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Abstract
Existing deep learning models for hyperspectral image (HSI) reconstruction achieve
good performance but require powerful hardwares with enormous memory and
computational resources. Consequently, these methods can hardly be deployed
on resource-limited mobile devices. In this paper, we propose a novel method,
Binarized Spectral-Redistribution Network (BiSRNet), for efficient and practical
HSI restoration from compressed measurement in snapshot compressive imaging
(SCI) systems. Firstly, we redesign a compact and easy-to-deploy base model to be
binarized. Then we present the basic unit, Binarized Spectral-Redistribution Convo-
lution (BiSR-Conv). BiSR-Conv can adaptively redistribute the HSI representations
before binarizing activation and uses a scalable hyperbolic tangent function to closer
approximate the Sign function in backpropagation. Based on our BiSR-Conv, we
customize four binarized convolutional modules to address the dimension mismatch
and propagate full-precision information throughout the whole network. Finally,
our BiSRNet is derived by using the proposed techniques to binarize the base model.
Comprehensive quantitative and qualitative experiments manifest that our proposed
BiSRNet outperforms state-of-the-art binarization algorithms. Code and models
are publicly available at https://github.com/caiyuanhao1998/BiSCI

1 Introduction
Compared to normal RGB images, hyperspectral images (HSIs) have more spectral bands to capture
richer information of the desired scenes. Thus, HSIs have wide applications in agriculture [1, 2, 3],
medical image analysis [4, 5, 6], object tracking [7, 8, 9], remote sensing [10, 11, 12], etc.

To capture HSIs, conventional imaging systems leverage 1D or 2D spectrometers to scan the desired
scenes along the spatial or spectral dimension. Yet, this process is very time-consuming and thus
fails in measuring dynamic scenes. In recent years, snapshot compressive imaging (SCI) systems [13,
14, 15, 16, 17] have been developed to capture HSI cubes in real time. Among these SCI systems,
the coded aperture snapshot spectral imaging (CASSI) [14, 18, 19] demonstrates its outstanding
effectiveness and efficiency. The CASSI systems firstly employ a coded aperture (physical mask) to
modulate the 3D HSI cube, then use a disperser to shift spectral information of different wavelengths,
and finally integrate these HSI signals on a detector array to capture a 2D compressed measurement.
We study the inverse problem, i.e., restoring the original 3D HSI cube from the 2D measurement.

Existing state-of-the-art (SOTA) SCI reconstruction methods are based on deep learning. Convolu-
tional neural network (CNN) [18, 20, 21, 22, 23, 24, 25] and Transformer [26, 27, 28, 29] have been
used to implicitly learn the mapping from compressed measurements to HSIs. Although superior
performance is achieved, these CNN-/Transformer-based methods require powerful hardwares with
abundant computing and memory resources, such as high-end graphics processing units (GPUs).
However, edge devices (e.g., mobile phones, hand-held cameras, small drones, etc.) evidently cannot
meet the requirements of these expensive algorithms because edge devices have very limited memory,
computational power, and battery. As mobile devices are more and more widely used, the demands
of running and storing HSI restoration models on edge devices grow significantly. This motivates us
to reduce the memory and computational burden of HSI reconstruction methods while preserving the
performance as much as possible so that the algorithms can be deployed on resource-limited devices.
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Figure 1: Comparison between our BiSRNet (in red color) and state-of-the-art BNNs (in blue color). BiSRNet
significantly advances BTM [30], BBCU [31], ReActNet [32], IRNet [33], Bi-Real [34], BNN [35], and
BiConnect [36] by 2.55, 3.25, 3.39, 3.46, 3.50, 5.88, and 7.57 dB on the simulation HSI reconstruction task.

The studies on neural network compression and acceleration [37, 38] can be divided into four
categories: quantization [31, 32, 33, 34, 35, 39], pruning [40, 41, 42], knowledge distillation [43, 44],
and compact network design [45, 46, 47, 48]. Among these methods, binarized neural network
(BNN) belonging to quantization stands out because it can extremely compress the memory and
computational costs by quantizing the weights and activations of CNN to only 1 bit. In particular,
BNN could achieve 32× memory compression ratio and up to 58× practical computational reduction
on central processing units (CPUs) [49]. In addition, the pure logical computation (i.e., XNOR and
bit-count operations) of BNN is highly energy-efficient for embedded devices [50, 51]. However,
directly applying model binarization for HSI reconstruction algorithms may encounter three issues.
(i) The HSI representations have different density and distribution in different spectral bands. Equally
binarizing the activations of different spectral channels may lead to the collapse of HSI features. (ii)
Previous model binarization methods mainly adopt a piecewise linear [33, 35, 36] or quadratic [31,
32, 34] function to approximate the non-differentiable Sign function. Nonetheless, there still remain
large approximation errors between them and Sign. (iii) How to tackle the dimension mismatch
problem during feature reshaping while allowing full-precision information propagation in BNN has
not been fully explored. Previous model binarization methods [32, 33, 34, 35, 36] mainly consider
the feature downsampling situation in a backbone network for high-level vision tasks.

Bearing the above considerations in mind, we propose a novel BNN-based method, namely Binarized
Spectral-Redistribution Network (BiSRNet) for efficient and practical HSI reconstruction. Firstly,
we redesign a compact and easy-to-deploy base model to be binarized. Different from previous CNN-
/Transformer-based methods, this base model does not include complex computations like unfolding
inference and non-local self-attention that are difficult to implement on edge devices. Instead, our
base model only uses convolutional units that can be easily replaced by XNOR and bit-count logical
operations on resource-limited devices. Secondly, we develop the basic unit, Binarized Spectral-
Redistribution Convolution (BiSR-Conv), used in model binarization. Specifically, BiSR-Conv can
adapt the density and distribution of HSI representations in spectral dimension before binarizing the
activation. Besides, BiSR-Conv employs a scalable hyperbolic tangent function to closer approximate
the non-differentiable Sign function by arbitrarily reducing the approximation error. Thirdly, as the
full-precision information is very critical in BNN and the input HSI is the only full-precision source,
we use BiSR-Conv to build up four binarized convolutional modules that can handle the dimension
mismatch issue during feature reshaping and simultaneously propagate full-precision information
through all layers. Finally, we derive our BiSRNet by using the proposed techniques to binarize the
base model. As shown in Fig. 1, BiSRNet outperforms SOTA BNNs by large margins, over 2.5 dB.

In a nutshell, our contributions can be summarized as follows:
(i) We propose a novel BNN-based algorithm BiSRNet for HSI reconstruction. To the best of our
knowledge, this is the first work to study the binarized spectral compressive imaging problem.
(ii) We customize a new binarized convolution unit BiSR-Conv that can adapt the density and
distribution of HSI representations and approximate the Sign function better in backpropagation.
(iii) We design four binarized convolutional modules to address the dimension mismatch issue during
feature reshaping and propagate full-precision information through all convolutional layers.
(iv) Our BiSRNet dramatically surpasses SOTA BNNs and even achieves comparable performance
with full-precision CNNs while requiring extremely lower memory and computational costs.
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2 Related Work
2.1 Hyperspectral Image Reconstruction

Traditional HSI reconstruction methods [14, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61] are mainly based
on hand-crafted image priors. Yet, these traditional methods achieve unsatisfactory performance and
generality due to their poor representing capacity. Recently, deep CNN [18, 20, 21, 22, 23, 24, 25, 62]
and Transformer [26, 27, 28, 29] have been employed as powerful models to learn the underlying
mapping from compressed measurements to HSI data cubes. For example, TSA-Net [18] employs
three spatial-spectral self-attention layers at the decoder of a U-shaped CNN. Cai et al. propose a
series of Transformer-based algorithms (MST [26], MST++ [27], CST [28], and DAUHST [29]),
pushing the performance boundary from 32 dB to 38 dB. Although impressive results are achieved,
these CNN-/Transformer-based methods rely on powerful hardwares with enormous computational
and memory resources, which are unaffordable for mobile devices. How to develop HSI restoration
algorithms toward resource-limited platforms is under-explored. Our goal is to fill this research gap.

2.2 Binarized Neural Network
BNN [35] is the extreme case of model quantization as it quantizes the weights and activations into
only 1 bit. Due to its impressive effectiveness in memory and computation compression, BNN has
been widely applied in high-level vision [32, 33, 34, 35, 49] and low-level vision [30, 31, 39]. For
example, Jiang et al. [30] train a BNN without batch normalization for image super-resolution. Xia et
al. [31] design a binarized convolution unit BBCU for image super-resolution, denoising, and JPEG
compression artifact reduction. Yet, the potential of BNN for SCI reconstruction has not been studied.

3 Method
3.1 Base Model
The full-precision model to be binarized should be compact and its computation should be easy to
deploy on edge devices. However, previous CNN-/Transformer-based algorithms are computationally
expensive or have large model sizes. Some of them exploit complex operations like unfolding
inference [21, 22, 23, 29, 63] and non-local self-attention computation [18, 20, 26, 27, 28] that are
challenging to binarize and difficult to implement on mobile devices. Hence, we redesign a simple,
compact, and easy-to-deploy base model without using complex computation operations.

Inspired by the success of MST [26] and CST [28], we adopt a U-shaped structure for the base model
as shown in Fig. 2. It consists of an encoder E , a bottleneck B, and a decoder D. Please refer to the
supplementary for the CASSI mathematical model. Firstly, we reverse the dispersion of CASSI by
shifting back the measurement Y ∈ RH×(W+d(Nλ−1))×Nλ to derive the input H ∈ RH×W×Nλ as

H(x, y, nλ) = Y(x, y − d(λn − λc)), (1)

where H , W , and Nλ denote the HSI’s height, width, and number of wavelengths. d represents
the shifting step. The concatenation of H and the 3D mask M ∈ RH×W×Nλ is fed into a feature
embedding module to produce the shallow feature Xs ∈ RH×W×Nλ . The feature embedding module
is a conv1×1 (convolutional layer with kernel size = 1×1). Subsequently, Xs undergoes the encoder
E , bottleneck B, and decoder D to generate the deep feature Xd ∈ RH×W×Nλ . E consists of two
convolutional blocks and two downsample modules. The details of the convolutional block are
depicted in Fig. 2 (b). The fusion up and down modules are both conv1×1 to aggregate the feature
maps and modify the channels. The downsample module is a strided conv4×4 layer that downscales
the feature maps and doubles the channels. B is a convolutional block. D consists of two convolutional
blocks and two upsample modules. The upsample module is a bilinear interpolation followed by a
conv3×3 to upscale the feature maps and halve the channels. Skip connections between E and D are
employed to alleviate the information loss during rescaling. Finally, the sum of Xs and Xd is fed
into the feature mapping module (conv1×1) to produce the reconstructed HSI H′ ∈ RH×W×Nλ .

3.2 Binarized Spectral-Redistribution Convolution

The details of BiSR-Conv are illustrated in Fig. 2 (c). We define the input full-precision activation
as Xf ∈ RH×W×C . We notice that HSI signals have different density and distribution along the
spectral dimension due to the constraints of specific wavelengths. To adaptively fit this HSI nature,
we propose to redistribute the HSI representations in channel wise before binarizing the activation as

Xr = k ·Xf + b, (2)
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Figure 2: The overall diagram of our method. (a) The proposed base model to be binarized adopts a U-shaped
architecture. (b) The components of the convolutional block. (c) The details of our Binarized Spectral-
Redistribution Convolution (BiSR-Conv). (d) The structure of our binarized downsample module. The binarized
fusion up module is derived by removing the average pooling operation. (e) The architecture of our binarized
upsample module, which includes one more bilinear upscaling operation than the binarized fusion down module.

where Xr ∈ RH×W×C denotes the redistributed activation of Xf . k and b ∈ RC are learnable
parameters. k rescales the density of HSIs while b shifts the bias. Then Xr undergoes a Sign function
to be binarized into 1-bit activation Xb ∈ RH×W×C , where xb = +1 or −1 for ∀ xb ∈ Xb as

xb = Sign(xr) =

{
+ 1, xr > 0

− 1, xr ≤ 0
(3)

where xr ∈ Xr. As shown in Fig. 3 (b) and (c), since the Sign function is non-differentiable, previous
methods either adopt a piecewise linear function Clip(x) [33, 35, 36, 49, 64] or a piecewise quadratic
function Quad(x) [31, 32, 34] to approximate the Sign function during the backpropagation as

Clip(x) =


+ 1, x ≥ 1

x, −1 < x < 1

− 1, x ≤ −1

Quad(x) =


+ 1, x ≥ 1

2x+ x2, 0 < x < 1

2x− x2, −1 < x ≤ 0

− 1, x ≤ −1

(4)

Nonetheless, the Clip function is a rough estimation and there is a large approximation error between
Clip and Sign. The shaded areas in Fig. 3 reflect the differences between the Sign function and its
approximations. The shaded area corresponding to the Clip function is 1. Besides, once the absolute
values of weights or activations are outside the range of [−1, 1], they are no longer updated. Although
the piecewise quadratic function is a closer approximation (the shaded area is 2/3) than Clip, the
above two problems have not been fundamentally resolved. To address the two issues, we redesign a
scalable hyperbolic tangent function to approximate the Sign function in the backpropagation as

xb = Tanh(αxr) =
eαxr − e−αxr

eαxr + e−αxr
, (5)

where α ∈ R+ is a learnable parameter adaptively adjusting the distance between Tanh(αx) and
Sign(x). e denotes the natural constant. We prove that when α → +∞, Tanh(αx) → Sign(x) as

lim
α→+∞

Tanh(αx) =



lim
α→+∞

eαx − 0

eαx + 0
= +1, x > 0

lim
α→+∞

e0 − e0

e0 + e0
= 0, x = 0

lim
α→+∞

0− e−αx

0 + e−αx
= −1, x < 0

(6)
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Figure 3: The upper line shows (a) Sign(x) and its three approximation functions including (b) piecewise linear
function Clip(x), (c) piecewise quadratic function Quad(x), and (d) our scalable hyperbolic tangent function
Tanh(αx). The area of the shaded region reflects the approximation error. The lower line depicts the derivatives.

If strictly following the mathematical definition, Sign(0) = 0 ̸= ±1. However, in BNN, the weights
and activations are binarized into 1-bit, i.e., only two values (±1). Hence, Sign(0) is usually set to
−1. Similar to this common setting, we also define lim

α→+∞
Tanh(α · 0) = −1 in BNN. Then we have

lim
α→+∞

Tanh(αx) = Sign(x). (7)

We compute the area of the shaded region between our Tanh(αx) and Sign(x) in Fig. 3 (d) as∫ +∞

−∞
|Sign(x)− Tanh(αx)| dx = 2

∫ +∞

0

(1− Tanh(αx)) dx

= 2(x− x+
1

α
log(Tanh(αx) + 1))

∣∣x=+∞
x=0

=
2

α
(log(2)− log(1)) =

2 log(2)
α

.

(8)

Different from previous Clip(x) and Quad(x), our Tanh(αx) can arbitrarily reduce the approximation
error with Sign(x) when α in Eq. (8) is large enough. Besides, our Tanh(αx) is neither piecewise nor
unchanged when x is outside the range of [−1, 1]. On the contrary, the weights and activations can
still be updated when their absolute values are larger than 1. In addition, as depicted in the lower line
of Fig. 3, the value ranges [0, 1] and fixed shapes of ∂Clip(x)

∂x and ∂Quad(x)
∂x are fundamentally different

from those of ∂Sign(x)
∂x ∈ [0,+∞). In contrast, our ∂Tanh(αx)

∂x can change its value range (0, α) and
shape by adapting the parameter α. It is more flexible and can approximate ∂Sign(x)

∂x better.

In the binarized convolutional layer, the 32-bit weight Wf is also binarized into 1-bit weight Wb as

wb = Ewf∈Wf
(|wf |) · Sign(wf ), (9)

where E represents computing the mean value. Multiplying the mean absolute value of 32-bit
weight value wf ∈ Wf can narrow down the difference between binarized and full-precision
weights. Subsequently, the computationally heavy operations of floating-point matrix multiplication
in full-precision convolution can be replaced by pure logical XNOR and bit-count operations [49] as

Yb = Xb ∗Wb = bit-count(XNOR(Xb,Wb)), (10)

where Yb represents the output and ∗ denotes the convolution operation. Since the value range
of full-precision activation Xf largely varies from that of 1-bit convolution output Yb, directly
employing an identity mapping to aggregate them may cover up the information of Yb. To cope with
this problem, we first fed Yb into a RPReLU [32] activation function to change its value range and
then add it with Xf by a residual connection to propagate full-precision information as

Xo = Xf + RPReLU(Yb), (11)

where Xo denotes the output feature and RPReLU is formulated for the i-th channel of Yb as

RPReLU(yi) =

{
yi − γi + ζi, yi > γi
βi · (yi − γi) + ζi, yi ≤ γi

(12)
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Figure 4: Comparison between normal and our binarized convolutional modules, including (a) downsample,
(b) upsample, (c) fusion down to half the channels, and (d) fusion up to double the channels. The red arrow ↓
indicates the full-precision information flow, while the blue arrow ↓ denotes the binarized signal flow.

where yi ∈ R indicates single pixel values belonging to the i-th channel of Yb. βi, γi, and ζi ∈ R
represents learnable parameters. Please note that the full-precision information is not blocked by the
binarized convolutional layer in the proposed BiSR-Conv. Instead, it is propagated by the bypass
identity mapping, as shown in the red arrow → in Fig. 2 (c). Based on this important property of
BiSR-Conv, we design the four binarized convolutional modules, as illustrated in Fig. 2 (d) and (e).

3.3 Binarized Convolutional Modules

In model binarization, the identity mapping is critical to propagate full-precision information and
ease the training procedure. The only source of full-precision information is the input end (Xs in
Fig. 2) of the binarized part. However, the dimension mismatch during the feature downsampling,
upsampling, and aggregation processes blocks the residual connections, which degrades the HSI
reconstruction performance. To tackle this problem, we use BiSR-Conv to build up four binarized
convolutional modules including downsample, upsample, fusion up, and fusion down with unblocked
identity mappings to make sure the full-precision information can flow through all binarized layers.

Specifically, Fig. 4 compares the normal and our binarized modules. The red arrow ↓ indicates
the full-precision information flow, while the blue arrow ↓ denotes the binarized signal flow. The
downsample modules in Fig. 4 (a) downscale the input feature maps and double the channels. The
upsample modules in Fig. 4 (b) upscale the input spatial dimension and half the channels. The fusion
down modules in Fig. 4 (c) maintain the spatial size of the input feature and half the channels. The
fusion up modules in Fig. 4 (d) keep the spatial dimension of the input feature maps while doubling
the channels. In the normal modules, the full-precision information is blocked by the Sign function
and binarized into 1-bit signal. Meanwhile, the intermediate feature maps are directly reshaped by
the binarized convolutional layers. For example, in the normal binarized downsample module, the
intermediate feature is directly reshaped from RH×W×C to RH

2 ×W
2 ×2C by a strided 1-bit conv4×4.

The spatial and channel dimension mismatch of the input and output feature maps impede the identity
mapping to propagate full-precision information from previous layers. In contrast, our binarized
modules rely on the proposed BiSR-Conv that has a bypass identity connection for full-precision
information flow, as shown in Fig. 2 (c). By using channel-wise concatenating and splitting operations,
the intermediate feature maps at the input and output ends of BiSR-Conv are free from being reshaped.
Therefore, the full-precision information can flow through our binarized modules. Finally, we derive
our BiSRNet by using BiSR-Conv and the four modules to binarize E , B, and D of the base model.
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Algorithms Bit Category Params (K) OPs (G) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg

TwIST [59] 64 Model - - 25.16
0.700

23.02
0.604

21.40
0.711

30.19
0.851

21.41
0.635

20.95
0.644

22.20
0.643

21.82
0.650

22.42
0.690

22.67
0.569

23.12
0.669

GAP-TV [56] 64 Model - - 26.82
0.754

22.89
0.610

26.31
0.802

30.65
0.852

23.64
0.703

21.85
0.663

23.76
0.688

21.98
0.655

22.63
0.682

23.10
0.584

24.36
0.669

DeSCI [53] 64 Model - - 27.13
0.748

23.04
0.620

26.62
0.818

34.96
0.897

23.94
0.706

22.38
0.683

24.45
0.743

22.03
0.673

24.56
0.732

23.59
0.587

25.27
0.721

λ-Net [20] 32 CNN 62640 117.98 30.10
0.849

28.49
0.805

27.73
0.870

37.01
0.934

26.19
0.817

28.64
0.853

26.47
0.806

26.09
0.831

27.50
0.826

27.13
0.816

28.53
0.841

TSA-Net [18] 32 CNN 44250 110.06 32.03
0.892

31.00
0.858

32.25
0.915

39.19
0.953

29.39
0.884

31.44
0.908

30.32
0.878

29.35
0.888

30.01
0.890

29.59
0.874

31.46
0.894

BiConnect [36] 1 BNN 35 1.18 25.85
0.676

22.07
0.530

18.92
0.558

25.18
0.636

21.21
0.568

21.82
0.547

21.84
0.570

22.25
0.580

19.57
0.556

23.18
0.524

22.19
0.575

BNN [35] 1 BNN 35 1.18 26.69
0.661

23.98
0.551

20.58
0.566

28.53
0.679

22.96
0.584

24.12
0.599

23.20
0.568

23.29
0.590

21.65
0.588

23.86
0.547

23.88
0.593

Bi-Real [34] 1 BNN 35 1.18 28.06
0.701

26.05
0.644

24.92
0.654

31.04
0.733

25.32
0.664

26.54
0.671

25.09
0.631

25.47
0.678

24.69
0.644

25.41
0.622

26.26
0.664

IRNet [33] 1 BNN 35 1.18 27.91
0.700

25.84
0.620

25.27
0.661

31.77
0.723

25.12
0.663

26.31
0.685

25.29
0.665

25.14
0.662

25.07
0.668

25.20
0.603

26.30
0.665

ReActNet [32] 1 BNN 36 1.18 27.91
0.707

26.17
0.633

25.40
0.682

31.58
0.725

25.43
0.675

26.43
0.670

25.85
0.703

25.50
0.650

25.47
0.677

25.11
0.583

26.48
0.671

BBCU [31] 1 BNN 36 1.18 27.91
0.706

26.21
0.628

25.44
0.654

31.33
0.741

25.30
0.677

26.68
0.704

25.42
0.668

25.59
0.671

25.69
0.670

25.59
0.615

26.51
0.673

BTM [30] 1 BNN 36 1.18 28.75
0.739

26.91
0.674

26.14
0.708

32.74
0.794

25.87
0.692

27.37
0.739

26.26
0.707

26.20
0.718

26.10
0.717

25.73
0.671

27.21
0.716

BiSRNet (Ours) 1 BNN 36 1.18 30.95
0.847

29.21
0.791

29.11
0.828

35.91
0.903

28.19
0.827

30.22
0.863

27.85
0.800

28.82
0.843

29.46
0.832

27.88
0.800

29.76
0.837

Table 1: Quantitative results of BiSRNet, seven 1-bit BNN-based methods, two 32-bit CNN-based
algorithms, and three 64-bit model-based methods on 10 scenes (S1∼S10) of the KAIST [65] dataset.
Params, OPs, PSNR (upper entry in each cell), and SSIM (lower entry in each cell) are reported.

4 Experiment
4.1 Experimental Settings

Following [18, 26, 28, 29, 63], we select 28 wavelengths from 450nm to 650nm by using spectral
interpolation manipulation to derive HSIs. We conduct experiments on simulation and real datasets.

Simulation Data. Two simulation datasets, CAVE [66] and KAIST [65], are adopted. The CAVE
dataset provides 32 HSIs with a spatial size of 512×512. The KAIST dataset includes 30 HSIs at a
spatial size of 2704×3376. We use CAVE for training and select 10 scenes from KAIST for testing.

Real Data. We adopt the five real HSIs captured by the CASSI system developed in [18] for testing.

Evaluation Metrics. The peak signal-to-noise ratio (PSNR) and structure similarity (SSIM) are
adopted as metrics to evaluate the HSI reconstruction performance. Similar to [31, 32, 33, 34, 35], the
operations per second of BNN (OPsb) is computed as OPsb = OPsf / 64 (OPsf = FLOPs) to measure
the computational complexity and the parameters of BNN is calculated as Paramsb = Paramsf / 32,
where the superscript b and f refer to the binarized and full-precision models. The total computational
and memory costs of a model are computed as OPs = OPsb + OPsf and Params = Paramsb + Paramsf .

Implementation Details. The proposed BiSRNet is implemented by PyTorch [67]. We use Adam [68]
optimizer (β1 = 0.9 and β2 = 0.999) and Cosine Annealing [69] scheduler to train BiSRNet for 300
epochs on a single RTX 2080 GPU. Training samples are patches with spatial sizes of 256×256 and
96×96 randomly cropped from 28-channel 3D HSI data cubes for simulation and real experiments.
The shifting step d is 2. The batch size is 2. We set the basic channel C = Nλ = 28 to store HSI
information. We use random flipping and rotation for data augmentation. The training loss function
is the root mean square error (RMSE) between reconstructed and ground-truth HSIs.

4.2 Quantitative Results

We compare our BiSRNet with 12 SOTA algorithms, including seven 1-bit BNN-based methods
(BiConnect [36], BNN [35], Bi-Real [34], IRNet [33], ReActNet [32], BTM [30], and BBCU [31]),
two 32-bit full-precision CNN-based methods (λ-Net [20] and TSA-Net [18]), and three 64-bit
double-precision model-based methods (TwIST [59], GAP-TV [56], and DeSCI [53]). For a fair
comparison, we set the Params and OPs of BNN-based methods to the same values.

Directly applying the seven SOTA BNN-based methods to HSI reconstruction task achieves unsatis-
factory performance, ranging from 22.19 dB to 27.21 dB. Our BiSRNet surpasses these methods by
large margins. More specifically, BiSRNet significantly outperforms BTM, BBCU, ReActNet, IRNet,
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Figure 5: Reconstructed simulation HSIs of Scene 1 with 4 out of 28 spectral channels. Seven SOTA BNN-based
algorithms and our proposed BiSRNet are compared. The spectral density curves (bottom-left) are corresponding
to the selected region of the green box in the RGB image (Top-left). Please zoom in for a better view.

Bi-Real, BNN, and BiConnect by 2.55, 3.25, 3.39, 3.46, 3.50, 5.88, and 7.57 dB. This evidence
suggests the significant effectiveness advantage of our BiSRNet in HSI restoration.

The proposed BiSRNet with extremely lower memory and computational complexity yields compara-
ble results with 32-bit full-precision CNN-based methods. Surprisingly, our BiSRNet outperforms
λ-Net by 1.23 dB while only costing 0.06 % (36/62640) Params and 1.0% (1.18/117.98) OPs. In con-
trast, the previous best BNN-based method BTM is still 1.33 dB lower than λ-Net. When compared
with TSA-Net, our BiSRNet only uses 0.08% Params and 1.1% OPs but achieves 94.6% (29.76/31.46)
performance. These results demonstrate the efficiency superiority of the proposed method.

The three model-based algorithms are implemented by MATLAB, where the default type of variable
is double-precision floating-point number. Although they use more accurate 64-bit data type, our
1-bit BiSRNet dramatically outperforms DeSCI, GAP-TV, and TwIST by 4.06, 5.40, and 6.64 dB.

4.3 Qualitative Results
Simulation HSI Restoration. Fig. 5 depicts the simulation HSIs on Scene 1 with 4 out of 28 spectral
channels reconstructed by the 7 SOTA BNN-based algorithms and BiSRNet. Previous BNNs are less
favorable to restore HSI details. They generate blurry HSIs while introducing undesirable artifacts. In
contrast, BiSRNet reconstructs more visually pleasing HSIs with more structural contents and sharper
edges. Additionally, we plot the spectral density curves (bottom-left) corresponding to the selected
regions of the green box in the RGB image (Top-left). BiSRNet achieves the highest correlation score
with the ground truth, suggesting the advantage of BiSRNet in spectral-wise consistency restoration.

Real HSI Restoration. Fig. 6 visualizes the reconstructed HSIs of the seven SOTA BNN-based
algorithms and our BiSRNet. We follow the setting of [18, 26, 28, 29, 63] to re-train the models with
all samples of the CAVE and KAIST datasets. To simulate the noise disturbance in real imaging
scenes, we inject 11-bit shot noise into measurements during training. It can be observed that our
BiSRNet is more effective in detailed content reconstruction and real imaging noise suppression.

4.4 Ablation Study

Break-down Ablation. We adopt baseline-1 to conduct a break-down ablation towards higher
performance. Baseline-1 is derived by using vanilla 1-bit convolution to replace BiSR-Conv and
normal binarized convolutional modules (see Fig. 4) to replace our binarized convolutional modules.
As shown in Tab. 2a, baseline-1 yields 23.90 dB in PSNR and 0.594 in SSIM. When we apply
BiSR-Conv, the model achieves 3.90 dB improvement. Then we successively use our binarized
downsample (BiDS), upsample (BiUS), fusion down (BiFD), and fusion up (BiFU) modules, the
model gains by 1.96 dB in total. These results verify the effectiveness of the proposed techniques.

BiSR-Conv. To study the effects of BiSR-Conv components, we adopt baseline-2 to conduct an
ablation. Baseline-2 is obtained by removing Spectral-Redistribution (SR) operation and Sign
approximation Tanh(αx) from BiSRNet. As reported in Tab. 2b, baseline-2 achieves 27.68 dB in
PSNR and 0.723 in SSIM. When we respectively apply SR and Tanh(αx), baseline-2 gains by 1.29
and 1.06 dB. When we exploit SR and Tanh(αx) jointly, the model achieves 2.08 dB improvement.
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Figure 6: Reconstructed real HSIs of seven SOTA BNN-based algorithms and our BiSRNet on four scenes with
4 out of 28 wavelengths. BiSRNet is more effective in reconstructing detailed contents and suppressing noise.

Method Baseline-1 +BiSR-Conv +BiDS +BiUS +BiFD +BiFU

PSNR 23.90 27.80 27.97 28.07 28.31 29.76
SSIM 0.594 0.737 0.729 0.758 0.776 0.837
OPs (M) 1176 1176 1176 1176 1176 1176
Params (K) 34.82 35.48 35.49 35.51 35.72 35.81

(a) Break-down ablation study towards higher performance

Baseline-2 SR Tanh(αx) PSNR SSIM

✓ 27.68 0.723
✓ ✓ 28.97 0.783
✓ ✓ 28.74 0.782
✓ ✓ ✓ 29.76 0.837

(b) Ablation study of BiSR-Conv

Method PSNR SSIM

Clip(x) 28.97 0.783
Quad(x) 29.02 0.794
Tanh(αx) 29.76 0.837

(c) Study of approximation

Binarized Part OPsf (M) OPsb (M) Paramsf Paramsb PSNRb SSIMb

Encoder E 3390 53 177878 5559 32.28 0.905
Bottleneck B 1096 17 278889 8715 33.80 0.932
Decoder D 5005 78 186562 5830 33.03 0.919

(d) Ablation study of binarizing different parts of the base model

Table 2: Ablations on the simulation datasets. In table (a), BiUS, BiDS, BiFU, and BiFD denote the binarized
upsample, downsample, fusion up, and fusion down modules of Fig. 4. In table (b), SR refers to the Spectral-
Redistribution of Eq. (11). In table (d), the full-precision model yields 34.11 dB in PSNR and 0.936 in SSIM.

Sign Approximation. We compare our scalable hyperbolic tangent function with previous Sign
approximation functions. The experimental results are listed in Tab. 2c. Our Tanh(αx) dramatically
surpasses the piecewise linear function Clip(x) and quadratic function Quad(x) by 0.79 and 0.74 dB,
suggesting the superiority of the proposed Tanh(αx). This advantage can be explained by the analysis
in Sec. 3.2 that our Tanh(αx) is more flexible and can adaptively reduce the difference with Sign(x).

Binarizing Different Parts. We binarize one part of the base model while keeping the other parts
full-precision to study the binarization benefit. The experimental results are reported in Tab. 2d. The
base model yields 34.11 dB in PSNR and 0.936 in SSIM while costing 10.52 G OPs and 634 K
Params. It can be observed from Tab. 2d: (i) Binarizing the bottleneck B reduces the Params the most
(270174) with the smallest performance drop (only 0.31 dB). (ii) Binarizing the decoder D achieves
the largest OPs reduction (4927 M) while the performance degrades by a moderate margin (1.08 dB).

5 Conclusion

In this paper, we propose a novel BNN-based method BiSRNet for binarized HSI restoration. To
the best of our knowledge, this is the first work to study the binarized spectral compressive imaging
reconstruction problem. We first redesign a compact and easy-to-deploy base model with simple
computation operations. Then we customize the basic unit BiSR-Conv for model binarization. BiSR-
Conv can adaptively adjust the density and distribution of HSI representations before binarizing the
activation. Besides, BiSR-Conv employs a scalable hyperbolic tangent function to closer approach
Sign by arbitrarily reducing the approximation error. Subsequently, we use BiSR-Conv to build up
four binarized convolutional modules that can handle the dimension mismatch issue during feature
reshaping and propagate full-precision information through all layers. Comprehensive quantitative
and qualitative experiments demonstrate that our BiSRNet significantly outperforms SOTA BNNs and
even achieves comparable performance with full-precision CNN-based HSI reconstruction algorithms.
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