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ABSTRACT

Traditional model selection in deep learning relies on carefully tuning several
hyper-parameters (HPs) controlling regularization strength on held-out validation
data, which can be challenging to obtain in scarce-data scenarios or may not ac-
curately reflect real-world deployment conditions due to distribution shifts. Moti-
vated by such issues, this paper investigates the potential of using solely the train-
ing loss to predict the generalization performance of neural networks on out-of-
distribution (OOD) test scenarios. Our analysis reveals that preserving consistent
prediction variance across training and testing distributions is essential for estab-
lishing a correlation between training loss and OOD generalization. We propose
architectural adjustments to ensure variance preservation, enabling reliable model
selection based on training loss alone, even in over-parameterized settings with a
sample-to-parameter ratio exceeding four orders of magnitude. We extensively as-
sess the model-selection capabilities of variance-preserving architectures on sev-
eral scarce data, domain-shift, and corruption benchmarks by optimizing HPs such
as learning rate, weight decay, batch size, and data augmentation strength.

1 INTRODUCTION

The goal of training neural networks is to

achieve strong generalization on challenging Default Architecture

testing scenarios, which is critical for deploying

models in real-world applications where out-of- & 41 ’j ;)0'3123
distribution (OOD) scenarios often arise (Liu % :, 097
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weight decay (WD) (Zhang et al., 2021a; An-

driushchenko et al., 2023), as well as implicit Figure 1: Predicting OOD generalization. The
strategies such as using large learning (LR) training loss of a ResNet-50 is not predictive for
rates (Lewkowycz et al., 2020; Li et al., 2019)  OOD generalization when selecting LR and WD
or smaller batch sizes (Keskar et al., 2016; Hof~  (top). Our architecture (bottom) preserves the pre-
feretal., 2017). By doing so, they help mitigate diction variance as the test distribution shifts and
overfitting, particularly in scenarios where neu-  correlates the training with OOD-test losses de-
ral networks are over-parameterized relative to  spite being severely over-parametrized on CUB
the training set (Advani et al., 2020; Bornschein  and subsampled versions of ISIC 2018, ,
etal., 2020; Nakkiran et al., 2021; Brigato et al., EuroSAT RGB, and EuroSAT.

2021; 2022).
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In real-world applications, practitioners search for a large set of hyper-parameters (HPs) controlling
the regularization strength, a crucial step that often determines the model’s generalization perfor-
mance (Krizhevsky et al., 2012; He et al., 2019; Yu & Zhu, 2020). Traditional HP search is per-
formed using validation sets, often by splitting the original training set or by collecting held-out
data. Challenges for such model-selection paradigm may arise in use cases where data is: 1) ex-
pensive, such as in medical imaging (Varoquaux & Cheplygina, 2022), 2) logistically unfeasible to
collect as in federated learning (McMahan et al., 2017), 3) scarce hence inherently unreliable for
unbiased evaluations (Lorraine et al., 2020; Brigato & Mougiakakou, 2023), or 4) prone to distri-
bution shifts which often happens in real-world deployment. Concerning the latter point, previous
work has investigated ways to measure distances between in-distribution (ID) and OOD distributions
(Ben-David et al., 2006) or has shown that linear correlation among ID and OOD test performance
may hold (Miller et al., 2021), but not on all cases (Teney et al., 2024). Other approaches may need
access to unlabeled OOD data to predict OOD generalization (Tu et al., 2024).

In this work, motivated by the previously mentioned challenges regarding the collection of proper
validation data to guide reliable model selection, we raise an unexplored research question (RQ):

RQ: When performing model selection, can we solely rely on the average training loss computed
over the ID training set to predict the performance of models on OOD testing scenarios?

Intuitively, considering only the training loss for model selection seems prohibitive since certain HPs
may easily cause over-parametrized models to overfit the ID dataset and consequently obtain poor
OOD generalization. To support this claim, we perform a grid search over LR and WD spanning five
orders of magnitude (5 - [10~°,1071]) for a default ResNet-50 (He et al., 2016a) on small datasets
with a maximum of 50 samples per class. As expected (see Figure 1, top), we are unable to perform
reliable model selection since the training and testing losses are mostly uncorrelated due to multiple
configurations scoring a low training loss but a high generalization error.

To address our RQ, we first explore the conditions required for establishing linear relationships be-
tween training and test losses as a function of HP choices. From this analysis, we find that the
variance of network predictions should remain consistent both within and across train-test distribu-
tions. Consequently, we examine how factors such as individual layers, depth, and width scaling
influence the ability to preserve prediction variance. Based on these insights, we adapt existing ar-
chitectures (MLP, ResNet) and configure them to be variance-preserving (VP). In other words, we
adjust all architectural choices that may enable unbounded variance escalation under distribution
shifts. Specifically, we 1) ensure scale-invariance of the function, 2) control variance growth from
depth scaling with scaled residuals, and 3) limit variance amplification from width scaling using
whitening layers. As visible in Figure 1 (bottom), the effects of our adaptations enable the training
loss of the over-parameterized ResNet-50 to serve as a reliable predictor for OOD generalization.
Contribution. In summary, the contributions of our paper are threefold: 1) New RQ: We introduce
and explore the paradigm of using the training loss as a reliable predictor of OOD performance for
model selection, motivated by the challenges of collecting validation data, especially in scenarios
with scarce data or distribution shifts. 2) Methodology and Architecture Design: We study the
conditions needed to establish linear relationships between training and test losses (Section 2.1)
and consequently develop a methodology that controls prediction-variance across distributions by
adapting existing architectures to be VP (Section 2.2). Comprehensive Empirical Analysis: We
analyze the model-selection capabilities of the introduced architectures through an extensive exper-
imental setup (Section 3), including the optimization of several HPs (LR, WD, batch size, and data
augmentation strength (Cubuk et al., 2020; Yun et al., 2019; Zhang et al., 2017)) over popular OOD
benchmarks covering small-data scenarios (Brigato et al., 2022), domain shifts (Oehri et al., 2024),
and corruptions (Hendrycks & Dietterich, 2019; Oehri et al., 2024) benchmarks.

2 CAN THE TRAINING L0OSS BE PREDICTIVE FOR OOD GENERALIZATION?

2.1 ANALYZING CONDITIONS FOR CORRELATING TRAINING AND TEST LOSSES

Setup Let us define a joint pyata(X,y) and marginal py,(h) probability distribution from which
we respectively sample training couples Dy, = {z,y}? ;, and HP configurations H = {h}"_,.
For the sake of simplicity, without loss of generality, in the derivation below, we will focus on
tasks where targets are scalars (y) rather than vectors (y). Let us also define the loss function L,
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which measures the discrepancy among the ground truth targets y and the predicted targets ¢, with ¢
representing the prediction of our learner f. Since f is parameterized by w and its learning process
is influenced by the sampled hyperparameter (HP) configuration h, we define § = f(x,w(h)).
To simplify the relationship between the learned parameters and the HP configuration—reflected in
the learning process—we assume that for a fixed architecture-HP-configuration pair, the learning
process always converges to a fixed parameter set w. While this is clearly a simplifying assumption,
it is empirically supported by our results (Section 3.2) and is reasonable under the condition of a fixed
optimizer (Section 2.2). In practice, the predictions of a neural network do not vary significantly
across repeated runs with the same HP configuration. Therefore, we revisit § = f(x,w(h)) =~
f(x, h) and drop for the sake of our analysis, which focuses on the architecture f, the explicit
dependence on w. The cost over the training distribution given a specific HP configuration h is
defined as J(h) = Exy[L(x,y, h)]. In practice, we compute the average loss over the training set
Dirain, Which means that J(h) = 1 >or L(yi, yi). We assume to sample the testing set Dy, =

{x,y}"_, from another distribution géata(x, y) whose marginal distribution p’(x) differs from the
original p(x) due to a general covariate shift p(x) — p’(x). Our goal is to design the learner f
such that the ranking of the cost functions J on the training set D, over the sampled HP space H is

consistent with the losses .JJ' over the unknown testing set Dy,.

Correlation analysis To measure the alignment among the two sets of losses and simplify the
analysis, we employ the Pearson correlation coefficient p. In practice, we need p to be i) strictly
positive since a negative correlation would imply that training and testing losses are negatively
correlated and ii) close to one, i.e., p =~ 1. Let us define the Pearson correlation among training
and test losses as p y—, s and show it more formally as:

Dy = Cov(J(h),J' (h)) 0
\/Var(J(h)) - Var(J'(h))

with J(h) = 13" L(y;, f(@i, h)) and J'(h) = & Z?/ L(y;, f(x};,h)). To simplify Equa-
tion (1), we break the variance and covariance as a function of the expectation and perform a first-
order Taylor expansion of the loss £ around p = Ep (f(, h)). Full details of the derivation are pro-
vided in Appendix A. The expression for the variance Var[J(h)] and covariance Cov[J(h), J'(h)]

of the losses respectively correspond to:

1 n n A .
Var(J(h)) ~ — > Covni 513)V Ly, i)V L(y; 115) 2
i=1 j=1
1 & n’ o
Cov(J(h),J'(h)) = — D0 Covli 97V rL (i 1)V £ Ly 1)) 3)
i=1 j=1

The gradient term V ¢ £, which appears in both Equations (2) and (3), measures the sensitivity of
the loss function for prediction changes against ground truth targets. A large gradient implies that
the average loss is very sensitive to small changes in the predictions, amplifying the effect of HP-
induced variability on the total variance. Note that since L is fixed and common to both training and
testing evaluation, we can focus our attention on the Cov terms.

Cov (s, gjg) measures the variance of the predictions for data points sampled from the distribution
p(x) and p'(x) as h change. While Cov(y;, ;) and Cov(g;, §;) respectively quantify the stability
of the model predictions for samples coming from the same distribution, either p(x) or p’(x). To
have a high positive correlation among the losses, we need p;_, ;» =~ 1. As specified above, we only

consider the covariance terms and the data points ¢ and j to derive:

Cov (i, 95)
\/Cov(yi. i) - Cov(3. 9))

~1 4)
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Equation (4) is satisfied if Cov(y;, Q;) is positive and approximately equal to the denominator. The
first condition happens if the model predictions across the different distributions p(x) and p'(x)
behave similarly. It implies a positive linear relationship among J(h) and J'(h). The second
condition, which determines a strong positive linear relationship, happens if the variances of the
predictions within each distribution, i.e., Cov(y;, 9;) and Cov(g;,9}) are approximately the same.
If the model’s predictions are highly stable and aligned within one distribution but more variable
in the other, the cross-distribution covariance will not match the product of the within-distribution
covariances, thus breaking the approximation.

2.2 DESIGNING VARIANCE-PRESERVING ARCHITECTURES

In line with the results of Section 2.1, we aim to develop a variance-preserving model whose pre-
dictions f(x, h), with h ~ H, maintain stability across distribution shifts p(x) — p’(x) and be-
have similarly within each distribution. Thus, the core objective is to regulate the variance of the
network’s predictions Var(f(x, h)) during training and adapt neural architectures to minimize the
sensitivity to HP variations which can significantly impact the prediction variance.

We focus on several architectural factors that contribute to variance instability, which can result in
significant discrepancies between average training and test losses. Note that past literature has ex-
tensively studied the phenomenon of distribution shift happening while training, which was defined
as covariate shift by the seminal paper of loffe & Szegedy. In our analysis, we dissect variance
shifts along individual layers (Arpit et al., 2016; Li & Arora, 2019; Li et al., 2022), network depth
(Glorot & Bengio, 2010; He et al., 2016b; Brock et al., 2021) and network width (Glorot & Bengio,
2010; He et al., 2015; Arpit et al., 2016). Despite this methodology for variance analysis being
applicable to different models, we use a 4-layer MLP as a case study to simplify comprehension
and provide clearer insights. We progressively modify its architecture to observe the key variance
propagation dynamics, leading to the design of a variance-preserving network empirically satisfy-
ing Equation (1). Before proceeding to the analysis, we address some general notation to describe
network architectures and provide more details regarding the specific setup of the chosen case study.

Notation and setup Modern deep networks f(-) are modular architectures usually composed of
a stack of blocks belonging to three categories: 1) a stem layer s(-) which maps input data « to a
latent representation z, 2) a trunk layer ¢t made of identical blocks g;, and 3) an output head block
h which maps the final representation to the output space. By using the composition notation o, we
summarize the deep network as f = h ot o s, with t = Ol_, g;. To simplify notation, we removed
the dependence of f to the parameters w and HP h. The parameter vector w is trained via SGD
optimization to minimize the cross-entropy loss £(w) over Dy.qin. The regularized training loss
L(w), adds to the objective the popular weight decay (WD) term which penalizes the growth of the

norm w: L(w)y = L(w)+ )\‘“’THQ. At each iteration, the parameters follow the well-known update

rule wip = wy — :VL(w)y = wy — oy VL(w) — ax ) - wy, where « is the learning rate (LR)
adjusted at each iteration according to a cosine schedule. Note that we refer to « as the initial LR.

Case study We simulate an OOD scenario and keep a substantial difference among D;,. and D,
by randomly sampling 1% of the training dataset of CIFAR-10, maintaining balance across classes,
and testing the network on the full test set. The default MLP design includes an identity mapping
as stem layer s = Id(+), a repeated post-activation block g; = ReLU(BN(Lnr(-))), and a final head
h = Lnr(+). The dimensions of hidden layers are initially fixed to 256, more formally z € R with
d = 256. We keep a small batch b of 10 samples, given the tiny size of the training set. As HPs,
we sample 10 equally-spaced learning rates o and weight decays A in log-space to perform a full
squared-grid search of 100 trials. Each trial is represented by a dot in the scatter plots of this section.

2.2.1 CONTROLLING VARIANCE GROWTH OF SINGLE LAYERS WITH SCALE-INVARIANCE

Modern networks using normalization layers such as BN are almost completely scale-invariant (SI),
meaning that given a scalar ¢ € R, f(cw) = f(w). When trained with SGD and WD, this property
gives rise to optimization dynamics, still under investigation (Wan et al., 2021; Kodryan et al., 2022;
Andriushchenko et al., 2023), in which the WD does not reduce the complexity of the model but
rather increases the effective learning rate by reducing the weight norm (Van Laarhoven, 2017,
Zhang et al., 2019a), and hence can indirectly exert a regularizing effect by means of larger gradient
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Figure 2: Scale invariance
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’ - ® residual structure boosts cor-
0.5 1.0 15 20 relation, thanks to linear scal-

Train Cost ing of variance along depth.

noise (Neelakantan et al., 2015; Keskar et al., 2016; Li et al., 2019; Heo et al., 2020). The gradient
updates among scale-variant and scale-invariant layers differ when a critical HP such as WD () is
tuned. For instance, a too-high o coupled with small A could blow the variance of a scale-variant
layer due to large gradient updates (Li & Arora, 2019). Thus, we follow previous work to make our
MLP SI (Li & Arora, 2019; Kodryan et al., 2022). In practice, we fix v = 1 and 8 = 0 to prevent BN
layers from scaling the variance across network blocks differently and randomly freeze the output
layer, which has been shown not to prevent generalization (Hoffer et al., 2018). In Figure 2, we
see that SI prevents the unbounded growth of the test losses when the training cost is very low, i.e.,
when strong overfitting happens. However, the correlation coefficient is still negative, meaning that
predictions behave differently among p(x) and p’(x).

2.2.2 PREVENTING VARIANCE INCREASE DUE TO DEPTH SCALING WITH SCALED RESIDUALS

A further reason for this misalignment is rep-
resented by the bad propagation of the sig-

nal in the forward-backward passes induced by 2.0 I=4, p:089 " 4
the MLP architecture. Indeed, the variance %, ifﬁ Z 8;2 8
across the layers, as widely studied in previ- % &2 of

ous initialization literature Glorot & Bengio, 18 5 ek %8 s e

2010; He et al., 2015, scales as the product of Lo ey e

depth. The sequence of matrix-vector products 075 100 195 150 175 2.00
is hence highly unstable when large gradient Train Cost

noise comes from our strong data-distribution

shift and broad HP space, causing vanishing or Figure 3: Depth scaling reduces correlation.
exploding gradients. Given the linear growth in variance, default addi-
tive residual connections reduce correlation as the

To better preserve the signal variance (Taki, .
P & ( network depth [ increases.

2017), we indeed employ the popular residual
connections popularized by the ResNet archi-
tecture and hence ResNet-ctify the MLP. Fur-
thermore, we move from pre- to post-activation (He et al., 2016b), which further simplifies the prop-
agation of the signal thanks to the identity skip connection. As visible in Figure 2 (green), the resid-
ual design significantly benefits alignment among training and test losses by raising p from -0.44 to
0.89. Thus, we modify the MLP architecture components s = Lnr(-), g; = Lnr(ReLU(BN(-))),
and h = Lnr(ReLU(BN(-))). The hidden activation z; is now computed with the additive residual
connection z;11 = g(2;) + 2;.

However, additive residual connections cause the variance to increase linearly with depth, as each
addition contributes to the overall variance (Zhang et al., 2019b; Brock et al., 2021; Hoedt et al.,
2022). Formally, in networks with additive residual connections, the variance at the i, block of the
trunk becomes Var(z;1) = Var(g;(2;)) + Var(z;). To empirically visualize the variance growth
and quantify its impact on the alignment among train and test losses, we compare the 4-layer residual
MLP against the 8- and 16-layer versions. The correlation coefficient drops from 0.89 with 4 layers
to 0.56 with 16 layers (Figure 3).

To prevent variance explosion, we apply techniques such as scaling the residual branch by a factor 9,
with § = [~1, to enable stable variance propagation in a network with [ skip connections (Arpit et al.,
2019). We hence dampen the variance contribution from the residual path as z; 1 = dg;(2;) + 2;.
We employ the Signal Propagation Plots (SPPs) introduced by (Brock et al., 2021) and scatter the
average variance per activation Var(z) when  ~ AN(0,1). In the SPP of Figure 4 (right), we
appreciate the propagation of variance under control for the scaled residual MLP with 16 layers
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Figure 4: Scaled residuals preserve variance increase due to depth scaling. The variance grows
linearly in the case of default residual connections but remains constant if we scale the residual by a
factor [~! (right). We see the direct effect of controlling variance in increased correlation (left).

against the default linear growth. This design translates into alignment among train and test losses
(p = 0.92), visible in Figure 4 (left).

2.3  LIMITING VARIANCE ESCALATION DUE TO WIDTH SCALING WITH GROUP WHITENING

Next, we study the impact of width on the align-
ment between train and test losses. Consid-
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variance of sums to obtain Var(ziy1r) =

Z;'l Var(a;) + Z?;ék Cov(a;,ax). 1f we as-  Eioyre 5. Width scaling reduces correlation.
sume constant variances o (21 and covariances H,Ql, Cross-correlations in pre-activations scale post-
we get Var(z;41%) = d 02 + d(d — 1) k2. activation variance quadratically, thus correlation
Thus, the pre-activation covariances quadrat- decreases sharply as width d increases.

ically scale the post-activation variance as a

function of width. It is known that correlation

among hidden activations, generally assumed to be zero for initialization schemes (Glorot & Ben-
gio, 2010; He et al., 2015), may drastically grow during training since BN layers only standardize
activations (Ioffe & Szegedy, 2015; Arpit et al., 2016). As the network grows in size, activations
may increase their correlation due to the redundancy in learned representations (Morcos et al., 2018;
Kornblith et al., 2019). We empirically visualize the increase of variance by increasing the size of
width from d = 512 to d = 2048 in powers of 2. As visible in Figure 5, as we increase the width d,
the alignment drastically diminishes, with p dropping from 0.94 to 0.18.

A way to counteract this effect, which yet presents several challenges, is to whiten the activations.
A straightforward way is to apply a penalty term to the activation covariances, as investigated in
previous work (Cogswell et al., 2015; Hua et al., 2021). However, this approach would add extra
HPs that we are willing to avoid, given our RQ. We hence refer to another line of work which have
proposed batch whitening algorithms in deep networks (Huang et al., 2018; 2019; 2020; Siarohin
et al., 2018). Two key challenges of such methods regard i) the increased computational complexity,
which scales as O(d?max(b, d)) in the full-batch case (Huang et al., 2018) and ii) instability due to
matrix inversion and small batches (Huang et al., 2019; 2020).

As a solution, we substitute the BN layer of the head block with a Group Whitening (GW) layer
(Huang et al., 2021) and leave the rest of the normalization layers with BN. Therefore the head of
our residual MLP is modified to & = Lnr(ReLU(GW(+))). This design has three main advantages:
1) it leaves the computational cost practically unaffected, 2) it is independent of b, which may be
problematic in small-batch settings, and 3) it whitens the activation of the full network via the back-
ward pass despite using a single layer thanks the residual connections. To show the latter point, let
zo = s(x) be the output of the stem layer and let z; = zo + 22:1 9i(z;—1) following our network
structure. If we compute the derivative of GW (z;) with respect to z; we get:
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Figure 6: Group whitening preserves variance growth due to width scaling. The variance grows
due to high average covariances in the activation vectors but remains constant if we substitute the
batch normalization (BN) layer with group whitening (GW) in the head of the network (center and
right). The correlation increases if we control variance growth in this manner (left).

-1
8GW(Zl) 8GW(zl) 0
9z 921 + 9z, ;gk(zk) 5
We indeed note that the derivative of the whitening layer aGaLzEzl), containing the group-wise in-
verted covariances (Huang et al., 2021), scales the gradients of all network blocks aggiiz_’f). We

directly see its effect on the large 2048-wide MLP trained with high LR and low WD (a0 = b.5, A=
5-107). In the SPPs of Figure 6 (center and right), we feed the training set to the trained networks
with or without the GW layer and plot the average variances and upper-diagonal covariances. By
keeping the average covariance of activations close to zero (Figure 6, right), GW prevents the growth
of variance due to width scaling (Figure 6 center). We hence experience an almost perfect alignment
(p = 0.95), as visible in Figure 6 (left), despite the network being trained on as few as 500 examples
and containing approximately 20M parameters.

3 EXPERIMENTS

In this section, we validate and evaluate the ability to align train and test losses and the generalization
capabilities of variance-preserving architectures in more challenging test cases. Thus, we describe
the experimental setup in Section 3.1. We discuss the empirical results concerning alignment in
Section 3.2 and the quality of model selection in terms of absolute performance in Section 3.3.

3.1 EXPERIMENTAL SETUP

OOD benchmarks To cover a broad spectrum of real-world use cases, we focus on three types of
OOD scenarios: 1) small datasets, 2) corruptions, and 3) domain shifts.

Small datasets challenge the IID assumption of standard machine learning and hence are considered
an OOD testbed (Wad et al., 2022). We select the benchmark introduced in (Brigato et al., 2022)
containing five different datasets spanning various domains and data types. In particular, the bench-
mark sub-sampled ciFAIR-10 (c10) (Barz & Denzler, 2020), EuroSAT (ES) (Helber et al., 2019),
CLaMM (CLM) (Stutzmann, 2016), all with 50 samples per class, and ISIC 2018 (ISIC), with 80
samples per class (Codella et al., 2019). The popular CUB (Wah et al., 2011), with 30 images per
category, is the last dataset of the benchmark. The spanned image domains of this benchmark hence
include RGB natural images (c10, CUB), multi-spectral/RGB satellite data (ES, ESR), RGB skin
medical imagery (ISIC), and grayscale hand-written documents (CLM).

Corruptions of various types have been introduced by (Hendrycks & Dietterich, 2019) to mea-
sure the robustness of deep networks to common corruptions. We employ the popular CIFAR10-C
(C10C) and CIFAR100-C (C100C), where the original test datasets are subjected to 15 different cor-
ruptions, each at five severity levels. For a more challenging scenario, we also employ the recently
introduced corrupt versions of TinyImagenet-C (TINC) and EuroSATRGB-C (ESRC) from (Oechri
et al., 2024).
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|HPS | 1 1 1 1 1 1 1 1 1 3 3 3 3 |HPS|
Small datasets Corruptions Domain shifts
cl0 ISIC CLM CUB ES ESR ESRC CI10C C100C TINC TINV2 TINR TINA ‘
|Arch. | Pearson Correlation (p) Avg.|

Def. |0.34 -0.12 0.22 097 -0.01 -0.12 -0.21 0.85 0.83 0.70 090 -021 0.81 |0.38
VP 094 090 099 100 099 097 075 1.00 1.00  0.87 0.92 072  0.85 |0.92

|Arch. | Spearman Rank Correlation (p,) Avg. |

Def. |0.19 -0.03 0.51 0.82 0.54 045 -037 0.87 0.83 0.81 096 -0.32 0.89 |0.47
VP |082 096 099 1.00 096 095 0.69 0.99 1.00  0.96 0.98 0.77 097 |0.93

|Arch. | Weighted Kendall Rank Coefficient (7,,) Avg. |

Def. | 0.06 -0.09 0.29 040 031 023 -034 0.86 0.82 0.72 094 -0.01 0.76 |0.38
VP |090 093 096 09 093 091 0.82 098 0.97 0.93 0.94 037 092 |0.89

Table 1: Alignment between train and OOD test losses. The VP architecture exhibits a strong
correlation between train and test loss and outperforms the default architecture across metrics.

Domain shifts of several types represent a challenging OOD scenario for deep networks. We gather
the Tiny ImageNet test sets featuring the popular distribution-shift benchmarks of ImageNet, re-
cently introduced by (Oehri et al., 2024). More specifically, Tiny ImageNetV2 keeps all images of
joint classes of Tiny ImageNet and ImageNetV2 (Recht et al., 2019). Similarly, Tiny ImageNet-R
benchmarks the robustness of models when confronted with domain shifts, such as changes in the
type of images (e.g., paintings, toys, or graffiti). Finally, Tiny ImageNet-A contains all images from
the original Tiny ImageNet validation set misclassified by a ResNet-18.

Architectures As the main architecture, we focus on ResNet-50 (RN50) (He et al., 2015), given its
large popularity and great adaptability for tasks of small-to-medium size. For images or resolutions
smaller than 64, we employ either the Wide ResNet (WRN) (Zagoruyko & Komodakis, 2016) or
the previously introduced MLP. Given the simplicity of the VP adaptation discussed in Section 2.2,
it is straightforward to apply such adjustments to the RN50 or low-resolution WRN. The only key
difference regards the addition of BN layers on the skip connections where down-sampling happens
to keep the SI property of the network (Li & Arora, 2019; Kodryan et al., 2022).

Training setup We mostly train 100 models per run up to 200 to simulate an extensive HP search.
We employ SGD for variance-preserving and SGDM for default architectures. The latter is set with
momentum g equal to 0.9 as standard practice. We employ grid and random search strategies, as
well as early-stopping schedulers such as Asynchronous Successive Halving Algorithm (ASHA) (Li
et al., 2020a), to both decrease computational demand and increase real-world conditions. We test
multiple HP setups (HPS) of varying difficulties and breadth starting from « and A (HPS1), being
the two most popular HPs searched by practitioners. We then add to HPS1 the batch size b (HPS2)
and, finally, the data augmentation strength (HPS3). In particular, we search for the HPs NV and
M from RandAugment (Cubuk et al., 2020), the Beta distribution parameters A, of MixUp and
Aem Of CutMix (Yun et al., 2019), and probability py,, of applying MixUp. For additional details
regarding the training details and HPSs, refer to Appendix B.

Metrics To validate the functional relationship between train and test losses, we add to the pre-
viously mentioned p, which measures linear correlation, the Spearman’s rank correlation coeffi-
cient ps € [—1, 1] to measure monotonicity. In addition, we also compute the weighted variant of
Kendall’s rank correlation 7,, € [—1, 1], which is often employed to measure when selecting the
best-ranked item of interest (You et al., 2021; Tu et al., 2024). To validate the recognition perfor-
mance, we employ the test loss and the test accuracy computed on the OOD test set. For imbalanced
test sets, we compute the balanced accuracy, i.e., the average of the per-class accuracies.

3.2 ASSESSING THE FUNCTIONAL RELATIONSHIP AMONG TRAIN AND TEST LOSSES

Here, we validate the capability of the VP networks to withstand distribution shifts compared to the
default architectures. In Table 1, we observe that the VP architectures maintain a high correlation
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|HPS | | 2 2 2 2 2 1 1 1 1 3 3 3 30
Small datasets Corruptions Domain shifts
cl0 ISIC CLM CUB ES ESR ESRC CI0C Cl100C TINC TINV2 TINR TINA ‘
|Arch.|Val| Recognition Performance (%)
Def. | v/ |55.2* 64.5* 70.2* 70.8* 90.6* 82.5 59.8 62.1 35.8 29.2 38.1 137 215

VP
VP+

X
X

57.1 70.8 462 61.6 913 815 555 588 25.8 17.8 30.1 8.7 16.1
603 67.6 705 645 91.6 82.0 564  60.8 28.2 18.2 30.3 9.01 15.6

Table 2: Generalization on OOD benchmarks. VP+ architecture performs comparably to their
default counterparts on tasks with < 15 classes, achieving similar average scores (69.9% vs 69.3%)
without needing validation. On tasks with 100+ classes, it underperforms due to constraints prior-
itizing decorrelated representations and may require lower regularization and higher learning rates.
*The values are reported from the benchmark in (Brigato et al., 2022).

between train and OOD test loss despite the kind of distribution shift. On average, over the 13 cases
we tested, VP architectures record a strong positive correlation for all three indices with p = 0.92,
ps = 0.93, and 7, = 0.89. On the other hand, base architectures show difficulties in maintaining
a solid alignment, recording a linear correlation p of 0.38, monotonicity ps of 0.47, and a weighted
Kendall coefficient 7, of 0.38. Note that this evaluation concerns heterogeneous setups that include
the HPs spaces ranging from the grid search of LR and WD (Small Datasets, ESRC, C10C, C10C)
to the more complex random search with ASHA scheduler with the addition of batch size and data
augmentation parameters in the case of TINC, and domain shift datasets. In Appendix C.1, we ana-
lyze the characteristics of our tested distribution shifts following (Ye et al., 2022). In Appendix C.2,
we show that VP architectures better handle distribution shifts of increasing magnitude.

3.3 ASSESSING GENERALIZATION OF VARIANCE-PRESERVING ARCHITECTURES

After showing the predictive power for OOD generalization of the introduced architecture, we test its
absolute generalization capabilities. More specifically, we compare the VP architecture, solely opti-
mized according to its training loss, against networks trained with the traditional training/validation
paradigm. One of the key advantages of VP networks is that they eliminate the need for data splitting
and re-training. Leveraging this property, we optionally fine-tune the best configuration identified
during the HP search with an additional run on the same training set (VP+). While this second
training step might seem redundant in our setup, it is relevant to note that in the traditional train-
validation-split paradigm, such a re-training step is always required.

In Table 2, we observe that VP+ architectures perform comparably well (69.9% vs 69.3%) to their
default counterparts on tasks having < 15 classes despite not necessitating the external validation
signal from held-out data. In line with observations from previous studies, a further fine-tuning
step might be needed because SI architectures necessitate slightly longer training schedules to reach
the same performance due to the inherent constraints within the network architecture (Li et al.,
2022). On tasks with a more significant number of classes (e.g., > 100), such as CUB, C100C,
and the TIN variants, the VP architecture tends to face more challenges. This is likely due to
the architectural constraints designed to preserve decorrelated representations, which make it more
difficult to distinguish between many classes with fine-grained differences at the lower layers of the
network. This suggests that while the variance-preservation mechanism supports certain advantages,
such as the strong predictive performance of OOD generalization from the training loss as seen in
Table 1, it may introduce trade-offs when scaling to more complex classification tasks. Additionally,
we observed that the optimal HP range, typically effective for default architectures, may shift toward
lower regularization and higher learning rates, further highlighting the need for longer training and
reduced regularization inherent to the VP architecture.

4 RELATED WORK

Predicting generalization Most of the work on predicting generalization in deep learning has fo-
cused on assessing the generalization gap, i.e., the difference between train and test generalization,
via several complexity metrics based on model parameters, the training set, and distributional ro-
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bustness, among others (Keskar et al., 2016; Chuang et al., 2021; Smith & Le, 2017; Dziugaite &
Roy, 2017; Dinh et al., 2017; Dziugaite et al., 2020; Jiang et al., 2019; Corneanu et al., 2020; Jiang
et al., 2018; Neyshabur et al., 2017). Our work differs since 1) it focuses on scenarios where the
IID assumption does not hold, and 2) it utilizes the training loss as a predictor of generalization. A
vast literature has focused on tackling OOD generalization (Liu et al., 2021; Sagawa et al., 2019;
Zhang et al., 2021b; Huang et al., 2022) and ways to benchmark it (Hendrycks & Dietterich, 2019;
Koh et al., 2021; Oechri et al., 2024; Vedantam et al., 2021). Standard model selection for OOD
methods employs validation data by either splitting samples from all environments or leaving one
environment out (Gulrajani & Lopez-Paz, 2020). Several works studied how to maintain consis-
tent variance across training environments to improve generalization, including setting penalties for
weighting training or validation risks (Ye et al., 2021; Krueger et al., 2021; Arjovsky et al., 2019),
or generating synthetic new environments through generative modeling (Bai et al., 2021). (Sagawa
et al., 2019) studied how regularization improves worst-group performance. Unlike all these works,
we do not rely on any validation signal but only the training loss to perform model selection. More
related to our work, past research has tried to predict the OOD generalization from ID performance,
assuming access to a labeled test dataset sampled from the same training distribution (Ben-David
et al., 2006; Tachet des Combes et al., 2020; Miller et al., 2021). Others have focused on the predic-
tion problem, assuming they can access the unlabeled OOD test set to compute relevant prediction
metrics (Deng & Zheng, 2021; Deng et al., 2022; Peng et al., 2023; Teney et al., 2024). Our work
differs from both lines, given that we are predicting the OOD performance solely employing the ID
training loss.

Hyper-parameter tuning. There is a vast literature tackling the problem of HP tuning for deep
networks (Yu & Zhu, 2020), including works on implicit differentiation (Lorraine et al., 2020), data
augmentation (Cubuk et al., 2019; Li et al., 2020b), neural-architecture search (Elsken et al., 2019),
invariance learning (van der Wilk et al., 2018; Benton et al., 2020; Immer et al., 2022), and general-
purpose schedulers (Li et al., 2017; 2020a). Concerning optimization-related HPs, the seminal work
of Goyal et al. (Goyal et al., 2017) popularized the linear scaling rule for learning rate and batch
size. Recent research proposed parameterization to transfer LRs to larger model sizes (Yang et al.,
20215 Everett et al., 2024). Recent work studied HP selection as data scales by exploiting SGD
symmetries (Yun et al., 2020; 2022). However, only a few studies explore HP optimization without
employing validation sets, mainly focusing on learning invariances. When employing Bayesian
inference, methods either fail to scale to relatively simple tasks (e.g., CIFAR-10) (Schwdbel et al.,
2022) or larger network sizes (e.g., ResNet-14) (Immer et al., 2022). Benton et al. (Benton et al.,
2020) make strong assumptions about knowing what HPs help learning invariances in advance.
A recent method improves scalability issues but still introduces complexity by needing data and
model partitioning and an additional backward-forward pass (Mlodozeniec et al., 2023). Unlike
such methods, we focused on predicting generalization from the training loss without setting limits
to HP types, proposing a simple architectural adaptation.

5 CONCLUSIONS

This paper introduces the unexplored RQ of utilizing the training loss as an indicator for ranking
OOD performance in neural networks, motivated by the difficulty of collecting reliable validation
data for real-world scenarios. We derive the importance of maintaining consistent prediction vari-
ance across training and testing distributions to establish a correlation with OOD generalization.
Through our analysis, we identify the architectural adjustments necessary for achieving variance
preservation, thereby enabling model selection over a broad HP space based solely on training loss,
even in OOD over-parameterized scenarios. Our extensive empirical validation, conducted across 13
OOD benchmarks, demonstrates that VP architectures enable strong predictability of generalization
with comparable classification performance on datasets with a small number of classes. In summary,
our contributions lay the groundwork for a new class of architectures that eliminates reliance on val-
idation data and promotes training loss as a robust indicator of OOD performance. Future work
will focus on adapting and testing the design on other models (e.g., vision transformer (Dosovitskiy
et al., 2020)) and close the remaining performance gap on datasets with more classes.
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A COMPUTATION OF VARIANCE AND COVARIANCE AMONG TRAIN AND
TEST LOSSES

Variance computation. The variance of the average loss .J is defined as:

Var(J(h)) = E(J(h)*) — E(J (h))? (6)

Computation of E(J(h))?2. We first compute the second term from Equation (6). The expected value
of J(h) is:

E(J(R) = = S B(L(y:, f(i,h) a)

i=1

For simplicity of derivation, using a first-order Taylor expansion of the loss function around the
mean prediction p; = E(f(x;, h)), we get:

L(yi, f(xi, b)) = L(yi, i) + YV L(yi, i) - (f (25, h) — p5) ®)

Taking the expectation with respect to h, we get:

E(L(yi, f(xi, k) ~ L(yi, pi) 9

Thus, we substitute back to get E(J(h)) and E(J(h))?:

BUI(R) ~ + 3 Ly ). BU(R)) (;Za%,u») (10)
] i=1

Computation of E(J(h)?). Now, we compute the expectation of J(h)?:

TP = 5 33 Ll f i, )Ly F ) (

Taking the expectation with respect to h:

E(J(h)?) = — S S E(L(i, flw:, )L, (@5, k) (12)

i=1 j=1

Using the first-order Taylor expansion for both terms:

L(ys, f(xi, b)) = L(Yi, i) + V L(yi, i) - (f (235, ) — p3) (13)

We multiply the expanded terms (linear approximation), and take the expectation over h. Since
the cross terms involving (f(x;,h) — p;) vanish when taking the expectation, we obtain that

E(L(yi, f(zi, h))L(y;, f(x}, h))) is:

~ L(yi, i) £y, 1) + Cov(f (@i, h), f (25, h))V pL(yi, )V 1 L(y; 1) (14)

Thus:
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n n

E(I(R)) ~ 5 S0 3 (Elys i) £l 1)

i=1 j=1

+ Cov(f(xi, h), f(z;, )V L(yi, i)V L Y5, 1) (15)

Final variance expression. Substituting the previous results into Equation (6), we get:

Var(J(h)) ~ % DD Covl(f(@s h), f(@;,h)V Ly wa) VL ys 05)  (16)

i=1 j=1

Covariance computation. The covariance between two cost functions J (k) and J'(h) is given
by:

Cov(J(h),J'(h)) = E(J(h)J'(h)) — E(J (h))E(J'(h)) (17

Computation of E(J(h)J’'(h)) Expanding the product:

T (B) = S Ly, Sl W)L, S, h) (18)

i=1 j=1

Taking the expectation with respect to h:

1 n n

E(J(h)J'(R) = — > > B(L{yi f (@i, h)L(yj, f (), h))) (19)
i=1 j=1

By using again the first-order Taylor expansion for both losses and simplifying the cross terms, the
expectation E(J(h)J’'(h)) becomes:

1
nn'

2

=1j=1

Final covariance expression: Substituting the expected values E(J(h)) previously computed, we
derive the final expression for the covariance:

Cov(J(h), J'(h)) = — DN Cov(f(mi h), f(a], )V s L(yi, i) VLY, ) (21)

nn’

i=1 j=1
B TRAINING SETUP

Here, we provide more details regarding the three different hyper-parameter setups (HPS) employed,
along with additional training details.

B.1 IMPLEMENTATION DETAILS AND HYPER-PARAMETER SETUP 1 (HPS1)

Small datasets In this setup, we optimize LR and WD. In particular, for all datasets, we sample
10 equally-spaced learning rates o and weight decays A in log-space to perform a full squared-
grid search of 100 trials with no early stopping. More precisely h = [, A] ~ LogUniform(5 -
[107°,1071],10). In this case, due to the absence of randomness from sampling and preliminary
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experiments indicating minimal variations due to weight initializations, we conduct a single run. For
the small datasets, we train all networks with batch sizes of 10 samples, given the better general-
ization performance of small batch sizes in small-sample regimes (Brigato et al., 2021; 2022). The
training iterations are drawn from (Brigato et al., 2022), with a minimum of 25,000 for the smaller
datasets and a maximum of roughly 120,000 for CUB. We employ standard image pre-processing
transformations, including data augmentation utilizing random crops and horizontal flipping with
different strength depending on the specific dataset, also following (Brigato et al., 2022). More pre-
cisely, all input images were normalized by subtracting the channel-wise mean and dividing by the
standard deviation computed on the training splits. For datasets with a small, fixed image resolution,
i.e., ciFAIR-10, EuroSAT, and EuroSAT RGB, we perform random shifting by 12.5% of the image
size and horizontal flipping in 50% of the cases. For all other datasets, we apply scale augmentation
using the RandomRes izedCrop transform from PyTorch!. For these experiments, we employ a
RNS50 for all datasets with resolution > 64 x64 and a WRN-16-10 for ciFAIR-10.

CIFAR-10C and 100C We again optimize for LR and WD. We followed the same augmentation
strategy described in the previous paragraph for ciFAIR-10. We fixed the batch size to 50 samples
instead. We also set the number of epochs to 100, hence training the models for 100,000. For these
experiments, we employ the MLP described in Section 2.2 with a depth of 4 and a width of 2048
(MLP-4-2048).

B.2 IMPLEMENTATION DETAILS AND HYPER-PARAMETER SETUP 2 (HPS2)

Small datasets and EuroSAT RGB Here, we exactly reproduce the HP setup from (Brigato et al.,
2022) including varying batch size, the Asynchronous Successive Halving Algorithm (ASHA) (L1
et al., 2020a) with related parameters, and the repeated HP search over three different runs to ensure
fair comparison against the benchmark. When fine-tuning VP+, the optimal configuration found
during training is used to continue the training for the same epochs as before, only once for the
optimal checkpoint.

B.3 IMPLEMENTATION DETAILS AND HYPER-PARAMETER SETUP 3 (HPS3)

OOD benchmarks on TinyImagenet We split the original Tiny Imagenet training set into 80%-
20% to perform the HP selection for the default architecture. We run 200 trials each for 250 epochs
and with a batch size of 128 samples. The learning rate and weight decay are respectively sampled
randomly (log-uniformly) in [10~%,10°] and [107°,10~!]. We randomly sample also RandAug-
ment strength (Cubuk et al., 2020) with N in {1,2} and M in [5, 15]. Furthermore, the parameters
for MixUp and CutMix are randomly sampled from uniform distributions. Specifically, the Beta
distribution parameter A, for MixUp is sampled uniformly from the range [0.0, 1.5], while Aep
for CutMix follows the same uniform range [0.0, 1.5]. Additionally, the probability pi,, of applying
MixUp is uniformly sampled from the range [0.0, 1.0].

C ADDITIONAL EXPERIMENTAL ANALYSES

C.1 ABLATION ON THE CHARACTERIZATION OF TESTED DISTRIBUTION SHIFTS

To better understand the tested distribution shifts from our experimental scenario, we follow the
methodology proposed in (Ye et al., 2022), which classifies distribution shifts in diversity and cor-
relation shifts.

We reproduced the setup available in the updated official code?, including improvements regarding
shift quantification stability. More precisely, a calibration step decreases the possibility of measuring
a shift when the data is truly IID distributed. We employed an ImageNet pre-trained network for
all datasets and used the default configuration regarding parameters. In the case of datasets with a
resolution of 3232, we substituted the original stem layer with a convolutional layer without the
original aggressive stride and down-sampling required for 224 X224 images.

"https://pytorch.org/vision/stable/transforms.html#torchvision.
transforms.RandomResizedCrop
https://github.com/m-Just/OoD-Bench
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Shift cl0 ISIC CUB CLM ESR ESR

Diversity 0.1390 £ 0.0850 0.0445 £ 0.0246 0.0100 £ 0.0032 0.0524 4 0.0243 0.1597 4 0.2181 0.2147 £+ 0.1103

Correlation  0.035864 £ 0.080210  0.000016 £ 0.000042  0.006437 = 0.014169  0.031068 £ 0.031749  0.013075 £ 0.034594  0.039201 + 0.081206

Shift C10C C100C TINC TINV2 TINR TINA

Diversity 0.4427 4 0.0404 0.3597 & 0.0655 0.6490 4 0.0502 0.0188 4 0.0076 0.5106 4 0.0946 0.0159 4 0.0045

Correlation  0.076091 £ 0.059526  0.120628 £ 0.031087  0.015097 4 0.004866 ~ 0.017754 £ 0.019738  0.053542 £ 0.014585  0.009135 % 0.019666

Table 3: Characterization of distribution shift per dataset.
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Figure 7: Impact of distribution-shift strength. The non-linear correlation remains almost unaf-
fected for the variance-preserved MLP-4-2048, while it sharply drops for the default architecture.

We show the results of this analysis in Table 3. Means and standard deviations are computed across
8 repetitions. Interestingly, we find that all 12 tested datasets show OOD characteristics in mixed
formats, including both diversity (more pronounced) and correlation (still present).

C.2 ABLATION ON THE ROBUSTNESS OF THE ALIGNMENT FOR DISTRIBUTION SHIFT

In Figure 7, we ablate on the robustness of the alignment as the strength of the distribution shift
increases through growing corruption levels on CIFAR10C for a grid search concerning o and A
with the MLP-4-2048. For the default architecture, the strength of the monotonicity p, sharply
decreases from 0.92 with the lowest corruption (C1) to 0.82 with C5. On the other hand, the VP
remains barely unaffected, keeping almost perfect correlations (1.00 to 0.99), suggesting that it is
more robust for handling distribution shifts.
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