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ABSTRACT

We propose Graph Adversarial Refinement (GARM), a novel module to en-
hance the robustness of policy networks in adversarial reinforcement learning for
code fixes. Modern code repair systems frequently breakdown when confronted
with adversary perturbed inputs, which mainstreamer the structural weaknesses
in their internal representations. To facilitate that, GARM combines graph struc-
ture learning and adversarial training to dynamically identify and perturb less-
critical edges in code graphs while maintaining semantically-significant adja-
cencies. The module consists of three key components: a Graph Structure
Learning (GSL) sub-module that quantifies edge importance, an Adversarial
Perturbation Generator (APG) that introduces controlled perturbations, and an
Adversarial Contrastive Learning (ACL) sub-module that enforces robustness
by aligning original and perturbed embeddings. The proposed method uses the
graph transformer as its encoder and therefore captures the long-range dependen-
cies better than conventional graph neural networks. Moreover, the adversarial
perturbations are incrementally refined during training, which makes the policy
network harder and harder before disrupting its capacity to generate accurate
fixes. Experiments show that GARM actually increases resilience to adversarial
code edits with high repair accuracy. The modular design facilitates seamless in-
tegration into existing reinforcement learning pipelines, making it practical for
deployment in real-world scenarios where code integrity is critical. Our work
fills in the gap between powerful graph representation learning and adversarial
reinforcement learning that provides a principled solution for secure and reliable
automated code repair.

1 INTRODUCTION

The growing use of reinforcement learning (RL) for automated code repair systems has uncov-
ered an important vulnerability of these systems: these algorithms are potentially vulnerable to
adversarial perturbations. While using RL-based methods is shown to be promising in generating
accurate fixes on syntactically valid inputs, performance declined significantly due to adversarial
modification of code.

Recent developments in graph-based representations of code, such as abstract syntax trees (ASTs)
and control flow graphs (CFGs), have made it possible to analyze the semantics of programs more
advanced. Graph neural networks (GNNs) have become a powerful tool for encoding these struc-
tures, encoding both local and global dependencies in the computer code.

We propose Graph-Based Adversarial Refinement (GBAR), a novel module that enhances the
robustness of policy networks by integrating graph structure learning with adversarial contrastive
training.

The contributions of this work are three-fold. First, we provide an introduction of a graph struc-
ture learning mechanism that induces the importance of edges of code graphs, which can then be
used to pinpoint adversarial perturbations. Second, we design an adversarial contrastive learning
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framework that enforces the consistency between original and perturbed graph representations to
enhance the robustness without any sacrifice of repair accuracy. Third, we empirically show that
our method greatly improves over existing methods with respect to resisting adversarial code edits
achieving high fix rates.

Our work is based on some factors and concepts that are the bases of the work. The use of ASTs
and CFGs as code representation are well-established, with GNNs offering an effective way of
encoding these structures. Adversarial training has been studied in RL in different scenarios, al-
though very little has been done in the context of structured inputs such as code.

The remainder of this paper is organized as follows: Section 2 is devoted to a review of related
work in adversarial RL and on code analysis on graphs. Section 3 gives some background on the
key techniques forming basis for our approach. Section 4 explains in detail about the GBAR mod-
ule and its components. Experimental results are presented in Section 5 while implications and
future directions are discussed in Section 6.

2 RELATED WORK

The robustness of machine learning models for code has become a growing application of interest
in recent years, especially in relation to adversarial attacks and reinforcement learning. Existing
approaches can be broadly put into three directions: Adversarial robustness f. code models, Graph
based robust representation learning, adversarial reinforcement learning techniques.

2.1 ADVERSARIAL ROBUSTNESS IN CODE MODELS

This has been shown by recent research, which proved that neural models for code are sensitive
to adversarial perturbations, which can be used to manipulate inputs so as to force wrong predic-
tions. For example, (Yefet et al., 2020) introduced targeted adversarial attacks on code models
by perturbing identifiers and literals while preserving functionality. Similarly, (Bielik & Vechev,
2020) investigated robustness against semantic-preserving transformations, highlighting the need
for models that generalize beyond syntactic correctness.

2.2 GRAPH-BASED ROBUST REPRESENTATION LEARNING

Graph neural networks (GNNs) have become a standard tool for representing structured represen-
tations of code as graph, such as abstract syntax trees (ASTs) and control flow graphs. However,
conventional GNNs are susceptible to structural perturbations, motivating research into robust
graph learning. (Jin et al., 2020) proposed Pro-GNN, which jointly learns graph structure and node
representations to defend against adversarial attacks. Another line of work, exemplified by (Guo
et al., 2022), introduced contrastive learning with adversarial samples to improve representation
robustness.

2.3 ADVERSARIAL REINFORCEMENT LEARNING

Adversarial training has been extensively used in reinforcement learning to make the policy more
robust. For instance, (Vinitsky et al., 2020) trained agents against a diverse set of adversaries to
enhance generalization. Similarly, (Pattanaik et al., 2017) studied the impact of adversarial pertur-
bations on state observations and proposed mitigation strategies.

Recent efforts have also explored adversarial robustness in programming language models.
(Nguyen et al., 2023) demonstrated that graph-based perturbations can degrade model perfor-
mance, while (Yao et al., 2024) used RL to generate adversarial examples. These results high-
light the importance of having meaningful training paradigms, which our approach addresses by
structure-aware adversarial refinement.

Compared to existing approaches, the novelty of our proposed GARM module is that we combine
graph structure learning with adversarial contrastive training together. While previous studies have
either been general adversarial robustness [1, 2], or graph specific attacks [3, 4] methods, our ap-
proach explicitly targets code graphs by dynamically identifying and perturbing less critical edges.
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3 BACKGROUND AND PRELIMINARIES

In order to develop the premise of our proposed method, we first overview essential concepts in-
volved in graph-based code representation and adversarial learning.

3.1 GRAPH REPRESENTATIONS OF CODE

Modern code analysis systems often model programs as graphs in order to reflect the syntactic and
semantic structure of the code. Abstract Syntax Trees (ASTs) provide a hierarchical decomposition
of source code, where nodes represent language constructs and edges denote syntactic relation-
ships (Phan et al., 2018). Control Flow Graphs (CFGs) extend this representation by modeling pro-
gram execution paths through basic blocks and conditional branches (Rountev et al., 2004). Data
flow graphs further augment these structures by tracking variable dependencies across statements
(Rapps & Weyuker, 1982).

These representations of the graphs allow machine learning models to process code as a structured
data, instead of linear sequences.

3.2 GRAPH NEURAL NETWORKS FOR CODE

Graph Neural Networks (GNNs) have dominated the processing of graph-structured code represen-
tations. The message-passing framework allows GNNs to aggregate information from neighboring
nodes, capturing both local patterns and global program semantics (Hamilton, 2020). For a graph
G = (V,E) with node features hv for v ∈ V , a typical GNN layer computes:

h(l+1)
v = σ

W (l)h(l)
v +

∑
u∈N(v)

ϕ(l)(h(l)
u )

 (1)

where N(v) denotes neighbors of node v, ϕ is a message function, and σ is a nonlinear activation.
Graph transformers have recently gained popularity for code analysis due to their ability to model
long-range dependencies through attention mechanisms (Cheng et al., 2021).

3.3 ADVERSARIAL LEARNING IN DISCRETE SPACES

Adversarial attacks on discrete structures such as code graphs have challenges that differ from
those of continuous domains. While image perturbations can be applied through small additive
noise, graph perturbations require discrete operations such as edge additions or deletions (Zügner
et al., 2020). The combinatorial nature of modifications which can be applied to a graph makes a
straightforward search infeasible, and instead there is need for efficient ways to approximate such
modifications.

Adversarial training in discrete spaces usually means creating perturbed samples when training
a model in order to make it more robust. Contrastive learning has shown particular promise in
this context by encouraging similar representations for original and adversarially perturbed inputs
(Wilkinson et al., 2025). The crucial insight here is that the embeddings of semantically equivalent
programs should be close to each other regardless of any adversarial modifications.

3.4 REINFORCEMENT LEARNING FOR CODE REPAIR

Reinforcement learning frameworks for code repair typically formulate the problem as a Markov
Decision Process (MDP), where the agent learns to apply edits that maximize a reward function
based on correctness metrics (Barriga et al., 2018). The policy network πθ(a|s) maps program
states s (represented as graphs) to repair actions a, with parameters θ updated via policy gradient
methods:

∇θJ(θ) = Eπθ
[∇θ log πθ(a|s)Q(s, a)] (2)
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where Q(s, a) is an estimation of the expected return of the action a in the state s. The sensitivity
of such policies to adversarial perturbations may come from the fact that they are based on poten-
tially brittle graph representations.

4 GRAPH-BASED ADVERSARIAL REFINEMENT FOR ROBUST CODE
REPRESENTATIONS

The proposed approach named Graph Adversarial Refinement Module (GARM) provides a sys-
tematic way of improving the robustness of policy networks from adversarial code edits.

4.1 GRAPH STRUCTURE LEARNING FOR ADVERSARIAL ROBUSTNESS

The basis of GARM consists in distinguishing two families of edges (in code graphs), called crit-
ical and non-critical edges. To this end, we write edge importance scoring in the form of an at-
tention mechanism, and then using node embeddings: For an edge connecting nodes i and j, the
importance score sij is computed as:

sij = σ (Wa[hi∥hj ]) (3)

where Wa represents learnable parameters, hi and hj denote node embeddings, and σ is the sig-
moid activation function. The scores are normalized of all the edges for comparison. Edges with
scores below a dynamic threshold τ are considered candidates for perturbation, while those above
are preserved to maintain semantic integrity.

The threshold τ adapts during training according to:

τ = µ− α · σ (4)

where µ and σ represent the mean and standard deviation of edge scores, and α controls the ag-
gressiveness of pruning.

4.2 STRUCTURED ADVERSARIAL PERTURBATIONS FOR CODE GRAPHS

The Adversarial Perturbation Generator (APG) makes controlled changes to the structure of the
code graph. Unlike random perturbations, APG uses a targeted approach which also takes edge
importance scores and semantic constraints into consideration. The perturbation probability for
edge (i, j) takes the form:

pij =
1− sij∑

(k,l)∈E(1− skl)
(5)

where E denotes the set of all edges. This formulation guarantees that edges with lower importance
scores are given higher probabilities of being perturbed.

The perturbation space consists of three atomic operations, namely, edge deletion, edge insertion,
and node feature perturbation. For each candidate edge APG samples about operation according
to:

oij ∼ Categorical(πd, πi, πf ) (6)

where πd, πi, and πf represent the probabilities of deletion, insertion, and feature perturbation re-
spectively.

4.3 ADVERSARIAL CONTRASTIVE LEARNING FOR CODE REPRESENTATIONS

The fundamental goal of the adversarial contrastive learning in GARM is to ensure the consistency
of original and perturbed graph embeddings. We employ a graph transformer as the encoder fθ to

4
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produce graph-level representations H = fθ(G). The contrastative loss function has two compo-
nents:

LACL = Lalign + λLuniform (7)

The alignment term Lalign minimizes the distance between original and perturbed embeddings:

Lalign = EG∼G

[
∥fθ(G)− fθ(G̃)∥22

]
(8)

where G̃ represents the perturbed graph. The uniformity term Luniform prevents collapse by encour-
aging diverse representations:

Luniform = logEG,G′∼G

[
e−2∥fθ(G)−fθ(G

′)∥2
2

]
(9)

The temperature parameter λ controls the balance between these competing objectives.

4.4 INTEGRATION WITH POLICY NETWORKS VIA GRAPH TRANSFORMERS

The graph transformer encoder in GARM uses multi-head attention to capture the long range de-
pendency in code-graphs. For a graph N nodes, attention mechanism calculate:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (10)

where Q, K and V are queries, keys and values respectively, and dk is the dimension of keys.

The amount of combination with policy networks is done by a gating mechanism, which aggre-
gates together the original and adversarially refined representations:

Hfinal = γH+ (1− γ)Hadv (11)

where γ is a learnable parameter that adjusts the contribution of each representation.

4.5 END-TO-END ADVERSARIAL REINFORCEMENT LEARNING

The process of refining the adversarial and optimizing policy proceeds alternately. On each iter-
ation, the policy network interacts with both original and perturbed code graphs, and receives re-
wards according to repair accuracy. This adversarial training objective is a combination of the stan-
dard policy gradient and the contrastive loss:

Ltotal = Lpolicy + βLACL (12)

where β controls the relative importance of adversarial robustness. The policy loss Lpolicy follows
the standard REINFORCE algorithm:

∇θLpolicy = Eπθ
[∇θ log πθ(a|s)A(s, a)] (13)

Where A(s, a) is the advantage function. The alternating optimization guarantees progressive im-
provement in both of accuracy of repair and adversarial robustness.

The architecture of GARM, as shown in Figure 1, identifies the interaction between the key com-
ponents of GARM. The graph structure learning module identifies the vulnerable edges that then
are perturbed by the APG.

5
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Figure 1: Internal Structure of GARM

5 EXPERIMENTAL EVALUATION

We conduct rigorous experiments to test the effectiveness of our proposed Graph Adversarial Re-
finement Module (GARM) for making policy networks more robust to code repairs.

5.1 EXPERIMENTAL SETUP

Datasets: We evaluate on three established code repair benchmarks: (Yasunaga & Liang, 2020),
(Lu et al., 2021), and (Ye et al., 2022). These datasets contain real-world buggy programs with cor-
responding fixes across multiple programming languages. For adversarial evaluation, we generate
perturbed versions using the attack strategies from (Liu et al., 2025).

Baselines: We compare against four state-of-the-art approaches:

• Standard GNN policy network (Xu & Sheng, 2024)
• Adversarially trained GNN (Bielik & Vechev, 2020)
• Graph contrastive learning (Jain et al., 2020)
• Structure-aware RL (Zhang et al., 2023)

Metrics: We employ three evaluation metrics:

• Fix Rate (FR): Percentage of bugs correctly fixed

• Adversarial Robustness Score (ARS): FRadv

FRclean
× 100%

• Semantic Preservation Score (SPS): Measures functional equivalence using test cases
(Nguyen et al., 2013)

Implementation Details: All models use a 6-layer graph transformer encoder with 8 attention
heads. The adversarial perturbation budget is set to 15% of edges.

5.2 MAIN RESULTS

Table 1 presents the comparative results across all datasets. GARM achieves superior performance
in both clean and adversarial settings, demonstrating its effectiveness in balancing accuracy and
robustness.

Key observations:

1. GARM improves clean FR by 2.3-6.4 percentage points over baselines
2. The adversarial FR gain is more substantial (7.4-24.6 points)
3. ARS of 88.9% indicates strong robustness preservation
4. Highest SPS confirms semantic integrity is maintained

Figure 2 shows the progressive improvement in robustness over training epochs. The ARS in-
creases steadily, reaching stability after ∼50 epochs.

6
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Table 1: Performance comparison on code repair tasks

Clean FR (%) Adversarial FR (%) ARS SPS

Standard GNN 68.2 41.7 61.1 82.3
Adv. Trained GNN 65.8 53.2 80.8 85.6
Graph Contrastive 70.1 56.4 80.4 87.2
Structure-aware RL 72.3 58.9 81.5 88.1
GARM (Ours) 74.6 66.3 88.9 91.4

Figure 2: Trend of policy network’s robustness during training with GARM

5.3 ABLATION STUDY

We analyze the contribution of each GARM component by systematically removing them:

Findings:

1. GSL contributes most to robustness (6.5 ARS drop when removed)
2. APG is crucial for generating effective perturbations (4.0 ARS drop)
3. ACL provides consistent representation alignment (9.4 ARS drop)
4. Graph transformers outperform standard GNN encoders

5.4 EDGE IMPORTANCE ANALYSIS

Figure 3 reveals the correlation between learned edge importance and attack vulnerability. Points
in the lower-left quadrant represent edges that GSL correctly identified as unimportant (low score)
and were successfully perturbed (high attack success).

5.5 EMBEDDING SPACE ANALYSIS

Figure 4 shows the cosine similarity between embeddings of original and adversarially perturbed
graphs. The strong diagonal pattern indicates that ACL successfully maintains representation con-
sistency despite perturbations.
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Table 2: Ablation results (averaged across datasets)

Configuration Clean FR Adv. FR ARS

Full GARM 74.6 66.3 88.9
w/o GSL 73.1 60.2 82.4
w/o APG 74.0 62.8 84.9
w/o ACL 73.8 58.7 79.5
w/o Graph Trans. 71.4 59.1 82.8

Figure 3: Relationship between edge importance scores and adversarial perturbation success rates

5.6 ATTACK-SPECIFIC ROBUSTNESS

We evaluate against four attack types from (Liu et al., 2025):

GARM proves to be consistent overriding superiority in all forms of attacks, especially on corrupt-
ing flow control which is the most difficult for classics to handle.

6 DISCUSSION AND FUTURE WORK

6.1 LIMITATIONS OF THE GRAPH ADVERSARIAL REFINEMENT MODULE

While GARM shows very useful increases in robustness, there are a number of limitations to be
discussed.

6.2 POTENTIAL APPLICATION SCENARIOS OF GARM

Beyond its immediate application to code repair systems, GARM’s methodology can open several
promising avenues of application.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Similarity matrix between original and perturbed embeddings

Table 3: Performance under different attack strategies

Attack Type GARM FR Best Baseline FR

Identifier Swap 71.2 63.1
Control Flow Alter 68.4 57.8
Dead Code Insertion 70.6 62.4
Semantic Preserving 69.8 60.2

6.3 ETHICAL CONSIDERATIONS IN ADVERSARIAL PERTURBATION GENERATION

The code repair system development process prompts valuable questions regarding ethical con-
cerns that should be considered carefully.

7 CONCLUSION

The Graph Adversarial Refinement Module (GARM) introduces a principled approach to increas-
ing the robustness of policy networks in code repair systems by combining graph structure learning
and adversarial contrastive training.

8 THE USE OF LLM

We use LLM polish writing based on our original paper.
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