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Abstract
Fine-tuning pre-trained language models001
(PLMs) has demonstrated remarkable perfor-002
mance in downstream tasks. These models,003
however, are vulnerable to adversarial attacks.004
Defenses based on adversarial fine-tuning, i.e.,005
fine-tuning PLMs with adversarial examples,006
have been proposed to counter this vulnerabil-007
ity. However, such defenses suffer from unsat-008
isfactory performance due to catastrophic for-009
getting, meaning they fail to retain the robust010
features learned during pre-training. In this011
paper, we propose a novel parameter-efficient012
adversarial fine-tuning method that tunes only a013
small subset of the model’s parameters, leaving014
the majority intact. Our method involves train-015
ing a defense soft prompt prepended to inputs,016
which leads to robust predictions by PLMs. Our017
extensive experiments demonstrate the effec-018
tiveness of our proposed defenses across vari-019
ous benchmarks and PLMs.020

1 Introduction021

Pre-trained Language Models (PLMs) have rev-022

olutionized natural language processing by shift-023

ing the paradigm from traditional supervised learn-024

ing, which involves training task-specific models025

from scratch, to adapting general-purpose PLMs026

for specific downstream tasks through fine-tuning.027

Despite their remarkable performance, fine-tuned028

PLMs are vulnerable to adversarial examples; care-029

fully crafted sentences with changes that are im-030

perceptible to humans and cause misclassifications031

by classifiers (Zhang et al., 2020; Jin et al., 2020;032

Moraffah and Liu, 2024). Such attacks compromise033

the trustworthiness of these models, particularly in034

high-stakes applications, highlighting the urgent035

need for developing defense methods.036

Adversarial training, which involves training037

models on adversarial examples, is a defense strat-038

egy designed to enhance the robustness of clas-039

sifiers against such attacks and has demonstrated040

optimal robust performance (Lin et al., 2024).041

In the context of PLMs, since training from 042

scratch is infeasible, adversarial training is im- 043

plemented through fine-tuning on these exam- 044

ples, commonly referred to as adversarial fine- 045

tuning (Dong et al., 2021a; Jiang et al., 2022a). 046

However, unlike traditional adversarial training, 047

adversarial fine-tuning often leads to subpar per- 048

formance, primarily due to catastrophic forgetting, 049

i.e., the loss of robust features learned during pre- 050

training. This issue arises from the inherent na- 051

ture of fine-tuning and the requirement for ad- 052

versarial fine-tuning to be conducted over several 053

epochs (Dong et al., 2021a). 054

We propose a novel parameter-efficient adversar- 055

ial fine-tuning method that freezes the pre-trained 056

model parameters and only tunes a much smaller 057

set of parameters. By altering only a small sub- 058

set of the model’s parameters, our proposed de- 059

fense ensures that the core features learned by the 060

pre-trained weights are largely preserved, thus al- 061

leviating catastrophic forgetting. This parameter- 062

efficient tuning helps the model maintain the ro- 063

bust features learned during the pre-training while 064

learning the necessary information from adversar- 065

ial examples and adapting to the downstream task 066

simultaneously. In particular, we propose a defense 067

soft prompt that limits learned parameters to a set 068

of virtual tokens prepended to the text input. Our 069

soft prompt is trained with a min-max adversarial 070

objective, which ensures when combined with the 071

input, the soft prompt effectively guides the PLM 072

to select the robust path and make robust decisions 073

to adversarial attacks. While parameter-efficient 074

fine-tuning has been extensively explored for low- 075

resource scenarios (Han et al., 2024), to the best of 076

our knowledge, our method is the first to explore its 077

role in adversarial defense. Our experiments vali- 078

date superior performance of our defense compared 079

to state-of-the-art adversarial fine-tuning methods 080

on several benchmarks. 081
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2 Related Work082

Several types of adversarial defenses for text, in-083

cluding adversarial purification (Moraffah et al.,084

2024), certified robustness (Wang et al., 2021b),085

manifold-based defenses (Minh and Luu, 2022),086

and adversarial training (Zhu et al., 2020; Jiang087

et al., 2022a) have been developed. Among all088

defense methods, adversarial training is known to089

be the most effective and promising strategy to im-090

prove the adversarial robustness of models (Jiang091

et al., 2022a). In the context of PLMs, adversarial092

training appears as adversarial fine-tuning, which093

fine-tunes the pre-trained models on adversarial094

examples. Existing adversarial fine-tuning meth-095

ods, either greedily fine-tune PLMs on adversar-096

ial attacks (Zhu et al., 2020), or selectively fine-097

tune the models on samples that carry robust in-098

formation (Jiang et al., 2022b; Dong et al., 2021b).099

These methods overfit the adversarial attack they100

are trained on, resulting in catastrophic forgetting101

of robust and informative features learned during102

the pre-training and thus low robust accuracy.103

3 Methodology104

To address catastrophic forgetting of adversarial105

fine-tuning on PLM, we propose a Parameter-106

Efficient Adversarial Fine-Tuning (PEAFT) de-107

fense, which learns a defense soft prompt that,108

when prepended to PLM, results in robust predic-109

tions (cf. Figure 1). Since our method only learns110

a few parameters while freezing the pre-trained111

weights, it alleviates catastrophic forgetting.112

3.1 Preliminaries113

Soft Prompting Tuning is a parameter-efficient114

tuning technique that integrates k virtual tokens115

{p1, p2, . . . , pk} as learnable embedding vectors116

to adapt the PLM to the downstream task (Lester117

et al., 2021). These tokens are prepended to the118

embedding representations of the input tokens.119

During the fine-tuning, instead of updating all120

model parameters, only the k virtual token em-121

bedding vectors are updated. Formally, for an in-122

put sequence X = {x1, x2, . . . , xq}, the embed-123

dings are derived by prepending k randomly ini-124

tialized soft prompts to the input sequence. Let125

E(x) denote the embedding function. The initial126

embeddings, Einit, are thus defined as: Einit =127

[p1, p2, . . . , pk, E(x1), E(x2), . . . , E(xq)] where128

each pi is a vector in Rd, and d is the embedding129

dimension. Soft prompt tuning of the PLMs is130

Figure 1: An overview of the proposed PEAFT. The
defense soft prompt learned by PEAFT prepends to
PLM and guides the model to correct predictions for
adversarial examples.

then achieved by Lcls = 1
N

∑N
i=1 L(fp,θ(xi), yi), 131

where L is the Cross-Entropy loss, and fp,θ repre- 132

sents the PLM parameterized by the soft prompts 133

p, and the original parameters θ that are frozen. 134

Adversarial Training is a defense mechanism 135

that aims to minimize the worst-case training loss 136

for the adversarial examples (Madry et al., 2018). 137

This is formulated via a min-max objective defined 138

as minθ max∥δ∥≤ϵ L(fθ(xadv), y), where the inner 139

maximization is responsible for generating adver- 140

sarial examples that are crafted by learning and 141

adding a small perturbation δ to the original input 142

x: xadv = x+ δ. The model’s parameters are then 143

learned to minimize the training loss over these 144

adversarial examples. In particular, each training 145

epoch of adversarial training consists of two steps: 146

(1) Generation of adversarial examples through 147

solving δ∗ = argmax∥δ∥≤ϵ L(fθ(x + δ), y); and 148

(2) Updating the model parameters via θ ← θ − 149

η∇θL(fθ(x+ δ∗), y), where η is the learning rate. 150

3.2 Proposed Defense 151

To mitigate the catastrophic forgetting caused by 152

adversarial fine-tuning, we propose a parameter- 153

efficient adversarial fine-tuning method that freezes 154

the pre-trained model parameters and only tunes 155

a much smaller set of parameters. Our proposed 156

method consists of a defense soft prompt that lim- 157

its learned parameters to a set of virtual tokens 158

prepended to the text input. Our soft prompt 159

is trained with a min-max adversarial objective 160

which ensures when combined with the input 161

minpmax∥δ∥≤ϵ L(fp,θ(xadv), y). In this objective, 162

only p (the soft prompt) is learned, where p is sig- 163

nificantly smaller than θ. By preserving the pre- 164

trained model’s parameters θ, we effectively retain 165

the robust and informative features learned during 166
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MRPC QNLI RTE SST2

Method Target AUA ACC AVG AUA ACC AVG AUA ACC AVG AUA ACC AVG

PEAFT

roberta-base 70.00 73.20 71.60 32.50 92.30 62.40 49.50 68.50 59.00 48.00 93.80 70.90
deberta-v3-base 64.41 86.27 75.34 32.22 93.18 62.70 55.24 80.14 67.69 34.17 94.61 64.39

electra-base 67.43 88.97 78.20 28.26 91.61 59.94 57.36 73.29 65.33 36.76 94.27 65.52

roberta-large 66.23 87.74 76.99 36.52 93.68 65.10 55.78 85.19 70.49 41.50 94.08 67.79
deberta-v3-large 68.41 90.44 79.43 34.72 94.40 64.56 58.42 88.81 73.62 42.32 95.30 68.81

electra-large 71.22 89.48 80.35 33.60 94.10 63.85 62.23 88.09 75.16 50.91 95.15 73.03
Llama 52.89 95.11 74.00 28.90 89.16 59.03 66.82 89.32 78.07 37.51 98.81 68.18

FreeLB

roberta-base 12.23 74.34 43.29 29.00 84.10 56.55 16.41 69.11 42.76 12.30 82.50 47.40
deberta-v3-base 14.11 81.21 47.66 14.12 88.10 51.11 8.12 71.50 39.81 13.76 94.95 54.36

electra-base 8.90 78.91 43.91 19.11 91.73 55.42 12.10 69.01 40.56 11.58 93.81 52.70

roberta-large 11.76 87.50 49.63 12.63 93.68 53.16 1.44 80.14 40.79 11.47 94.84 53.16
deberta-v3-large 7.35 87.50 47.43 OOM OOM OOM OOM OOM OOM 21.90 94.15 58.03

electra-large 29.95 63.20 46.58 10.71 48.26 29.49 7.58 81.23 44.41 8.60 95.41 52.01
Llama OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

ROSE

roberta-base 28.12 71.14 49.63 37.12 85.10 61.11 18.87 66.81 42.84 31.64 84.12 57.88
deberta-v3-base 31.60 80.91 56.26 33.12 85.31 59.22 19.10 73.00 46.05 15.81 84.17 49.99

electra-base 25.70 71.61 48.66 17.81 88.40 53.11 31.28 61.17 46.23 26.79 88.00 57.40

roberta-large 26.94 83.78 55.36 18.39 87.13 52.76 15.10 71.97 43.54 19.75 86.39 53.07
deberta-v3-large 22.00 70.26 46.13 12.96 76.94 44.95 22.00 72.98 47.49 19.65 78.46 49.06

electra-large 27.81 60.10 43.96 22.90 64.67 43.79 24.64 78.35 51.50 15.47 84.43 49.95
Llama 11.26 90.20 50.73 25.50 80.69 53.09 32.87 82.26 57.56 9.94 89.66 49.80

Table 1: Comparison of the proposed PEAFT with SOTA defense on the GLUE dataset attacked by Textfooler.

the pre-training. As mentioned earlier, solving the167

min-max objective consists of two steps, i.e., gen-168

eration of adversarial examples and updating PLM169

parameters. Therefore, we split our soft prompt170

into two sets of tokens, the first part called the de-171

fense soft prompt is in charge of defense (learned172

by the outer minimization) and the second part,173

called the attack soft prompt is responsible for the174

attack generation (learned via inner maximization).175

Learning the Attack Soft Prompt. The objective176

is to learn a soft prompt that when prepended to177

the input generates its corresponding adversarial178

example. This is achieved by solving the inner179

maximization of the adversarial training objective.180

The solution to the optimization is provided by the181

Projected Gradient Descent (PGD) (Madry et al.,182

2017). The perturbation δ is calculated based on183

the input mask M derived from the attention mask184

of the inputs. For l2 norm initialization, the per-185

turbation is initialized with random values scaled186

by the input mask. The magnitude of the pertur-187

bation is then adjusted based on the dimensions188

of the embeddings δ0 = (U(−1, 1) ·M) · ϵinit√
q·d ,189

where U(−1, 1) denotes the uniform distribution190

between -1 and 1, M is the input mask, q is the in-191

put length, d is the embedding dimension, and ϵinit192

is the initial perturbation magnitude, which is a hy-193

perparameter. In the k-th adversarial iteration, the194

embeddings are updated using E
(k)
adv = Einit + δk,195

and δk = ϵ · sign(∇ELadv).196

Learning the Defense Soft Prompt. Once the 197

adversarial soft prompt is learned, it is prepended 198

to the input which acts as an adversarial exam- 199

ple. The defense soft prompt is then learned by 200

minimizing the training loss over these examples. 201

To further ensure the performance over benign 202

examples, we utilize a weighted combination of 203

losses over benign (Lbgn) and adversarial examples 204

(Ladv). The final objective of our framework is 205

Ltotal = Lbgn + λ · Ladv, where λ is a hyperparam- 206

eter controlling impact of adversarial loss. 207

4 Experiments 208

4.1 Experimental Setup 209

Datasets, Targets, and Baselines. Following pre- 210

vious research (Zhu et al., 2020; Jiang et al., 2022b), 211

we utilize six widely-used datasets for our experi- 212

ments. We use four tasks from the GLUE (Wang 213

et al., 2018): MRPC, QNLI, RTE, and SST2, and 214

attack them with TextFooler (Jin et al., 2020), one 215

of the strongest adversarial attacks. We also eval- 216

uate our defense on the AdvGLUE (Wang et al., 217

2021a), which is designed to evaluate the vulner- 218

abilities of modern LLMs under various types of 219

adversarial attacks. We test our defense across 220

various target model sizes and model backbones: 221

RoBERTa (Liu et al., 2019), DeBERTa (He et al., 222

2020), and Electra (Clark, 2020). For all models, 223

we adopt base and large variants. For the sake of 224

comprehensiveness, we also use Llama (using a se- 225
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quence classification head) (Touvron et al., 2023).226

Our baselines are: (1) FreeLB (Zhu et al., 2020):227

an adversarial fine-tuning method, which finetunes228

on adversarial examples generated by adding per-229

turbations to the embeddings; and (2) ROSE (Jiang230

et al., 2022b): a fine-tuning method that selectively231

fine-tunes the PLMs on robust samples1.

RTE SST2

Method Target AUA ACC AVG AUA ACC AVG

roberta-base 48.20 68.501 58.35 66.14 93.86 80.00
deberta-v3-base 59.82 80.14 69.98 64.58 94.61 79.60

PEAFT electra-base 62.27 73.29 67.78 66.02 94.27 80.15

roberta-large 71.59 85.19 78.39 60.92 94.08 77.50
deberta-v3-large 72.71 88.81 80.76 68.64 95.30 81.97

electra-large 70.37 88.09 79.23 61.35 95.15 78.25

roberta-base 64.19 58.12 61.15 39.18 93.11 66.15
deberta-v3-base 65.43 81.58 73.51 52.7 94.95 73.83

FreeLB electra-base 43.21 74.0 58.61 44.59 93.81 69.20

roberta-large 56.79 80.14 68.47 50.67 94.83 72.75
deberta-v3-large OOM OOM OOM 47.97 94.15 71.06

electra-large 69.13 81.22 75.18 63.51 95.41 79.46

roberta-base 35.49 78.34 56.92 37.67 94.84 66.26
deberta-v3-base 32.09 78.26 55.18 39.5 90.76 65.13

ROSE electra-base 31.85 75.74 53.80 42.72 90.37 66.55

roberta-large 70.62 85.13 77.88 57.77 95.58 76.68
deberta-v3-large 70.5 83.71 77.11 52.61 95.50 74.10

electra-large 77.82 85.71 81.77 59.64 93.2 76.42

Table 2: Comparison of the proposed PEAFT with
SOTA defenses on the AdvGLUE dataset.

232
Evaluation Metrics. We report the accuracy under233

the attack (AUA), which measures the model’s ac-234

curacy on adversarial examples, and the accuracy235

of benign samples from the test set (ACC). To as-236

sess the final performance on adversarial and begin237

examples, we report the average accuracy (AVG).238

4.2 Experimental Results239

Comparison with State-of-the-art Defenses. We240

compare our proposed PEAFT with SOTA adver-241

sarial fine-tuning defenses and report the results in242

Table 1 and 2. We observe that PEAFT consistently243

outperforms the SOTA defenses in terms of both244

accuracy under the attack (AUA) and benign accu-245

racy (ACC) by a large margin. We can also observe246

that the average accuracy on both benign and adver-247

sarial examples obtained by PEAFT is significantly248

higher than the baselines. In the following, we elab-249

orate on our in-depth observations: (1) FreeLB ex-250

hibits poor performance in all cases. This is due to251

fine-tuning the model on any adversarial examples,252

resulting in catastrophic forgetting of the robust253

features learned during the pre-training; (2) due254

to its selective fine-tuning strategy, ROSE obtains255

higher AUA compared to FreeLB. However, due to256

the low occurrence of updates for robust samples,257

it overfits the adversarial perturbations, resulting258

1Implementation will be made public upon acceptance.

in lower ACC compared to PEAFT; and (3) the 259

proposed PEAFT achieves over 30% higher AUA 260

compared to the best-performing baseline. Note 261

that the FreeLB’s poor performance which uses the 262

same training objective as ours but to fine-tune the 263

entire model, further emphasizes the role of soft 264

prompt in alleviating the catastrophic forgetting 265

and obtaining higher AUA and AVG. 266

(a) λ vs. performance on
the QNLIdataset

(b) AUA vs. Epochs on
SST2 dataset

Figure 2: PEAFT’s Behavior Analysis.

Hyperparameter Analysis. We demonstrate ef- 267

fect of the adversarial loss and trade-off between 268

the original accuracy and accuracy under the attack 269

by varying the hyperparameter λ in the attack ob- 270

jective. λ = 0 indicates normal training on benign 271

examples. As shown in Figure 2(a), as λ increases 272

the AUA and ACC increases and decreases, re- 273

spectively. This shows trade-off between accuracy 274

on benign samples and accuracy under the attack, 275

while emphasizing that incorporating the adversar- 276

ial loss indeed leads to learning robust features. 277

Analysis of the Model Performance over Epochs. 278

To demonstrate the effectiveness of defense soft 279

prompt on alleviating catastrophic forgetting, we 280

plot the AUA for PEAFT and the baselines trained 281

over different number of epochs. As shown in the 282

Figure 2(b), both FreeLB and ROSE exhibit mostly 283

decreasing trend over different epochs, indicating 284

that their training results in forgetting robust in- 285

formation thus a decrease in AUA. Our proposed 286

defense, on the other hand, learns robust features 287

over epochs, resulting in increasing AUA. 288

5 Conclusion 289

We propose a parameter-efficient adversarial fine- 290

tuning method that addresses catastrophic forget- 291

ting while improving robustness against adversarial 292

examples. Our approach, based on defense soft 293

prompting, enhances PLM robustness without com- 294

promising pre-trained knowledge. Experiments 295

show significant improvements across benchmarks. 296
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6 Limitations297

Building upon the foundational studies of adver-298

sarial training for text (e.g., (Zhu et al., 2020)),299

the defense mechanism proposed in this paper also300

entails the generation of adversarial attacks within301

the continuous embedding space. However, this302

approach may not represent the most optimal strat-303

egy to generate worst-case adversarial attacks. The304

primary focus of this research is to tackle the issue305

of catastrophic forgetting, with the exploration of306

more optimal adversarial attacks being earmarked307

for future work. Moreover, the defense method pro-308

posed in this paper is specifically tailored for classi-309

fication tasks that utilize discriminative Pre-trained310

Language Models (PLMs). For tasks that involve311

the use of generative LLMs, there is a distinct ne-312

cessity to devise alternative defensive strategies313

tailored to those models.314
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