) = Σv∈V f(v, u), and capacity constraint: ∀e ∈ E. f(e) ≤ c(e).

The value of flow |f | is the amount of flow from the source node s to the terminal node t: |f | =∑
v:(s,v)∈E fsv. For a given set K of nodes, we define |f(K)| as the flow value from s to t only

passing through nodes in K: |f(K)| =
∑

v:(s,v)∈E,v∈K fsv. We define |fo(v)| to be the total outflow
value of a node v and |fi(v)| to be the total inflow value of a node v. In optimization theory, the
maximum flow problem max (|f |) (Harris and Ross, 1955) is to find flows that push the maximum
possible flow value |f | from the source node s to the terminal node t, which we denote by fmax .

2

Under review as a conference paper at ICLR 2023

2.1 ENCODER ATTENTION FLOW

Given an encoder-only Transformer model, such as the BERT (Devlin et al., 2019) model family, with
H attention heads, L layers, M input tokens I = {i1, . . . , iM} and the resulting self-attention ten-
sor AE ∈ RH×L×M×M . For some X ∈ N, we define [X] as the set {1, . . . , X}. For a set of
positions J , a subset of input tokens I ′ ⊆ I and subset of heads H ′ ⊆ H , we construct a flow
network Fenc(AE , I ′, J) = (G, c, s, t) as follows:

V := (I × [L+ 1]) ∪ {s, t} , c((ij , l), v
′) :=

{
1
H′

∑H′

h=1 AE
h,l,k,j v′ = (ik, l + 1)

∞ v′ = t
,

E := {((ij , l), (ik, l + 1)) | ij , ik ∈ I ∧ l ∈ [L+ 1]} ∪ {((ij , L+ 1), t) | ij ∈ I ∧ j ∈ J}
∪ {(s, (i′, 0)) | i′ ∈ I ′} .

We visualize this flow network translation in Figure 1a. The flow network consists of L+ 1 columns
of nodes and L columns of edges. The attention values are encoded as capacities on the edges. Thus
the underlying graph of the flow network requires one additional column of nodes. Computing the
maximum flow through this network determines the contribution of the input tokens I ′ to the attention
flow towards the final encoder embeddings given by J . Note that the nodes in columns greater than
1 correspond to encoder embeddings and can not be interpreted as input tokens anymore. Residual
connections can be taken into account as proposed by Abnar and Zuidema (2020), i.e., by adding
an identity matrix I and re-normalize it as 0.5A + 0.5I . By setting the start node s successively to
singleton sets containing only a single input token and all final embeddings to t, we can compute
the encoder flow for every encoder input token as introduced by Abnar and Zuidema (2020). The
encoder flow network construction can also be used for models including a classification task (see
Section 4). To determine the influence of input tokens on the attention flow towards deciding the
class, the terminal node t is only connected to the final embedding of the classification token.

2.2 DECODER ATTENTION FLOW

Generative Transformer models that involve a decoder require a significantly different shape of flow
network. We begin by investigating decoder-only models, with H attention heads, L layers, N “out-
put” tokens O = {o1, . . . , oN} and the self-attention tensor AD ∈ RH×L×N×N . Since we consider
decoder-only models, a prefix subset Oinput ⊆ O will be given as a problem input to the neural
network model. Note that the first output token is always a special start token. For a set of output
tokens O′ ⊆ O, the position n of output token on ∈ O and subset of heads H ′ ⊆ H , the construction
of a flow network Fdec(AD, O′, n) = (G, c, s, t) follows the structure of the decoder self-attention:

V := O × [L+ 1] , E := {(oj , l), (ok, l + 1)) | oj , ok ∈ O ∧ l ∈ [L+ 1] ∧ j ≤ k} ,

c((oj , l), (ok, l + 1)) :=
1

H ′

H′∑
h=1

AD
h,l,k,j , s := {(s, (o′, 0)) | o′ ∈ O′} , t := (on−1, L+ 1) .

We visualize the construction in Figure 1b. Because of the auto-regressive nature of the Transformer
decoder, we compute the maxflow to the last embedding of the decoder as this embedding will
be used in the Transformer to predict the next token. The auto-regression, however, requires a
normalization to account for the bias towards tokens that were predicted later than others (later
predicted tokens have more incoming edges). Intuitively, we require that the maxflow computation
for any sub flow network F ′ constructed from the decoder flow network F to be independent of the
absolute position of F ′ in F . Formally, assuming AD to have the same value c for every entry, i.e.,
the capacity of every edge in the resulting-flow network is fixed to c, we require for every position
n that ∀om ∈ O. maxflow(Fdec(AD, {om}, n)) = c, which we call positional independence. We
ensure this by dividing the result of a max flow computation for a given start token om and end token
on by 1+ (O− (n−m))−m. For a subset O′ ⊆ O and a position n (where ∀o′m ∈ O′.m < n) and
heads H ′, we can thus compute the influence of the token set O′ to the total attention flow towards
the embedding that predicts the n-th token, no matter whether it served as part of the problem input
or is an already predicted output token.

3

Under review as a conference paper at ICLR 2023

2.3 ENCODER-DECODER ATTENTION FLOW

For Transformer models consisting of an encoder and a decoder, we combine both flow network
translations with the encoder-decoder attention. Figure 2 shows the structure of the flow network for a
Transformer model with an encoder (top) and a decoder (bottom). The last nodes of the flow network
corresponding to the final embedding of the encoder are, following the Transformer architecture,
connected to every node layer of the network corresponding to the decoder. We omit some encoder-
decoder edges for better visualization. Given a Transformer with H attention heads, L layers, M input
tokens I = {i0, . . . , iM}, N output tokens O = {o0, . . . , oN}, and resulting encoder self-attention
tensor AE ∈ RH×L×M×M , decoder self-attention tensor AD ∈ RH×L×N×N and encoder-decoder
attention tensor AC ∈ RH×L×N×M . For a set of input tokens I ′, the position n of output token on
and subset of heads H ′ ⊆ H , we construct a flow network F(AE ,AD,AC , I ′, n) = (G, c, s, t)

from flow networks Fenc(AE , I ′, ∅) = ((Venc, Eenc), cenc, senc, tenc) and Fdec(AD, ∅, n) =
((Vdec, Edec), cdec, sdec, tdec) as follows:

V := Venc ∪ Vdec ∪ s , E := Eenc ∪ Edec ∪ {((ij , L+ 1), v) | ij ∈ I ∧ v ∈ Vdec}
t := (on, L+ 1) , ∪ {(senc, (om, 0)) | om ∈ I ∧m < n} ,

c(v, v′) :=

cenc(v, v
′) v = (ij , l), v

′ = (ik, l
′),

ij , ik ∈ I

cdec(v, v
′) v = (oj , l), v

′ = (ok, l
′),

oj , ok ∈ O
1
H′

∑H′

h=1 AC
h,l,k,j v = (ij , L+ 1),

v′ = (ok, l), ij ∈ I, ok ∈ O

∞ v = s, v′ ∈ I ′

,

where le denotes a layer from the encoder and vd denotes a node from the decoder. Again, we have
to normalize to account for the auto-regressive bias, i.e., require positional independence. For a given
set on input tokens I ′ and heads H ′, we can thus asses the contribution of this set to the total attention
flow towards the embedding that predicts the n-th token by computing the maxflow through this
network. If one is interested in the influence of an already computed output token om, where m < n,
on the prediction of on, then the construction for the decoder-only case in Section 2.2 applies.

2.4 ALGORITHM

Input: AE ,AD,AC , I, O
Output: f : O × I → R
f = None
for o ∈ O do

for i ∈ I do
f(o, i)←
Ed .Ka.(F(AE ,AD,AC , {i}, o))

return f
Algorithm 1: Attention flow.

The flow network constructions can be directly used in
an algorithm to compute the attention flow for input to-
kens. Algorithm 1 shows the algorithm for computing the
attention flow for every input-output token pair. We build
the flow network for every pair and compute the maxi-
mum flow in the corresponding network with the Edmonds-
Karp Edmonds and Karp (1972) algorithm. The runtime
of Edmonds-Karp is in O(V E2), where the edges E and
nodes V are given by the number of layers and input-output
tokens. Since we run this algorithm for every input-output
pair (with only partially rebuilding the flow network), we additionally gain linear complexity in
the number of input and output tokens. We evaluate the implementation of this algorithm and its
variations for encoder-only and decoder-only Transformers in Sec. 4.

2.5 OPTIMIZATIONS

The flow network constructions apply to subsets of heads, especially single heads. The results of head
computations are joined using a linear projection, so each head has access to the computations of all
heads in the previous layers. The task of a head in layer l can be independent of its task in previous
layers l′ < l. In practice, however, heads are biased towards keeping their respective tasks, such
that we also found good interpretability results by considering the attention flow of attention heads
independently (see Section 4). A flow network can be constructed for a single head by following the
above constructions, setting H ′ to every singleton. If the computation time of the maxflow for large

4

Under review as a conference paper at ICLR 2023

... ...

s
t

Figure 2: Sketch of the Encoder-decoder attention flow network for input token i5 and embedding t,
which is used to predict o5. Encoder-decoder connections are sketched for the first node.

Transformer models exceeds time limits, relaxations on the flow network are possible. First, note
that the flow network only needs to be constructed once. As expected, the computation time of the
maxflow in the network constructions increases with larger input and output sequences. Running
time can be traded against heuristically shrinking the size of the flow network. This can be done in
two dimensions. Following the practical assumption that heads often keep their tasks throughout
subsequent layers, the first dimension is to shrink the flow network on the x-axis. This can be done by
simply skipping some of the inner layers of the network or by merging layers by taking the average
of the raw attention values across layers as capacities. Furthermore, the network can also be shrunk
in the y-dimension similarly by grouping input and output tokens. For example, tokens predict and
ed can be combined into one node.

3 SHAPLEY VALUE EXPLANATIONS

In this section, we show how the extended flow network constructions over the Transformer decoder
Fdec(AD, O′, n) and F(AE ,AD,AC , I ′, n) induce Shapley value explanations for the tokens of the
input sequence. The Shapley value (Shapley, 1953) is a solution concept determining the impact of a
player in cooperative game theory and an increasingly popular concept to determine the influence of
certain input features on a model’s decision.

Definition 2. A game with transferable utility (TU) is a pair (P, v), with P = {1, . . . , p} being a
finite set of players and v : 2P → R being the payoff function.

A subset S ⊆ P is called a coalition. The payoff function v assigns every coalition of players S
a real number v(S) ∈ R with v(∅) = 0. The share of a player i of the allocated payoff is φi(v).
The encoding of the attention values as a flow network is a TU game. A node in the flow network
represents a player and the total flow through the network represents the total payoff (Ethayarajh and
Jurafsky, 2021). The Shapley values of the players in a TU game are formally defined as follows.

Definition 3 (Shapley Value). Let Π(P) be the set of all player permutations and let π ∈ Π(P)
be a permutation of players. Let all players ahead of a player i be defined as P<i(π) := {j ∈
P : π(j) < π(i)}. The Shapley value φ is defined as the share of payoff for a given player i ∈ P :
φi(P, v) :=

1
p!

∑
π∈Π(P)(v(P<i(π) ∪ {i})− v(P<i(π))).

From a game-theoretic viewpoint, Shapley values are well-suited for determining the payoff share
that players deserve, as the values satisfy the desirable properties efficiency, symmetry, null player,
and additivity. The mathematical definition of the properties can be found in App. A These properties
above are also responsible for making Shapley values an attractive approach for explaining a model’s
decisions, i.e., features that do not contribute to the accuracy of a model should be null players, and
features that contribute equally should satisfy symmetry.

Proposition 1 (Decoder-Only Flow Is a Shapley Value). Consider a Transformer decoder with
H attention heads, L layers, N “output” tokens O = {o1, . . . , oN} and the self-attention tensor
AD ∈ RH×L×N×N . Let fo

max be the maxflow computed in the flow network Fdec(AD, {o}, n) as
defined in the previous section. Consider the TU-game (P, v), where the players p ∈ P = {1, ..., N}
correspond to nodes (op, 0) from the first layer of the Transformer decoder. For a given coalition S ⊆
P , let the value function be v(S) =

∑
s∈S fos

max, i.e., the sum of max-flows of nodes corresponding
to S. Then, the max-flow fos

max for some p ∈ P is its Shapley value.

5

Under review as a conference paper at ICLR 2023

(a) (b)

Figure 3: Heatmap of the attention flow of the GPT-2 model after 1, 4, and 6 predicted tokens in (a)
and Heatmap depicting the attention flow for unimportant token detection in SAT assignments in (b).

The proof immediately follows from the fact that every max-flow of some node fo
max is an independent

computation and the payoff of a coalition is defined as a sum of these independent contributions,
which trivially qualifies as a Shapley value. Although this theoretical correspondence to a Shapley
value is trivial, we show in our experiments in the following section that the maxflow computation
indeed yields meaningful explanations for the network’s attention flow.

Note that our line of reasoning significantly differs from Ethayarajh and Jurafsky (2021). In particular,
we compute a separate max-flow for every token in the set of players. This is because key assumptions
about flow networks that they make in their proof do not hold: They argue that as long as nodes come
from the same layer, blocking flow through some of these nodes does not change the possible flow
through the others, such that they can deduce that the utility a player adds when joining a coalition
is independent of the identity of the players already in the coalition. However, this is not the case:
Several nodes from the same layer can compete for capacity downstream in the network even if they
have no direct connection, e.g., if we have two tokens o1, o2 in one layer each attended to with 0.5
attention by a node o3 which itself is only attended to with 0.5 attention. Now, the utility o1 adds
upon joining a coalition as defined by Ethayarajh and Jurafsky (2021) does depend on whether o2 is
already part of it. We deduce from the above discussion that it may violate the symmetry of a Shapley
value, as the payoff for o1 and o2 can be unequally allocated.

The ideas outlined for Proposition 1 also apply to the encoder-decoder attention flow. In the following,
let f i

max be the maxflow computed in the flow network construction F(AE ,AD,AC , {i}, n) over
the Transformer with H attention heads, L layers, M input tokens I = {i0, . . . , iM}, N output
tokens O = {o0, . . . , oN}, and resulting encoder self-attention tensor AE ∈ RH×L×M×M , decoder
self-attention tensor AD ∈ RH×L×N×N and encoder-decoder attention tensor AC ∈ RH×L×N×M .
Corollary 2 (Encoder-Decoder Flow Is a Shapley Value). Consider the TU-game (P, v), where the
players p ∈ P = {1, ..., N} correspond to nodes (ip, 0) from the first layer. Let the value function
or a given coalition S ⊆ P be defined as v(S) =

∑
s∈S f is

max, i.e., the sum of max-flows of nodes
corresponding to S. Then, the max-flow f is

max for some p ∈ P is its Shapley Value.

4 EXPERIMENTS

In this section, we report on natural language processing and logical reasoning experiments. We
implemented the algorithm from Section 2.1 The architectural details of the models are shown in
Table 1b. We visualize the maxflow attention values in heatmaps, lineplots, and violinplots (see, for
example, Figure 3b). The maxflow is computed with NETWORKX Hagberg et al. (2008), and the
heatmaps comparing the attention flow from input/predicted token to current predicted token are
visualized with SEABORN Waskom (2021). The heatmaps are either showing only the attention flow
from input tokens if the model is encoder-only (enc.), are separated into different heatmaps for input
tokens and auto-regressive tokens for encoder and decoder (enc. + dec.), or show one heatmap for all
tokens if the architecture is decoder only (dec.). Higher values represent higher attention flow.

1The code and experiments will be published after the double-blind review phase.

6

Under review as a conference paper at ICLR 2023

(a) (b)

Figure 4: The attention flow for every head of GPT-2 separately in (a) and the sum of all attention
flow values per head for 300 sampled input queries on GPT-2 in (b).

4.1 TOKEN RELEVANCY IN DECODER FLOW

Text completion. We demonstrate that our technique captures the attention flow changes during
auto-regressive decoding. For this experiment, we track the attention flow changes in GPT-2 Radford
et al. (2019) while decoding the predicted tokens. The input sequence to this decoder-only mode
was “My name is John, my profession is”. Figure 3a depicts the attention flow after decoding the
first, fourth, and sixth tokens. The resulting flow network can be found in Figure 13 in the appendix.
Generally, GPT-2 models attend the first token the most (cf. Section 4.3). The differences in the
attention flow are visible as the attention flow on previous tokens is different for each decoding step.
Most notably, the attention flows shift heavily toward the token “profession” when predicting the
token “doctor”. We observed these heavy switches in decoder attention flow values throughout our
experiments, which is why this approach is a valuable addition to existing analysis methods. The
computation time of the flow values for this example only took 1.38, 1.50, and 2.09 seconds.

Satisfying assignments for SAT. In this experiment, we considered the problem of computing
a satisfying assignment to a propositional logical formula. A formula in propositional logic is
constructed out of variables and Boolean connectives ¬ (not), ∨ (or), ∧ (and), → (implication), and
↔ (equivalence). For example, let the following propositional formula be given: b ∨ (a ∧ ¬a). A
satisfying assignment is a mapping from variables to truth values, such that the formula evaluates to
true. For example, a satisfying assignment for the formula above is the mapping {b 7→ 1, a 7→ 0}.
The variable a, however, has no impact on the truth value of the formula. As long as b is set to 1, a
can be predicted either as 1 or 0. We conducted an experiment to detect parts of the propositional
formula that have no impact on predicted assignments. We trained a Transformer with an encoder
and decoder to predict satisfying assignments. The attention flow values for the following two
propositional formulas are depicted in Figure 3b: PropSAT 1 := b ∨ (a ∧ ¬a) in tokens: b|(a&!a)
and PropSAT 2 := (a ∧ ¬a) ∨ b in tokens: (a&!a)|b. The disjunct (a ∧ ¬a) plays no role in any
satisfying assignment since any mapping of a results in this subformula being false. Regardless of the
position in the formula, the flow computation of the network detects this as unimportant: the inputs
to the encoder a and ¬a have significantly less influence to the total attention flow than b.

4.2 HEAD TASK ANALYSIS

LTL trace prediction. We experimented with predicting satisfying traces to linear-time temporal
logic (LTL) (Pnueli, 1977). We used a Transformer trained on this task by Hahn et al. (2021). LTL
generalizes propositional logic with temporal operators such as (next) or U (until) and is used to
specify the behavior of systems that interact with their environments over time. An LTL formula is
satisfied by a trace, which is an infinite sequence of propositions that hold at discrete timesteps. We
finitely represent satisfying traces to LTL formulas as a prefix, followed by a loop, denoted by curly
brackets. For example, the LTL formula (a ∧ ¬a) denotes that in the second position, a must
be true, and in the third position a must be false. The model correctly predicts the trace, where the
first position and the loop are arbitrary and hence set to true: trace : 1; a;¬a; {1}. Figure 5b depicts
the maxflow computation for two heads. The left head focuses on the ¬a part of the formula and

7

Under review as a conference paper at ICLR 2023

(a) (b)

Figure 5: Violinplot for the distribution of attention flow of GPT-2 for 500 samples in (a) and
Heatmaps for two heads of the LTLSat model, each attending a different timestep in (b).

the third position of the trace where a is not allowed. The right head focuses on the left conjunct a,
which must appear on the second position of the trace (see Appendix B for another example).

Translation. In this experiment, we used the OPUS-MT-EN-DE model Tiedemann and Thottingal
(2020) for translating between English and German. The input sentence is “The pilot lost her
suitcase.”, which is translated to “Der Pilot hat ihren Koffer verloren”. The computed flow network
can be found in Figure 12. While the meaning of the original sentence is ambiguous, as “the pilot”
could be male or female, the translated sentence is not, since the German phrase Der Pilot means a
male pilot. It has been conjectured that such gender-biased translations can facilitate problematic
stereotypes (Bolukbasi et al., 2016). Our analysis technique allows further insight into the internal
mechanics of the Transformer model in such a scenario. We analyze the task of the heads, two of
them are shown in Figure 6. By computing the attention flow for the encoder and decoder, we can
observe that the depicted heads solve opposing tasks: The head on the left-hand side attends pilot lost
her in the encoder and Der Pilot in the decoder, which is the one-to-one translation, but without a
corresponding possessive pronoun. The head on the right-hand side attends pilot and suitcase in the
encoder and Pilot hat as well as Koffer in the decoder. Hence, from the attention flow, we can see that
the second head has little influence on the biased translation, as neither her, nor Der and ihren (the
German pronoun corresponding to her) receive significant attention. This approach, therefore, gives
us a helpful hint that we have to analyze the first head to get to the root of this biased translation.

Head attention. We analyze the influence of each head of GPT2 based on their contribution to the
attention flow. Figure 4a shows the attention flow for each token and head for the input and output
sentence "My name is John, my profession is to be a doctor. I am a doctor of medicine.". Heads 0, 1,
and 2 show high and diverse attention flow values for different tokens, whereas all other heads have
shallow and stable attention flow values. To explore this further, Figure 4b shows the accumulated
attention flows for all tokens and each head for 300 random samples. It supports the claim that the
first three heads have higher attention flow values than all other heads.

Input Negative Neutral Positive

John is a killer. 0.9548 0.0417 0.0034
John is a good killer. 0.8949 0.0967 0.0084

John is a good killer 0.0981 0.3166 0.5853

(a)

Network Heads Layers Architecture

DialogPT-medium (MIT) 16 24 dec.
OPUS-MT-EN-DE (MIT) 6 8, 8 enc. + dec.

PropSat (MIT) 4 4, 4 enc. + dec.
LTLSat (MIT) 4 4,4 enc.+ dec.
GPT-2 (MIT) 12 12 dec.

RoBERTa (MIT) 12 12 enc.

(b)

Table 1: Results of the sentiment analysis in (a) and the parameter overview of the models in (b).

8

Under review as a conference paper at ICLR 2023

Figure 6: Heatmap for two heads, divided in encoder and decoder. The left head attends the pilot, the
head on the right the suitcase.

4.3 BIAS DETECTION

Sentiment detection. The flow analysis can be used to detect biases in the Transformer models.
In this experiment, we used RoBERTa Liu et al. (2019) finetuned for sentiment analysis on the
TweetEval Barbieri et al. (2020) benchmark and computed the influence of input tokens on the total
flow deciding the classification. We computed the attention flow values for the input tokens of the
following sentences and their results, shown in Tab. 1a The resulting flow network can be found in
Figure 11 in the appendix. While the first two sentences, “John is a killer.” and “John is a good killer.”
are correctly labeled with negative sentiment (even when having the adjective “good” in the sentence),
having an emoji in the sentence immediately shifts the sentiment to be (falsely) labeled as positive.
The computation of the attention flow is visualized in Figure 10 in the appendix. For the first two
sentences, the attention on killer is the highest, considering only non-special tokens. Although the
same holds for the third sentence, i.e., the attention flow denotes killer as the most important word,
the low-attended smiley changes the sentiment to positive. When computing the attention flow for
each head, we observe heads with an attention flow of 1.0 to the emoji (see Figure 9 in the appendix).

First token bias. While analyzing the attention flow of the decoder-only Transformer DialogPT Zhang
et al. (2020) and GPT-2 Radford et al. (2019), we observed a heavy bias toward the first decoded
token (see Figure 3a and Figure 9 in the appendix). We computed the attention flow for 500 random
samples of the OPUS-MT-EN-DE test set. The results are visualized in Figure 5a. The first token
contributes the most to the total attention flow regardless of the input tokens. Since the DialogPT
model was trained on a dataset mined from reddit.com, it might be beneficial to overattend the
first token as many conversations on reddit.com consist of concise sentences or even single words.
One should be aware of this bias when applying this model outside of similar domains.

5 LIMITATIONS AND CONCLUSION

The main limiting factor of this approach is that the attention flow in a Transformer is the largest
but not the only factor for deciding the next token prediction. Additionally to the many residual
connections (which can be incorporated into the flow networks; see Section 2), Transformer models
contain feed-forward networks used as intermediate steps. Another minor caveat is that flow values
cannot be compared across different model architectures as their absolute values have no meaning.
The values can solely be compared to other tokens in the same layer of the same model. This approach
should thus be seen as a valuable addition (not a replacement) to the large toolbox for interpreting
machine learning models. It generalizes the efforts in visualizing and interpreting raw attention values
and attenion rollout. During our experiments, we found the attention flow values computed with the
presented approach instrumental in analyzing models, finding biases, and fixing respective datasets.

To conclude, we formalized and extended the technique to construct a flow network from the attention
values of encoder-only Transformer models to general Transformer models, including an auto-
regressive decoder. Running a maxflow algorithm on these constructions returns Shapley values that
determine the impact of a token on the total attention flow leading to the decoder’s decision. We
provide an implementation of our approach that can be applied to arbitrary Transformer models. Our
experiments show this analysis method’s applicability in various application domains. We hope our
implementation and constructions presented in this paper will aid machine learning practitioners and
researchers in designing reliable and interpretable Transformer models.

9

reddit.com
reddit.com

Under review as a conference paper at ICLR 2023

6 REPRODUCIBILITY STATEMENT

The supplementary material of this submission includes python notebooks to reproduce the figures
presented in this paper with their underlying data. The code, datasets, models, and our notebooks
for the reproduction of the experiments will be made publically available once the double-blind
reviewing process ends.

REFERENCES

K. Aas, M. Jullum, and A. Løland. Explaining individual predictions when features are dependent:
More accurate approximations to shapley values. arXiv preprint arXiv:1903.10464, 2019.

S. Abnar and W. H. Zuidema. Quantifying attention flow in transformers. In D. Jurafsky, J. Chai,
N. Schluter, and J. R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 4190–4197. Association
for Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.385. URL https://doi.
org/10.18653/v1/2020.acl-main.385.

A. Agarwal, K. Dhamdhere, and M. Sundararajan. A new interaction index inspired by the taylor
series. 2019.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align
and translate. In Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1409.0473.

F. Barbieri, J. Camacho-Collados, L. E. Anke, and L. Neves. Tweeteval: Unified benchmark
and comparative evaluation for tweet classification. In T. Cohn, Y. He, and Y. Liu, editors,
Findings of the Association for Computational Linguistics: EMNLP 2020, Online Event, 16-20
November 2020, volume EMNLP 2020 of Findings of ACL, pages 1644–1650. Association for
Computational Linguistics, 2020. doi: 10.18653/v1/2020.findings-emnlp.148. URL https:
//doi.org/10.18653/v1/2020.findings-emnlp.148.

T. Bolukbasi, K.-W. Chang, J. Zou, V. Saligrama, and A. Kalai. Man is to computer programmer as
woman is to homemaker? debiasing word embeddings. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, NIPS’16, page 4356–4364, Red Hook, NY,
USA, 2016. Curran Associates Inc. ISBN 9781510838819.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei.
Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. Bal-
can, and H. Lin, editors, Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

N. Burkart and M. F. Huber. A survey on the explainability of supervised machine learning. Journal
of Artificial Intelligence Research, 70:245–317, 2021.

H. Chefer, S. Gur, and L. Wolf. Transformer interpretability beyond attention visualization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
782–791, 2021.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021.

E. Collins and Z. Ghahramani, 2021. URL https://blog.google/technology/ai/
lamda/.

10

https://doi.org/10.18653/v1/2020.acl-main.385
https://doi.org/10.18653/v1/2020.acl-main.385
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://blog.google/technology/ai/lamda/
https://blog.google/technology/ai/lamda/

Under review as a conference paper at ICLR 2023

A. Datta, S. Sen, and Y. Zick. Algorithmic transparency via quantitative input influence: Theory and
experiments with learning systems. In 2016 IEEE symposium on security and privacy (SP), pages
598–617. IEEE, 2016.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional transformers
for language understanding. In J. Burstein, C. Doran, and T. Solorio, editors, Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational Linguistics,
2019. doi: 10.18653/v1/n19-1423. URL https://doi.org/10.18653/v1/n19-1423.

J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network
flow problems. J. ACM, 19(2):248–264, 1972. doi: 10.1145/321694.321699. URL https:
//doi.org/10.1145/321694.321699.

K. Ethayarajh and D. Jurafsky. Attention flows are shapley value explanations. In C. Zong, F. Xia,
W. Li, and R. Navigli, editors, Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 2: Short Papers), Virtual Event, August 1-6, 2021, pages
49–54. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.acl-short.8. URL
https://doi.org/10.18653/v1/2021.acl-short.8.

A. Ghorbani and J. Zou. Data shapley: Equitable valuation of data for machine learning. In
International Conference on Machine Learning, pages 2242–2251. PMLR, 2019.

U. Grömping. Estimators of relative importance in linear regression based on variance decomposition.
The American Statistician, 61(2):139–147, 2007.

A. Hagberg, P. Swart, and D. S Chult. Exploring network structure, dynamics, and function using
networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States),
2008.

C. Hahn, F. Schmitt, J. U. Kreber, M. N. Rabe, and B. Finkbeiner. Teaching temporal logics to neural
networks. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=dOcQK-f4byz.

J. M. Han, J. Rute, Y. Wu, E. W. Ayers, and S. Polu. Proof artifact co-training for theorem proving
with language models. arXiv preprint arXiv:2102.06203, 2021.

T. Harris and F. Ross. Fundamentals of a method for evaluating rail net capacities. Technical report,
RAND CORP SANTA MONICA CA, 1955.

S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah. Transformers in vision: A
survey. arXiv preprint arXiv:2101.01169, 2021.

G. Lample and F. Charton. Deep learning for symbolic mathematics. arXiv preprint arXiv:1912.01412,
2019.

R. H. Lindeman. Introduction to bivariate and multivariate analysis. Technical report, 1980.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and
V. Stoyanov. Roberta: A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692,
2019. URL http://arxiv.org/abs/1907.11692.

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages
4765–4774. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7062-a-unified-approach-to-interpreting-model-predictions.pdf.

S. M. Lundberg, G. G. Erion, and S.-I. Lee. Consistent individualized feature attribution for tree
ensembles. arXiv preprint arXiv:1802.03888, 2018.

11

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/321694.321699
https://doi.org/10.18653/v1/2021.acl-short.8
https://openreview.net/forum?id=dOcQK-f4byz
https://openreview.net/forum?id=dOcQK-f4byz
http://arxiv.org/abs/1907.11692
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

Under review as a conference paper at ICLR 2023

G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller. Explaining nonlinear
classification decisions with deep taylor decomposition. Pattern Recognition, 65:211–222, 2017.

A. B. Owen. Sobol’indices and shapley value. SIAM/ASA Journal on Uncertainty Quantification, 2
(1):245–251, 2014.

A. B. Owen and C. Prieur. On shapley value for measuring importance of dependent inputs. SIAM/ASA
Journal on Uncertainty Quantification, 5(1):986–1002, 2017.

A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer
Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 46–57. IEEE
Computer Society, 1977. doi: 10.1109/SFCS.1977.32. URL https://doi.org/10.1109/
SFCS.1977.32.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding by
generative pre-training. 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

W. Samek, T. Wiegand, and K.-R. Müller. Explainable artificial intelligence: Understanding, visual-
izing and interpreting deep learning models. arXiv preprint arXiv:1708.08296, 2017.

F. Schmitt, C. Hahn, M. N. Rabe, and B. Finkbeiner. Neural circuit synthesis from specification
patterns. CoRR, abs/2107.11864, 2021. URL https://arxiv.org/abs/2107.11864.

L. Shapley. A value fo n-person games. Ann. Math. Study28, Contributions to the Theory of Games,
ed. by HW Kuhn, and AW Tucker, pages 307–317, 1953.

E. Štrumbelj and I. Kononenko. Explaining prediction models and individual predictions with feature
contributions. Knowledge and information systems, 41(3):647–665, 2014.

E. Štrumbelj, I. Kononenko, and M. R. Šikonja. Explaining instance classifications with interactions
of subsets of feature values. Data & Knowledge Engineering, 68(10):886–904, 2009.

Y. Sun and M. Sundararajan. Axiomatic attribution for multilinear functions. In Proceedings of the
12th ACM conference on Electronic commerce, pages 177–178, 2011.

M. Sundararajan and A. Najmi. The many shapley values for model explanation. In International
Conference on Machine Learning, pages 9269–9278. PMLR, 2020.

M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In International
Conference on Machine Learning, pages 3319–3328. PMLR, 2017.

J. Tiedemann and S. Thottingal. OPUS-MT — Building open translation services for the World. In
Proceedings of the 22nd Annual Conferenec of the European Association for Machine Translation
(EAMT), Lisbon, Portugal, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.
Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 5998–6008, 2017. URL https://proceedings.neurips.cc/
paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

J. Vig. A multiscale visualization of attention in the transformer model. arXiv preprint
arXiv:1906.05714, 2019.

Z. J. Wang, R. Turko, and D. H. Chau. Dodrio: Exploring transformer models with interactive
visualization. arXiv preprint arXiv:2103.14625, 2021.

M. L. Waskom. seaborn: statistical data visualization. Journal of Open Source Software, 6(60):3021,
2021. doi: 10.21105/joss.03021. URL https://doi.org/10.21105/joss.03021.

12

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://arxiv.org/abs/2107.11864
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.21105/joss.03021

Under review as a conference paper at ICLR 2023

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771, 2019.

Y. Zhang, S. Sun, M. Galley, Y. Chen, C. Brockett, X. Gao, J. Gao, J. Liu, and B. Dolan. DIALOGPT
: Large-scale generative pre-training for conversational response generation. In A. Celikyilmaz
and T. Wen, editors, Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations, ACL 2020, Online, July 5-10, 2020, pages 270–278.
Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-demos.30. URL
https://doi.org/10.18653/v1/2020.acl-demos.30.

13

https://doi.org/10.18653/v1/2020.acl-demos.30

Under review as a conference paper at ICLR 2023

A SHAPLEY VALUE PROPERTIES

1. Efficiency. All of the available payoff v(P) is distributed between the players: v(P) =∑
i∈P φi(P, v).

2. Symmetry. Two players that have the same impact on the total payoff when joining a
coalition, receive the same share of the payoff: ∀S ⊆ P\{i, j}. v(S∪{i}) = v(S∪{j}) →
φi(P, v) = φj(P, v).

3. Null Player. A player that has zero impact upon joining a coalition, receives no share of the
total payoff: ∀S ⊆ P\{i}. v(S) = v(S ∪ {i}) → φi(P, v) = 0.

4. Additivity. The share of a player in TU game (P, v+w) is the sum of their shares in games
(P, v) and (P,w): ∀i ∈ P. φi(P, v + w) = φi(P, v) + φi(P,w).

B HEAD TASK ANALYSIS: LTL UNTIL-OPERATOR

In this experiment, we provide another LTL example where one of the heads is focusing on the
temporal operator in the formula and another is focusing solely on the propositions of the formula (see
Figure 7) The input formula is: aU b ∧ 1U a, where 1U a denotes that finally an a must occur. The
network correctly outputs the following trace: trace : a ∧ b; {1}.

Figure 7: Heatmap of the attention flow for two heads: The left head focuses on the until-operator
and the right head focuses on the propositions.

C ADDITIONAL FIGURES

C.1 HEATMAPS

Single Head Attention Flow in RoBERTa. Figure 8 depicts the attention flow of the first head in
the RoBERTa model. Intuitively, the word killer dominates the sentiment of the sentence. However,
the output of RoBERTa is a positive sentiment, although the attention flow is mainly on the word
killer (see Figure 10). Analyzing the individual heads, one can observe that head 0 attends the smiley
with its maximal value (1.0), which could be one explanation for the output of the model.

Bias in DialogPT. Figure 9 shows the attention flow from each token to the current output. While
we observe slight changes of the computed attention flow for each token, the first input token The
is highly attended, more than two times the attention flow than any other token. Note that this
observation does not directly translate into a bias in the model, it solely shows that the distribution of
attention is biased.

14

Under review as a conference paper at ICLR 2023

Figure 8: Heatmap showing head 0 of RoBERTa for the example in Figure 10.

C.2 FLOW NETWORKS

Encoder Only. Figure 11 shows the flow network for RoBERTa. The underlying architecture is
encoder only with 12 layers, represented by the 12 layers of attention edges between the nodes, and
an input sentence with 10 tokens, represented on the y-axis of the network. The special property of
RoBERTa is the classification token at position 0 - only the attention flow to this token in the last
node layer is important.

Encoder Decoder. Figure 12 shows the flow network for OPUS-MT-EN-DE. The underlying
architecture consists of an encoder and a decoder with 8 layers each, connected by the cross attention
edges in between. For each input token and auto regressive token, we compute the attention flow to
each predicted token. In Figure 12, the attention flow for the third predicted token is computed.

Decoder Only. Figure 13 shows the flow network for GPT-2 with the underlying decoder only
architecture. The model has 12 layers, attention can only flow from previous auto regressive tokens,
including the input tokens. We start computing attention flow for the first output token, which is
connected to the terminal node in Figure 13.

15

Under review as a conference paper at ICLR 2023

Figure 9: Heatmap showing the bias towards the first token in DialogPT.

Figure 10: Heatmap showing the attention flow for 3 variations of the same sentence in RoBERTa.

16

Under review as a conference paper at ICLR 2023

Figure 11: The flow network of the encoder-only network RoBERTa for the example in Figure 10.

Figure 12: The flow network of the encoder decoder architecture OPUS-MT-EN-DE for the input
“The father cooked dinner.” and the predicted tokens “Der Vater kochte Abendessen”.

17

Under review as a conference paper at ICLR 2023

Figure 13: The flow network for the decoder only architecture GPT-2 for the example in Figure 3a.

18

	Introduction
	Attention Flow
	Encoder Attention Flow
	Decoder Attention Flow
	Encoder-Decoder Attention Flow
	Algorithm
	Optimizations

	Shapley Value Explanations
	Experiments
	Token Relevancy in Decoder Flow
	Head Task Analysis
	Bias Detection

	Limitations and Conclusion
	Reproducibility Statement
	Shapley Value Properties
	Head Task Analysis: LTL until-operator
	Additional Figures
	Heatmaps
	Flow Networks

