
RMLStreamer with Reference Conditions in the
KGCW Challenge 2023
Els de Vleeschauwer1, Gerald Haesendonck1, Dylan Van Assche1 and Ben De
Meester1

1IDLab, Dept. Electronics & Information Systems, Ghent University – imec, Belgium

Abstract
Knowledge graph construction of heterogeneous data has seen a lot of uptake in the last decade
from compliance to performance optimizations with respect to execution time. Besides execution
time as metric for comparing knowledge graph construction, other metrics, e.g. CPU or memory
usage, are often not considered. The Knowledge Graph Construction Workshop (KGCW)
2023 Challenge aims to be a competitive challenge for knowledge graph construction systems
to encourage optimizations for execution time, CPU, and memory usage. We participated
in this challenge with RMLStreamer, an RML mapping engine which processes all data in a
streaming fashion. As the second part of the challenge is based on the Madrid-GTFS-Bench,
which cannot be handled by RMLStreamer, we added RMLLooseGenerator as a first step for
those experiments. RMLLooseGenerator is a proof-of-concept implementation that simulates
the effect of using reference conditions in RML mapping rules. In previous work we showed
that using reference conditions in the GTFS-Madrid-Bench mapping file results in exactly
the same graph output. The challenge results show that RMLStreamer has a very scalable
performance on execution time and CPU usage, while maintaining a constant memory usage.
Therefore it received the Scalability Award in the KGCW 2023 Challenge. The challenge also
highlighted some weaknesses of RMLStreamer: no support for relational databases, inefficient
implementation of join operations, and longer execution time when handling nested sources
such a JSON and XML files. After the challenge RMLStreamer has been expanded with
support for relational databases. For future work we will research how to further optimize the
handling of joins and of nested sources.

Keywords
RMLStreamer, challenge, knowledge graph construction

1. Introduction

Knowledge graph construction of heterogeneous data has seen a lot of uptake in the
last decade from compliance to performance optimizations with respect to execution
time [1, 2, 3]. Besides execution time as metric for benchmarking knowledge graph
construction systems, other metrics, e.g. CPU or memory usage, are often not considered.

KGCW’23: 4th International Workshop on Knowledge Graph Construction, May 28, 2023, Crete, GRE
Envelope-Open els.devleeschauwer@ugent.be (E. de Vleeschauwer); gerald.haesendonck@ugent.be (G. Haesendonck);
dylan.vanassche@ugent.be (D. Van Assche); ben.demeester@ugent.be (B. De Meester)
GLOBE https://dylanvanassche.be/ (D. Van Assche); https://ben.de-meester.org/#me (B. De Meester)
Orcid 0000-0002-8630-3947 (E. de Vleeschauwer); 0000-0003-1605-3855 (G. Haesendonck);
0000-0002-7195-9935 (D. Van Assche); 0000-0003-0248-0987 (B. De Meester)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1

mailto:els.devleeschauwer@ugent.be
mailto:gerald.haesendonck@ugent.be
mailto:dylan.vanassche@ugent.be
mailto:ben.demeester@ugent.be
https://dylanvanassche.be/
https://ben.de-meester.org/#me
https://orcid.org/0000-0002-8630-3947
https://orcid.org/0000-0003-1605-3855
https://orcid.org/0000-0002-7195-9935
https://orcid.org/0000-0003-0248-0987
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Els de Vleeschauwer et al. CEUR Workshop Proceedings 1–7

The Knowledge Graph Construction Workshop (KGCW) 2023 Challenge1 aims to be a
competitive challenge for knowledge graph construction systems to encourage optimiza-
tions for execution time, but also CPU and memory usage. This challenge consists of two
parts: (i) knowledge graph construction parameters to evaluate individual parameters,
e.g. joins and duplicates, with artificial data, and (ii) GTFS-Madrid-Bench [1] to focus
on real-life use cases based on public transport data from Madrid.

In this paper we present the results of the KGCW 2023 Challenge for RMLStreamer [4],
in combination with RMLLooseGenerator2, the proof-of-concept implementation simulat-
ing the effect of using reference conditions [5]. The full setup and results are available on
Zenodo3.

Section 2 describes the components of our knowledge graph construction pipeline.
Section 3 discusses the setup we used to execute the challenge’s experiments. Section 4
explains our setups with other RML engines, to enable a comparison. We present our
results in Section 5 and our conclusion in Section 6.

2. Knowledge Graph Construction Pipeline

Our knowledge graph construction pipeline consists of two parts: (i) RMLLooseGenerator
emulates the effect of reference conditions [5], and (ii) RMLStreamer executes the RML
mapping rules in a streaming fashion [4].

2.1. RMLLooseGenerator

RMLLooseGenerator is a proof-of-concept implementation for simulating the effect of
using reference conditions [5] in RML mapping rules. It replaces joins that do not need
references outside the join conditions with crafted URIs, and can be used by any RML
engine as a first step of the knowledge graph construction process. This component is
only used for the GTFS-Madrid-Bench cases. RMLStreamer cannot generate any output
for the GTFS-Madrid-Bench within one hour when using join conditions. However,
the output of the GTFS-Madrid-Bench remains identical when re-interpreting all join
conditions as reference conditions [5].

2.2. RMLStreamer

RMLStreamer executes RML mapping rules to generate high quality Linked Data from
multiple originally (semi-)structured data sources in a streaming way. RMLStreamer
processes all data in a streaming fashion. Therefore, RMLStreamer handles big input files
and continuous data streams like sensor data, without consuming more memory when
the input data size increases. RMLStreamer leverages Apache Flink to scale vertically
across multiple CPU cores and horizontally across multiple machines. For the challenge

1https://doi.org/10.5281/zenodo.7689310
2https://github.com/RMLio/rml-loose-generator
3https://doi.org/10.5281/zenodo.8034245

2

https://doi.org/10.5281/zenodo.7689310
https://github.com/RMLio/rml-loose-generator
https://doi.org/10.5281/zenodo.8034245


Els de Vleeschauwer et al. CEUR Workshop Proceedings 1–7

we deployed RMLStreamer version 2.4.2 with an embedded Flink version in a Docker
container4.

3. Experiment setup

The KGCW 2023 Challenge provides CSV files as source datasets, baseline results (i.e.
the expected set of triples and query results) and an example pipeline based on the
RMLMapper, MySQL, and Virtuoso for reaching those results. We adapted the provided
experiments to enable execution with RMLStreamer.

In the provided end-to-end pipelines the CSV files are loaded into a relational database.
As the RMLStreamer did not support SQL yet when the execution of the challenge was
performed, we used CSV files directly to construct the knowledge graphs.

We executed all experiments on a Intel Xeon CPU E5645 (12 cores with Hyper-
Threading, 2.4GHz) with 24GB RAM and 250GB HDD. All experiments were performed
5 times and the experiment with the median execution time is reported.

We compared our experiments’ results to ensure that our output is correct with respect
to the baseline results of the challenge. For the first part of the challenge, where the
output of RMLStreamer is not loaded into a triples store, we deduplicated the output
results as RMLStreamer cannot eliminate duplicates by itself. Our validation concluded
that all tested experiments gave correct output.

4. Comparison with other RML engines

We also executed the experiments in our setup (section 3) with RMLMapper5 [6] for
both parts of the challenge, and with Morph-KGC6 [2] for the GTFS-Madrid-Benchmark
part. This way, we can compare the results of RMLStreamer on the same setup with
other implementations.

5. Results

Figure 1a and fig. 1b show that RMLStreamer scales linear with the size of the input data,
where RMLMapper and Morph-KGC cannot complete the experiments for respectively
scale 100 and scale 1000.

At scale 100 RMLStreamer is two times faster than the state-of-the-art RML engine
Morph-KGC (fig. 1a).

RMLStreamer uses more CPU (fig. 1b) in comparison to RMLMapper and Morph-KGC
because it maximizes parallelism over all given slots. However, CPU usage scales linear
with the size of the input data.

The peak RAM memory (fig. 1c) measured is similar for all scales when using RML-
Streamer, where RMLMapper and Morph-KGC hit the limits of the available memory
4https://doi.org/10.5281/zenodo.7181800
5https://github.com/RMLio/rmlmapper-java
6https://doi.org/10.5281/zenodo.5543552

3

https://doi.org/10.5281/zenodo.7181800
https://github.com/RMLio/rmlmapper-java
https://doi.org/10.5281/zenodo.5543552


Els de Vleeschauwer et al. CEUR Workshop Proceedings 1–7

(a) Linear trend: the execution time of
RMLStreamer increases with the same
factor as the data size for higher scales.

(b) Linear trend: the CPU usage of RML-
Streamer increases with the same factor
as the data size for higher scales.

(c) RMLStreamer has a constant memory
usage independent of data size

(d) The execution time of RMLStreamer in-
creases with a factor 10 when including
json and xml sources

Figure 1: Metrics of the knowledge graph construction pipeline for the GTFS-Madrid-Bench experiments.
A striped bar signifies that this test could not be completed by the engine at hand.

and fail to complete all GTFS-Madrid-Bench experiments. RMLStreamer has a constant
memory usage independent of the data size. We assume this is mostly due to the fact
that it processes everything in a streaming way, which is to a lesser extent the case for
RMLMapper and Morph-KGC.

Adding nested sources, such as JSON and XML files, increases the execution time
of RMLStreamer with a factor ten (fig. 1d). The difference in execution time is the
consequence of RMLStreamer chunking CSV files and processing the chunks in parallel.
This is not the case for the XML and JSON formats yet.

The measurements for the knowledge graph construction parameter experiments show
similar trends: linear scaling of execution time and CPU usage, proportional to the size
of the input data, in combination with a constant memory usage. Table 1 shows the

4



Els de Vleeschauwer et al. CEUR Workshop Proceedings 1–7

Execution time (s) CPU (s) Peak RAM (GB) Output (triples)
1. Easiest experiment: records 10K rows 20 columns
RMLMapper 8 15 1,4 200.000
RMLStreamer 21 107 2,4 200.000
2. Hardest experiment for RMLMapper: properties 1M rows 30 columns
RMLMapper 262 646 13,2 20.000.000
RMLStreamer 120 2.247 9,2 20.000.000
3. Hardest experiment for RMLStreamer: records 10M rows 20 columns
RMLMapper out of memory out of memory out of memory out of memory
RMLStreamer 653 14.360 9,2 200.000.000
4. Easiest experiment with joins: join 1-1 0%
RMLMapper out of memory out of memory out of memory out of memory
RMLStreamer8 219 2409 9,3 0
RMLStreamer 43 371 9,4 0
5. Hardest experiment with joins: join 5-5 100%
RMLMapper out of memory out of memory out of memory out of memory
RMLStreamer8 434 4145 9,3 2.500.000
RMLStreamer 66 1093 9,5 2.500.000

Table 1
Metrics of the knowledge graph construction step for selected knowledge graph construction parameter
experiments

results of the experiments with the lowest and the highest measured values, which are
dubbed easiest and hardest experiments in the table respectively.

We also added the easiest and hardest experiment including joins. At the time of the
challenge we limited RMLStreamer to eight task slots (referenced as RMLStreamer8 in
Table 1) for the execution of experiments including joins, because RMLStreamer reported
an error and failed to start processing some mapping files including joins (e.g. the
original GTFS-Bench-Mapping with joins). We assumed that this error appeared with
any mapping file including joins. Further investigation afterwards revealed that this error
got triggered by mappings with a large number of mapping rules (i.e. a mapping with
two triples maps and one join operation does not result in error). Hence, the limitation of
task slots is not required for the experiments with joins in the first part of the challenge.
For completeness we added the results of those join experiments with all task slots. Using
all 24 task slots on the hardest experiment with joins decreases the execution time by a
factor of 16, and the CPU usage by a factor of nine, compared to the results registered
during the challenge using RMLStreamer8.

6. Conclusion

The KGCW 2023 Challenge results show that RMLStreamer has a linear scaling of exe-
cution time and CPU usage, proportional to the size of the input data, while maintaining
a constant memory usage. Therefore it received the Scalability Award in the KGCW
2023 Challenge.

We noted following improvement areas for RMLStreamer: (i) a lack of support for

5



Els de Vleeschauwer et al. CEUR Workshop Proceedings 1–7

relational databases, (ii) an inefficient implementation of join operations (e.g. GTFS-
Madrid-Bench experiments with joins cannot be handled by RMLStreamer), and (iii) a
longer execution time when handling nested sources such a JSON and XML files.

Additionally we noticed that there are cases where the number of task slots used
by RMLStreamer needs to be limited. At the time of the challenge this could only be
achieved by modifying RMLStreamer’s code.

Support for changing the number of task slots dynamically was implemented in
RMLStreamer 2.5.07, together with support for SQL databases.

For future work we will investigate further optimizations for execution of joins and
nested sources.

Acknowledgments

The described research activities were supported by SolidLab Vlaanderen (Flemish
Government, EWI and RRF project VV023/10), the imec ICON project AI4Foodlogistics
(Agentschap Innoveren en Ondernemen project nr. HBC.2020.3097), and funded by the
Special Research Fund of Ghent University under grant BOF20/DOC/132.

References

[1] D. Chaves-Fraga, F. Priyatna, A. Cimmino, J. Toledo, E. Ruckhaus, O. Corcho,
Gtfs-madrid-bench: A benchmark for virtual knowledge graph access in the transport
domain, Journal of Web Semantics 65 (2020) 100596. doi:10.1016/j.websem.2020.
100596.

[2] J. Arenas-Guerrero, D. Chaves-Fraga, J. Toledo, M. S. Pérez, O. Corcho, Morph-KGC:
Scalable knowledge graph materialization with mapping partitions, Semantic Web
(2022) 1–20. doi:10.3233/sw-223135.

[3] E. Iglesias, S. Jozashoori, D. Chaves-Fraga, D. Collarana, M.-E. Vidal, SDM-RDFizer:
An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs, in:
Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, 2020. doi:10.1145/3340531.3412881.

[4] Sitt Min Oo, G. Haesendonck, B. De Meester, A. Dimou, RMLStreamer-SISO: An
RDF Stream Generator from Streaming Heterogeneous Data, in: U. Sattler, A. Hogan,
M. Keet, V. Presutti, J. P. A. Almeida, H. Takeda, P. Monnin, G. Pirrò, C. d’Amato
(Eds.), The Semantic Web – ISWC 2022, Springer, Springer International Publishing,
Cham, 2022, pp. 697–713. doi:10.1007/978-3-031-19433-7_40.

[5] E. de Vleeschauwer, S. Min Oo, B. De Meester, P. Colpaert, Reference conditions:
Relating mapping rules without joining, in: Proceedings of the 4rd International
Workshop on Knowledge Graph Construction (KGCW 2023) co-located with 20th

Extended Semantic Web Conference (ESWC 2023), 2023.

7https://doi.org/10.5281/zenodo.7998156

6

http://dx.doi.org/10.1016/j.websem.2020.100596
http://dx.doi.org/10.1016/j.websem.2020.100596
http://dx.doi.org/10.3233/sw-223135
http://dx.doi.org/10.1145/3340531.3412881
http://dx.doi.org/10.1007/978-3-031-19433-7_40
https://doi.org/10.5281/zenodo.7998156


Els de Vleeschauwer et al. CEUR Workshop Proceedings 1–7

[6] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, R. Van de Walle,
RML: A Generic Language for Integrated RDF Mappings of Heterogeneous Data, in:
Proceedings of the 7th Workshop on Linked Data on the Web, volume 1184, 2014.

7


	1 Introduction
	2 Knowledge Graph Construction Pipeline
	2.1 RMLLooseGenerator
	2.2 RMLStreamer

	3 Experiment setup
	4 Comparison with other RML engines
	5 Results
	6 Conclusion

