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Abstract

Point cloud synthesis, i.e. the generation of novel point clouds from an input
distribution, remains a challenging task, for which numerous complex machine
learning models have been devised. We develop a novel method that encodes
geometrical-topological characteristics of point clouds using inner products, leading
to a highly-efficient point cloud representation with provable expressivity properties.
Integrated into deep learning models, our encoding exhibits high quality in typical
tasks like reconstruction, generation, and interpolation, with inference times orders
of magnitude faster than existing methods.

1 Introduction

Point clouds are a data modality of crucial relevance for numerous domains. While computer graphics
is the predominant application area, where point clouds are often used as precursor to more structured
representations like meshes, they also occur in higher dimensions in the form of sensor data, for
instance. However, the synthesis of hitherto-unseen point clouds from a given distribution still proves
to be a challenging task, with numerous models aiming to address it [39]. The complexity arises
because of the sparsity and ‘set-like’ structure of point clouds, making it hard to generalise existing
machine learning architectures directly. State-of-the-art methods thus typically require large amounts
of compute, exhibiting long training and inference times. With recent work [33] demonstrating
that a change of perspective—like exchanging raw coordinates for Fourier-based features—can
make comparatively simple deep-learning architectures competitive in computer-vision tasks, our
paper explores the question to what extent novel representations of point clouds can lead to gains in
computational performance without sacrificing too much quality.

To obtain such representations, we build on a multi-scale geometrical-topological descriptor [35]
based on inner products of coordinates representing a high-dimensional shape. Using suitable
approximations, this descriptor permits us to represent a point cloud as a single 2D image. Unlike
other single-view representations, however, the coordinates of the image represent a different ‘domain,’
namely geometrical-topological aspects. In fact, this mapping is computationally efficient and
injective, making it theoretically possible to reconstruct a point cloud from its descriptor (we will
demonstrate that this property also holds empirically when working with approximations). We refer to
this mapping as the Inner Product Transform (IPT) and use it for the generation of 3D point clouds.1
Our work primarily focuses on building highly-efficient models that enable real-time inference in
settings of limited computational resources while also being trainable on commodity hardware.

1For readers familiar with computational topology, the IPT is a special case of the Euler Characteristic
Transform (ECT). Our focus on point clouds permits us to formulate the IPT without any background knowledge
in computational topology, while also resulting in substantially simplified proofs and more powerful statements
about its theoretical properties.
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Our paper is built on two core notions, the first one being that we treat point cloud generation as a two-
step task, with the first step being an image generation task, yielding a two-dimensional descriptor,
followed by a (multi-modal) image-to-point-cloud reconstruction task. We realise the two steps
using separate machine learning models, thus substantially decreasing architectural complexity—in
effect, we represent a point cloud as a special image that can be generated, providing a bridge to the
point cloud domain. The second core notion is that the generated image is a faithful, i.e. injective,
representation of the point cloud, indicating that it is possible to perfectly reconstruct a point cloud
from its descriptor. Our paper makes the following contributions:

1. We present a novel generative image-to-point-cloud pipeline based on inner products that
allows training and inference times to be orders of magnitude faster while retaining high
quality generation.

2. We show that our representation yields a stable latent space, which permits (i) high-quality
interpolation tasks, and (ii) solving different out-of-distribution tasks without the need for
retraining while still maintaining high quality.

3. We demonstrate injectivity and other advantageous properties of our descriptor, allowing the
generalisation of our method to point clouds of arbitrary dimensions.

Our code is available at https://github.com/aidos-lab/inner-product-transforms and is
released under a BSD-3-Clause license.

2 Related Work

Point clouds being a nigh-ubiquitous data modality, numerous models already exist to tackle classi-
fication or generation tasks [39]. The lack of structure, as well as the requirement of permutation
invariance, imposes constraints on the underlying computational architecture, typically substantially
increasing model complexity [29, 41]. To solve generation tasks, many methods opt for jointly
learning the generation of the shape, i.e. the surface or object the points are sampled from, as well
the mapping of points onto that object. This core idea drives several recent state-of-the-art models,
including Point-Voxel CNN [21], PointFlow [40], SoftFlow [17], Point Voxel Diffusion [44, PVD]
and LION [42]. While these models exhibit high-quality results, their architectures require long
training and inference times.

By contrast, our approach only needs to model a distribution of geometrical-topological descriptors,
represented as 2D images, from which we subsequently reconstruct a point cloud again. While
reconstructing point clouds from images is an active field of research (see Fahim et al. [11] for a
survey on single-view reconstruction), such images are typically depth images or snapshots taken
from a specific position around the object. As such, they are not necessarily yielding a faithful, unique
representation of an object. Another close analogue to our method is given by ‘structure-from-motion’
approaches [27], which reconstruct complex geometries based on sets of images, taken from different
spatial viewpoints. For our method, however, the viewpoints are represented as unit vectors on a
sphere, which are used to ‘probe’ the point cloud from a specific direction.

Hence, a crucial property of our method, the Inner Product Transform (IPT) is that it theoretically
yields a faithful representation, hence permitting an injective mapping between the image domain and
the shapes we aim to reconstruct (or generate). We observe this property to hold empirically when
working with discrete approximations. This is due to the fact that the IPT is a special case of a general
geometrical-topological descriptor, the Euler Characteristic Transform (ECT), which studies shapes
at multiple scales and from multiple directions, providing a unique characterisation [35]. Being a
stable [10, 13] and efficient descriptor, the ECT is often used to solve questions in data science, mostly
in the form of ‘hand-crafted’ features for classification and regression tasks [4, 8, 22, 24, 25, 34, 37].
Recent work addressed this shortcoming and enabled the use of the ECT in machine-learning
applications in the form of a generic differentiable computational layer [31, 32] or a positional
encoding [3]. Notably, the ECT remains a unique characterisation even when using a finite number
of directions [9, 14], meaning that, theoretically, it can be inverted to reconstruct the input data.
Practically, however, inversion is presently possible only for select data modalities like planar
graphs [12]. While restricted to point clouds, our method is thus the first to enable the inversion
of such a descriptor for input data of arbitrary dimensionality, making it possible to use it in
the context of generative models.
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Figure 1: Given a point cloud on the left, we compute its Inner Product Transform (IPT). For
generative tasks, we train a generative model (middle) to reconstruct and generate the distribution
of IPTs. The (possibly-generated) IPT is then passed through the encoder model to obtain the
reconstructed (or novel) point cloud. Our pipeline is decoupled, permitting any generative image
model to be used to generate point clouds.

3 Methods

Our method, the Inner Product Transform (IPT), can be intuitively understood as a filtering process
of point clouds, employing different sets of hyperplanes, created by a set of directions (i.e. normal
vectors). The inner products of point cloud coordinates with a direction vector are then used to
parametrise a curve that counts the number of points below the hyperplane. By stacking curves,
we obtain a 2D image representation of the point cloud. The IPT is a special case of the Euler
Characteristic Transform [35, ECT], but our subsequent description is self-contained, does not
require any knowledge of topology, and presents simplified proofs of all properties.

3.1 Inner Product Transforms

Let Sn−1 denote the unit sphere in Rn. Given a point cloud X ⊂ Rn, a fixed direction vector
ξ ∈ Sn−1, and a height h ∈ R, we define the set Xξ,h := {x ∈ X | ⟨x, ξ⟩ ≤ h}, where ⟨x, ξ⟩ is the
Euclidean dot product. The set Xξ,h contains all points below the hyperplane spanned by ⟨x, ξ⟩ = h,
and we denote its cardinality by χ(Xξ,h).2 We then define the Inner Product Transform as

IPT(X) : Sn−1 × R → N

(ξ, h) 7→ χ(Xξ,h).
(1)

A point x ∈ X is included in Xh,ξ, thus affecting χ(Xξ,h), if and only if its height hx := ⟨x, ξ⟩
along ξ is less than h. We can thus formulate the contribution of a point x to the IPT along each
direction in terms of an indicator function:

1x(ξ, h) :=

{
1 if ⟨ξ, x⟩ ≤ h

0 otherwise.
(2)

This enables us to rewrite Eq. (1) as

IPT(X) : Sn−1 × R → N

(ξ, h) 7→
∑
x∈X

1x(ξ, h).
(3)

Following ideas from Röell & Rieck [32], we can replace all indicator functions with sigmoid
functions, i.e.

ÎPT(X) : Sn−1 × R → R

(ξ, h) 7→
∑
x∈X

S(λ(⟨ξ, x⟩ − h)), (4)

where λ denotes a scale parameter, which controls how closely the sigmoid function approximates
the indicator function (see Appendix D for additional ablations demonstrating the stability of this
approach). In practice, we sample nd directions and discretise all heights with nh steps, thus
representing ÎPT as an image of resolution nh × nd.

2For readers familiar with topology, this notation is an allusion to the Euler Characteristic.
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Properties. The IPT and its approximation ÎPT from Eq. (4) satisfy several important properties.
We first focus on the case of the IPT and note that it is injective, i.e. a point cloud can be perfectly
reconstructed from its descriptor. Unlike existing injectivity results [14, 35], which focus on
geometric simplicial complexes, we prove that for point clouds in Rn, it is sufficient to use n+ 1
affinely-independent directions for the reconstruction.
Theorem 1. Given two point clouds X,Y with X ̸= Y , we have IPT(X) ̸= IPT(Y ).

An important consequence of injectivity is that it allows us to formulate a metric for the set of point
clouds contained in a ball of fixed radius.
Lemma 1. Let Bn(R) denote a ball of radius R in Rn. For two point clouds X,Y ⊂ Bn(R), define
their distance as

d(X,Y ) :=
1

|Ξ|
∑
ξ∈Ξ

∥IPT(X)↾ξ − IPT(Y )↾ξ∥2, (5)

where Ξ is a finite set of directions and ∥ · ∥2 is the L2-norm restricted to the interval [−R,R]. The
function d(·, ·) satisfies the definition of a metric.

When approximating the IPT via Eq. (4) and a finite number of directions in practice, the metric
defined in Lemma 1 corresponds to the pixel-wise mean squared error between discretised IPTs.
Hence, given a sufficient number directions, we can formulate a loss function based on this metric,
which admits a highly-efficient implementation and will turn out to lead to high-quality results. We
also obtain a result that permits us to calculate IPTs from disjoint unions of point clouds.
Lemma 2. Let X,Y ⊂ Rn be disjoint point clouds, then

IPT(X ∪ Y ) = IPT(X) + IPT(Y ). (6)

Finally, we can prove that the IPT is surjective on convex linear combinations.
Theorem 2. Given two point clouds X,Y ⊂ Rn, the IPT is surjective for the rational linear subspace
spanned by IPT(X) and IPT(Y ), up to a rational scaling factor. In particular, for p, q ∈ N0 with
0 ≤ p ≤ q and q > 0 we have

p

q
IPT(X) +

q − p

q
IPT(Y ) =

1

q
IPT

(
Z
)
, (7)

where Z = ∪pX ∪q−p Y .

A direct consequence of Theorem 2 is that, along the linear interpolation between two IPTs, there
are only valid IPTs, i.e. each interpolation step affords a perfect reconstruction in theory. We analyse
this aspect further in Section 4.5. We note that most of these properties (except injectivity) only
hold for the IPT but, as we will later demonstrate, ÎPT, the approximation to the IPT, retains
these properties in practice.

3.2 The IP-Encoder

The existence of Theorem 1 unfortunately does not lead to a practical algorithm for ‘inverting’ an
IPT. We therefore suggest an approach based on neural networks and describe the IP-Encoder, which
encodes an IPT to a point cloud. Subsequently, this will enable us to learn distributions of IPTs
and reconstruct new point clouds in a generative setting and, as we shall see, even in the setting of
out-of-distribution data. Since our representation is permutation-invariant, our IP-Encoder model
directly inherits this invariance, which substantially reduces the complexity of its architecture.

Model architecture. Given the structure of the IPT as an image, CNN architectures provide suitable
base models. However, since the direction vectors ξ ∈ Sn−1 cannot be consistently ordered along
one dimension, we need to reframe the input data. Specifically, we consider an IPT, normalised to
[−1, 1], as a multi-channel, one-dimensional signal. Our IP-Encoder model then consists of multiple
1D convolutional layers followed by fully-connected layers, resulting in a conceptually simple and
efficient architecture. To generate a novel IPT, we can use any generative model for images. In our
experiments, we will use an architecture based on a convolutional variational autoencoder, denoted
by IP-VAE (see Appendix F for more architectural details).
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The IPT as an optimisation problem. As an alternative to the machine learning model above,
we also investigate whether the inversion of an IPT can be turned into an optimisation problem.
Due to the differentiability of our approximation ÎPT and given a known IPT, minimising a loss
function, such as the one described in Lemma 1, using backpropagation should result in a suitable
approximation of the unknown point cloud one wishes to recover. However, while this works in
theory, it requires the input and target to be a ‘correct’ ÎPT of a point cloud. In practice, this is not
guaranteed: Generative models may sample from their latent spaces and output samples that are
close to being an ÎPT of a point cloud without actually satisfying all structural constraints. To some
extent, we argue that this is even the desired behaviour since a generative model would otherwise just
rehash its inputs [16]. Hence, any optimisation-based method will not necessarily result in realistic
reconstructions in a generative setting. We nevertheless investigate such an optimisation procedure in
an ablation study in the appendix (Figure S.3).

Topological loss functions. The fact that Lemma 1 shows the IPT to be a metric naturally poses
the question if its approximation ÎPT can be used as an effective and efficient loss term. While in
principle the ÎPT is sufficient as a loss term for training a point cloud reconstruction model, training
time can be reduced through a combination of a low-resolution (64× 64) ÎPT combined with the
Chamfer Distance (CD). The CD is a fast-to-compute (pseudo-)metric often used in point cloud
evaluation (see Appendix E for more details). The ÎPT loss ensures that the overall geometry and
point cloud density of the object is captured, whereas the CD loss ensures that fine-grained details are
accounted for. Building a joint loss, combining the ÎPT and CD, thus results in a density-aware loss
term that takes the global density of a point cloud into account.

Latent space. Interpolation between samples provides valuable insight into the capacities of our
generative model. Theorem 2 provides an intuition for interpolation using ÎPTs. To this end, suppose
we perform linear interpolation between point clouds X,Y , using a parameter p over the interval
[0, 1], which is partitioned in q equidistant steps. Then, at step p/q, the point cloud Z = ∪pX ∪q−p Y
is the union of p copies of X and q − p copies of Y . During the interpolation, the number of copies
of X is increased and the number of copies of Y is reduced. We may interpret this intuitively as
transporting ‘mass’ from Y to X over the course of q steps. Our IP-Encoder model averages all copies
during reconstruction in a natural fashion, resulting in smooth transitions between point clouds.

4 Experiments

We demonstrate the effectiveness, efficiency, and overall utility of our IP-Encoder through a com-
prehensive suite of experiments. Subsequently, to simplify the notation, we will only refer to
the IPT, with the understanding that we are calculating an approximation of it according to
Eq. (4). Throughout our experiments, the emphasis and motivating questions regard the expressivity
of the IPT and its capacity to faithfully and effectively represent point clouds in a practical setting.
Good results with a minimal architecture underpin the fact the IPT is an effective representation as it
shows that the data distribution is easy to learn. Among other things, we show that our IP-Encoder
model can (i) effectively reconstruct shapes, (ii) create novel point clouds from generated IPTs, and
(iii) effectively downsample point clouds.

All our experiments rely on a subset of the ShapeNet dataset, and we adopt the preprocessing and
evaluation workflow introduced by Yang et al. [40]. Each point cloud in the dataset consists of 2048
points sampled on the surface of three shape classes (airplanes, chairs and cars). We report the
minimum matching distance [2, MMD] based on the Chamfer Distance (MMD-CD) or the Earth
Mover’s Distance (MMD-EMD) between reconstructed point clouds (see Appendix E for a brief
description of these evaluation metrics). Unless otherwise mentioned, the reported Chamfer Distance
is scaled by 1.00 × 104 and the Earth Mover’s Distance is scaled by 1.00 × 103. Our hardware
consists of an NVIDIA GeForce RTX 4070 with 12GB VRAM and an 13th Gen Intel(R) Core(TM)
i7-13700K with 32GB RAM. We compare our methods to several state-of-the-art models, namely
(i) PointFlow [40], (ii) SoftFlow [17], (iii) ShapeGF [6], (iv) Canonical VAE [7] and (v) LION [42].
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Table 1: Reconstruction results on three ShapeNet classes. The best-performing model is highlighted
in bold, while the second-best is shown in italics. Our method consistently ranks second in terms of
the EMD, which is recognised as the best metric for reconstruction quality [44].

Airplane Chair Car

MODEL CD (↓) EMD (↓) CD (↓) EMD (↓) CD (↓) EMD (↓)

PointFlow 1.30 ± 0.00 5.36 ± 0.06 10.43 ± 0.02 17.54 ± 0.16 6.94 ± 0.01 12.93 ± 0.19
SoftFlow 1.19 ± 0.00 4.28 ± 0.06 11.05 ± 0.03 17.68 ± 0.08 6.82 ± 0.01 11.44 ± 0.10
ShapeGF 1.05 ± 0.00 4.42 ± 0.04 5.96 ± 0.01 12.23 ± 0.11 5.68 ± 0.01 9.26 ± 0.18
Canonical VAE 0.98 ± 0.00 3.19 ± 0.03 6.56 ± 0.02 8.60 ± 0.07 5.44 ± 0.01 6.13 ± 0.02
LION 0.30 ± 0.00 0.12 ± 0.00 0.70 ± 0.00 0.14 ± 0.00 0.60 ± 0.00 0.09 ± 0.00

IP-Encoder (ours) 1.05 ± 0.00 1.57 ± 0.00 9.24 ± 0.00 6.19 ± 0.00 5.82 ± 0.00 3.18 ± 0.00

4.1 Reconstructing Point Clouds

Our first set of experiments assesses (i) the reconstruction quality of the IP-Encoder, (ii) the efficacy
of the IPT as a loss, and (iii) its computational efficiency.

Architecture and experimental setup. We consider the IPT as a 1D signal, with each direction
corresponding to a channel, sample 128 directions uniformly from the unit sphere, and discretise
each direction into 128 steps, thus obtaining an IPT with a resolution of 128× 128. Sampling the
directions randomly is motivated by the lack of canonical ordering of unit vectors in three and higher
dimensions (notice that in two dimensions, the angle affords a parametrisation that results in a natural
ordering). While ‘pseudo-ordered’ directions, for instance via a spiral along the unit sphere, might
potentially lead to better results, they come at the cost of generality, and we thus refrained from
doing so in our experiments. To improve this for future work, one could use a positional encoding of
the directions; at present, such an ordering is only implicitly present through the fixed ordering of
columns in the image we use to represent the IPT. Given such a 2D representation of an IPT, our
IP-Encoder consists of four 1D convolutional layers with batch normalisation, max-pooling, and
SiLU activation functions (cf. Appendix F). After mapping the IPT into a latent space, we apply a
final 3-layer MLP to predict the final point cloud. We use ReLU activation functions for the first
two layers and a tanh activation function for the last layer, since tanh is better suitable for bounded
outputs. Subsequently, we train the IP-Encoder separately for each of the classes for 5k epochs, using
a CD + IPT-64 loss, denoting a weighted sum of the CD and the IPT with a resolution of 64× 64.

Table 2: Ablation study wrt. the loss
function. Our joint loss, combining CD
and IPT, yields balanced results without
overfitting any of the two metrics.

Airplane (↓) Chair (↓) Car (↓)

LOSS FUNCTION CD EMD CD EMD CD EMD

CD 1.00 8.89 10.44 32.43 5.97 14.96
IPT-64 2.41 1.09 13.06 4.29 7.75 2.47

CD + IPT-64 1.03 1.46 9.52 8.44 6.12 4.16

Results. Our reconstructions (Table 1 and Figure 2a) are
of high quality, despite a comparatively simple architec-
ture. Our IP-Encoder consistently ranks second in terms of
the EMD, known to be the most suitable metric to evaluate
reconstruction quality [44]. Notably, our loss term does
not use the EMD. Our method also exhibits substantially
reduced training times compared to other methods: The
IP-Encoder model requires approximately 30.00min on
a single GPU, compared to 192.00 h for PointFlow and
more than of 550.00 h for LION. We additionally perform

an ablation study concerning the loss term, showing that the combination of CD and IPT is crucial for
high reconstruction quality. As Table 2 shows, a joint loss yields the best quality. In line with prior
work, CD on its own tends to adversely affect point-cloud density [2], resulting in larger (i.e. worse)
EMD scores. Conversely, training only with a ECT loss shows that the reconstructed follow the
density of the underlying object, but may become blurry. This is partially due to the low resolution of
64, making the combination of CD (for details) and the ECT (for global density and structure) crucial.
While it would also possible to use the EMD as a loss term, we find that our IPT-64 loss function is
substantially faster than the EMD (0.0006 s versus 0.0291 s), making it the preferred loss function.

We observe the IPT to be an effective representation of point clouds, leading to a conceptually
simple model with exceptionally fast training times.
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(a) (b)

Figure 2: Examples of reconstructed (a) and generated (b) point clouds using our IP-Encoder model
for three classes in the ShapeNet dataset.

4.2 Generating Novel Point Clouds

We now view the IPT as a latent space, from which we can sample and subsequently reconstruct
point clouds, demonstrating that (i) the IPT constitutes a stable latent space, (ii) a distribution of
shapes can be learned through the IPT, and (iii) the IP-Encoder works well in out-of-sample settings.

Architecture and experimental setup. We use IP-VAE, a CNN-style VAE [15] as our generative
model, thus turning point cloud generation into an image generation task. Our encoder uses four
convolutional blocks with Leaky ReLU activation functions, batch normalisation, and a final linear
layer for the 64-dimensional latent space embedding. We also add additional models, namely (i) Set-
VAE [18], (ii) Point Voxel Diffusion [44, PVD], (iii) Point Straight Flows [38], and (iv) XCube [30].
These models lack reconstruction capabilities or the respective code, so we excluded them from the
experiment in Section 4.1. For training the IP-VAE, we follow the β-VAE setup, using KL-divergence
and MSE loss terms with β = 1.00× 10−4. We sample latent vectors from the IP-VAE and consider
them to be IPTs, which we subsequently map to a point cloud using the IP-Encoder model. Our
evaluation of generative performance follows the setup of Yang et al. [40].

Table 3: Inference time
T in s for all methods,
measured on the same
hardware. Our model
is orders of magnitude
faster than all others.

MODEL DEVICE T (↓)

PointFlow

GPU

0.270
SoftFlow 0.120
ShapeGF 0.340
SetVAE 0.030
PSF 0.040
PVD 29.900

IP-VAE GPU 0.001
IP-VAE CPU 0.006

Results. Table 4 reports numerical results, whereas Figure 2b depicts
generated samples from each class. We include different quality met-
rics and note that, despite its conceptual simplicity, our model consis-
tently ranks among the best two models in terms of MMD-EMD, and
exhibits performance on a par with more elaborate architectures. This is
noteworthy since the IP-VAE is not constrained to produce exact IPTs,
hence its outputs may contain artefacts. The fact that our IP-Encoder
model (remaining fixed throughout this experiment) can reconstruct point
clouds from such out-of-sample data without additional regularisation or
retraining, shows that the IPT describes a stable and expressive latent
space. We observe fast training times, with the IP-VAE taking approx-
imately 15.00min, making the full training pipeline run in less than
1.00 h. This is in stark contrast to models like LION (550.00 h) or Soft-
Flow (≈ 144.00 h). Finally Table 3 shows that our inference times on
commodity hardware are orders of magnitude faster than existing models.

The IPT yields a suitable representation for generating high-quality point clouds, while exhibiting
inference times that are orders of magnitude faster than existing models. More expressive
generative models are likely to improve generative quality (at the expense of longer runtimes).
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Table 4: Evaluation metrics for point cloud generation tasks, cited from their respective papers.
We highlight the best result in bold and the second-best in italics. Our implementation of the
EMD follows PVD [44]. Whenever available, we report coverage (COV), minimum matching
distance (MMD), and 1-NNA (1-nearest neighbour accuracy) for both EMD and CD.

Airplane Chair Car

MMD (↓) COV (↑) 1-NNA (↓) MMD (↓) COV (↑) 1-NNA (↓) MMD (↓) COV (↑) 1-NNA (↓)

Model CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

PointFlow 0.22 0.39 47.90 46.41 75.68 69.44 2.41 1.60 42.90 50.00 60.88 59.89 0.90 0.81 46.88 50.00 60.65 62.36
SoftFlow 0.23 0.37 46.91 47.90 70.92 69.44 2.53 1.68 41.39 47.43 59.95 63.51 1.19 0.86 42.90 44.60 62.63 64.71
Shape-GF 2.70 0.66 40.74 40.49 80.00 76.17 2.89 1.70 46.67 48.03 68.96 65.48 9.23 0.76 49.43 50.28 63.20 56.53
SetVAE 0.20 0.37 43.70 48.40 75.31 77.65 2.55 1.59 46.83 44.26 58.76 61.48 0.88 0.73 49.15 46.59 59.66 61.48
PVD 0.22 0.38 48.88 52.09 73.82 64.81 2.62 1.56 49.84 50.60 56.26 53.32 1.08 0.79 41.19 50.56 54.55 53.83
LION 0.22 0.37 47.16 49.63 67.41 61.23 2.64 1.55 48.94 52.11 53.70 52.34 0.91 0.75 50.00 56.53 53.41 51.14
PSF 71.11 61.09 58.92 54.45 57.19 56.07
XCube 52.85 49.75 53.99 48.60 57.96 54.43

IP-VAE (Ours) 0.19 0.34 45.67 45.67 77.28 68.40 2.34 1.48 41.24 48.34 61.33 63.07 0.85 0.70 35.23 49.72 58.52 59.23

4.3 Point Cloud Downsampling

Motivated by the promising results in terms of generative performance, we further investigate the
capacity of our IP-Encoder model to upsample a downsampled point cloud.

Table 5: Reconstruction performance for
consecutive down- and upsampling, with
the best result shown in bold. For refer-
ence purposes, the last row repeats our
results without downsampling.

Airplane (↓) Chair (↓) Car (↓)

METHOD CD EMD CD EMD CD EMD

IP-Downsampler 1.18 2.58 11.70 11.42 6.42 5.81
Uniform 3.10 4.71 15.38 15.34 9.30 9.09

IP-Encoder 1.03 1.46 9.53 8.45 6.12 4.17

Architecture and experimental setup. We train a down-
sampling model with the same architecture as the IP-
Encoder, resulting in a point cloud with 256 points. Here,
the purpose of the loss term is to minimise the discrepancy
of the original point cloud to its downsampled version,
measured using the IPT, which we normalise because of
its dependency on point cloud cardinality. We then pass
the IPT of the downsampled point cloud to the IP-Encoder
model to obtain an upsampled version, which, ideally,
should be close to the original point cloud. Reporting
both CD and EMD scores, we compare these results to a
uniform subsampling method.

Results. Table 5 depicts numerical scores (cf. Figure S.2 in the appendix for sample point clouds).
Unlike uniform subsampling, our downsampling model preserves uniform density of each object,
showing that it has learned the underlying shape. We observe some loss in quality compared to
reconstruction without downsampling, which is to be expected. Despite potential compounding
errors, the loss in quality remains low. Due to the similar setup, we can compare results with Table 1
and we observe that even when downsampling, we still perform on a par with the best model in the
reconstruction task. Notably, the IP-Encoder has not been retrained for this task, so the IPT of the
subsampled point cloud is out-of-distribution. This indicates that our model has captured the ‘true’
underlying shape characteristics.

Our IP-Encoder can downsample point clouds with a minimal loss of quality, demonstrating that
the model is effective in encoding relevant shape properties.

4.4 Practical Inversion of the IPT

While theoretical invertibility (see Theorem 1) ensures that the IPT yields an expressive summary,
practical algorithms for inversion of an IPT remain an open question. However, in our setting,
making use of an approximation to the IPT, i.e. ÎPT, we may use backpropagation to invert it without
requiring an IP-Encoder. The core observation is the differentiability of the ÎPT with respect to
the point cloud coordinates, and the fact that it constitutes a metric (see Lemma 1). The main
idea is to randomly initialise a point cloud, compute its ÎPT, and subsequently calculate the loss
between said ÎPT and the ÎPT of the target point cloud. Differentiability ensures we can compute the
derivative with respect to the point cloud coordinates and update them to reduce this loss. Applying
backpropagation thus ultimately results in convergence to the original point cloud. We show that
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Figure 3: Linear interpolation between IPTs results in a smooth interpolation in the point-cloud
domain. Given the IPT of two airplanes, we linearly interpolate between the pixel values and pass each
step through the IP-Encoder to obtain a prediction of the intermediary point cloud. Although the IP-
Encoder has not been specifically trained on such data, it is able to produce meaningful reconstructions,
since it has learned the distribution of shapes. We provide two examples of the interpolation process,
one with high pairwise similarity (top), the other with low pairwise similarity (bottom).

(i) IPTs can be inverted in practice, (ii) a resolution of 128 yields high-quality reconstructions, and
(iii) the IPT has stable gradients (which is not clear a priori, given that we are approximating an
indicator function). For this experiment, we apply backpropagation for 2000 epochs with the Adam
optimiser using a learning rate of 0.5, which is halved in epochs 50, 100, 200, and 1000, respectively.
We repeat all experiments with three resolutions and for three choices of scaling factor λ in Eq. (4),
which we set either to be equal, half, or a quarter of selected resolution. As a quality metric, we
report the EMD and CD between the optimised and target point cloud.

Table 6: Inversion of the IPT with
backpropagation leads to high
quality reconstruction.

DATASET CD (↓) EMD (↓)

Airplane 0.52 ± 0.00 0.12 ± 0.00
Car 2.04 ± 0.00 0.39 ± 0.00
Chair 1.83 ± 0.00 0.35 ± 0.00

Results. Table 6 and Figure S.3 in the appendix depict the
numerical results and show some reconstructed samples, respec-
tively. Comparing the result with Table 1, we observe that back-
propagation outperforms the IP-Encoder model. Table S.1 in
the appendix provides the full set of results and an ablation with
respect to the scale and resolution. We observe that all approxima-
tions become gradually coarser as the resolution is decreased. As
expected, we observe problems with vanishing gradients for large
values of λ, since the sigmoid function approaches an indicator

function in this case. This requires balancing λ with respect to the resolution, and we empirically
observed that around a quarter of the IPT resolution is sufficient for high-quality results, which is how
we pick the parameter in practice. It is important to note that while this method of inverting works for
an IPT without any artifacts, it fails to accurately converge if the IPT is only an approximation of a
true IPT, as is the case with a generated IPT. This also further motivates the use of a learned method
for reconstruction.

Backpropagation through IPTs directly is possible and outperforms the IP-Encoder in reconstruc-
tion quality. However, this optimisation-based scheme is unable deal with noisy or generated
IPTs, motivating the need of the IP-Encoder.

4.5 Interpolation in Latent Space

As our final experiment, we consider the linear interpolation between the IPT of two point clouds. In
the setting of infinite directions, Theorem 2 guarantees that we only encounter valid IPTs along each
interpolation. However, in practice, given our use of image-generative models, it is not guaranteed that
our input is an IPT in the strict sense. Hence, it is crucial to understand the characteristic properties
of the IPT in practice since not every sum of sigmoid functions is guaranteed to correspond to a
proper shape (in other words, IPTs are not surjective). In our discretised representation, interpolating
between IPTs can be achieved by interpolating per pixel. To visually assess the quality of the latent
space, we reconstruct each intermediary IPT during the interpolation using the IP-Encoder. Figure 3
depicts the resulting point clouds; we observe that the intermediary point clouds still remain plausible
reconstructions. Overall, this serves to highlight the utility of the IPT latent space.

The IPT permits linear interpolations, resulting in smooth interpolations between point clouds.
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5 Discussion

We propose the Inner Product Transform (IPT), which enables us to represent point clouds using
2D images by evaluating inner products. Next to showing that this representation has advanta-
geous theoretical properties, we develop an end-to-end-trainable pipeline for point-cloud generation.
Notably, we simplify the point-cloud generation process by introducing an intermediate step, the
generation of the IPT descriptor, for which one may use any image-generation model. Our method is
(i) exceptionally fast since it uses only inner products and other simple computational building blocks,
(ii) well-grounded in theory (it is a sufficient statistic on the space of point clouds), and, (iii) we
observe that its reconstruction performance and its generative capabilities are, for the most part, on a
par with more complex models. This is due to the conceptual simplicity of the model and its provably
highly-stable latent space, which facilitates performing out-of-distribution tasks without the need for
retraining or additional regularisation.

Limitations. An unfortunate limitation arising from the disconnect between theory and practice is
that our injectivity results do not guarantee that one can find suitable directions, in particular given
the complex interplay between directions and resolutions of the IPT. We believe that additional
guidance for selecting such parameters would be helpful. The current formulation of the IPT is also
not invariant with respect to rotations, which could be a desired property for some applications (or, at
the very least, might make the method more robust in the regime of smaller sample sizes). However,
with increasing sample size, we observe that data augmentation enables IPT-based models to ‘learn’
equivariance despite not being intrinsically invariant (see Figure S.5 in the appendix for preliminary
results). Moreover, if point clouds become high-dimensional, our direction-sampling procedure
becomes inefficient—this is not a problem for the shape-generation tasks we are tackling in this paper,
though. A larger limitation in point-cloud generation involves the question of evaluation metrics: In
the absence of ground-truth information, it is hard to choose the ‘best’ model (unlike point-cloud
reconstruction, where well-defined metrics exist). In terms of other generative-model evaluation
metrics like COV and 1-NNA, our models exhibits only middling performance, ranking slightly better
in terms of COV than in terms of 1-NNA. This is in stark contrast to its excellent reconstruction
performance and its strong MMD scores. Taken together, this indicates that the ÎPT is capable of
generating high-quality point clouds, but its generative part, based on simple VAEs, is not sufficiently
powerful to provide diverse representations.

Future work. Hence, future research concerning more complex—and expressive—model architec-
tures and their capabilities would be intriguing and potentially lead to improved results in terms of
diversity metrics, albeit at the cost of computational efficiency. We believe diffusion models to be
particularly suitable for generating new IPTs, given their proven track record in image generation.
Another possible extension of the IP-Encoder could involve a transformer-based architecture [36],
due to its high capacity for tasks involving sets. This could be achieved by considering the IPT as a
bag of tokens with associated directions. Along those lines, the selected directions for computing
the IPT would benefit from a proper positional encoding, as opposed to our implicit (but simple)
encoding; this would enable a model to better capture dependencies between individual directions. In
addition, given the connection of the IPT to more involved geometrical-topological descriptors for
graphs, meshes, or higher-order complexes, a natural question is to what extent our inversion results
apply to such data. This would further serve to contextualise the IPT within the emerging field of
topological deep learning [28] but requires extensions to handle datasets without strong geometrical
signals [5], for instance. Another feasible next step would be the extension to graph generation tasks,
thus building a bridge between image generation and graph generation. The caveats we raised about
generative metrics are all the more relevant in the context of graph learning, though [19, 26]. Finally,
while we have not yet explored any single-shot or even zero-shot experiments, we believe that our
work may pave the path towards novel, efficient point cloud foundation models.
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(d) We recognize that reproducibility may be tricky in some cases, in which case
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to have some path to reproducing or verifying the results.
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A Changelog

We provide a brief list of changes that arose during the review process, commenting shortly on how
we implemented the feedback received by the reviewers.

• Changes in the main text:
– We fixed the typo concerning 1D and 2D convolutions in Section 3 and Section 4.
– We updated the constraints Theorem 2 to enforce q to be non-zero.
– We fixed the typo concerning the training times in Section 4.
– We clarified all architectures in Section 3 and now discuss transformer-based models in

Section 5.
– We clarified the ordering of directions in Section 3 and comment on improvements (via

positional encodings) in Section 5.
– We added details about our hardware in Section 4.
– We updated Section 4.4 to better reflect the fact that we provide the first practical

method for inverting an IPT.
• Changes in the appendix:

– We added a new experiment on reconstructing point cloud from partial views in
Table S.2.

– We demonstrate out-of-distribution experiments in Table S.3.
– We add a new ablation study with respect to the number of directions in Table S.4.
– We provided new results on downsampling in Table S.5.
– We provide new results on reconstructing large point clouds in Table S.5 (bottom row).
– We added new results for multi-class generation on the MNIST and ShapeNet13

datasets in Figure S.4 and Table S.6.
– We provide a new experiment on learning equivariance via data augmentation in

Figure S.5.
– We wrote preliminary code for using latent diffusion models and added a first visualisa-

tion of the results in Figure S.6.
• We prefer to address the following aspects in future work, rather than adding an inadequate

discussion to our work:
– A discussion on how to use spherical harmonics for the IPT (we believe that this could

be essential for a completely new approach for calculating IPT, beyond the scope of
this paper).

– A full comparison with models like DeepSDF (we lacked compute to finish this).
– A rate-distortion analysis (we rewrote the compression aspects at the suggestion of

the reviewers and we believe that such an analysis should be better contextualised in a
follow-up work).

– A report of FLOPs (we were unable to collect all this data for the larger baseline models
in time and found some reporting inconsistencies).

We very much appreciate the feedback by reviewers, which helped us substantially improve our work.
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B Overview of the IPT

(a) (b) (c)

Figure S.1: An overview of the IPT calculation for 32 directions and resolution of 32. For a given
direction vector ξ, we filter the point cloud with hyperplanes. The partially filtered point cloud is
shown in (a) and points included in the filtration are coloured blue. For each of the 32 directions,
sampled uniformly from the sphere, the respective curves along each direction are shown in (b)
and the partially-completed curve from (a) is highlighted. Note that neighbouring curves are not
necessarily related, requiring us to treat each curve as its own signal. Each of the 32 curves is
discretised in 32 steps and stacked to form an image representation of the point cloud (c) of size
32× 32. The row corresponding to the full curve from (a) and each of the rows corresponds to the
curve in the same index in (b). For complex geometries such as the ShapeNet data, we empirically
observe that at least 128 directions are required, using a resolution of 128.
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C Additional Downsampling Figures

We provide a visualisation of Table 5 for the comparison of downsampling with the IP-
Downsampler (left) and uniform subsampling (right) for all three classes.

(a) Downsampled point-clouds with the IP-
Downsampler (top) and upsampled with the
IP-Encoder (bottom).

(b) Downsampled point clouds with uniform subsam-
pling (top) and upsampled with the IP-Encoder (bot-
tom).

Figure S.2: A visual comparison between down- and upsampling using our IP-Downsampler (a) and
uniform subsampling (b). The downsampled point clouds using the IP-Downsampler are equidistantly
spread, in contrast to uniform subsampling. Compare to uniform subsampling, we achieve higher
upsampling quality. Our model has a bias towards equidistant point clouds and leads to a better
representation of the underlying shape.

25



D Additional Experiments

This section provides supplementary figures and tables for the experiments in the main text. Please
note that some results should be considered preliminary work, pointing towards potential future
applications, which we included in the interest of full transparency regarding our work.

Table S.1: Reconstruction results for rendering of the three ShapeNet classes. A point cloud is
randomly initialised and optimised with the IPT as a loss function. We repeat this experiment for
different resolutions and different scales. The ideal scale is 1/4 of the resolution (bottom row).

Airplane Car Chair

RESOLUTION SCALE FACTOR CD (↓) EMD (↓) CD (↓) EMD (↓) CD (↓) EMD (↓)

128
128 1.27 ± 0.00 0.29 ± 0.00 2.97 ± 0.00 0.55 ± 0.00 3.40 ± 0.01 0.65 ± 0.00
64 0.75 ± 0.00 0.18 ± 0.00 2.15 ± 0.00 0.42 ± 0.00 2.10 ± 0.00 0.41 ± 0.00
32 0.52 ± 0.00 0.12 ± 0.00 2.04 ± 0.00 0.39 ± 0.00 1.83 ± 0.00 0.35 ± 0.00

64
64 2.65 ± 0.01 0.57 ± 0.00 4.76 ± 0.01 0.85 ± 0.00 5.83 ± 0.01 1.10 ± 0.00
32 1.88 ± 0.01 0.40 ± 0.00 4.05 ± 0.01 0.70 ± 0.00 4.29 ± 0.00 0.78 ± 0.00
16 1.22 ± 0.00 0.26 ± 0.00 3.80 ± 0.00 0.64 ± 0.00 3.62 ± 0.00 0.62 ± 0.00

32
32 6.21 ± 0.01 1.32 ± 0.00 9.85 ± 0.01 1.99 ± 0.00 16.92 ± 0.02 3.54 ± 0.01
16 4.11 ± 0.01 0.90 ± 0.00 8.56 ± 0.02 1.63 ± 0.00 12.55 ± 0.02 2.53 ± 0.00

8 2.77 ± 0.00 0.61 ± 0.00 7.24 ± 0.01 1.35 ± 0.00 9.05 ± 0.00 1.73 ± 0.00

Figure S.3: Examples of rendered point clouds using our optimisation scheme for the three classes of
ShapeNet. On the left, the point clouds are rendered at a resolution of 128 with a scale of 32, leading
to high-quality reconstructions. The right shows the same rendering with the scale set to 128, where
we observe unstable gradients. The resulting point clouds have only partially converged, with some
clear outliers.
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Figure S.4: To ensure our pipeline can capture multi-class distributions, we train the IP-Encoder
and IP-VAE on the MNIST dataset. The top row depicts the reconstructed point clouds with the
ground truth in the middle row. The last row depicts point clouds generated with the IP-VAE. A
latent vector is sampled from the latent distribution and decoded into an IPT. The novel IPT is
subsequently converted to a point cloud with the IP-Encoder. Using our evaluation we find the
1-NNA CD and EMD scores to be 70.31 and 62.50, respectively. This indicates that our pipeline can
handle multi-class data distributions.

Figure S.5: Recent work showed that equivariance with respect to certain operations like rotations
can also be achieved through data augmentation, thus obviating the need for more complex archi-
tectures [1]. To assess the capabilities of the IP-Encoder in this context, we follow Qi et al. [29]
and use a point cloud version the MNIST dataset of handwritten digits. During training, we apply a
random rotation to each point cloud and then compute the IPT, thus permitting the model to learn
an equivariant representation of the data. As the figure shows, data augmentation is sufficient to
encode rotations, resulting in an equivariant model without having to specifically add equivariance as
a separate inductive bias.

Table S.2: Reconstruction of point clouds based on partial views using the GenRe [43] dataset. The
point clouds in the dataset are sampled from depth image in a particular direction and the task consists
of reconstructing the full point from the partial view. We asses the capability of the IP-Encoder to
reconstruct the full point cloud from the partial view without any additional training. Thus, the model
is only trained on the set of complete point clouds. We use the trained IP-Encoder from Section 4.1;
CD and EMD have to be multiplied by 1.00 × 103 and 1.00 × 102, respectively.

Chair (↓) Car (↓)

MODEL CD EMD CD EMD

SoftFlow 2.79 3.30 1.85 2.79
PointFlow 2.71 3.65 1.80 2.85
PVD 3.21 2.94 1.77 2.15

IP-Encoder 1.10 1.24 0.71 0.91
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Table S.3: Out-of-distribution results for the IP-Encoder model. The IP-Encoder trained on the
class of airplanes is used to reconstruct the category of cars and chairs to provide an insight into
true out-of-distribution reconstruction and capacity to generalise. Results indicate that our model
is not fully general and thus incapable of reconstructing arbitrary point cloud configurations. Due
to the simplicity of our model architecture, this is partially to be expected. We hope to improve the
multi-modal capabilities of our model in future work.

AIRPLANE TO CD EMD

Car 22.68 9.36
Chair 203.69 52.29

Table S.4: Ablation with respect to the number of directions used in the IPT to investigate the impact
on reconstruction quality. The spatial resolution is kept at 128 (the default) and we progressively
reduce the number of directions. Although the reconstruction quality remains consistently high, the
number of directions has, in general, a positive impact on reconstruction quality.

Airplane (↓)

NUMBER OF DIRECTIONS CD EMD

4 1.29 2.05
8 1.18 1.88

16 1.09 1.79
32 1.07 1.69
64 1.03 1.56

128 1.05 1.57

Table S.5: Additional downsampling experiments. We follow the same setup as in Section 4.3
and train a separate downsampling model for each cardinality. With each model, we predict a
downsampled version of the point cloud, which is subsequently upsampled with the IP-Encoder, to
obtain a reconstruction of the original point cloud. We observe high quality over all cardinalities,
even when the original point cloud is summarized with only 32 points (!). As a comparison, we
add the original reconstruction result (cf. Table 1) without downsampling in the second to last row.
The bottom part of the table demonstrates the capacity of the IP-Encoder to reconstruct larger point
clouds (without downsampling). Although overall performance is still high, our model has the
fundamental limitation that it predicts the point clouds in a single N × 3 vector. To generate large
point clouds, we thus believe that different architectures, such as set transformers [20], will provide
better scalability with respect to the cardinality.

Airplane (↓) Chair (↓) Car (↓)

NUMBER OF POINTS CD EMD CD EMD CD EMD

32 1.40 3.38 18.25 11.61 9.99 6.05
64 1.20 2.68 14.34 9.79 7.57 4.97

128 1.15 2.31 12.07 8.88 6.64 4.51
256 1.13 2.17 11.59 8.53 6.29 4.23
512 1.12 2.09 11.55 8.34 6.32 4.36

2048 1.05 1.57 9.24 6.19 5.82 3.18
4096 0.87 1.61 8.17 6.33 5.13 3.27
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Table S.6: Preliminary results for multi-class reconstruction on the ShapeNet13 dataset. The dataset
contains 13 classes (airplanes, cars, chairs, lamps, tables, sofas, cabinets, benches, telephones,
speakers, monitors, vessels, and rifles) from the full ShapeNet dataset. We follow the experimental
setup of Zhou et al. [44] and cite their results as comparison partners. Our model performs well
despite its conceptual simplicity; we envision more expressive architectures to perform even better.

MODEL CD (↓) EMD (↓)

PVD 58.65 57.85
PointFlow 63.25 66.05
LION 51.85 48.95
IP-Encoder (Ours) 63.92 50.28

Figure S.6: Preliminary results for generating samples of the airplane class using a latent diffusion
model. We train a VAE on the set of IPTs of airplanes, followed by training a diffusion model on
the latent embeddings of the IPTs to generate new IPTs. Again, we use the IP-Encoder to map a
generated IPT into a point cloud. This demonstrates the flexibility and generality of our model, which
we look forward to exploiting better in future work.

29



E Metrics for Point Clouds

A good metric for point cloud generation balances computational speed and theoretical guarantees.
Finding such metrics is a challenging task, since often computations require the consideration of all
pairs of points between the two point clouds. An example is the Gromov–Hausdorff distance [23],
which has advantageous theoretical properties, but is hard to evaluate. Two metrics are commonly
used to describe the distance between point clouds, the Chamfer Distance (CD) and Earth Mover’s
Distance (EMD), for which we present a self-contained summary here. Although not a metric in
the mathematical sense, CD poses a good balance between computational speed and quality and is
defined for point clouds X and Y as

CD(X,Y ) =
∑
x∈X

min
y∈Y

∥x− y∥+
∑
y∈Y

min
x∈X

∥x− y∥. (8)

For the EMD, by contrast, the distance between point clouds is viewed as the cost required to transport
one point cloud into the other, i.e.

EMD(X,Y ) = min
ϕ:X→Y

∑
x∈X

∥x− ϕ(x)∥, (9)

where ϕ solves an optimal transport problem. Solving the optimal transport problem is a computa-
tionally intensive task that becomes prohibitive for medium to large point clouds. The properties of
using the CD as loss term were investigated in Achlioptas et al. [2], revealing that reconstructions
had non-uniform surface density, compared to the uniformly sampled ground truth points. A strong
advantage of the CD is its computational efficiency for medium to large point cloud cardinalities.
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F Architectural Details

We provide the details of both the IP-Encoder and IP-VAE architecture. The IPT as defined in Eq. (4)
is viewed as an image of shape nh × nd, where nh is the discretisation of the heights along each
direction and nd is the number of directions. In the architecture, nd denotes channels in the CNN; to
accommodate for this, we expect the input to be of the form nb × nd × nh, where nb is the batch
size. In all our experiments we set nd = nh = 128 and denote a batch of IPTs in the diagram with
IPT[B,128,128]. The internal architecture of the IP-Encoder is:

IPT[B,128,128]
|

3x[Conv1d-BatchNorm1d-SiLU-MaxPool1d]
|

Conv1d
|

Flatten
|

FC-ReLU-FC
|

Tanh-FC
|

PointCloud[B,2048,3]

In the architecture above, PointCloud[B,2048,3] denotes the final predicted batch of point clouds.

Our IP-VAE has the following architecture:

IPT[B,128,128]
|

4x[Conv1d-LayerNorm-ReLU]
|

Conv1d
|

{FC-MU,FC-VAR}
|

Latent Space
|
FC
|

4x[Conv1DTranspose-BatchNorm-LeakyReLU]
|

[Conv1D-Tanh]
|

IPT[B,128,128]

In the diagram above, latent embeddings are denoted by FC-MU and FC-VAR, respectively.
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G Properties of the Inner Product Transform

This section discusses all proofs for statements from the main paper. While the first result about the
injectivity is already known, we provide a novel, highly-accessible proof, which only requires basic
concepts from linear algebra. In the following, we will consider two point clouds X,Y ⊂ Rn to be
equal if they are equal in the sense of sets; in particular, this implies that they need to have the same
cardinality. We will also assume that all points are in general position.

Theorem 1. Given two point clouds X,Y with X ̸= Y , we have IPT(X) ̸= IPT(Y ).

Proof. Let X,Y ⊂ Rn with X ̸= Y and let Ξ ⊂ Sn−1 be a set of n + 1 affinely-independent
directions. Given ξ ∈ Ξ, we write Xξ := {⟨x, ξ⟩ | x ∈ X} for the projection of X onto the
one-dimensional subspace along ξ, with ⟨x, ξ⟩ denoting the standard Euclidean inner product. For
t ∈ R, we define Xξ,t := {x ∈ X | ⟨x, ξ⟩ ≤ t}. If for any direction ξ ∈ Ξ we have Xξ ̸= Yξ , we are
done because this means that we can find thresholds t1, t2 ∈ R with t1 < t2 such that for t ∈ [t1, t2],
the cardinality of Xξ,t changes but the cardinality of Yξ,t does not change or vice versa. Thus, let
us assume that Xξ = Yξ for all directions ξ. For each ξ, we may sort the values by magnitude and
calculate differences, i.e. expressions of the form ⟨x, ξ⟩ − ⟨y, ξ⟩. We have ⟨x, ξ⟩ − ⟨y, ξ⟩ = 0 for
all directions ξ ∈ Ξ by assumption, which we may rewrite as ⟨x − y, ξ⟩ = 0. Treating this as a
system of n + 1 linear equations, this is equivalent to stating that the kernel of the corresponding
linear map is the whole domain. However, since the n+ 1 directions are affinely independent, all
coefficients must be zero, implying that the point clouds are the same. This is a contradiction, so
our initial assumption must have been wrong. Thus, there is ξ ∈ Ξ such that Xξ ̸= Yξ, so we have
IPT(X) ̸= IPT(Y ).

Lemma 1. Let Bn(R) denote a ball of radius R in Rn. For two point clouds X,Y ⊂ Bn(R), define
their distance as

d(X,Y ) :=
1

|Ξ|
∑
ξ∈Ξ

∥IPT(X)↾ξ − IPT(Y )↾ξ∥2, (5)

where Ξ is a finite set of directions and ∥ · ∥2 is the L2-norm restricted to the interval [−R,R]. The
function d(·, ·) satisfies the definition of a metric.

Proof. If d(X,Y ) = 0 then ∥IPT(X) − IPT(Y )∥2 = 0 and since ∥ · ∥2 is a metric, it follows that
IPT(X) = IPT(Y ). Since the IPT is injective, we conclude that X = Y . Equality in this case is seen
as equality the of sets, that is up to permutation. Both the reverse implication and symmetry follow
from the definitions. For the triangle inequality, we verify

d(X,Y ) = ∥IPT(X)− IPT(Y )∥2
= ∥(IPT(X)− IPT(Z))− (IPT(Y )− IPT(Z))∥2
≤ ∥IPT(X)− IPT(Z)∥+ ∥IPT(Y )− IPT(Z)∥2
= d(X,Z) + d(Z, Y ).

(10)

Lemma 2. Let X,Y ⊂ Rn be disjoint point clouds, then

IPT(X ∪ Y ) = IPT(X) + IPT(Y ). (6)

Proof. It follows from the definition of the IPT that for all ξ ∈ Sn−1 and h ∈ R we have

IPT(X ∪ Y ) =
∑

x∈X∪Y

1x(ξ, h)

=
∑
x∈X

1x(ξ, h) +
∑
y∈Y

1y(ξ, h)

= IPT(X) + IPT(Y ).

(11)

The second equality uses that the intersection of X and Y is empty, implying that a point is either in
X or in Y .
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Theorem 2. Given two point clouds X,Y ⊂ Rn, the IPT is surjective for the rational linear subspace
spanned by IPT(X) and IPT(Y ), up to a rational scaling factor. In particular, for p, q ∈ N0 with
0 ≤ p ≤ q and q > 0 we have

p

q
IPT(X) +

q − p

q
IPT(Y ) =

1

q
IPT

(
Z
)
, (7)

where Z = ∪pX ∪q−p Y .

Proof. To show surjectivity, it suffices to show that for any rational linear combination of IPTs
there exists a point cloud Z ⊂ Rn that has an IPT equal to that linear combination, up to a rational
coefficient. This is to say that ∀α, β ∈ Q∃γ ∈ Q such that

αIPT(X) + βIPT(Y ) = γIPT(Z). (12)

Let α = p/q and β = r/s, then

qs

[
p

q
IPT(X) +

r

s
IPT(Y )

]
= spIPT(X) + qrIPT(Y )

= IPT(∪spX ∪qr Y ).

(13)

Thus, setting γ = 1/qs and Z = ∪spX ∪qr Y does the trick. We conclude that the IPT is surjective
on rational linear combinations. Let 0 ≤ p ≤ q, statement follows from the equalities

p

q
IPT(X) +

q − p

q
IPT(Y )

=
1

q

[
p IPT(X) + (q − p) IPT(Y )

]
=

1

q

[
IPT

(
∪p X

)
+ IPT

(
∪q−p Y

)]
=

1

q
IPT

(
∪p X ∪q−p Y

)
.

(14)
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