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Abstract

Many high-dimensional online decision-making problems can be modeled as
stochastic sparse linear bandits. Most existing algorithms are designed to achieve
optimal worst-case regret in either the data-rich regime, where polynomial depen-
dence on the ambient dimension is unavoidable, or the data-poor regime, where
dimension-independence is possible at the cost of worse dependence on the num-
ber of rounds. In contrast, the sparse Information Directed Sampling (IDS) algo-
rithm satisfies a Bayesian regret bound that has the optimal rate in both regimes
simultaneously. In this work, we explore the use of Sparse Optimistic Informa-
tion Directed Sampling (SOIDS) to achieve the same adaptivity in the worst-case
setting, without Bayesian assumptions. Through a novel analysis that enables the
use of a time-dependent learning rate, we show that SOIDS can optimally balance
information and regret. Our results extend the theoretical guarantees of IDS, pro-
viding the first algorithm that simultaneously achieves optimal worst-case regret
in both the data-rich and data-poor regimes. We empirically demonstrate the good
performance of SOIDS.

1 Introduction

In stochastic linear bandits, one assumes that the mean reward associated with each action is linear
in an unknown d-dimensional parameter vector [Abe and Long, 1999, Auer, 2002, Dani et al., 2008,
Abbasi-Yadkori et al., 2011]. Under standard conditions, it is known that the minimax regret in this
setting is of the order O(d

√
T ) [Dani et al., 2008, Rusmevichientong and Tsitsiklis, 2010]. Nu-

merous follow-up works have investigated the possibility of reduced regret under various structural
assumptions on the unknown parameter vector, the noise, or the shape of the decision set [Valko
et al., 2014, Chu et al., 2011, Kirschner and Krause, 2018], [Lattimore and Szepesvári, 2020, Chap-
ter 22]. One such assumption is that the unknown parameter vector is sparse, which means that it
has only s≪ d non-zero components. This setting is called sparse linear bandits and s is referred to
as the sparsity level. In this setting, previous work has established the existence of algorithms with
regret scaling as O(

√
sdT ) [Abbasi-Yadkori et al., 2012]. This result is complemented by a lower

bound, which says that this rate cannot be improved as long as T ≥ dα for some α > 0 [Lattimore
and Szepesvári, 2020]. We refer to this scenario as the data-rich regime. Since this bound scales
polynomially with the dimension d, many researchers have considered this to be a negative result,
interpreting it as a sign that sparsity cannot be effectively exploited in linear bandit problems. This
interpretation has been challenged by a more recent observation that, when the action set admits
an exploratory distribution, simple “explore-then-commit” algorithms enjoy regret bounds of order
O((sT )

2
3 ) [Hao et al., 2020, Jang et al., 2022]. These bounds scale only logarithmically with the

dimension, and constitute a major improvement over the previously mentioned rate in the data-poor
regime, where T ≪

(
d
s

)3
. Most known algorithms are specialized to either the data-poor or data-

rich regime, and perform poorly in the other one. A notable exception is the sparse Information
Directed Sampling algorithm introduced in Hao et al. [2021], which performs almost optimally in
both regimes. However, Hao et al. [2021] only provide Bayesian performance guarantees for sparse
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IDS. These results hold on average, assuming that the problem instance is drawn at random from a
known prior distribution.
In this work, we lift this assumption and develop an algorithm that can adapt to both regimes in
a “frequentist” sense: we assume that the true parameter is fixed and unknown to the learner, and
provide guarantees that hold for any given instance. The algorithm is an adaptation of the recently
proposed Optimistic Information Directed Sampling (OIDS) algorithm of Neu, Papini, and Schwartz
[2024], which itself is an adaptation of the classic Bayesian IDS algorithm originally proposed by
Russo and Van Roy [2017]. Within the Bayesian setting, it has been shown that IDS can exploit var-
ious types of problem structure, and adapt to the hardness of the given instance [Hao and Lattimore,
2022, Hao et al., 2022]. These results have been complemented by the recent work of Neu, Papini,
and Schwartz [2024], which showed that similar improvements can be achieved without Bayesian
assumptions, via a simple adjustment of the standard IDS method. In this paper, we continue this
line of work. We show that a sparse version of OIDS enjoys a worst-case regret bound that matches
the optimal rate in both regimes simultaneously.
Our contribution is as follows:

• We extend the analysis of the optimistic posterior to allow the use of time-dependent learn-
ing rates and history-dependent learning rates. Time-dependent learning rates allow us to
drop the requirement that the horizon is known in advance, and are essential for worst-
case regret bounds that can adapt to both regimes. History-dependent learning rates allow
us to update the learning rate based on data observed by the agent instead of some loose
theoretical constant, a necessity for efficient algorithms.

• We demonstrate that the Sparse Optimistic Information Directed Sampling (SOIDS) algo-
rithm recovers almost optimal rates in both the data-poor and data-rich regimes. This is the
first algorithm to do so in a frequentist setting.

2 Preliminaries

Sparse linear bandits. We consider the following decision-making game, in which a learning
agent interacts with an environment over a sequence of T rounds. At the start of each round t, the
learner selects an action At ∈ A ⊂ Rd according to a randomized policy πt ∈ ∆(A). In response,
the environment generates a stochastic reward Yt = r(At) + ϵt, where r : A → R is a fixed reward
function and ϵt is zero-mean, conditionally 1-sub-Gaussian noise. We assume that the action set A
is finite, and that the reward function can be written as

r(a) = ⟨θ0, a⟩ ,

where θ0 ∈ Rd is an unknown parameter vector. We make the mild boundedness assumptions
that maxa∈A ∥a∥∞ ≤ 1 and ∥θ0∥1 ≤ 1. We study the special case of this problem in which the
parameter vector θ0 is s-sparse in the sense that at most s ≪ d of its components are non-zero. In
other words, we assume that θ0 belongs to the following sparse parameter space:

Θ =
{
θ ∈ Rd :

∑d
j=1I{θj ̸=0} ≤ s, ∥θ∥1 ≤ 1

}
.

We assume that the sparsity level s is known to the agent. The performance of the agent is evaluated
in terms of the regret, which is defined as

RT = T max
a∈A

⟨θ0, a⟩ − E

[
T∑

t=1

r(At, θ0)

]
, (1)

where the expectation is taken with respect to both the random choices of the agent and the random
noise in the observed rewards. We note that the regret is implicitly a function of the true parameter
θ0. Our focus is on proving regret bounds that hold for arbitrary choices of θ0 ∈ Θ.

The data-rich and data-poor regimes. As mentioned in the introduction, it is known there exist
algorithms for sparse linear bandits with worst-case regret of the order O(

√
sdT ) [Abbasi-Yadkori

et al., 2012]. This regret bound is only meaningful when the dimension d is smaller than the number
of rounds T , a situation referred to as the data-rich regime. Under the assumption that there exists
an exploratory policy, Hao et al. [2020] showed that there is a simple algorithm that satisfies a
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problem-dependent regret bound, which can be meaningful in the so-called data-poor regime, where
d is much larger than T . Formally, we say that there exists an exploratory policy if the action set A
is such that

Cmin := max
µ∈∆(A)

σmin

(∫
A
aa⊤ dµ(a)

)
> 0 ,

which is equivalent to the condition that A spans Rd. The exploratory policy is the distribution
on A that achieves the maximum (which is guaranteed to exist when A is finite). The Explore
the Sparsity Then Commit (ESTC) algorithm was shown to satisfy a regret bound of the order
O(s2/3T 2/3C

−2/3
min ) [Hao et al., 2020]. The transition between the T 2/3 rate in the data-poor

regime and the
√
T rate in the data-rich regime also appears in an existing lower bound of the

order Ω(min(s1/3T 2/3C
−1/3
min ),

√
dT ) [Hao et al., 2020].

Adapting to both regimes. Recently, Hao et al. [2021] showed that the sparse Infor-
mation Directed Sampling (IDS) algorithm performs well in both regimes. Under the
sparse optimal action condition (Definition 1), IDS satisfies a regret bound of the order
O(min(

√
dT∆, (sT )2/3∆1/3C

−1/3
min )), where ∆ ∝ min(log(|A|), s log(dT/s)). This is simulta-

neously optimal in both the data-rich and data-poor regimes. However, this result is limited to the
Bayesian setting. This is because IDS uses the Bayesian posterior to quantify uncertainty, which is
only meaningful if θ0 really is a random draw from the prior.

The sparse optimal action condition. Part of our analysis requires that a certain technical condi-
tion is satisfied. This condition comes from prior work [Hao et al., 2021], and is used to bound the
regret in the data-poor regime (cf. Lemma 7).

Definition 1. For a given prior Q+
1 , an action set A has sparse optimal actions if with probability 1

over the random draw of θ from Q+
1 , there exists a′ ∈ arg maxa∈A r(a, θ) such that ∥a′∥0 ≤ s.

We use a prior that only assigns positive probability to s-sparse vectors, which means the sparse
optimal action property is satisfied whenever the action set is an ℓp-ball. Note that the hard in-
stances in both the

√
sdT lower bound in Theorem 24.3 of Lattimore and Szepesvári [2020] and the

s2/3T 2/3 lower bound in Theorem 5 of Jang et al. [2022] satisfy the sparse optimal action property1.
Therefore, imposing this additional condition does not trivialize the problem.

Notation. We conclude this section by introducing some additional notation that will be used in the
subsequent sections. For any candidate parameter vector (or model) θ ∈ Rd, we let r(a, θ) = ⟨θ, a⟩
denote the corresponding linear reward function. In addition, we define a∗(θ) = arg maxa∈A r(a, θ)
(with ties broken arbitrarily) and r∗(θ) = r(a∗(θ), θ) to be the optimal action and maximum reward
for the model θ. The gap of an action a for a model θ is ∆(a, θ) = r∗(θ) − r(a, θ). Similarly, the
gap for a policy π ∈ ∆(A) and a model distribution Q ∈ ∆(Θ) is ∆(π,Q) =

∫
A×Θ

∆(a, θ) dπ ⊗
Q(a, θ), and we let ∆t = ∆(πt, θ0) denote the gap of the policy played by the agent in round t
under the true model θ0. Using this notation, the regret can be written as RT = E[

∑T
t=1 ∆t]. We

define the unnormalized Gaussian likelihood function p(y|θ, a) = exp(− (y−⟨θ,a⟩)2
2 ). Finally, we

let Ft = σ(A1, Y1, . . . , At, Yt) denote the σ-algebra generated by the interaction between the agent
and the environment up to the end of round t.

3 Sparse Optimistic Information Directed Sampling

We develop an extension of the Optimistic Information Directed Sampling (OIDS) algorithm pro-
posed by Neu, Papini, and Schwartz [2024]. The main difference between OIDS and IDS is that
the Bayesian posterior is replaced by an appropriately adjusted optimistic posterior. For an arbitrary
prior Q+

1 ∈ ∆(Θ), the optimistic posterior is defined by the following update rule:

dQ+
t+1

dQ+
1

(θ) ∝
t∏

s=1

(p(Ys | θ,As))
η · exp

(
λt

t∑
s=1

∆(As, θ)
)
. (2)

1The optimal actions in the hard instance used to prove Theorem 5 in Jang et al. [2022] are 2s-sparse, which
still allows us to prove the same bound on the surrogate 3-information ratio, up to constant factors.
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Here, η is a positive constant that should be thought of as “large”, and (λt)t is a decreasing sequence
of positive real numbers that decays to 0, and should be thought of as “small”. We allow λt to be
computed by the algorithm at the end of the round t. In other words, any Ft-measurable λt is ad-
missible. Note that when η = 1 and λt = 0, the optimistic posterior coincides with the Bayesian
posterior. While this construction is closely related to the optimistic posterior update described in
Zhang [2022] and Neu, Papini, and Schwartz [2024], there are a few important differences. First,
the ∆(As, θ) term appearing in the adjustment serves as an alternative to their proposal of using
r∗(θ) for the same purpose. Intuitively this serves to “overestimate” the true gaps with the op-
timistic posterior, driving exploration towards parameters that promise rewards much higher than
whatever would have been accrued by the agent. In contrast, the adjustment of Zhang [2022] drives
exploration towards parameters θ with high optimal reward regardless of how well the agent would
have performed under the same θ—meaning that it unduly assigns mass to uninteresting parameter
choices, where any policy is guaranteed to work well anyway. Intuition aside, this adjustment greatly
simplifies our analysis of the optimistic posterior as compared to the analysis of Zhang [2022] and
Neu, Papini, and Schwartz [2024]. An important additional novelty is that our update features a
time-dependent exploration parameter λt, which is crucial for the adaptive regret bounds that we
seek in this work. To describe the OIDS algorithm, we must first define the surrogate information
gain and the surrogate regret. For any round t and any policy π ∈ ∆(A), the surrogate information
gain is defined as

IGt(π) =
1

2

∑
a∈A

π(a)

∫
Θ

(
⟨θ − θ̄(Q+

t ), a⟩
)2

dQ+
t (θ) ,

where for any Q ∈ ∆(Θ), θ̄(Q) = Eθ∼Q [θ] is the mean parameter under distribution Q. The
surrogate regret is defined as

∆̂t(π) =
∑
a∈A

π(a)

∫
Θ

∆(a, θ) dQ+
t (θ) .

For any policy π and any γ ≥ 2, we define the surrogate generalized information ratio as

IR
(γ)
t (π) =

(∆̂t(π))
γ

IGt(π)
= 2 ·

(∑
a∈A π(a)

∫
Θ
⟨θ, a∗(θ)− a⟩ dQ+

t (θ)
)γ∑

a∈A π(a)
∫
Θ
(⟨θ − θ̄(Q+

t ), a⟩)2 dQ+
t (θ)

. (3)

We can at last define the Sparse Optimistic Information Directed Sampling (SOIDS) algorithm. In
each round t, the policy played by SOIDS is defined to be the distribution on A that minimizes the
2-information ratio:

π
(SOIDS)
t = arg min

π∈∆(A)

IR
(2)
t (π) . (4)

The choice of γ = 2 is motivated by the fact that the minimizer of the 2-information ratio is an
approximate minimizer of surrogate generalized information ratio for all γ ≥ 2.

Lemma 1. For all γ ≥ 2,

IR(γ)
t (π

(SOIDS)
t ) ≤ 2γ−2 min

π∈∆(A)
IR(γ)

t (π) .

This fact was discovered for the Bayesian IDS policy by Lattimore and György [2021] and remains
true for the SOIDS policy. We provide a proof in Appendix F.2 for completeness. Finally, we remark
that the "sparse" part of the name SOIDS refers to the choice of the prior Q+

1 . We use the subset
selection prior from Section 3 of Alquier and Lounici [2011], which is described in Appendix B.2.

4 Main results

In this section, we state our main results. First, we relate the true regret of any policy sequence to
the surrogate regret of the same policy sequence. We then use the fact that the surrogate regret is
controlled by both the 2- and 3-information ratios. This, combined with Lemma 1, allows us to show
that with properly tuned parameters, SOIDS has optimal worst-case regret in both the data-poor and
data-rich regimes. Finally, we show that SOIDS can be tuned in a data-dependent manner, such that
its regret bound scales with the cumulative observed information ratio instead of the time horizon.
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4.1 General bound for the optimistic posterior

We start with a generic worst-case regret bound relating the true regret of any algorithm to its sur-
rogate regret. Since the surrogate regret is defined with respect to the optimistic posterior, which
is known to the learner, it can be controlled with standard Bayesian techniques. This result is an
extension of the bounds stated in Neu et al. [2024], Zhang [2022]. To our knowledge, it is the first
result of its kind which is compatible with time-dependent or data-dependent learning rates. The
stated result is specialized to the setting of sparse linear bandits, but the techniques used to deal with
time-dependent and data-dependent learning rates are applicable beyond this setting.

Theorem 1. Assume that the optimistic posterior is computed with η = 1
4 and a sequence of de-

creasing learning rates λt satisfying ∀t ≥ 1, λt ≤ 1
2 . Set λ0 = 1

2 . If the learning rates do not
depend on the history, then the regret of any sequence of policies πt satisfies

RT ≤ E

[
5 + 2s log edT

s

λT−1
−

T∑
t=1

3

32
· IGt(πt)

λt−1
+ 2

T∑
t=1

∆̂t(πt)

]
. (5)

Otherwise, if the learning rates depend on the history, let C1,T be a deterministic upper bound on
1
λt

− 1
λt−1

valid for all t ≤ T , and C2,T be a deterministic upper bound on 1
λT−1

. The regret of any
sequence of policies πt satisfies

RT ≤ E

2 + s log
4e3d2T 3C2

1,TC2,T

s2

λT−1
−

T∑
t=1

3

32
· IGt(πt)

λt−1
+ 2

T∑
t=1

∆̂t(πt)

+ 2. (6)

4.2 Adapting to both regimes

We show that the SOIDS algorithm with properly tuned parameters achieves the optimal regret rate
in both the data-rich and data-poor regimes.

Theorem 2. Assume that the sparse optimal action condition in Definition 1 is satisfied. Let

λ
(2)
t =

√
3Ct+1

128d(t+1) and λ
(3)
t = 1

4·6
1
3

(
Ct+1

√
Cmin

(t+1)
√
s

) 2
3

, with Ct = 5 + 2s log edt
s . If λt =

min( 12 ,max(λ
(2)
t , λ

(3)
t )), then the regret of SOIDS satisfies

RT ≤ min

(
27

√(
5 + 2s log

edT

s

)
dT , 30

(
5 + 2s log

edT

s

) 1
3
(

T
√
s√

Cmin

) 2
3

)
+O(

√
s log

d√
s
)

(7)

= min

(
O

(√
sdT log

edT

s

)
,O

(
(sT )

2
3

(
log

edT

s

) 1
3

))
,

where O(
√
s log d√

s
) represents an absolute constant independent of T.

We observe that our algorithm enjoys both the Õ(
√
sdT ) and the Õ((sT )

2
3 ) regret rates. Unlike the

Bayesian regret bound for the sparse IDS algorithm of Hao et al. [2021], our regret bound holds in
a “worst-case” sense for any value of θ0 ∈ Θ. To our knowledge, this makes our method the first
algorithm to achieve optimal worst-case regret in both the data-poor and data-rich regimes

4.3 Instance-dependent guarantees

The bounds presented in the previous sections are minimax in nature, meaning they hold uniformly
over all problem instances. We present a bound in which the scaling with respect to the horizon T
is replaced with the cumulative surrogate-information ratio, which could be much smaller than T in
“easier” instances, leading to better guarantees.

Theorem 3. Assume that the sparse optimal action condition in Definition 1 is satisfied, and

that s ≤ d
2 . Let λ(2)t =

√
s

2d+
∑t

s=1 IR(2)
s (πs)

and λ
(3)
t =

(
s

3
√

6s√
Cmin

+
∑t

s=1

√
IR(3)

s (πs)

) 2
3

. If
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λt = max(λ
(3)
t , λ

(2)
t ), then the regret of SOIDS satisfies

RT ≤
(
2

s
+

80

3
+ 5 log

edT

s

)
min


√√√√s

(
2d+

T−1∑
t=1

IR(2)
t (πt)

)
, s

1
3

(
3
√
6s√

Cmin

+

T∑
t=1

√
IR(3)

t (πt)

) 2
3


(8)

= O

log
edT

s
min


√√√√s

(
2d+

T−1∑
t=1

IR(2)
t (πt)

)
, s

1
3

(
3
√
6s√

Cmin

+

T∑
t=1

√
IR(3)

t (πt)

) 2
3

 .

This type of result is only possible because our novel analysis of the optimistic posterior (cf. The-
orem 1) can handle history-dependent learning rates. A full proof is provided in Appendix D. This
result shows that (with appropritate choices of the learning rates) SOIDS is fully adaptive to which
of the two regimes is best. Because our analysis requires decreasing learning rates, we are forced to
leave the log(T ) terms out of the learning rates, and our logarithmic term has a worse power than
in the bound of Theorem 2. An interesting open question is whether it is possible to improve the
dependency on this logarithmic term while still using data-dependent learning rates.

5 Analysis

We now provide an outline of the proofs of the main results.

5.1 Proof of Theorem 1

A key observation is that the optimistic posterior can be interpreted as a learner playing an auxiliary
online learning game over distributions ∆(Θ). The loss of that game is a weighted sum of negative
log-likelihood and estimation error losses. We define

L
(1)
t (θ) =

t∑
s=1

log

(
1

p(Ys|θ,As)

)
=

t∑
s=1

1

2

(
⟨θ,As⟩ − Ys

)2
to be the cumulative negative log-likelihood loss of θ and

L
(2)
t (θ) =

t∑
s=1

−∆(As, θ)

to be the cumulative estimation error loss of θ. In addition, we define the regularizer Φ : ∆(Θ) → R
by the mapping P 7→ DKL

(
P
∥∥Q+

1

)
, which is the KL-divergence with respect to the prior Q+

1 . With
those notations, the optimistic posterior corresponds to an instance of the Follow the Regularized
Leader (FTRL) algorithm introduced by Hazan and Kale [2010] and Abernethy et al. [2008]. FTRL
is a standard method in online convex optimization that balances cumulative loss minimization with
a regularization term to enforce stability and guarantee controlled regret. The update can be reframed
as

Q+
t+1 = arg min

P∈∆(Θ)

⟨P, ηL(1)
t + λtL

(2)
t ⟩+Φ(P ).

This formulation enables the application of tools from convex analysis and online learning, such as
Fenchel duality, to derive regret bounds for this auxiliary online learning game and to understand
the interplay between the two losses under the learning rates η and λt. We now focus on the case in
which the learning rates λt don’t depend on the history and relegate the analysis of history-dependent
learning rates to Appendix C. The following lemma provides a bound on the average regret when
the model θ0 is drawn from an arbitrary comparator distribution P .

Lemma 2. Let P ∈ ∆(Θ) be any comparator, then the following bound holds

T∑
t=1

∆(At, P ) ≤
Φ(P ) + Φ∗(η(L

(1)
T (θT )− L

(1)
T (·))− λTL

(2)
T (·))

λT
+

η

λT
(⟨P,L(1)

T ⟩ − L
(1)
T (θT )) .

(9)
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Here θt = arg minθ∈Θ L
(1)
t (θ) denotes the maximum likelihood estimator at time t, and Φ∗(L) =

log
∫
Θ
exp(L(θ))dQ+

1 (θ) is the Fenchel dual of the regularizer Φ. A complete proof of this result
is provided in appendix B.1.1. We aim to chose a comparator P and the prior Q+

1 such that P is
concentrated around θ0 and the KL divergence DKL

(
P
∥∥Q+

1

)
is controlled. If the parameter space

were finite, the natural choice would be to take P as a Dirac on θ0 and Q+
1 as a uniform distribution

on the whole parameter space; more care is necessary here. ChoosingQ+
1 as a subset-selection prior

and P as a uniform distribution on a sparse neighborhood of θ0 satisfies both requirements.
Lemma 3. The subset-selection prior Q+

1 ∈ ∆(Θ) verifies that for any ϵ > 0 and θ ∈ Θ, there is a
comparator Pθ ∈ ∆(Θ) satisfying both

∀θ′ ∈ supp(Pθ), ∥θ − θ′∥1 ≤ ϵ and DKL
(
Pθ

∥∥Q+
1

)
≤ s log

2ed

ϵs
.

The proof of this lemma, as well as the exact choice of the prior Q+
1 and the comparator P (θ0),

are provided in Appendix B.2. In Appendix I (cf. Lemma 21), we establish that both L(2)
T (·) and

E
[
L
(1)
T (·)

]
are 2T -Lipschitz with respect to the ℓ1-norm. Hence,

E

[
|P · L(1)

T − L
(1)
T (θ0)|

λT

]
≤ 2Tϵ

λT
, and

T∑
t=1

|∆(θ0, At)−∆(P,At)| ≤ 2Tϵ.

Combining these with Lemma 2, we obtain the following bound on the cumulative regret:

RT ≤E

[
s log 2ed

ϵs + 2T (λT + η)ϵ

λT
+

Φ∗(−η(L(1)
T (·)− L

(1)
T (θT ))− λTL

(2)
T (·))

λT

]

+ E
[
η

λT
(L

(1)
T (θ0)− L

(1)
T (θT ))

]
.

The first term balances model complexity and approximation via ϵ. In the usual FTRL analysis,
λ → ϕ∗(λL)

λ is non decreasing for any L ∈ RΘ, and the term involving Φ∗ can be telescoped.
Things are more complex here because only some part of the loss is weighted by the time varying
learning rate λT . Through a careful analysis involving the maximum likelihood estimator, we can
decompose the Φ∗ term into a telescoping sum and a remainder term.
Lemma 4.

E

[
Φ∗(η(L

(1)
T (θT )− L

(1)
T (·))− λTL

(2)
T (·))

λT

]

≤ E

[
T∑

t=1

Φ∗(η(L
(1)
t (θ0)L

(1)
t (·))− λt−1L

(2)
t (·))

λt−1
−

Φ∗(η(L
(1)
t−1(θ0)− L

(1)
t−1(·))− λt−1L

(2)
t−1(·))

λt−1

]
(10)

+
η(6 + s log edT

s )

λT
. (11)

A detailed proof of this result is provided in Appendix B.1.2. Finally, the remaining sum can be
handled by looking at the explicit formula for Φ∗. The terms related to the likelihood and the gap
estimates can be separated using Hölder’s inequality, as is done in Zhang [2022] and Neu, Papini,
and Schwartz [2024]. More explicitly, by now choosing η = 1

4 , we obtain the following lemma.
Lemma 5.

E

[
T∑

t=1

Φ∗(η(L
(1)
t (θ0)− L

(1)
t (·))− λt−1L

(2)
t (·))

λt−1
−

Φ∗(η(L
(1)
t−1(θ0)− L

(1)
t−1(·))− λt−1L

(2)
t−1(·))

λt−1

]

≤ E

[
−

T∑
t=1

3IGt(πt)

32λt−1
+ 2

T∑
t=1

∆̂(πt)

]
. (12)

A full proof of this result is provided in Appendix B.1.4. Combining Lemmas 2, 3, 4, 5 and setting
ϵ = 2

T , we obtain the desired regret bound stated in Theorem 1.

7



5.2 Proof of Theorem 2

We show how Theorem 1 can be combined with bounds on the surrogate regret to control the true
regret. The first important fact is that the surrogate regret of any policy can always be controlled in
terms of the 2 or the 3-surrogate information ratio of that policy.
Lemma 6. Let λ > 0, then we have that for any policy π ∈ ∆(A)

∆̂t(π) ≤
IGt(π)

λ
+min

(
1

4
λIR(2)

t (π), c∗3

√
λIR(3)

t (π)

)
,

where c∗3 < 2 is an absolute constant defined in Lemma 27.

This is a consequence of a simple generalization of the AM-GM inequality and is proved in Ap-
pendix F.1. Combining the previous lemma with λ = 64

3 λt−1 and Theorem 1, we can further upper
bound the regret of a sequence of policies (πt)t as

RT ≤ E

[
5 + 2s log edT

s

λT−1
−

T∑
t=1

3IGt(πt)

32λt−1
+ 2

T∑
t=1

∆̂t(πt)

]

≤ E

[
CT

λT−1
+

T∑
t=1

min

(
32

3
λt−1IR

(2)
t (πt),

16

3
c∗3

√
3λt−1IR

(3)
t (πt)

)]
, (13)

where CT = 5+2s log edT
s . Usually, bounds on the 2-information ratio can be converted to O(

√
T )

bounds and bounds on the 3-information ratio can be converted to O(T
2
3 ) bounds. Hence we will

use the 2-information ratio to control the regret in the data-rich regime and the 3-information ratio
to control the regret in the data-poor regime. Due to Lemma 1, the SOIDS policy minimizes the
2-information ratio and approximately minimizes the 3-information ratio. As a result, if there exists
a "forerunner" algorithm with bounded 2-information ratio or 3-information ratio, SOIDS inherits
these bounds automatically. In particular, we can use a different forerunner for each regime and
SOIDS will match the regret guarantees of the best forerunner in each regime.
This forerunner-based technique is widely used to analyze IDS based algorithms and has been ap-
plied to a variety of Bayesian settings [Russo and Van Roy, 2017, Hao et al., 2021, Hao and Lat-
timore, 2022] and some frequentist settings [Kirschner and Krause, 2018, Kirschner et al., 2020,
2021]. An advantage of the OIDS framework is that since the surrogate quantities are defined with
respect to the optimistic posterior, the analysis of the surrogate information ratio is virtually identical
to the corresponding analysis of the information ratio in the Bayesian setting.
The forerunner we consider for the 2-information ratio is the Feel-Good Thompson Sampling
(FGTS) algorithm of Zhang [2022]. For the 3-information ratio, we consider a mixture of the
FGTS policy and an exploratory policy. The following lemma provides bounds on the surrogate
information ratios of the SOIDS algorithm.
Lemma 7. The 2- and 3-surrogate-information ratio of the SOIDS algorithm satisfy for any t ≥ 0

IR(2)
t (π

(SOIDS)
t ) ≤ IR(2)

t (π
(FGTS)
t ) ≤ 2d (14)

and
IR(3)

t (π
(SOIDS)
t ) ≤ 2IR(3)

t (π
(mix)
t ) ≤ 54s

Cmin
. (15)

The explicit definition of both forerunner algorithms, as well as the proof of this lemma, are deferred
to Appendix F.3. Finally, it remains to pick the learning rate λt. The following lemma describes the
appropriate learning rate for the data-poor and the data-rich regimes separately.

Lemma 8. The choice of learning rate λ(2)t =
√

3Ct+1

128d(t+1) guarantees

CT

λ
(2)
T−1

+
32

3

T∑
t=1

λ
(2)
t−1IR(2)

t (π
(SOIDS)
t ) ≤ 16

√
2

3
CT dT .

The choice of learning rate λ(3)t = 1

4·6
1
3

(
Ct+1

√
Cmin

(t+1)
√
s

) 2
3

guarantees

CT

λ
(3)
T−1

+
16

3
c∗3

T∑
t=1

√
3λ

(3)
t−1IR(3)

t (π
(SOIDS)
t ) ≤ 12 · 6 1

3

(
s · CT

Cmin

) 1
3

T
2
3 .
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Figure 1: Cumulative regret for d = 20 (left) 40 (middle) and 100 (right). We plot the mean ±
standard deviation over 10 repetitions.

The proof is deferred to Appendix G.2. The expression for the constant c∗3 ≤ 2 can be found in
Appendix I.2 (cf. Lemma 27). It remains to analyze what happens when the learning rate λt =

min( 12 ,max(λ
(2)
t , λ

(3)
t )) is chosen. We defer this to Appendix G.4.

6 Experiments

We aim to verify that, in both the data-rich and data-poor regimes simultaneously, the regret of
SOIDS is comparable with the regret of existing algorithms that achieve near optimal worst-case
regret in either the data-rich or the data-poor regime. Our baseline for the data-rich regime is the
online-to-confidence-set (OTCS) method proposed by Abbasi-Yadkori et al. [2012], which has worst
case regret of the order

√
sdT . For a tougher comparison, we run this method with the confidence

sets from Theorem 4.7 of Clerico et al. [2025], which have much smaller constant factors than
those used by Abbasi-Yadkori et al. [2012]. Our baseline for the data-poor regime is the Explore
the Sparsity Then Commit (ESTC) algorithm proposed by Hao et al. [2020], which has worst-case
regret of the order (sT )2/3. For reference, we also compare with LinUCB Abbasi-Yadkori et al.
[2011], which does not adapt to sparsity.
It is generally difficult to run the SOIDS algorithm exactly because the surrogate information ra-
tio contains expectations w.r.t. the optimistic posterior. In our implementation of SOIDS, we use
the empirical Bayesian sparse sampling procedure of Hao et al. [2021] to draw approximate sam-
ples from the optimistic posterior, and then approximate the surrogate information ratio via sample
averages. We provide further details regarding the implementations of each method in Appendix J.
For each d ∈ {20, 40, 100}, θ0 is the s-sparse vector in Rd, with s = d/10, in which first s com-
ponents are 10/s and the remaining components are zero. The action set consists of 200 random
draws from the uniform distribution on [−1, 1]d. The noise variance is 1 and we run each method
10 times. In Figure 1, we report the cumulative regret over T = 1000 steps. As d is varied from 20
to 100, we appear to transition from the data-rich regime to the data-poor regime: for d = 20, the
OTCS method is the best performing baseline, whereas for d = 100, ETCS is the best performing
baseline. As our theoretical results would suggest, SOIDS performs well in both regimes.

7 Conclusion

There remain several interesting questions that our work leaves open for future research, such as the
possibility of improving the logarithmic terms in the instance-dependent regret bound (as mentioned
earlier in Section 4). We highlight another question below.
In our experiments, we have made use of an approximate implementation of OIDS adapted from Hao
et al. [2021]. The initial success we have seen in our experiments suggests that this approximation
might be viable in more challenging settings, and worthy of an attempt at a solid theoretical analysis.
More broadly, the results indicate a potential advantage of IDS-style methods over DEC-inspired
methods [Foster et al., 2022b, Kirschner et al., 2023]. Indeed, we are not aware of any general
methods for approximating the optimization problems that the E2D algorithm of Foster et al. [2022b]
requires to solve, in contrast to our results that indicate that IDS-inspired algorithms may very
well be amenable to practical implementation. Whether the concrete approximation we used in
our experiments is the best possible one or not remains to be seen.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not re-
move the checklist: The papers not including the checklist will be desk rejected. The checklist
should follow the references and follow the (optional) supplemental material. The checklist does
NOT count towards the page limit.
Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.
The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No]
" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide theoretical proof and experiments supporting the claims made in
the abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of the work and some remaining open questions.
We comment on the computational efficiency of the proposed algorithm.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The complete proof and assumptions of every single result is either in the
main text or the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code and data are provided and the experimental setting is described.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is available online.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The full code is available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See the figures included in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All of the experiments can be run on the CPU of a laptop.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We respect NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Due the theoretical nature of the work, societal impacts are hard to foresee.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All of the code has been written by the authors of the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related work

The first algorithms and regret bounds for sparse linear bandits were designed for the data-rich
regime. Abbasi-Yadkori et al. [2012] developed an online-to-confidence-set conversion for linear
models, which converts any algorithm for online linear regression into a linear bandit algorithm
whose regret depends on the regret of the online regression algorithm. When the SeqSEW algorithm
[Gerchinovitz, 2013] is used in this conversion, the result is a sparse linear bandit algorithm with
a regret bound of the order O(

√
sdT ) (ignoring logarithmic factors). Lattimore and Szepesvári

[2020] established a matching lower bound for the data-rich regime, showing that this rate cannot
be improved.
More recently, several works have studied the data-poor regime, in which the dimension d is much
larger than the number of rounds T . Hao et al. [2020] showed that an explore-then-commit algorithm
satisfies a regret bound of the order O((sT )2/3C

−2/3
min ), and established a lower bound of order

Ω(min(s1/3T 2/3C
−1/3
min ,

√
dT ). Subsequently, Jang et al. [2022] proposed the PopArt estimator for

sparse linear regression, and showed that an explore-then-commit algorithm that uses this estimator
achieves a regret bound of the order O(s2/3T 2/3H

2/3
⋆ ), where H⋆ is another problem-dependent

quantity that satisfies H2
⋆ ≤ C−1

min. In addition, Jang et al. [2022] established a lower bound of order
Ω(s2/3T 2/3C

−1/3
min ), showing that the optimal rate for the data-poor regime is s2/3T 2/3. Hao et al.

[2021] showed that sparse IDS has a Bayesian regret bound that is optimal for both regimes.
A number of works have considered sparse contextual linear bandits, in which the action set A
changes in each round t. In the case where the actions sets are chosen by an adaptive adversary,
the upper and lower bounds of the order

√
sdT by Abbasi-Yadkori et al. [2012] and Lattimore and

Szepesvári [2020] respectively still hold. Under the assumption that the action sets are generated
randomly, and such that either a uniform or greedy policy is (with high probability) exploratory,
several methods have been shown to achieve nearly dimension-free regret bounds Bastani and Bayati
[2020], Wang et al. [2018], Kim and Paik [2019], Oh et al. [2021], Chakraborty et al. [2023].
The concept of balancing instantaneous regret and information gain through the information ratio
was first introduced by Russo and Roy [2016] in the context of analyzing Thompson Sampling.
Building upon this, the Information-Directed Sampling (IDS) algorithm was proposed by Russo and
Van Roy [2017] to directly minimize the information ratio, thereby optimizing the trade-off between
regret and information gain. These foundational ideas have since been extended and applied to
a variety of settings including bandits [Bubeck and Sellke, 2022], contextual bandits [Neu et al.,
2022, Hao et al., 2022], reinforcement learning [Hao and Lattimore, 2022], and sparse linear bandits
[Hao et al., 2021]. However, these works are primarily situated in the Bayesian framework and focus
on Bayesian regret bounds that hold only in expectation with respect to the prior distribution.
A key challenge in extending these methods to the frequentist setting lies in estimating the instanta-
neous regret and define a meaningful notion of information gain. Both of those things are naturally
possible in Bayesian analysis but difficult when the true model is unknown. Moreover, Bayesian
posteriors may inadequately represent model uncertainty from a frequentist perspective. We high-
light three strands of research that have attempted to address this challenge:
Confidence-set based information ratio approaches: Works such as Kirschner and Krause [2018],
Kirschner et al. [2020], and Kirschner et al. [2021] extend the notion of the information ratio to
frequentist settings by constructing high-probability confidence sets for the instantaneous regret and
information gain. These results are mostly limited to setting with some linear structure.
Distributionally robust and worst-case information-regret trade-offs: The Decision-to-Estimation-
Coeffiecient(DEC) line of work of [Foster et al., 2022b, Foster and Rakhlin, 2020, Foster et al.,
2022c,a, Kirschner et al., 2023] explores the frequentist setting by analyzing worst-case trade-offs
between regret and information gain. One limitation is that the DEC is an inherently worst-case
measure of comlexity. Moreover, algorithms based on the DEC usually require solving complex
min-max optimization problems at each time step, making their practical implementation challeng-
ing and unclear.
Optimistic posterior approaches for frequentist guarantees: The approach most closely related to
our work modifies the Bayesian posterior to provide frequentist guarantees. Introduced by Zhang
[2022], the optimistic posterior is a modification of the Bayesian posterior which enables frequentist
regret bounds for a variant of Thompson Sampling. Subsequently, Neu et al. [2024] studied the
optimistic posterior framework in greater depth, defining a frequentist analog of the information
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ratio to extend IDS to frequentist settings. A notable limitation of these works is their restriction to
constant learning rates in the optimistic posterior, which limits adaptivity, an issue that we address
in this paper.

B Analysis of the Optimistic posterior

This section provides further details about the prior underlying the optimistic posterior and guaran-
tees on the posterior updates.

B.1 Follow the regularized leader analysis

The main step in our analysis of the optimistic posterior is to leverage the follow the regularized
leader formulation of our optimistic posterior update

Q+
t+1 = arg min

P∈∆(Θ)

⟨P, ηL(1)
t + λtL

(2)
t ⟩+Φ(P ) .

B.1.1 Proof of Lemma 2
As is usual in the analysis of the follow the regularized leader algorithm, we introduce the Fenchel
conjugate Φ∗ : RΘ → R of the regularization function Φ = DKL

(
·
∥∥Q+

1

)
, which takes values

Φ∗(L) = supP∈∆(Θ) {⟨P,L⟩ − Φ(P )}. The Fenchel–Young inequality guarantees that for any
P ∈ ∆(Θ) and L ∈ RΘ,

⟨P,L⟩ ≤ Φ(P ) + Φ∗(L) .

We introduce the maximum likelihood estimator θt = arg minθ∈Θ L
(1)
t (θ) and the function

L(·) = −η(L(1)
T (·)− L

(1)
T (θT ))− λTL

(2)
T (·) .

Since λT is never used by the algorithm, we can assume that λT = λT−1. The role of the maximum
likelihood estimator is to ensure that the term L

(1)
t (θ) − L

(1)
t (θt) is always non-negative. The

Fenchel–Young inequality tells us that

η
(
L
(1)
T (θT )−

〈
P,L

(1)
T

〉)
− λT

〈
P,L

(2)
T

〉
≤ Φ(P ) + Φ∗

(
−η(L(1)

T (·)− L
(1)
T (θT ))− λTL

(2)
T (·)

)
.

Noticing that
〈
P,L

(2)
T

〉
= −

∑T
t=1 ∆(P,At) and rearranging the terms concludes the proof.

B.1.2 Proof of Lemma 4
We start by rewriting the potential function in the form of the following telescopic sum:

Φ∗(−η(L(1)
T (·)− L

(1)
T (θT ))− λTL

(2)
T (·))

λT

=

T∑
t=1

Φ∗(−η(L(1)
t (·)− L

(1)
t (θt))− λtL

(2)
t (·))

λt
−

Φ∗(−η(L(1)
t−1(·)− L

(1)
t−1(θt−1))− λt−1L

(2)
t−1(·))

λt−1
.

In the usual follow-the-regularized-leader analysis, we use the fact that λ 7→ ϕ∗(λL)
λ is non-

decreasing for any L ∈ RΘ. Here however, only one component of the linear loss is scaled by
λt, and so the standard FTRL analysis fails. Crucially, because we introduced the maximum likeli-
hood estimator θt, we have that L(1)

t (·)− L
(1)
t (θt) ≥ 0. We can therefore use the following lemma

that guarantees that a scaled and shifted dual is monotonic.
Lemma 9. Let Φ ≥ 0 and Φ∗ be a convex function and its dual as defined previously. For L1, L2 ∈
RΘ such that L1 ≥ 0, the mapping λ 7→ Φ∗(−L1+λL2)

λ is non-decreasing on R+∗.

Proof. By definition, we have

Φ∗(−L1 + λL2)

λ
=

supP∈∆(Θ)⟨P,−L1 + λL2⟩ − Φ(P )

λ

= sup
P∈∆(Θ)

⟨P,L2⟩ −
⟨P,L1⟩+Φ(P )

λ
.
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For any P ∈ ∆(Θ), we have that Φ(P ) + ⟨P,L1⟩ ≥ 0 and the term inside the supremum is
non-decreasing with respect to lambda. Since the supremum of non-decreasing functions is also
non-decreasing, this concludes the proof.

Applying the previous lemma, we upper bound the previous sum by replacing each λt factor by
λt−1 (using the convention λ0 = 1/2), and then we replace the maximum likelihood estimator θt
by θ0 inside Φ∗ to obtain

T∑
t=1

Φ∗(−η(L(1)
t (·)− L

(1)
t (θt))− λtL

(2)
t (·))

λt
−

Φ∗(−η(L(1)
t−1(·)− L

(1)
t−1(θt−1))− λt−1L

(2)
t−1(·))

λt−1

≤
T∑

t=1

Φ∗(−η(L(1)
t (·)− L

(1)
t (θt))− λt−1L

(2)
t (·))

λt−1
−

Φ∗(−η(L(1)
t−1(·)− L

(1)
t−1(θt−1))− λt−1L

(2)
t−1(·))

λt−1

=

T∑
t=1

Φ∗(−η(L(1)
t (·)− L

(1)
t (θ0))− λt−1L

(2)
t (·))

λt−1
−

Φ∗(−η(L(1)
t−1(·)− L

(1)
t−1(θ0))− λt−1L

(2)
t−1(·))

λt−1

+
η

λt−1
(L

(1)
t (θt)− L

(1)
t (θ0) + L

(1)
t−1(θ0)− L

(1)
t−1(θt−1)).

It remains to bound the difference of the negative log likelihood of the true parameter and the max-
imum likelihood estimator. This is done via the following result (whose proof we relegate to ap-
pendix E.1.1).
Lemma 10. For any t ≥ 1, we have

0 ≤ E
[
L
(1)
t (θ0)− L

(1)
t (θt)

]
≤ inf

ρ

{
2ρt+ s log

ed(1 + 2/ρ)

s

}
≤ 6 + s log

edt

s
(16)

Using this lemma, we can further bound the previously considered expression as the following
telescopic sum:

E

[
T∑

t=1

η

λt−1
(L

(1)
t (θt)− L

(1)
t (θ0) + L

(1)
t−1(θ0)− L

(1)
t−1(θt−1)) +

η

λT
(L

(1)
T (θ0)− L

(1)
T (θT ))

]

= E

[
T∑

t=1

η

λt−1
(L

(1)
t (θt)− L

(1)
t (θ0))−

T∑
t=1

η

λt
(L

(1)
t (θt)− L

(1)
t (θ0))

]

≤ η ·
T∑

t=1

E
[
(L

(1)
t (θ0)− L

(1)
t (θt))

]( 1

λt
− 1

λt−1

)

≤
η(6 + s log edT

s )

λT
.

Here, the first inequality comes from the non-negativity of L(1)
t (θ0) − L

(1)
t (θt) by definition of θt

and the second one is from Lemma 10 just above and a telescoping argument. Finally we obtain the
claim of Lemma 4.

B.1.3 Controlling the losses separately
The focus of this section is to understand how to control Φ∗(−L) where L is either the negative-
likelihood loss or the estimation-error loss. We start by analyzing the negative-likelihood loss. As
was done in Neu, Papini, and Schwartz [2024], we will relate the negative-likelihood loss to the
surrogate information gain.
For this analysis, we define the true information gain as

IGt(π) =
1

2

∑
a∈A

π(a)

∫
Θ

(⟨θ − θ0, a⟩)2 dQ+
t (θ), (17)

and note that, by linearity reward function, the surrogate information gain is always smaller than the
true information gain. This is stated formally below.
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Proposition 1. For any policy π ∈ ∆(A) and any t ≥ 1 we have that

IGt(π) ≤ IGt(π) (18)

The proof is provided in Appendix I.1. This result can then be used to relate the surrogate and the
true information gain to the negative-likelihood loss. This result and its proof are identical to the
proof of Lemma 17 in Neu, Papini, and Schwartz [2024].
Lemma 11. Assume that the noise ϵt is conditionnally 1-sub-Gaussian, then for any t ≥ 1, η, α ≥ 0
such that γ = ηα

2 (1− ηα) > 0, the following inequality holds

E
[
log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα

dQ+
t (θ)

]
≤ −2γ(1− 2γ)E [IGt(πt)] (19)

≤ −2γ(1− 2γ)E
[
IGt(πt)

]
. (20)

In particular, the constant 2γ(1− 2γ) can be maximized to the value 3
16 by the choice ηα = 1

2 .

Proof. By the tower rule of expectation and Jensen’s inequality applied to the logarithm, we have

E
[
log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα

dQ+
t (θ)

]
= E

[
E
[
log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα

dQ+
t (θ)

∣∣∣∣Ft−1, At

]]
≤ E

[
logE

[∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα

dQ+
t (θ)

∣∣∣∣Ft−1, At

]]
= E

[
log

∫
Θ

E
[
exp

(
−ηα

(
(Yt − ⟨θ,At⟩)2

2
− (Yt − ⟨θ0, At⟩)2

2

))∣∣∣∣Ft−1, At

]
dQ+

t (θ)

]
.

Now, we fix some θ ∈ Θ and to simplify the notation, we let r0 = ⟨θ0, At⟩ and r = ⟨θ,At⟩.
Using some elementary manipulations and the conditional sub-Gaussian tail behaviour of ϵt and
Yt = r0 + ϵt which implies that for any (Ft−1, At)-measurable ζt, E [exp (Ytζt)|Ft−1, At] =

exp(r0ζt)E [exp (ϵtζt)|Ft−1, At] ≤ exp(r0ζt) exp
(

ζ2
t

2

)
, we have

E
[
exp

(
−ηα

(
(Yt − r)2

2
− (Yt − r0)

2

2

))∣∣∣∣Ft−1, At

]
= E

[
exp

(
−ηα

2
(2Yt − r − r0)(r0 − r)

)∣∣∣Ft−1, At

]
= exp

(
ηα
r20 − r2

2

)
E [exp (ηαYt(r − r0))|Ft−1, At]

≤ exp

(
ηα
r20 − r2

2

)
· exp (ηαr0(r − r0)) exp

(
η2α2

2
(r − r0)

2)

)
= exp

(
−(r − r0)

2 · ηα
2

(1− ηα)
)
.

Further, defining γ = ηα
2 (1− ηα), we have

E
[
exp

(
−ηα

(
(Yt − r)2

2
− (Yt − r0)

2

2

))∣∣∣∣Ft−1, At

]
≤ exp(−γ(r − r0)

2)

≤ 1− γ(r − r0)
2 +

γ2

2
(r − r0)

4

≤ 1− γ(r − r0)
2 + 2γ2(r − r0)

2

≤ 1− γ(1− 2γ)(r − r0)
2.

Here, we used the elementary inequality exp(x) ≤ 1+x+ x2

2 for x ≤ 0 and then used |r− r0| ≤ 2.
Finally, using that log x ≤ x− 1 for any x > 0, and taking the integral over Θ, we get that

E
[
log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα

dQ+
t (θ)

]
≤ −γ(1− 2γ)E

[∑
a∈A

πt(A)

∫
Θ

(⟨θ − θ0, a⟩)2dQ+
t (θ)

]
= −2γ(1− 2γ)E [IGt(πt)] .

Rearranging and combining the result with Proposition 1 yields the claim of the lemma.
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We now turn our focus to the estimation error loss and relate it to the surrogate regret through the
following lemma, whose proof is a straightforward application of Lemma 23.
Lemma 12. For any t ≥ 1, β > 1, if βλt−1 ≤ 1, we have

E
[

1

βλt−1
log

∫
Θ

exp(βλt−1∆(At, θ)) dQ
+
t (θ)

]
≤ E

[
2∆̂t(πt)

]
. (21)

B.1.4 Separation of the two losses: proof of Lemma 5
We make use of the fact that the Fenchel dual of Φ can be explicitly written as Φ∗(L) =
log
∫
Θ
exp(L(θ)) dQ+

1 (θ) . As a result, we have

E

[
T∑

t=1

Φ∗(−η(L(1)
t (·)− L

(1)
t (θ0))− λt−1L

(2)
t (·))

λt−1
−

Φ∗(−η(L(1)
t−1(·)− L

(1)
t−1(θ0))− λt−1L

(2)
t−1(·))

λt−1

]

= E

 T∑
t=1

1

λt−1
log

∫
Θ

(
p(Yt|θ,at)
p(Yt|θ0,At)

)η
exp (λt−1∆(At, θ)) exp

(
−ηL(1)

t−1(θ)− λt−1L
(2)
t−1(θ)

)
dQ+

1 (θ)∫
Θ
exp

(
−ηL(1)

t−1(θ)− λt−1L
(2)
t−1(θ)

)
dQ+

1 (θ)


= E

[
T∑

t=1

1

λt−1
log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)η

exp (λt−1∆(At, θ)) dQ
+
t (θ)

]

≤ E

[
T∑

t=1

1

αλt−1
log

∫
Θ

(
p(Yt|θ,At)

p(Yt|θ0, At)

)ηα

+
1

βλt−1
log

∫
Θ

exp (βλt−1∆(At, θ)) dQ
+
t (θ)

]
,

where the last equality is by definition of the optimistic posterior and the last inequality follows from
using Hölder’s inequality with the two real numbers α, β > 1 that satisfy 1

α + 1
β = 1. Combining

Lemma 11 and Lemma 12 with the choice α = β = 2, the fact that η = 1
4 and the last inequality

yields the claim of the lemma.

B.2 Choice of the prior and comparator distribution: proof of Lemma 3

In order to construct the prior Q+
1 and the comparator P for the regret analysis, we need to take

into account two criteria: that DKL
(
P
∥∥Q+

1

)
be controlled and that |⟨P,L⟩ − L(θ0)| be small. The

comparator will be a function of the unknown parameter θ0, and thus we denote it by Pθ0 .
As for the prior, it should take into account the sparsity level of the unknown θ0, but should have no
access to its support. We first design a distribution Π over the set of all subsets of [d] = {1, . . . , d},
which have cardinality at most s. We choose the distribution such that: a) the probability assigned to
each subset depends only on its cardinality; b) the probability assigned to the set of all subsets of size
k is proportional to 2−k, where 1 ≤ k ≤ s. In other words, we prefer smaller subsets and have no
preference over which indices in [d] are included. The distribution that satisfies these requirements is

Π(S) =
2−|S|(

d
|S|
)∑s

k=1 2
−k

. (22)

For S = ∅, we set Π(S) = 0. Doing so only complicates matters if the support of θ0 is empty (i.e.,
θ0 = 0). However, in this case, the reward function is 0 everywhere, which means any algorithm
would have 0 regret. We therefore continue under the assumption that θ0 ̸= 0. The most impor-
tant property of this distribution, which we will use later, is that for any subset S of cardinality s,
log(1/Π(S)) ≤ s log(2ed/s). For each subset S, we define QS to be the uniform distribution on
ΘS . The prior is defined to be

Q+
1 =

∑
S⊂[d]:|S|≤s

Π(S)QS .

As for the comparator distribution Pθ0 , we would ideally like to take a Dirac measure on θ0, but this
would make the KL divergence appearing in the bound blow up. Thus, we pick a comparator Pθ0
which dilutes its mass around θ0. For any θ̄ ∈ Θ, with support S̄, and any ϵ ∈ (0, 1), we define the
set (1−ϵ)θ̄+ϵΘS̄ = {(1−ϵ)θ̄+ϵθ′ : θ′ ∈ ΘS̄} ⊂ ΘS̄ . We choose Pθ0 to be the uniform distribution
on (1 − ϵ)θ0 + ϵΘS0

, where S0 is the support of θ0. We now bound Φ(Pθ0) = DKL
(
Pθ0

∥∥Q+
1

)
for

this choice of Pθ0 in the following lemma, from which the claim of Lemma 3 then directly follows.
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Lemma 13. For any θ̄ ∈ Θ, let S̄ denote its support, and let |S̄| = s. If, for ϵ ∈ (0, 1), Pθ̄ =
U((1− ϵ)θ̄ + ϵΘS̄) and Q+

1 =
∑

S⊂[d]:|S|=s Π(S)QS , then DKL
(
Pθ̄

∥∥Q+
1

)
≤ s log 2ed

ϵs .

Proof. We notice that (1− ϵ)θ̄ + ϵΘS̄ is an s-dimensional ℓ1-ball of radius ϵ, which is contained in
ΘS̄ . Therefore, on the support of Pθ̄, dPθ̄

dQS̄
is equal to the ratio of the volumes of a unit ℓ1-ball and

an ℓ1-ball of radius ϵ, which is (1/ϵ)s. Thus,

DKL
(
Pθ̄

∥∥Q+
1

)
=

∫
log

dPθ̄∑
S Π(S)dQS

dPθ̄ ≤
∫

log
dPθ̄

Π(S̄)dQS̄

dPθ̄ ≤ s log
1

ϵ
+ log

1

Π(S̄)
.

Using the definition of Π and the bound
(
d
s

)
≤ ( eds )

s on the binomial coefficient, we have

log
1

Π(S̄)
= log

(
d

s

)
+ s log(2) + log

s∑
k=1

2−k ≤ s log
2ed

s
.

Combining everything, we obtain

DKL
(
Pθ̄

∥∥Q+
1

)
≤ s log

1

ϵ
+ s log

2ed

s
= s log

2ed

ϵs
, (23)

as advertised.

C Proof of the history-dependent part of Theorem 1

Following the original analysis, we arrive again at (9).

T∑
t=1

∆(At, P ) ≤
Φ(P )

λT
+

Φ∗(−ηL(1)
T (·) + ηL

(1)
T (θT )− λTL

(2)
T (·))

λT
+

η

λT
(⟨P,L(1)

T ⟩ − L
(1)
T (θT )),

where P ∈ ∆(Θ) can be any comparator distribution. Lemma 3 is still valid and we can chose the
same prior as before. We can still choose a comparator distribution supported on an ϵ-ball around θ0.

However, because λt depends on the history, we can no longer upper bound E
[
|P ·L(1)

T −L
(1)
T (θ0)|

λT−1

]
by E

[
2Tϵ
λT

]
. Using Lemma 21, we still have that L(2)

T (·) is 2T -Lipschitz and E
[
L
(1)
T (·)

]
is 2T -

Lipschitz. Hence,

E

[
|P · L(1)

T − L
(1)
T (θ0)|

λT−1

]
≤ 2TϵC2,T , and

T∑
t=1

|∆(θ0, at)−∆(P, at)| ≤ 2Tϵ,

where we used C2,T , a deterministic upper bound on 1
λT−1

. Exactly the same telescoping of Φ∗ can
be done, however because the learning rate is history-dependent, the difference between the negative
log likelihood of θ0 and θt must be treated with more care. We have the following lemma

Lemma 14. Let C1,T be a deterministic upper bound on
(

1
λt+1

− 1
λt

)
that holds for all t < T , then

E

[
T∑

t=1

η

λt−1
(L

(1)
t (θt)− L

(1)
t (θ0) + L

(1)
t−1(θ0)− L

(1)
t−1(θt−1)) +

η

λT
(L

(1)
T (θ0)− L

(1)
T (θT ))

]

≤ E

η(15 + 3s log
2e2dT 2C2

1,T

s )

2λT−1

 . (24)

A complete proof of that result can be found in appendix E.2.1.
Finally, as was the case in the history independent version the telescoping sum can be handled by
looking at the explicit formula for Φ∗ and Lemma 5 still holds. Applying Lemma 5 and setting
ϵ = 1

TC2,T
yields the claim of the theorem.
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D Proof of Theorem 3

We turn our attention to data-dependent bounds (that will scale with the cumulative information
ratio rather than the time horizon). Combining the second part of Theorem 1 with Lemma 6 and the
choice λ = 64

3 λt−1, we have that for any non-increasing sequence of learning rates λt satisfying
λ0 ≤ 1

2 , the following holds

RT ≤ E

[
CT

λT−1
+min

(
T∑

t=1

32

3
λt−1IR

(2)
t (πt),

16

3
c∗3

√
3λt−1IR

(3)
t (πt)

)]
, (25)

where CT = 2+ s log
4e3d2T 3C2

1,TC2,T

s2 and C1,T , respectively C2,T are deterministic upper bounds
on 1

λt
− 1

λt−1
, respectively 1

λT−1
.

We let λ(2)t =
√

s

2d+
∑t

s=1 IR(2)
s (πs)

and λ(3)t =

(
s

3
√

6s√
Cmin

+
∑t

s=1

√
IR(3)

s (πs)

) 2
3

, and verify that λt =

max(λ
(2)
t , λ

(3)
t ) is decreasing and always smaller than 1

2 . We also verify that C1,T = C2,T =
√

dT
s

are valid upper bounds. As a result, we have the following upper bound

CT = 2 + s log
4e3d2T 3C2

1,TC2,T

s2
≤ 2 + s log 4e3T 4.5

(
d

s

)3.5

≤ 2 + 5s log(
edT

s
). (26)

We now focus on bounding the sum containing the information ratios. Applying Lemma 7, we
obtain that for all t ≥ 1, IR

(2)
t (πt) ≤ 2d and for any T ≥ 1

T∑
t=1

λ
(2)
t−1IR

(2)
t (π) =

√
s

T∑
t=1

IR
(2)
t (πt)√

2d+
∑t−1

s=1 IR
(2)
s (πs)

≤
√
s

T∑
t=1

IR
(2)
t (πt)√∑t

s=1 IR
(2)
s (πs)

≤ 2

√√√√s

T∑
t=1

IR
(2)
t (πt)

≤ 2

√√√√s

(
2d+

T−1∑
t=1

IR
(2)
t (πt)

)
,

where we applied Lemma 19 with the function f(x) = 1√
x

and ai = IR
(2)
i (πi) to get the second

inequality. This can be seen as a generalization of the usual
∑T

t=1
1√
t
≤ 2

√
T inequality. We

now define R(2)
T =

√
s
(
2d+

∑T−1
t=1 IR

(2)
t (πt)

)
, the data-dependent regret rate associated to the

2-surrogate-information ratio.
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We now turn our attention to the 3-information ratio. Applying Lemma 7 we obtain that for all
t ≥ 1, IR

(3)
t (πt) ≤ 54 s

Cmin
≤ 54 s2

Cmin
and for any T ≥ 1

T∑
t=1

√
λ
(3)
t−1IR

(3)
t (πt) = s

1
3

T∑
t=1

√
IR

(3)
t (πt)(

3
√
6s√

Cmin
+
∑t−1

s=1

√
IR

(3)
s (πs)

) 1
3

≤ s
1
3

T∑
t=1

√
IR

(3)
t (πt)(∑t

s=1

√
IR

(3)
s (πs)

) 1
3

≤ 3

2
s

1
3

(
T∑

t=1

√
IR

(3)
t (πt)

) 2
3

≤ 3

2
s

1
3

(
3
√
6s√

Cmin

+

T−1∑
t=1

√
IR

(3)
t (πt)

)
,

where we applied Lemma 19 with the function f(x) = 1

x
1
3

and ai =

√
IR

(3)
i (πi) to get the sec-

ond inequality. This can be seen as a generalization of the usual
∑T

t=1
1

t
1
3

≤ 3
2T

2
3 . We now

define R(3)
T = s

1
3

(
3
√
6s√

Cmin
+
∑T−1

t=1

√
IR

(3)
t (πt)

) 2
3

, the data-dependent regret rate associated to

the 3-surrogate-information ratio. We now consider the last time that the learning rates λ(3)t and
λ
(2)
t have been used. More specifically, we denote T2 = max{t ≤ T, λ

(2)
t−1 ≥ λ

(3)
t−1}, and

T3 = max{t ≤ T, λ
(3)
t−1 ≥ λ

(2)
t−1}. Coming back to the bound of Equation 25 and using the

definition λt = max(λ
(2)
t , λ

(3)
t )), the following bound holds

RT

≤ E

[
CT

λT−1
+

T∑
t=1

min

(
32

3
λt−1IR

(2)
t (πt),

16

3
c∗3

√
3λt−1IR

(3)
t (πt)

)]

≤ E

[
CT min

(
1

λ
(2)
T−1

,
1

λ
(3)
T−1

)
+

T∑
t=1

min

(
32

3
max(λ

(2)
t−1, λ

(3)
t−1)IR

(2)
t (πt),

16

3
c∗3

√
3max(λ

(2)
t−1, λ

(3)
t−1)IR

(3)
t (πt)

)]
.

We can now separate the sum obtained at the last line based on which learning rate was used at time
t.

T∑
t=1

min

(
32

3
max(λ

(2)
t−1, λ

(3)
t−1)IR

(2)
t (πt),

16

3
c∗3

√
3max(λ

(2)
t−1, λ

(3)
t−1)IR

(3)
t (πt)

)
≤

∑
λ
(2)
t−1≥λ

(3)
t−1

32

3
λ
(2)
t−1IR

(2)
t (πt) +

∑
λ
(3)
t−1≥λ

(2)
t−1

16

3
c∗3

√
3λ

(3)
t−1IR

(3)
t (πt)

≤
T2∑
t=1

32

3
λ
(2)
t−1IR

(2)
t (πt) +

T3∑
t=1

16

3
c∗3

√
3λ

(3)
t−1IR

(3)
t (πt).

We further bound
∑T2

t=1
32
3 λ

(2)
t−1IR

(2)
t (πt) ≤ 64

3 R
(2)
T2

and
∑T3

t=1
16
3 c

∗
3

√
3λ

(3)
t−1IR

(3)
t (πt) ≤ 16

3 R
(3)
T3

(Using the explicit value c∗3 = 2

3
3
2

).

The crucial observation is that which of λ(3)T or λ(2)T is bigger will determine whether R(2)
T or R(3)

T is
the term of leading order (up to some constants). More specifically, Let T be such that λ(2)T−1 ≥ λ

(3)
T−1
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which means that
√

s

2d+
∑T−1

t=1 IR(2)
t (πt)

≥

(
s

3
√

6s√
Cmin

+
∑T−1

t=1

√
IR(3)

t (πt)

) 2
3

. Rearranging, this implies

that
√
s
(
2d+

∑T−1
s=1 IR

(2)
t (πt)

)
≤ s

2
3

(
3
√
6s√

Cmin
+
∑T−1

t=1

√
IR

(3)
t (πt)

) 2
3

, which means thatR(2)
T ≤

R
(3)
T . Following the exact same steps, we also have that λ(3)T−1 ≥ λ

(2)
T−1 implies that R(3)

T ≤ R
(2)
T .

We apply this to the time T2 in which λ(2)T2−1 ≥ λ
(3)
T2−1 by definition. we have that R(2)

T2
≤ R

(3)
T2

and
putting this together with the previous bound, we have

RT ≤ E

[
CT

λ
(3)
T−1

+
64

3
R

(2)
T2

+
16

3
R

(3)
T3

]

≤ E
[
CT

s
R

(3)
T +

64

3
R

(2)
T2

+
16

3
R

(3)
T3

]
≤ E

[
CT

s
R

(3)
T +

64

3
R

(3)
T2

+
16

3
R

(3)
T3

]
≤ E

[
CT

s
R

(3)
T +

64

3
R

(3)
T +

16

3
R

(3)
T

]
≤ E

[(
CT

s
+

80

3

)
R

(3)
T

]
,

where we use the fact that T 7→ R
(2)
T and T 7→ R

(3)
T are non-decreasing and T2 ≤ T, T3 ≤ T

Similarly by definition of T3, we have that λ(3)T3−1 ≥ λ
(2)
T3−1 and we can conclude that R(3)

T3
≤ R

(2)
T3

.
Putting this together, with the previous bound, we have

RT ≤ E

[
CT

λ
(2)
T−1

+
64

3
R

(2)
T2

+
16

3
R

(3)
T3

]

≤ E
[
CT

s
R

(2)
T +

64

3
R

(2)
T2

+
16

3
R

(3)
T3

]
≤ E

[
CT

s
R

(2)
T +

64

3
R

(2)
T2

+
16

3
R

(2)
T3

]
≤ E

[
CT

s
R

(2)
T +

64

3
R

(2)
T +

16

3
R

(2)
T

]
≤ E

[
(
CT

s
+

80

3
)R

(2)
T

]
,

where we use the fact that T → R
(2)
T and T → R

(3)
T are non-decreasing and T2 ≤ T, T3 ≤ T .

Putting both of those bounds together with Equation 26 yields the claim of the Theorem.

E Maximum likelihood estimation

The focus of this section is to bound the difference between the log-likelihoods associated with the
true parameter and the maximum likelihood estimator (MLE). We start by establishing an upper
bound that holds in expectation which suffices to handle history-independent learning rates. Then,
we move on to high-probability bounds that will allow us to deal with data-dependent learning rates.

E.1 Bound in expectation

We start with the case in which the maximum likelihood estimator is computed on a finite subset of
the parameter space Θ.
Lemma 15. Let t ≥ 1, and Θ′ be a finite subset of Θ, we define the MLE over Θ′ as

θMLE,t(Θ
′) = arg min

θ∈Θ′
L
(1)
t (θ).
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Then,

E
[
L
(1)
t (θ0)− L

(1)
t (θMLE,t(Θ

′))
]
≤ log |Θ′| (27)

Proof. By the concavity of the logarithm and Jensen’s inequality, we have

E
[
L
(1)
t (θ0)− L

(1)
t (θMLE,t(Θ

′))
]
≤ logE

[
t∏

s=1

p(Ys|θMLE,t(Θ
′), As)

p(Ys|θ0, As)

]

= logE

[
max
θ∈Θ′

t∏
s=1

p(Ys|θ,As)

p(Ys|θ0, As)

]
≤ logE

[∑
θ∈Θ′

t∏
s=1

p(Ys|θ,As)

p(Ys|θ0, As)

]

= log
∑
θ∈Θ′

E

[
t∏

s=1

p(Ys|θ,As)

p(Ys|θ0, As)

]

By Lemma 25, we have that exp
(
L
(1)
t (θ0)− L

(1)
t (θ)

)
=
∏t

s=1
p(Ys|θ,As)
p(Ys|θ0,As)

is a non-negative su-
permartingale with respect to the filtration F ′

t = σ(Ft−1, At). That implies that each term in the
sum is upper bounded by 1. Hence,

E
[
L
(1)
t (θ0)− L

(1)
t (θMLE,t(Θ

′))
]
≤ log

∑
θ∈Θ′

1 = log |Θ′|,

which proves the claim.

To extend the previous bound to the full parameter space, we use a covering argument. A subset
Θ′ ⊂ Θ is said to be a valid ρ-covering of Θ with respect to the ℓ1 norm if for every θ ∈ Θ, there
exists a θ′ ∈ Θ′ such that ∥θ − θ′∥1 ≤ ρ. We denote by N (Θ, ∥ · ∥1, ρ) the smallest possible
cardinality of a valid ρ covering. We have the following bound on this quantity.

Lemma 16. For every ρ > 0,

logN (Θ, ∥ · ∥1, ρ) ≤ log

(
d

s

)
(1 + 2

ρ )
s ≤ s log

ed(1 + 2/ρ)

s
.

Proof. For each subset S ⊂ [d] of cardinality |S| = s, there is a surjective isometric embedding
from (ΘS , ∥ · ∥1) to (Bs

1(1), ∥ · ∥1). In particular, to embed θ ∈ ΘS into Bs
1(1), one can simply

remove all the components of θ corresponding to indices not in S. Therefore, for every ρ > 0,
N (ΘS , ∥ · ∥1, ρ) ≤ N (Bs

1(1), ∥ · ∥1, ρ). Moreover, via a standard argument, we have N (Bs
1(1), ∥ ·

∥1, ρ) ≤ (1 + 2
ρ )

s (see, e.g., Lemma 5.7 in Wainwright, 2019). Now, let ΘS,ρ denote any minimal
ρ-covering of ΘS and notice that for an arbitrary θ ∈ Θ with support S, there exists a subset S̃
such that S ⊆ S̃ and |S̃| = s. Therefore, there exists θ̃ ∈ ΘS̃,ρ such that ∥θ − θ̃∥1 ≤ ρ. Hence,
∪S⊂[d]:|S|=sΘS,ρ forms a valid ρ-covering of Θ and its cardinality is bounded by

N (Θ, ∥ · ∥1, ρ) ≤
∣∣∪S⊂[d]:|S|=sΘS,ρ

∣∣ ≤ ∑
S⊂[d]:|S|=s

(
1 + 2

ρ

)s
=

(
d

s

)(
1 + 2

ρ

)s
.

and we conclude by the elementary inequality
(
d
s

)
≤
(
de
s

)s
.

E.1.1 Proof of Lemma 10

We bound the difference between the log-likelihood of the true parameter and that of the maximum
likelihood estimator on the full parameter space. To this end, let ρ > 0 and Θ′ be a minimal valid
ρ-cover of Θ as is defined in Lemma 16, and θ′ ∈ Θ′ be such that ∥θ′ − θt∥ ≤ ρ, which exists by
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definition of a ρ-covering. Then,

E
[
L
(1)
t (θ0)− L

(1)
t (θt)

]
=E

[
L
(1)
t (θ0)− L

(1)
t (θMLE,t(Θ

′))
]

+ E
[
L
(1)
t (θMLE,t(Θ

′))− L
(1)
t (θ′)

]
+ E

[
L
(1)
t (θ′)− L

(1)
t (θt)

]
≤ log(N (Θ, ∥·∥1 , ρ)) + 0 + 2ρt,

where the first term is bounded by Lemma 15, the second term is non-positive by definition of
the maximum likelihood estimator because θ′ ∈ Θ′ and the third term is bounded because the
mapping θ 7→ E

[
L
(1)
t (θ)

]
is 2t-Lipschitz with respect to the 1-norm by Lemma 21. Finally applying

Lemma 16 and setting ρ = 2
t yields the desired bound.

E.2 High-probability bounds

We begin with the case where the maximum likelihood estimator is computed over a finite subset of
the parameter space Θ and provide a corresponding high-probability bound.

Lemma 17. Let Θ′ be a finite subset of Θ, we define θMLE,t(Θ
′) = arg minθ∈Θ′ L

(1)
t (θ). Then

P
[
∃t ≥ 1, L

(1)
t (θ0)− L

(1)
t (θMLE,t(Θ

′)) ≥ log
|Θ′|
δ

]
≤ δ. (28)

Proof. Fix θ ∈ Θ′. By Lemma 25, we have that exp
(
L
(1)
t (θ0)− L

(1)
t (θ)

)
=
∏t

s=1
p(Ys|θ,As)
p(Ys|θ0,As)

is a non-negative supermartingale with respect to the filtration (F ′
t)t, where F ′

t = σ(Ft, At+1),
allowing us to invoke Ville’s inequality to get the following guarantee:

P
[
∃t ≥ 1, exp(L

(1)
t (θ0)− L

(1)
t (θ)) ≥ 1

δ

]
≤ δ.

Taking the logarithm and a union bound on Θ′ yields the desired result.

We now provide a bound on the expected product of a bounded random variable with the differenece
in log-likelihood between the true parameter and the maximum likelihood estimator.

Lemma 18. Let B ∈ R and X be a random variable satisfying 0 ≤ X ≤ B almost surely. Then
for any t ≥ 1,

E
[
X(L

(1)
t (θ0)− L

(1)
t (θt))

]
≤ inf

δ,ρ>0

{
E

[
Xs log

ed(1 + 2
ρ )

sδ
1
s

]
+

5

2
Bρt+Bδs log

e1+
1
s d(1 + 2

ρ )

sδ
1
s

}

≤ 5 + s log
2e2dT 2B2

s
E
[
X +

1

T

]
. (29)

Proof. Let δ, ρ > 0 and Θ′ be a minimal valid ρ-cover of Θ as defined in Lemma 16, N = |Θ′|,
let θ′ = θMLE,t(Θ

′) and let θ̄ ∈ Θ′ be such that
∥∥θ̄ − θt

∥∥ ≤ ρ, which exists by definition of a valid
ρ-cover. We have the following decomposition:

E
[
X(L

(1)
t (θ0)− L

(1)
t (θt))

]
≤E

[
X(L

(1)
t (θ0)− L

(1)
t (θ′))1{L(1)

t (θ0)−L
(1)
t (θ′)≤log N

δ }

]
+BE

[
(L

(1)
t (θ0)− L

(1)
t (θ′))1{L(1)

t (θ0)−L
(1)
t (θ′)>log N

δ }

]
+BE

[
(L

(1)
t (θ̄)− L

(1)
t (θt))

]
+BE

[
(L

(1)
t (θ′)− L

(1)
t (θ̄))

]
.

The first term is upper bounded by E
[
X log N

δ

]
, the third term is upper bounded by 5

2Bρt because
∥θ − θ′∥1 is uniformely bounded by ρ and by by Lemma 21. The fourth term is non-positive because
θ′ minimizes the negative log likelihood on Θ′. Finally, we turn our attention to the second term.
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To simplify the computations, we let Y = L
(1)
t (θ0) − L

(1)
t (θ′), and compute E

[
Y 1{Y >log N

δ }

]
.

Conditioning on whether ϵ is larger or smaller than log N
δ yields the following identity

P
[
Y 1{Y≥log N

δ } ≥ ϵ
]
=

{
P [Y ≥ ϵ] if ϵ ≥ log N

δ ,

P
[
Y ≥ log N

δ

]
otherwise.

We can now upper bound the expectation as follows

E
[
Y 1{Y≥log N

δ }

]
=

∫ ∞

0

P
[
Y 1{Y≥log N

δ
} ≥ ϵ

]
dϵ

= log
N

δ
P
[
Y ≥ log

N

δ

]
+

∫ ∞

log N
δ

P [Y ≥ ϵ] dϵ

= log
N

δ
P
[
Y ≥ log

N

δ

]
+

∫ δ

0

1

δ′
P
[
Y ≥ log

N

δ′

]
dδ′

≤ δ log
N

δ
+ δ,

where we used the change of variable ϵ = log N
δ′ and used P

[
Y ≥ log N

δ

]
≤ δ by Lemma 17.

Finally, putting everything together and using N ≤ N (Θ, ∥·∥1 , ρ) ≤
(

ed(1+ 2
ρ )

s

)s
, by Lemma 16,

we get

E
[
X(L

(1)
t (θ0)− L

(1)
t (θt))

]
≤ E

[
Xs log

ed(1 + 2
ρ )

sδ
1
s

]
+

5

2
Bρt+Bδs log

e1+
1
s d(1 + 2

ρ )

sδ
1
s

.

To balance the trade-off between the approximation error and the covering complexity, we choose
ρ = 2

BT , and δ = 1
BT which yields the desired form of the logarithmic factors. Substituting these

into the bound completes the proof.

E.2.1 Proof of Lemma 14
As was noted in the analysis, since λT is not used by the algorithm, we can replace λT by λT−1 in
our computations. We have

E

[
T∑

t=1

η

λt−1
(L

(1)
t (θt)− L

(1)
t (θ0) + L

(1)
t−1(θ0)− L

(1)
t−1(θt−1)) +

η

λT
(L

(1)
T (θ0)− L

(1)
T (θT ))

]

= E

[
T∑

t=1

η

λt−1
(L

(1)
t (θt)− L

(1)
t (θ0))−

T∑
t=1

η

λt
(L

(1)
t (θt)− L

(1)
t (θ0))

]

= η ·
T∑

t=1

E
[
(L

(1)
t (θ0)− L

(1)
t (θt))

(
1

λt
− 1

λt−1

)]
.

Let C1,T be a deterministic upper bound on
(

1
λt+1

− 1
λt

)
. Applying Lemma 18 to X =(

1
λt+1

− 1
λt

)
and telescoping, we get

η ·
T∑

t=1

E
[
(L

(1)
t (θ0)− L

(1)
t (θt))

(
1

λt
− 1

λt−1

)]

. ≤ η

(
5 + s log

2e2dt2C2
1,T

s

)
T∑

t=1

E
[(

1

λt
− 1

λt−1

)
+

1

T

]

≤ η

(
5 + s log

2e2dt2C2
1,T

s

)
E
[(

1

λT
+ 1

)]

≤ E

η(15 + 3s log
2e2dt2C2

1,T

s )

2λT−1

 ,
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where in the last step, we used 1 ≤ 1
2λT

which implies 1
λT

+ 1 ≤ 3
2λT

. This finishes the proof.

F Bounding the surrogate information ratio

F.1 Proof of Lemma 6

The surrogate regret of a policy is directly related to its 2- and 3-information ratio by definition

∆̂t(π) =

√
IGt(π)IR

(2)
t (π) =

(
IGt(π)IR

(3)
t (π)

) 1
3

.

By the AM-GM inequality, we have that for any λ > 0, the surrogate regret is controlled as follows

∆̂t(π) ≤
IGt(π)

λ
+
λ

4
IR

(2)
t (π).

Similarly, by Lemma 27 which generalizes the AM-GM inequality, we can obtain the following
regret bound

∆̂t(π) ≤
IGt(π)

λ
+ c∗3

√
λIR

(3)
t (π),

where c∗3 < 2 is an absolute constant defined in Lemma 27. This concludes the proof.

F.2 Proof of Lemma 1

The proof of Lemma 1 is essentially the same as the proof of Lemma 5.6 in Hao et al. [2021], but we
state it here for completeness. Throughout this proof, we use ⟨p, f⟩ =

∑
a∈A p(a)f(a) to denote

the inner product between a signed measure p on A and a function f : A → R. Using this notation,
we can, for example, write the generalized surrogate information ratio as IR

(γ)
t (π) = ⟨π, IR(γ)

t ⟩.

We define π(γ)
t ∈ arg minπ∈∆(A) IR

(γ)
t (π) to be any minimizer of the generalized surrogate infor-

mation ratio with parameter γ ≥ 2. First, we observe that

∇πIR
(2)
t (π) =

2⟨π, ∆̂t⟩∆̂t

⟨π, IGt⟩
− (⟨π, ∆̂t⟩)2IGt

(⟨π, IGt⟩)2
.

Therefore, from the first-order optimality condition for convex constrained minimization (and the
fact that IR

(2)
t is convex on ∆(A)), we have

∀π ∈ ∆(A), 0 ≤ ⟨π − π
(SOIDS)
t ,∇πIR

(2)
t (π

(SOIDS)
t )⟩ .

In particular,

0 ≤ 2⟨π(SOIDS)
t , ∆̂t⟩⟨π(γ)

t − π(SOIDS), ∆̂t⟩
⟨π(SOIDS)

t , IGt⟩
− (⟨π(SOIDS)

t , ∆̂t⟩)2⟨π(γ)
t − π(SOIDS), IGt⟩

(⟨π(SOIDS)
t , IGt⟩)2

.

This inequality is equivalent to

2⟨π(γ)
t , ∆̂t⟩ ≥ ⟨π(SOIDS)

t , ∆̂t⟩

(
1 +

⟨π(γ)
t , IGt⟩

⟨π(SOIDS)
t , IGt⟩

)
≥ ⟨π(SOIDS)

t , ∆̂t⟩ .

From this inequality, we obtain

(⟨π(SOIDS)
t , ∆̂t⟩)γ

⟨π(SOIDS)
t , IGt⟩

=
(⟨π(SOIDS)

t , ∆̂t⟩)2(⟨π(SOIDS)
t , ∆̂t⟩)γ−2

⟨π(SOIDS)
t , IGt⟩

≤ (⟨π(γ)
t , ∆̂t⟩)2(⟨π(SOIDS)

t , ∆̂t⟩)γ−2

⟨π(γ)
t , IGt⟩

≤ 2γ−2 (⟨π
(γ)
t , ∆̂t⟩)γ

⟨π(γ)
t , IGt⟩

= 2γ−2 min
π∈∆(A)

IR
(γ)
t (π) ,

thus proving the claim.
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F.3 Proof of Lemma 7

This section is focused on bounding the information ratios of the sparse optimistic information
directed sampling policy. As is widely done in the information directed sampling literature, we will
introduce a “forerunner” algorithm with controlled surrogate information ratio. By Lemma 1, the
SOIDS policy will then automatically inherit the bound of the forerunner.
As one of our forerunners, we will make use of the Feel-Good Thompson Sampling (FGTS) algo-
rithm introduced by Zhang [2022]. Letting θ̃t ∼ Q+

t , the FGTS policy is defined as

π
(FGTS)
t (a) = Pt

[
a∗(θ̃t) = a

]
. (30)

Which can be seen as the policy obtained by sampling a parameter θ̃t ∼ Q+
t and then picking the

optimal action under this parameter. Compared to the usual Thompson Sampling policy, this boils
down to replacing the Bayesian posterior by the optimistic posterior. Whenever the optimal action
for θ is non-unique, we define a∗(θ) to be any optimal action with minimal 0-norm. If there are
multiple optimal actions with minimal 0-norm, ties can be broken arbitrarily.

F.3.1 Bounding the two information ratio

We will now prove the first part of Lemma 7, by showing that the information ratio of the FGTS
policy is bounded by the dimension. The proof is exactly the same as in the Bayesian setting as is
done in Proposition 5 of Russo and Roy [2016], Lemma 7 of Neu et al. [2022] or in Lemma 5.7 of
Hao et al. [2021], except the Bayesian posterior is replaced with the optimistic posterior. We provide
the proof here for completeness.
Since we defined the surrogate information gain in terms of the model θ, as opposed to the optimal
action a∗(θ), we follow the proof of Lemma 7 in Neu et al. [2022]. For brevity, we let αa =

π
(FGTS)
t (a) = Pt

[
a∗(θ̃t) = a

]
. We define the |A| × |A| matrix M by

Ma,a′ =
√
αaαa′(Et[r(a, θ̃t)|a∗(θ̃t) = a′]− r(a, θ̄(Q+

t ))) .

Next, we relate the surrogate information gain and the surrogate regret to the Frobenius norm and
the trace of M . First, we can lower bound the surrogate information gain of FGTS as

IGt(π
(FGTS)
t ) =

1

2

∑
a∈A

αa

∫
Θ

(r(a, θ̄(Q+
t ))− r(a, θ))2dQ+

t (θ)

=
1

2

∑
a∈A

αa

∫
Θ

∑
a′∈A

1{a∗(θ)=a′}(r(a, θ̄(Q
+
t ))− r(a, θ))2dQ+

t (θ)

=
1

2

∑
a∈A

∑
a′∈A

αa

∫
Θ

1{a∗(θ)=a′}dQ
+
t (θ)Et[(r(a, θ̄(Q

+
t ))− r(a, θ̃t)|a∗(θ̃t) = a′]

≥ 1

2

∑
a∈A

∑
a′∈A

αaαa′

(
r(a, θ̄(Q+

t ))− Et[r(a, θ̃t)|a∗(θ̃t) = a′]
)2

=
1

2

∑
a∈A

∑
a′∈A

M2
a,a′ =

1

2
∥M∥2F .

Next, we can re-write the surrogate regret of FGTS as

∆̂t(π
(FGTS)
t ) =

∫
Θ

r(a∗(θ), θ)dQ+
t (θ)−

∑
a∈A

αa

∫
Θ

r(a, θ)dQ+
t (31)

=

∫
Θ

∑
a∈A

1{a∗(θ)=a}r(a
∗(θ), θ)dQ+

t (θ)−
∑
a∈A

αar(a, θ̄(Q
+
t ))

=
∑
a∈A

αaEt[r(a, θ̃t)|a∗(θ̃t) = a]−
∑
a∈A

αar(a, θ̄(Q
+
t ))

= tr(M) .

34



Using Fact 10 from Russo and Roy [2016], we bound IR
(2)
t (π

(FGTS)
t ) as

IR
(2)
t (π

(FGTS)
t ) =

(∆̂t(π
(FGTS)
t ))2

IGt(π
(FGTS)
t )

≤ 2(tr(M))2

∥M∥2F
≤ 2 · rank(M) .

All the remains is to show that M has rank at most d. Enumerate the actions as A = {a1, . . . , a|A|},
and let µi = Et[θ̃t|a∗(θ̃t) = ai]. By linearity of expectation (and of the reward function), we can
write

Mi,j =
√
αiαj⟨µi − θ̄(Q+

t ), aj⟩ .

Therefore, M can be factorized as

M =


√
α1(µ1 − θ̄(Q+

t ))
⊤

...√
α|A|(µ|A| − θ̄(Q+

t ))
⊤

 [√α1a1 · · · √
α|A|a|A|

]
.

Since M is the product of a K × d matrix and a d×K matrix, it must have rank at most min(K, d).

F.3.2 Bounding the three information ratio

To bound the 3 information ratio we follow Hao et al. [2021] and we introduce the exploratory policy

µ = arg max
π∈∆(A)

σmin

(∑
a∈A

π(a)aa⊤

)
. (32)

We define the mixture policy π(mix)
t = (1−γ)π(FGTS)

t +γµ where γ ≥ 0 will be determined later.
First, we lower bound the surrogate information gain of the mixture policy in the same way that we
lower bounded the surrogate information gain of the FGTS policy previously. This time, we obtain
the lower bound

IGt(π
(mix)
t ) ≥ 1

2

∑
a∈A

π
(mix)
t (a)

∑
a′∈A

Pt(a
∗(θ̃t) = a′)(r(a, θ̄(Q+

t ))− Et[r(a, θ̃t)|a∗(θ̃t) = a′])2

=
1

2

∑
a∈A

π
(mix)
t (a)

∑
a′∈A

Pt(a
∗(θ̃t) = a′)⟨µa′ − θ̄(Q+

t ), a⟩2 ,

where µa′ = Et[θ̃t|a∗(θ̃t) = a′]. From the inequality π(mix)
t (a) ≥ γµ(a), and the definition of

Cmin, we have

IGt(π
(mix)
t ) ≥ γ

2

∑
a′∈A

Pt(a
∗(θ̃t) = a′)

∑
a∈A

µ(a)(µa′ − θ̄(Q+
t ))

⊤aa⊤(µa′ − θ̄(Q+
t ))

≥ γ

2

∑
a′∈A

Pt(a
∗(θ̃t) = a′)Cmin∥µa′ − θ̄(Q+

t )∥22 .

Using the expression for the surrogate regret of FGTS in (31), we obtain

∆̂t(π
(FGTS)
t ) =

∑
a∈A

Pt(a
∗(θ̃t) = a)(Et[⟨θ̃t), a⟩|a∗(θ̃t) = a]− ⟨θ̄(Q+

t ), a⟩)

≤
√∑

a∈A
Pt(a∗(θ̃t) = a)(Et[⟨θ̃t, a⟩|a∗(θ̃t) = a]− ⟨θ̄(Q+

t ), a⟩)2 ,

where in the last we used the Cathy-Schwarz inequality. Due to the sparse optimal action property,
all actions for which Pt(a

∗(θ̃t) = a) > 0 have at most s non-zero elements. Therefore,∑
a∈A

Pt(a
∗(θ̃t) = a)(Et[⟨θ̃t, a⟩|a∗(θ̃t) = a]−⟨θ̄(Q+

t ), a⟩)2 ≤
∑
a∈A

Pt(a
∗(θ̃t) = a)s∥µa−θ̄(Q+

t )∥22 .
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This, combined with the lower bound on IGt(π
(mix)
t ) means that

∆̂t(π
(FGTS)
t ) ≤

√∑
a∈A

Pt(a∗(θ̃t) = a)s∥µa − θ̄(Q+
t )∥22

=

√
2s

γCmin

γ

2

∑
a∈A

Pt(a∗(θ̃t) = a)Cmin∥µa − θ̄(Q+
t )∥22

≤
√

2s

γCmin
IGt(π

(mix)
t ) .

Choosing γ = 1, this tells us that

(∆̂t(π
(FGTS)
t ))2 ≤ 2s

Cmin
IGt(µ) .

We bound the information ratio in three cases. First, suppose that ∆̂t(µ) ≤ ∆̂t(π
(FGTS)
t ). In this

case,

IR
(3)
t (µ) =

∆̂t(µ)(∆̂t(µ))
2

IGt(µ)
≤ 2(∆̂t(π

(FGTS)
t ))2

IGt(µ)
≤ 4s

Cmin
.

Next, we consider the case where ∆̂t(µ) > ∆̂t(π
(FGTS)
t ). For any γ ∈ (0, 1],

IR
(3)
t (π

(mix)
t ) =

((1− γ)∆̂t(π
(FGTS)
t ) + γ∆̂t(µ))

3

(1− γ)IGt(π
(FGTS)
t ) + γIGt(µ)

≤ ((1− γ)∆̂t(π
(FGTS)
t ) + γ∆̂t(µ))

3

γIGt(µ)
.

We define f(γ) = ((1 − γ)∆̂t(π
(FGTS)
t ) + γ∆̂t(µ))

3/(γIGt(µ)) to be the RHS of the previous
equation. One can verify that the derivative of f(γ) is

f ′(γ) =
((1− γ)∆̂t(π

(FGTS)
t ) + γ∆̂t(µ))

2

γ2IGt(µ)

[
2γ(∆̂t(µ)− ∆̂t(π

(FGTS)
t ))− ∆̂t(π

(FGTS)
t )

]
,

and that f(γ) is minimised w.r.t. γ > 0 at γ̂, where γ̂ is the positive solution of f ′(γ̂) = 0, which is

γ̂ =
∆̂t(π

(FGTS)
t )

2(∆̂t(µ)− ∆̂t(π
(FGTS)
t ))

.

That γ̂ is always positive follows from the fact that ∆̂t(µ) > ∆̂t(π
(FGTS)
t ). If γ̂ ≤ 1, then we can

take the forerunner to be the mixture policy with γ = γ̂. In this case,

IR
(3)
t (π

(mix)
t ) =

( 32 )
32(∆̂t(µ)− ∆̂t(π

(FGTS)
t ))∆̂t(π

(FGTS)
t )2

IGt(µ)

≤
( 32 )

38s

Cmin
=

27s

Cmin
.

Otherwise, if γ̂ > 1, then

∆̂t(µ) ≤
3

2
∆̂t(π

(FGTS)
t ) .

In this case, we can take the forerunner to be µ. The surrogate 3-information ratio can then be upper
bounded as

IR
(3)
t (µ) =

∆̂t(µ)(∆̂t(µ))
2

IGt(µ)
≤

2( 32 )
2(∆̂t(π

(FGTS)
t ))2

IGt(µ)
≤

( 32 )
24s

Cmin
=

9s

Cmin
.

Therefore, one can always find a value of γ ∈ (0, 1] such that

IR
(3)
t (π

(mix)
t ) ≤ 27s

Cmin
.
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G Choosing the learning rates

This section is focused on the choice of the learning rates required to obtain the bound of Theorem 2.

G.1 Technical tools

We start by a collection of technical results to help with choosing a time-dependent learning rate.

Lemma 19. Let ai ≥ 0 and f : [0,∞) → [0,∞) be a nonincreasing function. Then

T∑
t=1

atf

(
t∑

i=0

ai

)
≤
∫ ∑T

t=0 at

a0

f(x) dx. (33)

The proof follows from elementary manipulations comparing sums and integrals. The result is taken
from Lemma 4.13 of Orabona [2019], where a complete proof is also supplied. The following
lemma ensures that the learning rates are non-increasing.

Lemma 20. Let C1 > e,C2 > 0 and define λt =
log(C1t)

C2t
, then λt is a non-decreasing sequence.

Proof. Let t > 0, we have

log(C1(t+ 1))

log(C1t)
=

log
(
C1t

(
t+1
t

))
log(C1t)

=
log(C1t) + log

(
t+1
t

)
log(C1t)

≤ 1 +
1

t log(C1t)
≤ 1 +

1

t
,

where the first inequality uses log(1 + x) ≤ x for any x > −1 and the second inequality uses
log(C1t) ≥ log(C1) ≥ 1 because we assumed C1 ≥ e. Since C2(t+1)

C2t
= 1 + 1

t , we can conclude
that the sequence λt is non-increasing.

G.2 Data-rich regime: Proof of Lemma 8

We start by focusing on the data rich regime, and we bound the following part of the regret bound
given in Equation (13):

CT

λT−1
+

32

3

T∑
t=1

λt−1IR
(2)
t (πt).

Here, CT = 5 + 2s log edT
s . To proceed, we let λt = α

√
Ct+1

d(t+1) , where α > 0 is a constant that we

will optimize later. Because t 7→ Ct is increasing, we get that λt−1 ≤ α
√

CT

dt . By Lemma 7, we

know that for all t ≥ 1, IR
(2)
t (πt) ≤ 2d, hence

CT

λT−1
+

32

3

T∑
t=1

λt−1IR
(2)
t (πt) ≤

1

α

√
CT dT +

64

3
α
√
CT

T∑
t=1

d√
dt

≤ 1

α

√
CT dT +

128

3
α
√
CT dT

≤
(
1

α
+

128

3
α

)√
CT dT

≤ 16

√
2

3
CT dT ,

where the second line uses the standard inequality
∑T

t=1
1√
t
≤ 2

√
T , and the last line is obtained by

optimizing the expression
(
1
α + 128

3 α
)

with the optimal choice α =
√

3
128 which yields the value

16
√

2
3 . This concludes the proof of the claim.
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G.3 Data-poor regime: proof of Lemma 8

We now focus on the data-poor regime and specifically on bounding the following part of the bound
given in Equation (13):

CT

λT−1
+

16

3
c∗3

T∑
t=1

√
3λt−1IR

(3)
t (πt).

Here, CT = 5 + 2s log edT
s . Now, we let λt = α

(
Ct+1

√
Cmin

(t+1)
√
s

) 2
3

, where α > 0 is a constant that

we will optimize later. Because t → Ct is increasing, we get that λt−1 ≤ α
(

CT

√
Cmin

ts

) 2
3

. By

Lemma 7, the 3-surrogate-information ratio is bounded for all t ≥ 1 as IR
(3)
t (πt) ≤ 54s

Cmin
. Hence,

the following holds:

CT

λT−1
+

16

3
c∗3

T∑
t=1

√
3λt−1IR

(3)
t (πt) ≤

1

α
(CT )

1
3

(
T
√
s√

Cmin

) 2
3

+ 48c∗3
√
2α(CT )

1
3

( √
s√

Cmin

) 2
3

T∑
t=1

1

t
1
3

≤ 1

α
(CT )

1
3

(
T
√
s√

Cmin

) 2
3

+ 72c∗3
√
2α(CT )

1
3

(
T
√
s√

Cmin

) 2
3

≤
(
1

α
+ 72c∗3

√
2α

)
(CT )

1
3

(
T
√
s√

Cmin

) 2
3

≤ 12 · 6 1
3 (CT )

1
3

(
T
√
s√

Cmin

) 2
3

.

Here, we have applied Lemma 19 with the function f(x) = x
1
3 and ai = 1 to bound

∑T
t=1 t

−1/3 ≤
3
2T

2
3 in the second line, the last line comes from the choice α = 1

4·6
1
3

which optimizes the constant(
1
α + 72c∗3

√
2α
)

(as per Lemma 27). This proves the statement.

G.4 Joint learning rates, end of the proof of Theorem 2

In the section below, we present the technical derivation related to choosing the choice of learning

rate λt = min( 12 ,max(λ
(2)
t , λ

(3)
t )), where λ(2)t =

√
3Ct+1

128d(t+1) and λ(3)t = 1

4·6
1
3

(
Ct+1

√
Cmin

(t+1)
√
s

) 2
3

,

with Ct = 5+ 2s log edt
s . This choice interpolates between the data-rich and data-poor regimes. As

a first step, we start by confirming via Lemma 20 that both λ(2)t and λ(3)t are non-increasing and the
bound of Theorem 1 holds with our choice of λt.
First, note that our choice of learning rates ensures that λt ≤ 1

2 holds as long as T is larger than
an absolute constant, and thus we focus on this case here (and relegate the complete details of
establishing this absolute constant to Appendix G.5). To proceed, we define the (constant-free)

regret rates R(2)
t =

√
Ctdt and R(3)

t =
(
t
√
s Ct

Cmin

) 2
3

and note that they correspond to the regret

bounds obtained when using the respective learning rates λ(2)t and λ(3)t , as per Lemma 8.

We now consider the last time that the learning rates λ(3)t and λ(2)t have been used. More specifically,
we denote T2 = max{t ≤ T, λ

(2)
t−1 ≥ λ

(3)
t−1}, and T3 = max{t ≤ T, λ

(3)
t−1 ≥ λ

(2)
t−1}. Combining the

bound of Equation 13 and using the definition λt = min( 12 ,max(λ
(2)
t , λ

(3)
t )), the following bound
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holds

RT

≤ E

[
CT

λT−1
+

T∑
t=1

min

(
32

3
λt−1IR

(2)
t (πt),

16

3
c∗3

√
3λt−1IR

(3)
t (πt)

)]

= E

[
CT

min( 12 ,max(λ
(2)
T−1, λ

(3)
T−1))

+

T∑
t=1

min

(
32

3
min(

1

2
,max(λ

(2)
t−1, λ

(3)
t−1))IR

(2)
t (πt),

16

3
c∗3

√
3min(

1

2
,max(λ

(2)
t−1, λ

(3)
t−1))IR

(3)
t (πt)

)]

≤ E

[
CT min

(
1

λ
(2)
T−1

,
1

λ
(3)
T−1

)
+

T∑
t=1

min

(
32

3
max(λ

(2)
t−1, λ

(3)
t−1)IR

(2)
t (πt),

16

3
c∗3

√
3max(λ

(2)
t−1, λ

(3)
t−1)IR

(3)
t (πt)

)]
.

We can now separate the sum obtained at the last line based on which learning rate was used at time
t.

T∑
t=1

min

(
32

3
max(λ

(2)
t−1, λ

(3)
t−1)IR

(2)
t (πt),

16

3
c∗3

√
3max(λ

(2)
t−1, λ

(3)
t−1)IR

(3)
t (πt)

)
≤

∑
λ
(2)
t−1≥λ

(3)
t−1

32

3
λ
(2)
t−1IR

(2)
t (πt) +

∑
λ
(3)
t ≥λ

(2)
t

16

3
c∗3

√
3λ

(3)
t−1IR

(3)
t (πt)

≤
T2∑
t=1

32

3
λ
(2)
t−1IR

(2)
t (πt) +

T3∑
t=1

16

3
c∗3

√
3λ

(3)
t−1IR

(3)
t (πt).

Following exactly the same step as in the proof of Lemma 8, we further bound∑T2

t=1
32
3 λ

(2)
t−1IR

(2)
t (πt) ≤ 8

√
2
3R

(2)
T2

and
∑T3

t=1
16
3 c

∗
3

√
3λ

(3)
t−1IR

(3)
t (πt) ≤ 8 · 6 1

3R
(3)
T3

.

The crucial observation is that which of λ(3)T or λ(2)T is bigger will determine whether R(2)
T or R(3)

T

is the term of leading order (up to some constants). More specifically, Let T be such that λ(2)T−1 ≥

λ
(3)
T−1 which means that

√
3CT

128dT ≥ 1

4·6
1
3

(
CT

√
Cmin

T
√
s

) 2
3

. Rearranging, this implies that
√
CT dT ≤

6
5
6

4

(
T
√
s CT

Cmin

) 2
3

, which means that R(2)
T ≤ 6

5
6

4 R
(3)
T . Following the exact same steps, we also

have that λ(3)T−1 ≥ λ
(2)
T−1 implies that R(3)

T ≤ 4

6
5
6
R

(2)
T . We apply this to the time T2 in which

λ
(2)
T2−1 ≥ λ

(3)
T2−1 by definition. we have that R(2)

T2
≤ 6

5
6

4 R
(3)
T2

and putting this together with the
previous bound, we have

RT ≤ CT

λ
(3)
T−1

+ 8

√
2

3
R

(2)
T2

+ 8 · 6 1
3R

(3)
T3

≤ 4 · 6 1
3R

(3)
T + 8

√
2

3
· 6

5
6

4
R

(2)
T2

+ 8 · 6 1
3R

(3)
T3

≤ 4 · 6 1
3R

(3)
T + 4 · 6 1

3R
(3)
T2

+ 8 · 6 1
3R

(3)
T3

≤ 4 · 6 1
3R

(3)
T + 4 · 6 1

3R
(3)
T + 8 · 6 1

3R
(3)
T

≤ 16 · 6 1
3R

(3)
T ,

where we use the fact that T → R
(3)
T is increasing and T2 ≤ T, T3 ≤ T .

Using the same argument as before, we have that λ(3)T3−1 ≥ λ
(2)
T3−1, and we can conclude that R(3)

T3
≤

4

6
5
6
R

(2)
T3

.
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Putting this together, with the previous bound, we have

RT ≤ CT

λ
(2)
T−1

+ 8

√
2

3
R

(2)
T2

+ 8 · 6 1
3R

(3)
T3

≤ 8

√
2

3
R

(2)
T + 8

√
2

3
R

(2)
T2

+ 8 · 6 1
3 · 4

6
5
6

R
(3)
T3

≤ 8

√
2

3
R

(2)
T + 8

√
2

3
R

(2)
T2

+ 16

√
2

3
R

(2)
T3

≤ 8

√
2

3
R

(2)
T + 8

√
2

3
R

(2)
T + 16

√
2

3
R

(2)
T

≤ 32

√
2

3
R

(2)
T ,

where we use the fact that T → R
(3)
T is increasing and T2 ≤ T, T3 ≤ T . Evaluating the constants

numerically yields 16 · 6 1
3 ≈ 29.07 ≤ 30 and 32

√
2
3 ≈ 26.13 ≤ 27.

G.5 Upper bound on the learning rates

We now consider the case where the learning rates exceed 1
2 , and show that this only holds for small

values of T . First, we have that λ(2)T−1 ≤ 1
2 if√

3CT

128dT
≤ 1

2
.

Rearranging the inequality and recalling CT = 5 + 2s log edT
s , this is equivalent to

T ≥ 15

32d
+

3s

16d
log

edT

s
.

Using the loose inequality log edT
s ≤ dT

s , we get that this condition is satisfied for any T ≥ 1.

Similarly, we have that λ(3)T−1 ≤ 1
2 if

1

4 · 6 1
3

(
CT

√
Cmin

T
√
s

) 2
3

≤ 1

2
.

We note that

Cmin = max
µ∈∆(A)

σmin(EA∼µ

[
AA⊤]) ≤ max

µ∈∆(A)

Tr(EA∼µ

[
AA⊤])

d
≤ 1,

where the first inequality uses that the trace of a matrix is always bigger than d-times its small-
est eigenvalue and the second inequality uses the fact that for any vector a, we have Tr(aa⊤) =∑d

i=1 a
2
i ≤ dmaxi |ai| ≤ d because we assumed that all the actions are bounded in infinity norm.

Hence the previous inequality will be satisfied if

1

4 · 6 1
3

(
CT

T
√
s

) 2
3

≤ 1

2
.

Rearranging the inequality, this is equivalent to

T ≥ 4

√
3

s
Ct = 8

√
3s log(eT ) +

√
3s

(
20

s
+ 8 log

d

s

)
.

Applying Lemma 24 with a = 8
√
3s and b =

√
3s
(
20
s + 8 log(ds )

)
, we find that the previous

inequality is satisfied for all

T ≥ 2a log ea+ 2b = 40

√
3

s
+ 16

√
3s log

8e
√
3d√
s

.
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Thus, letting Tmin = 40
√

3
s + 16

√
3s log 8e

√
3d√
s

be the constant given above, both learning rates

stay upper bounded by 1
2 for all T ≥ Tmin and the upper bound on the regret given the previous

subsection holds. Otherwise, we upper bound the instantaneous regret by 2 and this leads to an
additional 2Tmin = O(

√
s log d√

s
) in the regret. Putting this together with the bound proved in the

previous section, we thus have that the following regret bound is valid for any T ≥ 1:

RT ≤ min

(
27

√(
5 + 2s log

edT

s

)
dT , 30

(
5 + 2s log

edT

s

) 1
3
(

T
√
s√

Cmin

) 2
3

)
+O

(√
s log

d√
s

)
.

This concludes the proof of Theorem 2.

I Technical Results

We state and prove the remaining technical results.
Lemma 21. Let π ∈ ∆(A), the function θ 7→ ∆(π, θ) is 2-Lipschitz with respect to the 1 norm. Let

t ≥ 1, the function θ → E
[
log
(

1
pt(Yt|θ,At)

)]
is 2-Lipschitz with respect to the 1 norm. Moreover

if θ, θ′ are random variables, then∣∣∣∣E [log( 1

pt(Yt|θ,At)

)
− log

(
1

pt(Yt|θ′, At)

)]∣∣∣∣ ≤ 5

2
sup ∥θ − θ′∥1 .

Proof. Let θ, θ′ ∈ Θ, we have

|r(π, θ)− r(π, θ′)| =

∣∣∣∣∣∑
a∈A

π(a)⟨θ − θ′, a⟩

∣∣∣∣∣
≤
∑
a∈A

π(a)|⟨θ − θ′, a⟩|

≤
∑
a∈A

π(a) ∥θ − θ′∥1 ∥a∥∞

≤ ∥θ − θ′∥1 .
Similarly,

|r∗(θ)− r∗(θ′)| = |max
a∈A

r(a, θ)−max
a∈A

r(a, θ′)| ≤ max
a∈A

|r(θ, a)− r(a, θ′)| ≤ ∥θ − θ′∥1 .

Finally

|∆(π, θ)−∆(π, θ′)| = |r∗(θ)− r∗(θ′) + r(π, θ′)− r(π, θ)| ≤ 2 ∥θ − θ′∥1 .

Let us write r = ⟨θ,At⟩, r′ = ⟨θ′, At⟩ and r0 = ⟨θ0, At⟩. We have that Yt = r0 + ϵt where ϵt is
1-sub-Gaussian. For the negative log-likelihood, we then have

E
[
log

(
1

p(Yt|θ,At)

)
− log

(
1

p(Yt|θ′, At)

)]
=

1

2
E
[
(⟨θ,At⟩ − Yt)

2 − (⟨θ′, At⟩ − Yt)
2
]

=
1

2
E
[
(r − Yt)

2 − (r′ − Yt)
2
]

=
1

2
E [(r − r′)(r + r′ − 2Yt)]

=
1

2
E [(r − r′)(r + r′ − 2r0)] +

1

2
E [(r − r′)ϵt]

≤ 2E [∥θ − θ′∥1] +
1

2
E [∥θ − θ′∥1 |ϵt|] ,

where we use the fact that |r + r′ − 2r0| ≤ 4.
Now if θ, θ′ are fixed, since E [ϵt] = 0, we get

E
[
log

(
1

p(Yt|θ,At)

)
− log

(
1

p(Yt|θ′, At)

)]
≤ 2 ∥θ − θ′∥1
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If θ, θ′ are random variables, the subgaussianity of ϵt implies that E
[
ϵ2t
]
≤ 1 and by Cauchy-

Schwarz we have

E [∥θ − θ′∥1 |ϵt|] ≤
√
E
[
∥θ − θ′∥21

]
E [ϵ2t ] ≤ sup ∥θ − θ′∥1.

This yields the second claim of the Lemma.

Lemma 22. (Hoeffding’s Lemma) Let X be a bounded real random variable such that X ∈ [a, b]
almost surely. Let η ̸= 0, then we have

1

η
logE [exp (ηX)] ≤ E [X] +

η(b− a)2

8
. (34)

Proof. See for instance Chapter 2 in Boucheron et al. [2013].

We now provide a data dependent version of Hoeffding’s lemma that is used in the analysis of the
gaps in the optimistic posterior.
Lemma 23. (A data dependent version of Hoeffding’s Lemma) Let X be a real random variable
and η ̸= 0 be such that ηX ≤ 1 almost surely, then we have

1

η
logE [exp (ηX)] ≤ E [X] + ηE

[
X2
]
≤ 2E [X] . (35)

Proof. Using the elementary inequalities log(x) ≤ x− 1 for x > 0 and ex ≤ 1+ x+ x2 for x ≤ 1,
we get that

1

η
logE [exp (ηX)] ≤ 1

η
E [exp(ηX)− 1]

≤ 1

η
E
[
ηX + η2X2

]
≤ E [X] + ηE

[
X2
]
.

The following lemmas help us to analyze when the learning rates are smaller or bigger than 1
2 .

Lemma 24. Let a ≥ 1, b ≥ 0, then, the equation t ≥ a log et+b is verified for any t ≥ 2a log ea+2b
.

Proof. We let f(t) = t − a log et − b, we have that f ′(t) ≥ 0 on [a,+∞) and f(a) ≤ 0. Hence
f(t) = 0 has a unique solution α on [a,∞) such that f(t) ≥ 0 if t ≥ α. We now focus on upper
bounding α. The equation f(α) = 0 is equivalent to

logα =
α− b

a
− 1.

Now taking the exponential and reordering this is also equivalent to

−α
a

exp

(
−α
a

)
=

− exp
(
−a+b

a

)
a

.

Let

g : (−∞,−1] −→ [−1

e
, 0)

x 7−→ xex.

The previous equation can be rewritten g
(−α

a

)
= − exp(− a+b

a )
a . We define W−1 : [−1

e , 0) −→
(−∞, 1] as the(functional) inverse of g. The function g is the −1 branch of the Lambert W function.
We have that for any x ≤ −1, W−1(xe

x) = x and that for any y ≥ e, −W−1(− 1
y ) ≤ 2 log(y).

Since g is decreasing on its domain,W−1 is well-defined and decreasing. Moreover, for any x ≤ −1
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, W−1(g(x)) = x . In particular, we have that α = −aW−1

(
− exp(− a+b

a )
a

)
. We will use that

formulation to find an upper bound on α.
We fix some y ≥ e. We have −2 log(y) ≤ −1 hence W−1

(
−2 log(y)e(−2 log(y))

)
= −2 log(y),

which means that 2 log(y) = −W−1(− 1
y∗ ) where y∗ = e(2 log(y))

2 log(y) = y2

2 log(y) .

Because of the elementary inequality 2 log(x) ≤ x for x > 0, we conclude that y ≤ y∗. Since
y 7→ −W−1(− 1

y ) is an increasing function we finally have that for any y ≥ e

−W−1

(
−1

y

)
≤ −W−1

(
− 1

y∗

)
= 2 log(y).

Applying this to y = a exp
(
a+b
a

)
≥ e, we get

α = −aW−1

(
−1

y

)
≤ 2a log(y) = 2a log ea+ 2b.

Since any t ≥ α will satisfy f(t) ≥ 0, this concludes our proof.

Lemma 25. Let θ ∈ Θ, then Mt = exp(L
(1)
t (θ0)− L

(1)
t (θ)) =

∏t
s=1

p(Yt|θ,At)
p(Yt|θ0,At)

is a supermartin-
gale with respect to the filtration (Ft)t.

Proof. We have

E
[
p(Yt|θ,At)

p(Yt|θ0, At)

∣∣∣∣Ft−1, At

]
= E

[
exp

(
(⟨θ0, At⟩ − Yt)

2 − (⟨θ,At⟩ − Y 2
t )

2

)∣∣∣∣Ft−1, At

]
= E

[
exp

(
ϵ2t − (⟨θ − θ0, At⟩ − ϵt)

2

2

)∣∣∣∣Ft−1, At

]
= exp

(
− (⟨θ − θ0, At⟩)2

2

)
E [exp (ϵt⟨θ − θ0, At⟩)|Ft−1, At]

≤ exp

(
− (⟨θ − θ0, At⟩)2

2

)
· exp

(
(⟨θ − θ0, At⟩)2

2

)
= 1,

where the inequality comes from the conditional subgaussianity of ϵt. Finally, by the tower rule of
conditional expectations

E
[
p(Yt|θ,At)

p(Yt|θ0, At)

∣∣∣∣Ft−1

]
= E

[
E
[
p(Yt|θ,At)

p(Yt|θ0, At)

∣∣∣∣Ft−1, At

]∣∣∣∣Ft−1

]
≤ 1.

I.1 Proof of Proposition 1

This is coming from the fact that the mean is the constant minimizing the mean squared error. We
remind the reader of the definition of the surrogate information gain and the true information gain
for a policy π ∈ ∆(A)

IGt(π) =
1

2

∑
a∈A

π(a)

∫
Θ

(⟨θ − θ̄(Q+
t ), a⟩)2 dQ+

t (θ), (36)

where θ̄(Q+
t ) = Eθ∼Q+

t
[θ] is the mean parameter under the optimistic posterior Q+

t .

IGt(π) =
1

2

∑
a∈A

π(a)

∫
Θ

(⟨θ, a⟩ − ⟨θ0, a⟩)2 dQ+
t (θ), (37)

43



Let’s fix a ∈ A, we have that

(⟨θ − θ0, a⟩)2 = (⟨θ − θ̄(Q+
t ) + θ̄(Q+

t )− θ0, a⟩)2

= (⟨θ − θ̄(Q+
t ), a⟩)2 + 2⟨θ − θ̄(Q+

t ), a⟩⟨θ̄(Q+
t )− θ0, a⟩+ (⟨θ̄(Q+

t )− θ0, a⟩)2

≥ (⟨θ − θ̄(Q+
t ), a⟩)2 + 2⟨θ − θ̄(Q+

t ), a⟩⟨θ̄(Q+
t )− θ0, a⟩

Now using that θ̄(Q+
t ) =

∫
Θ
θ dQ+

t (θ) and integrating, we get∫
Θ

(⟨θ − θ0, a⟩)2 dQ+
t (θ) ≥

∫
Θ

(⟨θ − θ̄(Q+
t ), a⟩)2 dQ+

t (θ).

Multiplying by π(a) and summing over actions, we get the claim of the lemma.

I.2 Generalization of the AM-GM inequality

Dealing with the generalized information ratio requires bounding the cubic root of products. While
one could use Hölder’s inequality to deal directly with products, we find it more flexible to use a
variational form of this inequality. In all that follows, we let p > 1 be a real number and q be such
that 1

p + 1
q = 1. It is not hard to check that q = p

p−1 . We start by stating a direct consequence of the
Fenchel-Young Inequality which can be seen as an extension of the AM-GM inequality.

Lemma 26. Let x, y ≥ 0, then

xy ≤ xp

p
+
yq

q
. (38)

With equality if and only if pxp−1 = y

Proof. One can check that the Fenchel dual of the function

f :R+ −→ R+

x 7−→ xp

p

is exactly f∗(y) = 1
q y

q (for non-negative y). Then the Lemma is a direct consequence of the Fenchel
Young inequality and of its equality case.

Refining a bit this Lemma, we get the following variational form of the previous inequality :

Lemma 27. Let x, y ≥ 0, λ > 0, then

p
√
xy ≤ x

λ
+ c∗p(λy)

1
p−1 (39)

where c∗p = (p− 1) 1p

p
p−1 with equality if and only if x = y = 0 or λ = px

p−1
p

y
1
p

.

Proof. We apply the previous lemma to p
√

px
λ and p

√
λy
p .

In order to go from the variational form to the product form, we may use the following result.

Lemma 28. Let α, β > 0, then

inf
λ>0

α

λ
+ βλ

1
p−1 = cpα

1
p β

p−1
p , (40)

where cp = p 1
p−1

p−1
p satisfies cp ·c∗p

p−1
p = 1, and the minimum is reached at λ∗ = (p−1)

p−1
p α

p−1
p

β
p−1
p

.

Proof. Applying the previous Lemma to x = α and y = c
p

p−1
p βp−1 yields the result.
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Remark An alternative is to pick λ to make both terms equal resulting in the same result but with
2 as a leading constant. Now

cp = p
1
p

p

p− 1

p−1
p

= exp

(
1

p
log p+

p− 1

p
log

p

p− 1

)
≤ 1

p
· p+ p− 1

p
· p

p− 1

= 2.

With equality if and only if p = 2. So, the choice of cp always yields a better leading constant.
However, c3 ≃ 1.88 so one could argue that the gain is small. Since we will usually use Lemma 27,
c∗p will naturally appear and cp will cancel it, ultimately making the leading constant as simple as
possible.

J Experimental details

Here, we describe our implementation of the SOIDS algorithm in more detail, as well as the hy-
perparameters of all the methods used in our experiments. To run the SOIDS algorithm, one must
minimise IR

(2)
t (π) w.r.t. π in each round t. This is not straightforward, because IR

(2)
t (π) contains

expectations w.r.t. the optimistic posterior Q+
t . When we use the Spike-and-Slab prior in Appendix

B.2, we are not aware of any efficient method that can be used to maximise IR
(2)
t (π). Instead, we

draw (approximate) samples θ(1), . . . , θ(M) from Q+
t to produce the estimates ∆̃t(π) and ĨGt(π)

for the surrogate regret and the surrogate information respectively, where

∆̃t(π) =
∑
a∈A

π(a)
1

M

M∑
i=1

∆(a, θ(i)), ĨGt(π) =
1

2

∑
a∈A

π(a)
1

M

M∑
i=1

(
⟨θ(i) − θ̄M , a⟩

)2
.

Here, θ̄M is the sample mean 1
M

∑M
i=1 θ

(i). We then maximimse the approximate surrogate infor-

mation ratio ĨR
(2)

t (π), where

ĨR
(2)

t (π) =
(∆̃t(π))

2

ĨGt(π)
.

To draw the samples θ(1), . . . , θ(M), we use the empirical Bayesian sparse sampling procedure pro-
posed by Hao et al. [2021], which is designed to draw samples from the Bayesian posterior. To
sample from the optimistic posterior, we incorporate the optimistic adjustment into the likelihood.
This method replaces the theoretically sound spike-and-slab prior with a relaxation in which the
“spikes” are Laplace distributions with small variance, and the “slabs” are Gaussian distributions
with large variance. In particular, the density of this prior is

q1(θ) =
∑

γ∈{0,1}d

p(γ)

d∏
j=1

[γjψ1(θj) + (1− γj)ψ0(θj)] .

Here, ψ1(θ) is the density function of a univariate Gaussian distribution, with mean 0 and vari-
ance ρ1, and ψ0 is the density function of a univariate Laplace distribution, with mean 0 and scale
parameter ρ0. p(γ) is a product of Bernoulli distributions with mean β. In our experiments, we
always use ρ1 = 10, ρ0 = 0.1 and β = 0.1. Also, we set the learning rates to η = 1/2 and

λt = min( 12 ,
1
10 max(

√
s log(edt/s)

dt , ( log(edt/s)t )2/3)).

Implementing the OTCS baseline exactly would require us to compute the means of the distributions
played by an exponentially weighted average forecaster with a sparsity prior. These distributions are
the same as the optimistic posterior, except λt = 0 (i.e. there is no optimistic adjustment). In our
implementation of the OTCS baseline, we draw samples using the same empirical Bayesian sparse
sampling procedure, and then replace the exact means with the sample means. We use the same
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choices for the parameters η, ρ1, ρ0 and β. We set the radii of the confidence sets to the values given
in Theorem 4.7 of Clerico et al. [2025]
For the LinUCB baseline, we set the radii of the confidence sets to the values given in Theorem 2 of
Abbasi-Yadkori et al. [2011]. For the ESTC baseline, we set the exploration length T1 to 50 when
d = 20, 100 when d = 40 and d = 100. These values were chosen based on a small amount of trial
and error. The theoretically motivated values in Theorem 4.2 of Hao et al. [2020] are much larger
than these values. Also for ESTC, we set the LASSO regularisation parameter to λ = 4

√
log(d)/T1,

which is the value given in Theorem 4.2 of Hao et al. [2020].
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