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Abstract

Fine-tuning pre-trained language models
(PLMs) has demonstrated remarkable perfor-
mance in downstream tasks. These models,
however, are vulnerable to adversarial attacks.
Defenses based on adversarial fine-tuning, i.e.,
fine-tuning PLMs with adversarial examples,
have been proposed to counter this vulnerabil-
ity. However, such defenses suffer from unsat-
isfactory performance due to catastrophic for-
getting, meaning they fail to retain the robust
features learned during pre-training. In this
paper, we propose a novel parameter-efficient
adversarial fine-tuning method that tunes only a
small subset of the model’s parameters, leaving
the majority intact. Our method involves train-
ing a defense soft prompt prepended to inputs,
which leads to robust predictions by PLMs. Our
extensive experiments demonstrate the effec-
tiveness of our proposed defenses across vari-
ous benchmarks and PLMs.

1 Introduction

Pre-trained Language Models (PLMs) have rev-
olutionized natural language processing by shift-
ing the paradigm from traditional supervised learn-
ing, which involves training task-specific models
from scratch, to adapting general-purpose PLMs
for specific downstream tasks through fine-tuning.
Despite their remarkable performance, fine-tuned
PLMs are vulnerable to adversarial examples; care-
fully crafted sentences with changes that are im-
perceptible to humans and cause misclassifications
by classifiers (Zhang et al., 2020; Jin et al., 2020;
Moraffah and Liu, 2024). Such attacks compromise
the trustworthiness of these models, particularly in
high-stakes applications, highlighting the urgent
need for developing defense methods.

Adversarial training, which involves training
models on adversarial examples, is a defense strat-
egy designed to enhance the robustness of clas-
sifiers against such attacks and has demonstrated
optimal robust performance (Lin et al., 2024).

In the context of PLMs, since training from
scratch is infeasible, adversarial training is im-
plemented through fine-tuning on these exam-
ples, commonly referred to as adversarial fine-
tuning (Dong et al., 2021a; Jiang et al., 2022a).
However, unlike traditional adversarial training,
adversarial fine-tuning often leads to subpar per-
formance, primarily due to catastrophic forgetting,
i.e., the loss of robust features learned during pre-
training. This issue arises from the inherent na-
ture of fine-tuning and the requirement for ad-
versarial fine-tuning to be conducted over several
epochs (Dong et al., 2021a).

We propose a novel parameter-efficient adversar-
ial fine-tuning method that freezes the pre-trained
model parameters and only tunes a much smaller
set of parameters. By altering only a small sub-
set of the model’s parameters, our proposed de-
fense ensures that the core features learned by the
pre-trained weights are largely preserved, thus al-
leviating catastrophic forgetting. This parameter-
efficient tuning helps the model maintain the ro-
bust features learned during the pre-training while
learning the necessary information from adversar-
ial examples and adapting to the downstream task
simultaneously. In particular, we propose a defense
soft prompt that limits learned parameters to a set
of virtual tokens prepended to the text input. Our
soft prompt is trained with a min-max adversarial
objective, which ensures when combined with the
input, the soft prompt effectively guides the PLM
to select the robust path and make robust decisions
to adversarial attacks. While parameter-efficient
fine-tuning has been extensively explored for low-
resource scenarios (Han et al., 2024), to the best of
our knowledge, our method is the first to explore its
role in adversarial defense. Our experiments vali-
date superior performance of our defense compared
to state-of-the-art adversarial fine-tuning methods
on several benchmarks.



2 Related Work

Several types of adversarial defenses for text, in-
cluding adversarial purification (Moraffah et al.,
2024), certified robustness (Wang et al., 2021b),
manifold-based defenses (Minh and Luu, 2022),
and adversarial training (Zhu et al., 2020; Jiang
et al., 2022a) have been developed. Among all
defense methods, adversarial training is known to
be the most effective and promising strategy to im-
prove the adversarial robustness of models (Jiang
et al., 2022a). In the context of PLMs, adversarial
training appears as adversarial fine-tuning, which
fine-tunes the pre-trained models on adversarial
examples. Existing adversarial fine-tuning meth-
ods, either greedily fine-tune PLMs on adversar-
ial attacks (Zhu et al., 2020), or selectively fine-
tune the models on samples that carry robust in-
formation (Jiang et al., 2022b; Dong et al., 2021b).
These methods overfit the adversarial attack they
are trained on, resulting in catastrophic forgetting
of robust and informative features learned during
the pre-training and thus low robust accuracy.

3 Methodology

To address catastrophic forgetting of adversarial
fine-tuning on PLM, we propose a Parameter-
Efficient Adversarial Fine-Tuning (PEAFT) de-
fense, which learns a defense soft prompt that,
when prepended to PLM, results in robust predic-
tions (cf. Figure 1). Since our method only learns
a few parameters while freezing the pre-trained
weights, it alleviates catastrophic forgetting.

3.1 Preliminaries

Soft Prompting Tuning is a parameter-efficient
tuning technique that integrates k virtual tokens
{p1,p2,...,pK} as learnable embedding vectors
to adapt the PLM to the downstream task (Lester
et al., 2021). These tokens are prepended to the
embedding representations of the input tokens.
During the fine-tuning, instead of updating all
model parameters, only the k& virtual token em-
bedding vectors are updated. Formally, for an in-
put sequence X = {z1,x2,...,%,}, the embed-
dings are derived by prepending k randomly ini-
tialized soft prompts to the input sequence. Let
E(z) denote the embedding function. The initial
embeddings, E;y, are thus defined as: Ej; =
[p1,02, - Dk E(x1), E(22), ..., E(zq)] where
each p; is a vector in R%, and d is the embedding
dimension. Soft prompt tuning of the PLMs is
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Figure 1: An overview of the proposed PEAFT. The
defense soft prompt learned by PEAFT prepends to
PLM and guides the model to correct predictions for
adversarial examples.

then achieved by Los = SN L fpa(xi), vi)s
where L is the Cross-Entropy loss, and f,, y repre-
sents the PLM parameterized by the soft prompts
p, and the original parameters 6 that are frozen.

Adversarial Training is a defense mechanism
that aims to minimize the worst-case training loss
for the adversarial examples (Madry et al., 2018).
This is formulated via a min-max objective defined
as ming max| 5| < £(fo(Tadv), y), Where the inner
maximization is responsible for generating adver-
sarial examples that are crafted by learning and
adding a small perturbation ¢ to the original input
X: Xady = X + d. The model’s parameters are then
learned to minimize the training loss over these
adversarial examples. In particular, each training
epoch of adversarial training consists of two steps:
(1) Generation of adversarial examples through
solving 0* = arg max5<c £(fo(x + J),y); and
(2) Updating the model parameters via 6 < 6§ —
nVoL(fe(x + %), y), where 7 is the learning rate.

3.2 Proposed Defense

To mitigate the catastrophic forgetting caused by
adversarial fine-tuning, we propose a parameter-
efficient adversarial fine-tuning method that freezes
the pre-trained model parameters and only tunes
a much smaller set of parameters. Our proposed
method consists of a defense soft prompt that lim-
its learned parameters to a set of virtual tokens
prepended to the text input. Our soft prompt
is trained with a min-max adversarial objective
which ensures when combined with the input
miny, max|s|<e £(fp,6(Tadv), y)- In this objective,
only p (the soft prompt) is learned, where p is sig-
nificantly smaller than 6. By preserving the pre-
trained model’s parameters 8, we effectively retain
the robust and informative features learned during



| MRPC QNLI RTE SST2
Method Target |[AUA  ACC AVG AUA ACC AVG AUA ACC AVG AUA ACC AVG
roberta-base  (70.00  73.20 71.60 3250 9230 6240 49.50 6850 59.00 48.00 93.80 70.90
deberta-v3-base |64.41 86.27 7534 3222 93.18 62.70 5524 80.14 67.69 34.17 9461 64.39
PEAFT electra-base  |67.43 8897 7820 28.26 91.61 5994 5736 7329 6533 36.76 94.27 65.52
roberta-large  |66.23  87.74 7699 36.52 93.68 65.10 5578 8519 7049 4150 94.08 67.79
deberta-v3-large [68.41 90.44 7943 34.72 9440 64.56 5842 8881 73.62 4232 9530 68.81
electra-large  |71.22 89.48 80.35 33.60 9410 6385 6223 88.09 7516 5091 9515 73.03
Llama 52.89 9511 7400 2890 89.16 59.03 66.82 89.32 78.07 3751 98.81 68.18
roberta-base  [12.23 7434 4329 29.00 84.10 5655 1641 69.11 4276 1230 8250 47.40
deberta-v3-base |14.11  81.21 47.66 14.12 88.10 51.11 812 7150 3981 13.76 9495 54.36
FreeLB electra-base 890 7891 4391 19.11 9173 5542 12.10 69.01 4056 11.58 9381 52.70
roberta-large  [11.76  87.50 49.63 12.63 93.68 53.16 144  80.14 40.79 1147 9484 53.16
deberta-v3-large | 7.35 8750 4743 OOM OOM OOM OOM OOM OOM 2190 94.15 58.03
electra-large  [29.95 6320 46.58 10.71 4826 2949 758 81.23 4441 8.60 9541 5201
Llama OoOOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM
roberta-base  (28.12  71.14 49.63 37.12 85.10 61.11 18.87 66.81 4284 31.64 84.12 57.88
deberta-v3-base |31.60 8091 5626 3312 8531 5922 19.10 73.00 46.05 1581 84.17 49.99
ROSE electra-base  [25.70 71.61 48.66 17.81 8840 53.11 3128 61.17 4623 2679 88.00 57.40
roberta-large  |26.94  83.78 5536 1839 87.13 5276 15.10 7197 4354 1975 86.39  53.07
deberta-v3-large [22.00 70.26 46.13 1296 7694 4495 22.00 7298 4749 19.65 78.46 49.06
electra-large  [27.81 60.10 4396 2290 64.67 4379 24.64 7835 5150 1547 84.43 4995
Llama 1126 90.20 50.73 2550 80.69 53.09 3287 8226 57.56 9.94 89.66  49.80

Table 1: Comparison of the proposed PEAFT with SOTA defense on the GLUE dataset attacked by Textfooler.

the pre-training. As mentioned earlier, solving the
min-max objective consists of two steps, i.e., gen-
eration of adversarial examples and updating PLM
parameters. Therefore, we split our soft prompt
into two sets of tokens, the first part called the de-
fense soft prompt is in charge of defense (learned
by the outer minimization) and the second part,
called the attack soft prompt is responsible for the
attack generation (learned via inner maximization).
Learning the Attack Soft Prompt. The objective
is to learn a soft prompt that when prepended to
the input generates its corresponding adversarial
example. This is achieved by solving the inner
maximization of the adversarial training objective.
The solution to the optimization is provided by the
Projected Gradient Descent (PGD) (Madry et al.,
2017). The perturbation ¢ is calculated based on
the input mask M derived from the attention mask
of the inputs. For [ norm initialization, the per-
turbation is initialized with random values scaled
by the input mask. The magnitude of the pertur-
bation is then adjusted based on the dimensions
of the embeddings 69 = (U(—1,1) - M) - Nk
where U(—1, 1) denotes the uniform distribution
between -1 and 1, M is the input mask, g is the in-
put length, d is the embedding dimension, and €jy;;
is the initial perturbation magnitude, which is a hy-
perparameter. In the k-th adversarial iteration, the
embeddings are updated using Eg:l)v = Einit + 0k,
and 0, = € - sign(VELady)-

€init

Learning the Defense Soft Prompt. Once the
adversarial soft prompt is learned, it is prepended
to the input which acts as an adversarial exam-
ple. The defense soft prompt is then learned by
minimizing the training loss over these examples.
To further ensure the performance over benign
examples, we utilize a weighted combination of
losses over benign (Lygn) and adversarial examples
(Lagv).- The final objective of our framework is
Liotal = Lpgn + A - Lagv, where ) is a hyperparam-
eter controlling impact of adversarial loss.

4 Experiments

4.1 Experimental Setup

Datasets, Targets, and Baselines. Following pre-
vious research (Zhu et al., 2020; Jiang et al., 2022b),
we utilize six widely-used datasets for our experi-
ments. We use four tasks from the GLUE (Wang
et al., 2018): MRPC, QNLI, RTE, and SST2, and
attack them with TextFooler (Jin et al., 2020), one
of the strongest adversarial attacks. We also eval-
uate our defense on the AdvGLUE (Wang et al.,
2021a), which is designed to evaluate the vulner-
abilities of modern LLMs under various types of
adversarial attacks. We test our defense across
various target model sizes and model backbones:
RoBERTa (Liu et al., 2019), DeBERTa (He et al.,
2020), and Electra (Clark, 2020). For all models,
we adopt base and large variants. For the sake of
comprehensiveness, we also use Llama (using a se-



quence classification head) (Touvron et al., 2023).
Our baselines are: (1) FreeLB (Zhu et al., 2020):
an adversarial fine-tuning method, which finetunes
on adversarial examples generated by adding per-
turbations to the embeddings; and (2) ROSE (Jiang
et al., 2022b): a fine-tuning method that selectively
fine-tunes the PLMs on robust samples'.

| RTE SST2

Method Target | AUA ACC AVG AUA ACC AVG

roberta-base 48.20 68.501 58.35 66.14 93.86 80.00
deberta-v3-base [59.82 80.14 69.98 64.58 94.61 79.60

PEAFT electra-base 62.27 73.29 67.78 66.02 94.27 80.15

roberta-large  |71.59 85.19 78.39 60.92 94.08 77.50
deberta-v3-large |72.71 88.81 80.76 68.64 95.30 81.97
electra-large 70.37 88.09 79.23 61.35 95.15 78.25

roberta-base 64.19 58.12 61.15 39.18 93.11 66.15
deberta-v3-base  |65.43 81.58 73.51 527 94.95 73.83
FreeLB electra-base 43.21 74.0 58.61 44.59 93.81 69.20

roberta-large 56.79 80.14 68.47 50.67 94.83 72.75
deberta-v3-large |OOM OOM OOM 47.97 94.15 71.06
electra-large 69.13 81.22 75.18 63.51 95.41 79.46

roberta-base 35.49 78.34 56.92 37.67 94.84 66.26
deberta-v3-base  [32.09 78.26 55.18 39.5 90.76 65.13
ROSE electra-base 31.85 75.74 53.80 42.72 90.37 66.55

roberta-large 70.62 85.13 77.88 57.77 95.58 76.68
deberta-v3-large | 70.5 83.71 77.11 52.61 95.50 74.10
electra-large 77.82 85.71 81.77 59.64 932 76.42

Table 2: Comparison of the proposed PEAFT with
SOTA defenses on the AdvGLUE dataset.

Evaluation Metrics. We report the accuracy under
the attack (AUA), which measures the model’s ac-
curacy on adversarial examples, and the accuracy
of benign samples from the test set (ACC). To as-
sess the final performance on adversarial and begin
examples, we report the average accuracy (AVG).

4.2 Experimental Results

Comparison with State-of-the-art Defenses. We
compare our proposed PEAFT with SOTA adver-
sarial fine-tuning defenses and report the results in
Table 1 and 2. We observe that PEAFT consistently
outperforms the SOTA defenses in terms of both
accuracy under the attack (AUA) and benign accu-
racy (ACC) by a large margin. We can also observe
that the average accuracy on both benign and adver-
sarial examples obtained by PEAFT is significantly
higher than the baselines. In the following, we elab-
orate on our in-depth observations: (1) FreeLB ex-
hibits poor performance in all cases. This is due to
fine-tuning the model on any adversarial examples,
resulting in catastrophic forgetting of the robust
features learned during the pre-training; (2) due
to its selective fine-tuning strategy, ROSE obtains
higher AUA compared to FreeLB. However, due to
the low occurrence of updates for robust samples,
it overfits the adversarial perturbations, resulting

'Implementation will be made public upon acceptance.

in lower ACC compared to PEAFT; and (3) the
proposed PEAFT achieves over 30% higher AUA
compared to the best-performing baseline. Note
that the FreeLB’s poor performance which uses the
same training objective as ours but to fine-tune the
entire model, further emphasizes the role of soft
prompt in alleviating the catastrophic forgetting
and obtaining higher AUA and AVG.
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Figure 2: PEAFT’s Behavior Analysis.

Hyperparameter Analysis. We demonstrate ef-
fect of the adversarial loss and trade-off between
the original accuracy and accuracy under the attack
by varying the hyperparameter A in the attack ob-
jective. A = 0 indicates normal training on benign
examples. As shown in Figure 2(a), as A increases
the AUA and ACC increases and decreases, re-
spectively. This shows trade-off between accuracy
on benign samples and accuracy under the attack,
while emphasizing that incorporating the adversar-
ial loss indeed leads to learning robust features.
Analysis of the Model Performance over Epochs.
To demonstrate the effectiveness of defense soft
prompt on alleviating catastrophic forgetting, we
plot the AUA for PEAFT and the baselines trained
over different number of epochs. As shown in the
Figure 2(b), both FreeLB and ROSE exhibit mostly
decreasing trend over different epochs, indicating
that their training results in forgetting robust in-
formation thus a decrease in AUA. Our proposed
defense, on the other hand, learns robust features
over epochs, resulting in increasing AUA.

5 Conclusion

We propose a parameter-efficient adversarial fine-
tuning method that addresses catastrophic forget-
ting while improving robustness against adversarial
examples. Our approach, based on defense soft
prompting, enhances PLM robustness without com-
promising pre-trained knowledge. Experiments
show significant improvements across benchmarks.



6 Limitations

Building upon the foundational studies of adver-
sarial training for text (e.g., (Zhu et al., 2020)),
the defense mechanism proposed in this paper also
entails the generation of adversarial attacks within
the continuous embedding space. However, this
approach may not represent the most optimal strat-
egy to generate worst-case adversarial attacks. The
primary focus of this research is to tackle the issue
of catastrophic forgetting, with the exploration of
more optimal adversarial attacks being earmarked
for future work. Moreover, the defense method pro-
posed in this paper is specifically tailored for classi-
fication tasks that utilize discriminative Pre-trained
Language Models (PLMs). For tasks that involve
the use of generative LLMs, there is a distinct ne-
cessity to devise alternative defensive strategies
tailored to those models.
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