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Abstract

Hyperspectral imaging (HSI) has been widely used in
agricultural applications for non-destructive estimation of
plant nutrient composition and precise quantification of
sample nutritional elements. Recently, 3D reconstruction
methods, such as Neural Radiance Field (NeRF), have
been used to create implicit neural representations of HSI
scenes. This capability enables the rendering of hyperspec-
tral channel compositions at every spatial location, thereby
helping localize the target object’s nutrient composition
both spatially and spectrally. However, it faces limitations
in training time and rendering speed. In this paper, we
propose Diffusion-Denoised Hyperspectral Gaussian Splat-
ting (DD-HGS), which enhances the state-of-the-art 3D
Gaussian Splatting (3DGS) method with wavelength-aware
spherical harmonics, a Kullback–Leibler divergence-based
spectral loss, and a diffusion-based denoiser to enable
3D explicit reconstruction of the hyperspectral scenes
for the entire spectral range. We present extensive
evaluations on diverse real-world hyperspectral scenes
from the Hyper-NeRF dataset to show the effectiveness
of our DD-HGS. The results demonstrate that DD-HGS
achieves the new state-of-the-art performance compared
to all the previously published methods. Project page:
https://dragonpg2000.github.io/DDHGS-website/

1. Introduction

Human eyes perceive wavelengths in the visible range
(380 nm–750 nm), captured by conventional RGB cameras
in three broad channels. In contrast, hyperspectral cameras
capture hundreds of narrow wavelength bands across and
beyond the visible spectrum, enabling material identifica-
tion through unique spectral signatures [21]. This makes
hyperspectral imaging (HSI) valuable in agriculture, food
quality assessment, construction, and environmental mon-
itoring. For example, in agriculture, HSI supports non-
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Figure 1. We propose Diffusion-Denoised Hyperspectral Gaussian
Splatting (DD-HGS) for reconstructing agricultural scenes and en-
abling novel view synthesis under hyperspectral imaging. Com-
pared with NeRF [26], Hyper-NeRF [8], and 3DGS [17], ours can
render high-quality images with fine-grained spectral details, and
significantly reduce reconstruction errors.

destructive nutrient analysis and precise estimation of plant
composition [13, 22]. Extending HSI to 3D spatial recon-
structions enables localization of materials in the physi-
cal world, forming the foundation of digital twins—virtual
replicas enriched with geometric and spectral properties for
predictive and interactive analysis.

Digital twins have shown promise in agriculture for tasks
such as mineral analysis, crop yield prediction, fruit count-
ing, and robust detection in low-light conditions [11, 25].
Integrating spectral information into such models can en-
hance crop monitoring [28], yield estimation [18, 37], and
non-destructive nutrient assessment [2, 16], ultimately sup-
porting precise agriculture, resource management, and food
security under climate and population pressures.

Neural Radiance Fields (NeRFs) [26] represent scenes
using implicit neural networks that map 3D coordinates and
viewing directions to color and density, and have become a
foundation for 3D reconstruction and novel view synthesis.
Extensions of NeRF to hyperspectral data [8] demonstrate
feasibility, but they inherit NeRF’s key limitations, includ-
ing slow training, high computational cost, and a tendency
to overfit sensor noise. These issues are particularly severe
for HSI, where narrow spectral bands yield weak signals,
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making reconstructions highly noise-sensitive [29].
Recently, 3D Gaussian Splatting (3DGS) [17] replaces

implicit neural fields with an explicit representation of the
scene as a set of anisotropic 3D Gaussians. Each Gaussian
encodes position, orientation, scale, and radiance proper-
ties, and images are rendered via fast GPU rasterization.
This explicit formulation enables real-time rendering and
significantly faster convergence compared to NeRF, while
maintaining high-quality geometry and appearance. How-
ever, vanilla 3DGS is designed for RGB data and does not
account for high-dimensional spectral information or noise
robustness. In this paper, our contributions are as follows:
• A novel Diffusion-Denoised Hyperspectral Gaussian

Splatting (DD-HGS) framework that explicitly models
full spectral radiance for 3D hyperspectral reconstruction
and novel view synthesis.

• A wavelength encoder that embeds wavelength-aware
spherical harmonics into 3D Gaussians, and a Kullback-
Leibler (KL) divergence-based spectral loss to align
Gaussian reflectances with ground truth spectra.

• An integrated hyperspectral diffusion model that denoises
3DGS renderings, improving spectral and spatial fidelity.
An end-to-end training paradigm is used.

• Extensive experiments on diverse real-world hyperspec-
tral scenes from the Hyper-NeRF [8] dataset demonstrate
that DD-HGS achieves the state-of-the-art reconstruction
accuracy and rendering quality.

2. Related Work
2.1. Hyperspectral Imaging

The main distinction between hyperspectral and RGB imag-
ing lies in spectral resolution. While RGB sensors capture
only three broad bands (red, green, and blue), hyperspec-
tral sensors acquire tens to hundreds of narrow, contiguous
bands spanning from ultraviolet (380 nm) to near-infrared
(1100 nm) [1]. This fine-grained spectral sampling enables
detailed material discrimination and has proven useful in
agriculture for nutrient assessment [12], pollutant detection,
and mineral composition analysis. However, hyperspectral
cameras are highly noise-prone. Narrow-band filters admit
fewer photons per band, leading to low signal-to-noise ra-
tios that are further exacerbated by environmental variations
and lighting conditions [14, 19, 20, 39]. Recent approaches
mitigate this by exploiting the strong correlations between
adjacent bands that share structural content, using spectral
correlation priors [29] or low-rank factorization [5] to effec-
tively suppress noise and enhance image quality.

2.2. 3D Reconstruction for Hyperspectral Imaging

NeRF [26] models volumetric scenes using MLPs, mapping
3D positions and viewing directions to density and color,
which are then integrated via volumetric rendering. Hyper-

spectral extensions include X-NeRF [27] for cross-spectral
consistency, Hyperspectral NeRF [24] that outputs N spec-
tral channels, and Hyper-NeRF [8] with wavelength-aware
encoding. While effective, NeRF-based methods are slow
to train, expensive to render, and sensitive to hyperspectral
noise. 3D Gaussian Splatting (3DGS) [17] instead repre-
sents scenes using anisotropic Gaussians parameterized by
position, scale, orientation, opacity, and spherical harmon-
ics (SH) for view-dependent color, enabling fast optimiza-
tion and real-time rendering. Numerous variants further ex-
tend 3DGS to dynamic scenes [23, 35, 38]. Hyper-GS [33]
adapts Gaussian splatting for hyperspectral data using la-
tent spectral features, with pixel-adaptive density and Gaus-
sian pruning for efficiency. However, compression in a la-
tent space sacrifices spectral fidelity and robustness in noisy
conditions. Our DD-HGS framework avoids compression
by directly modeling full spectral radiance in Gaussians and
integrates a hyperspectral diffusion model to denoise ren-
derings, preserving both spatial and spectral fidelity.

2.3. Hyperspectral Diffusion Models

Diffusion models [15] are generative models that learn to
reverse a gradual noising process to produce high-fidelity
samples. They have recently been applied to hyperspectral
enhancement and super-resolution [6, 10, 34], treating clean
hyperspectral images as outputs of a reverse diffusion pro-
cess that progressively restores spectral and spatial details.
[34] combines a group-wise autoencoder with diffusion for
spectral super-resolution, while [6] introduces disentangled
modulation to preserve spectral and spatial fidelity during
sharpening. However, these approaches operate purely in
the 2D domain, without modeling 3D geometry or view-
dependent effects, making them unsuitable for novel view
synthesis or spatially consistent hyperspectral reconstruc-
tion. To address this, we embed a conditional diffusion
model into the 3DGS reconstruction pipeline [17], denois-
ing and refining rendered hyperspectral images that contain
geometric and color artifacts. Unlike prior works such as
GaussianObject [36] and MVSplat360 [9], which use frozen
Stable Diffusion models [30] trained on large-scale RGB
data, we train a hyperspectral diffusion model jointly with
3DGS, explicitly incorporating spectral characteristics for
accurate hyperspectral scene reconstruction.

3. Method
An overview of the proposed Diffusion-Denoised Hyper-
spectral Gaussian Splatting (DD-HGS) framework is illus-
trated in Figure 2. Our method builds upon 3D Gaussian
Splatting [17] by introducing wavelength-aware modules
that enable high-fidelity hyperspectral rendering. We ini-
tialize a set of 3D Gaussians from multi-view hyperspectral
images with known camera poses, and extend the 3DGS
pipeline with the following three key components. First, we
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Figure 2. Overview of our DD-HGS framework. DD-HGS extends 3DGS with a wavelength encoder that maps positional embeddings
of wavelength through an MLP to learn wavelength-dependent SH offsets, a spectral loss aligning predicted and ground truth spectral
distributions, and a conditional diffusion module that refines the noisy 3DGS rendering to improve its spectral and spatial fidelity.

introduce a wavelength encoder that maps each input chan-
nel’s wavelength to a spectral offset through a positional
encoding followed by an MLP. These offsets are applied
to the spherical harmonics coefficients of the Gaussians to
model wavelength-dependent appearance. Secondly, we in-
corporate a spectral loss that enforces alignment between
predicted and ground truth spectral distributions at the pixel
level. This loss combines KL divergence and cosine sim-
ilarity to promote both distributional and angular spectral
consistency. Finally, we incorporate a conditional diffusion
model to refine the noisy images rendered by 3DGS. This
module learns to denoise the output image conditioned on
both spatial and spectral context, enhancing fine structures
and reducing residual artifacts. Together, these components
allow DD-HGS to accurately synthesize spatially-coherent
and spectrally-aligned hyperspectral images from sparse
multi-view inputs, especially for noisy spectral bands.

3.1. 3D Gaussian Splatting

3DGS [17] represents a scene using a set of 3D Gaussians,
where each Gaussian is represented by its mean position µ
and covariance matrix Σ:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ), (1)

where Σ can be further decomposed into a rotation matrix
R and a scaling matrix S:

Σ = RSSTRT . (2)

The 3D covariance matrix Σ can then be projected onto 2D
to enable efficient pixel-wise rendering:

Σ′ = JWΣW TJT , (3)

where Σ′ denotes the 2D covariance matrix, J is the Jaco-
bian of the affine approximation of the projective transfor-
mation, and W is the viewing transformation matrix from
the world to the camera coordinate frame. To render the

color of a pixel on the image plane, we use the opacity σ
and the spherical harmonics (SH) coefficients of the Gaus-
sians to generate 2D views using an α-blending algorithm
similar to the volumetric rendering in NeRF [26]. The ren-
dering process is given as follows:

C(p) =
∑
i∈G

Tiαici, (4)

Ti =

i−1∏
j=1

(1− αj) and αi = σie
− 1

2 (p−µi)
TΣ′(p−µi),

(5)

where C(p) denotes the color of a pixel located at p, G is a
set of Gaussians along the camera ray sorted by depth with
respect to the viewpoint, Ti represents the transmittance, ci
is the color of the Gaussian, and µi denotes the 2D coor-
dinate of the 3D Gaussian projected onto the image plane.
Detailed projection and rendering processes are described
in the original 3DGS paper [17].

3.2. N-Channel 3DGS

To develop a hyperspectral 3DGS framework that can syn-
thesize novel views of hyperspectral images across N dif-
ferent spectral bands, we extend the vanilla 3DGS frame-
work [17] into an N -channel 3DGS (N -3DGS) to render
images with N wavelength bands. Two main challenges
are encountered when extending 3DGS to render multi-
channel hyperspectral images. Firstly, traditional structure-
from-motion (SfM) methods such as COLMAP [31] only
support grayscale or RGB images. To solve this, we gen-
erate pseudo-RGB images from the hyperspectral images
using the sensor simulation method in [8], and then feed
them into COLMAP [31] to obtain the camera poses and
sparse point clouds for Gaussian initialization. Secondly,
vanilla 3DGS only supports rendering images with three
channels, i.e., red, green, and blue. However, hyperspec-
tral images contain more than three channels, where each



channel corresponds to a narrow, specific wavelength band
across a continuous spectrum, often covering wavelengths
from the visible to near-infrared ranges. Based on the phys-
ical properties of hyperspectral imaging, we extend 3DGS
to render N spectral channels instead of 3. For each band
i ∈ {1, . . . , N}, a distinct set of spherical harmonics coeffi-
cients SHi,lm is associated with each Gaussian. The view-
dependent radiance in channel i is then computed as:

ci(v) =

L∑
l=0

l∑
m=−l

SHi,lm, Ylm(v), (6)

where v is the view direction and Ylm(v) are the real
SH basis functions. This enables each Gaussian to emit
reflectance across N wavelength bands, capturing fine-
grained spectral variation as a function of view. The per-
band radiances are then α-blended to generate hyperspectral
novel views.

3.3. Wavelength Encoder

While 3DGS effectively captures geometry, its SH-based
reflectance modeling is suboptimal for hyperspectral data.
Without spectral priors, each wavelength channel is treated
independently, ignoring the smooth and correlated structure
of natural reflectance spectra. This leads to inconsistent
SH coefficients and degraded fidelity, particularly at wave-
lengths outside the visible range.

To address this, we introduce a wavelength encoder that
learns wavelength-specific SH coefficients. Each wave-
length λ is passed through a positional embedding module
with sinusoidal functions at multiple frequencies, enabling
the network to capture fine-grained spectral variations. The
embedding γ(λ) is defined as:

γ(λ) =
[
sin(2kπλ), cos(2kπλ)

]L−1

k=0
, (7)

where L denotes the number of frequency bands used in the
embedding and thus determines the dimensionality of the
resulting positional encoding.

To map these high-frequency features to the same dimen-
sion as the SH coefficients, we pass the positional embed-
dings through a learnable MLP block. The MLP outputs
wavelength-specific offsets, which are then added to the SH
coefficients for each wavelength band. We use 3D spheri-
cal harmonics, where each wavelength is represented by a
set of SH coefficients encoding view-dependent color. In
our setting, using SH of degree 3 results in 16 coefficients
per wavelength. The MLP is designed to match this dimen-
sionality so that the offsets can be added directly to the base
SH values. This allows the appearance of each Gaussian to
adapt dynamically based on wavelength, improving spectral
consistency and rendering quality.

δSHλ = MLP(γ(λ)), (8)

SH+
λ = SHλ + δSHλ, (9)

where δSHλ represents the offset of the SH value, SHλ and
SH+

λ denote the SH of the 3D Gaussians at the given wave-
length λ before and after adding the offset, respectively.
Notably, since other Gaussian parameters, such as position,
rotation, and scale, define the intrinsic geometric structure
of the scene and are invariant across all wavelengths, these
geometric parameters are not modulated.

3.4. Hyperspectral Denoising with Diffusion Model

The wavelength encoder captures wavelength-dependent
SH coefficients for multi-channel hyperspectral images;
however, the rendered outputs can still contain artifacts and
noise. To further improve the quality of hyperspectral novel
view synthesis, we integrate a diffusion-based denoising
model directly into the 3DGS rendering pipeline and train
the system end-to-end. Renders from 3DGS serve as inputs
to the diffusion model, while its outputs are used to com-
pute the loss for training 3DGS. Unlike conventional post-
processing, this design allows the diffusion model to refine
hyperspectral renderings during training, thereby improving
both denoising and 3DGS reconstruction.

Given an initial render X3DGS ∈ RH×W×N , the ground
truth XGT is modeled as the output of a reverse diffusion
process conditioned on X3DGS. The forward process cor-
rupts XGT with Gaussian noise:

Xt =
√
ᾱtXGT +

√
1− ᾱtϵ, ϵ ∼ N (0, I), (10)

and the model learns to predict the noise ϵ given the noisy
input X3DGS by minimizing the following loss:

Ldiffusion = EXGT,t,ϵ

[
∥ϵ− ϵθ(Xt, t | X3DGS)∥2

]
. (11)

During training, the diffusion model implicitly learns to
correct structured artifacts present in the 3DGS renderings.
This joint optimization allows the final outputs to achieve
high spectral fidelity while preserving spatial realism. The
motivation for using diffusion model stems from the unique
challenges of hyperspectral reconstruction: 3DGS render-
ings exhibit structured, band-specific noise and spectral in-
consistencies that simpler models, such as autoencoders,
often fail to remove without oversmoothing fine details.
Diffusion models, which iteratively refine data, are bet-
ter suited for eliminating structured noise while preserving
high-frequency spectral information. Quantitative compar-
isons between diffusion and autoencoder baselines are pro-
vided on our project page.

3.5. End-to-End Joint Training

3.5.1 Spectral Loss

Considering the physical properties of hyperspectral im-
ages, where each pixel corresponds to a continuous spec-
tral distribution, we argue that to achieve high-quality novel



view synthesis, it is essential to ensure that the spectral dis-
tributions of the rendered views closely match those of the
ground truth. To enforce this alignment, we introduce a
spectral loss composed of two terms: a weighted Kullback-
Leibler (KL) divergence and a cosine similarity penalty.
These jointly encourage the model to produce hyperspec-
tral outputs whose spectral distributions Dλ accurately re-
flect those observed in the real scene.

Since KL divergence requires the input to be a proba-
bility distribution (i.e., non-negative and summing to 1), we
normalize the predicted and ground-truth hyperspectral vol-
umes using a softmax operation along the spectral channel.
Specifically, for each pixel (h,w), h ∈ H,w ∈ W , we de-
fine the normalized spectral vector as:

Dλ(h,w) = softmax(X(h,w)), (12)

where X ∈ RH×W×N is the unnormalized hyperspectral
volume, and X(h,w) ∈ RN denotes the spectral vector at
pixel (h,w). The spectral loss is then computed as:

Lspectral = α

H∑
h=1

W∑
w=1

KL
(
DGT

λ (h,w) ∥Dpred
λ (h,w)

)
+ β

H∑
h=1

W∑
w=1

(
1− cos

(
DGT

λ (h,w),Dpred
λ (h,w)

))
,

(13)

where DGT
λ (h,w) and Dpred

λ (h,w) are the normalized spec-
tral vectors from the ground truth and the prediction at
pixel (h,w), respectively. Here, KL (· ∥ ·) denotes the
Kullback-Leibler divergence, which penalizes distributional
mismatches between the predicted and ground truth spec-
tra, while cos (·, ·) denotes the cosine similarity, which pro-
motes angular alignment between the spectral vectors. The
weights α and β are user-defined hyperparameters control-
ling the relative importance of each term in our experiments.
This spectral-aware formulation encourages the network to
match not only the absolute intensities but also the shape
and directionality of the spectral profiles, which is crucial
for downstream applications like material classification and
reflectance estimation.

3.5.2 Overall Loss Function

To enable end-to-end joint training, we combine the vanilla
3DGS loss terms with the designed spectral and diffusion
losses to form the final loss LDD-HGS, as shown below:

LDD-HGS = w1LL1 + w2LSSIM + w3Lspectral + w4Ldiffusion.
(14)

In this equation, LL1 measures the pixel-wise difference be-
tween the rendered and ground truth images, and LSSIM
evaluates their structural similarity using the Structural

Similarity Index Measure (SSIM). The spectral loss Lspectral
enforces pixel-wise consistency between the predicted and
ground truth spectral distributions. Finally, Ldiffusion super-
vises the training of the diffusion model, which takes the
noisy 3DGS render as input and refines it toward the clean
hyperspectral target, correcting geometric distortions and
spectral noise. The weights w1, w2, w3, and w4 are hy-
perparameters that balance the contributions of each term.

4. Datasets

We evaluate DD-HGS on two hyperspectral agricultural
datasets introduced in Hyper-NeRF [8], collected using two
distinct imaging systems. Following the benchmark, we
split each scene into 90% training and 10% testing images.

BaySpec Dataset. Captured with a BaySpec GoldenEye
snapshot sensor, this dataset provides hyperspectral images
at a spatial resolution of 640× 512 across 141 narrow spec-
tral bands spanning 400 nm–1100 nm. The sensor captures
full spectral cubes in a single exposure. The scenes consist
of three artificial plant species: Anacampseros, Caladium,
and Pinecone, mounted on a motorized turntable and im-
aged at 20 cm. Each scene contains 433 hyperspectral views
captured over a wide range of viewing angles.

Surface Optics Dataset. Acquired using a Surface
Optics SOC710-VP imaging spectrometer, this dataset in-
cludes 128 spectral channels spanning 370 nm–1100 nm,
with a spatial resolution of 696 × 520. The sensor uses
a line-scanning (pushbroom) mechanism to capture spec-
tral cubes. The camera’s narrow field of view and shallow
depth of field necessitated a fixed tripod setup 2m from the
subject. Two artificial plants, Rosemary and Basil, were
placed on a rotating stage inside a Macbeth SpectraLight
light booth to ensure consistent illumination. Each scene is
captured from 48 distinct viewpoints.

5. Quantitative Results

We evaluate DD-HGS on in total five plant scenes from the
aforementioned two datasets. The implementation details
and evaluation metrics are provided on our project website.
We compare our method against a carefully selected group
of baselines including NeRF-based and 3DGS-based meth-
ods, each chosen for their relevance to hyperspectral novel
view synthesis. NeRF [26] and 3DGS [17] serve as foun-
dational models for radiance field rendering and explicit 3D
representation, respectively. Hyper-NeRF [8] is selected for
its ability to model hyperspectral reflectances with spectral
priors. MipNeRF [3] and MipNeRF360 [4] are included
due to their strong performance in novel view synthesis
tasks. Both leverage mipmapping and hierarchical sam-
pling to effectively handle aliasing and unbounded scene
geometry, making them robust candidates for high-fidelity
view generation. TensoRF [7] is selected for its efficiency



Method PSNR↑ SSIM↑ SAM↓ RMSE↓ FPS↑

NeRF [26] 23.35 0.606 0.0440 0.0687 0.13
MipNeRF [3] 22.75 0.594 0.0435 0.0776 0.09
TensoRF [7] 24.66 0.648 0.0501 0.0587 0.17
Nerfacto [32] 19.12 0.586 0.0551 0.1174 0.50
MipNeRF360 [4] 26.53 0.744 0.0280 0.0476 0.01
Hyper-NeRF [8] 19.82 0.671 0.0534 0.1071 0.47
3DGS [17] 22.91 0.632 0.0468 0.0810 78.10
Hyper-GS [33] 27.11 0.780 0.0254 0.0440 2.31
DD-HGS (Ours) 27.18 0.940 0.0348 0.0347 2.43

Table 1. Quantitative results on the BaySpec dataset (averaged
over Pinecone, Caladium and Anacampseros). Our method
achieves the new state-of-the-art performance among all the pub-
lished work. Best results in bold, second-best underlined.

and compactness via tensor decomposition, which benefits
rendering of high-dimensional outputs. Hyper-GS [33], a
recent extension of 3DGS to hyperspectral rendering, rep-
resents the most competitive prior tailored specifically for
this task. For a fair comparison, all baselines are extended
to support N -channel hyperspectral outputs, allowing direct
evaluation of both spatial reconstruction quality and spec-
tral fidelity.

BaySpec Results. Table 1 summarizes results aver-
aged over Pinecone, Caladium, and Anacampseros scenes
captured with the BaySpec GoldenEye camera. DD-
HGS achieves the best PSNR, SSIM, and RMSE, signifi-
cantly surpassing prior methods. While Hyper-GS attains
a slightly better SAM, our method achieves superior per-
ceptual quality and spectral fidelity. More importantly, DD-
HGS maintains a rendering speed of 2.43 FPS, outperform-
ing Hyper-GS in both performance and efficiency. These re-
sults highlight that DD-HGS not only advances spectral and
spatial reconstruction quality, but also delivers competitive
efficiency compared to prior NeRF and 3DGS baselines.

Surface Optics Results. Table 2 reports results on
the Rosemary and Basil scenes from the Surface Optics
dataset. DD-HGS achieves a PSNR of 38.34, far surpass-
ing Hyper-GS and 3DGS, and reducing RMSE and SAM
to 0.003. These substantial gains highlight the effective-
ness of diffusion-based refinement in correcting structural
errors and residual spectral noise. Baseline approaches
such as 3DGS and Hyper-GS struggle with geometric arti-
facts in regions with high occlusion or sharp spectral transi-
tions, whereas DD-HGS achieves reconstructions with both
higher geometric fidelity and precise spectral consistency.
Overall, these results establish DD-HGS as the new state-
of-the-art method for 3D reconstruction and novel view syn-
thesis on challenging hyperspectral agricultural scenes.

6. Qualitative Results

In Figure 3, we present rendered hyperspectral images and
difference heatmaps against the ground truth of our method

Method PSNR↑ SSIM↑ SAM↓ RMSE↓ FPS↑

NeRF [26] 9.17 0.650 0.054 0.441 0.13
MipNeRF [3] 12.33 0.578 0.54 0.371 0.09
TensoRF [7] 13.67 0.657 0.033 0.315 0.20
Nerfacto [32] 17.60 0.814 0.044 0.134 0.57
MipNeRF360 [4] 11.20 0.805 0.069 0.293 0.01
Hyper-NeRF [8] 17.71 0.829 0.012 0.139 0.49
3DGS [17] 23.38 0.954 0.006 0.072 79.00
Hyper-GS [33] 26.04 0.967 0.004 0.051 3.56
DD-HGS (Ours) 38.34 0.927 0.003 0.003 2.95

Table 2. Quantitative results on the Surface Optics dataset (av-
eraged over Rosemary and Basil). DD-HGS achieves large gains
in PSNR and RMSE, while matching or surpassing prior methods
in spectral metrics. Best results in bold, second-best underlined.

and the baselines for three hyperspectral scenes: Caladium,
Basil and Rosemary. We qualitatively compare our method
with NeRF [26], Hyper-NeRF [8], and 3DGS [17]. We omit
qualitative comparisons with Hyper-GS [33], given that its
implementation is not publicly available. NeRF and Hyper-
NeRF fail to recover fine-grained spatial details and suffer
from large spectral reconstruction errors. 3DGS achieves
finer structural reconstruction but still exhibits spectral in-
consistencies. In contrast, our DD-HGS significantly re-
duces reconstruction artifacts and achieves higher geomet-
ric accuracy across both hyperspectral camera systems.

To evaluate the generalization of our model across spec-
tral bands, Figure 4 shows results on the Anacampseros
scene for three ranges: 400-418 nm (ultraviolet), 750-
768 nm (near-infrared), and 1082-1100 nm (far-infrared).
NeRF [26] exhibits large deviations in spectral curves
due to overfitting to noise, leading to unstable reconstruc-
tions. Hyper-NeRF [8] alleviates this in the near-infrared
but still suffers from spectral misalignment. 3DGS [17]
achieves smoother curves yet fails to capture fine spec-
tral transitions. In contrast, DD-HGS consistently aligns
with ground truth, producing accurate spatial and spectral
reconstructions across all wavelength ranges. Difference
heatmaps show that NeRF and Hyper-NeRF generate high-
magnitude, spatially inconsistent errors, especially in low-
signal ultraviolet and far-infrared bands, while 3DGS yields
smoother but broadly distributed residuals. DD-HGS ex-
hibits concentrated, low-magnitude errors localized near ge-
ometric edges, reflecting both spatial precision and spec-
tral fidelity. The pixel intensity curves (rightmost column)
further demonstrate that DD-HGS (green dashed) closely
matches the ground truth (red solid), outperforming all
baselines. More visualizations are available on our website.

7. Ablation Study
We assess the contribution of each module in our DD-
HGS through an ablation study in Table 3. The wavelength
encoder improves the modeling of wavelength-dependent
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Figure 3. Qualitative comparisons on BaySpec and Surface Optics datasets (750–768 nm). Each column shows renderings and
difference heatmaps for NeRF, Hyper-NeRF, 3DGS, and DD-HGS. Our method preserves fine structural details and spectral fidelity.

variations by injecting high-frequency spectral cues into the
3D Gaussian representation. The spectral loss further con-
strains reconstructions to match ground-truth spectra, re-
ducing spectral misalignment and improving detail recov-
ery. Their combination produces finer-grained structures
with consistent spectral fidelity. Adding the diffusion mod-
ule enables iterative refinement of geometry and spectra, ef-
fectively denoising structured artifacts and stabilizing sharp
spectral transitions. A “3DGS + Diffusion” baseline further
confirms that diffusion alone enhances spatial consistency
but still underperforms the full pipeline due to the lack of
wavelength-aware supervision. As shown in Fig. 5, distor-
tions are progressively reduced as more modules are intro-
duced, culminating in state-of-the-art results with the full
DD-HGS method.

8. Conclusion

In this work, we introduce Diffusion-Denoised Hyper-
spectral Gaussian Splatting (DD-HGS), a framework for
hyperspectral 3D reconstruction and novel view synthesis.
Our method integrates a wavelength encoder for spectral

Method SL WE Diff. PSNR ↑ SSIM ↑ SAM ↓ RMSE ↓
3DGS ✗ ✗ ✗ 21.47 0.8280 0.0649 0.0646
3DGS + SL ✓ ✗ ✗ 21.69 0.8286 0.0554 0.0588
3DGS + WE ✗ ✓ ✗ 21.52 0.8279 0.0532 0.0576
3DGS + WE + SL ✓ ✓ ✗ 21.96 0.8313 0.0494 0.0530
3DGS + Diffusion ✗ ✗ ✓ 26.17 0.9316 0.0378 0.0383
DD-HGS (Ours) ✓ ✓ ✓ 27.18 0.9400 0.0348 0.0347

Table 3. Ablation study of main components. Average results
across Pinecone, Anacampseros, and Caladium. Each component
improves reconstruction, with DD-HGS (ours) achieving the best.

conditioning and a spectral loss for alignment with ground
truth spectral distributions. To further improve spectral fi-
delity, we embed a diffusion-based denoiser into the 3DGS
rendering pipeline, refining intermediate hyperspectral
renders through a conditional reverse diffusion process.
The joint optimization corrects structured artifacts such
as band-wise noise and geometric distortions, yielding
noise-resilient, high-quality reconstructions. Extensive
experiments show that DD-HGS consistently outperforms
prior methods in both spectral accuracy and spatial realism.
Limitations: Our proposed method has been validated
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Figure 4. Qualitative results on the Anacampseros scene across three different wavelength ranges: 400 nm to 418 nm, 750 nm to
768 nm, 1082 nm to 1100 nm. The rendered images and difference heatmaps against the ground truth demonstrate the spectral fidelity
and spatial consistency of the reconstruction results, particularly under challenging near-infrared and ultraviolet conditions. In addition,
we visualize the reconstructed pixel intensities across all the spectral channels of three randomly selected points in the rightmost column.
Compared to the baselines, our method exhibits the highest similarity to the ground truth.
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Figure 5. Qualitative ablation study on the Caladium scene. Rendered images and difference heatmaps w.r.t. ground truth are shown.
The wavelength encoder (WE) and spectral loss (SL) progressively reduce detail artifacts and spectral distortions, leading to higher spatial
and spectral reconstruction accuracy.

exclusively on scenes with a single object. However, due to
the lack of large-scale open-source multi-view hyperspec-
tral imaging datasets, our model has not been evaluated
on scenes with multiple, diverse objects. Future work will
extend our method to hyperspectral 3D reconstruction of
multi-object scenes in complex environments.
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