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ABSTRACT

Geometric problem solving constitutes a critical branch of mathematical reasoning,
requiring precise analysis of shapes and spatial relationships. Current evaluations of
geometric reasoning in vision-language models (VLMs) face limitations, including
the risk of test data contamination from textbook-based benchmarks, overemphasis
on final answers over reasoning processes, and insufficient diagnostic granularity.
To address these issues, we present GeoBench, a hierarchical benchmark featuring
four reasoning levels in geometric problem-solving: Visual Perception, Goal-
Oriented Planning, Rigorous Theorem Application, and Self-Reflective Backtrack-
ing. Through six formally verified tasks generated via TrustGeoGen, we systemati-
cally assess capabilities ranging from attribute extraction to logical error correction.
Experiments reveal that while reasoning models like OpenAI-o3 outperform gen-
eral MLLMs, performance declines significantly with increasing task complexity.
Key findings demonstrate that sub-goal decomposition and irrelevant premise filter-
ing critically influence final problem-solving accuracy, whereas Chain-of-Thought
prompting unexpectedly degrades performance in some tasks. These findings estab-
lish GeoBench as a comprehensive benchmark while offering actionable guidelines
for developing geometric problem-solving systems. Our benchmark and code are re-
leased at https://anonymous.4open.science/r/GeoBench-4BF4.

1 INTRODUCTION

Geometric Problem Solving (GPS) requires the integration of spatial understanding, theorem appli-
cation, and logical deduction to analyze shapes, angles, and their relationships (Xia et al., 2024a).
Tasks span from identifying basic properties of triangles to constructing complex multi-step proofs,
processes that demand rigorous reasoning rather than rote memorization. While recent multi-modal
large language models (MLLMs) (Zhang et al., 2024c; Gao et al., 2023) have achieved notable
success on geometric tasks, with some even surpassing human performance on benchmarks like
GeoQA (Chen et al., 2021), these results obscure critical flaws in evaluation practices that fail to
rigorously assess models’ holistic geometric reasoning capabilities.

Current benchmarks (Cao & Xiao, 2022; Lu et al., 2021; Zhang et al., 2025; Lu et al., 2024) predom-
inantly rely on problems sourced from public textbooks, creating risks of test data contamination
as models exploit memorized patterns rather than true reasoning. Furthermore, existing evaluations
focus narrowly on final answers, neglecting the logical processes such as theorem chaining and proof
generation that define geometric rigor. Most critically, the lack of diagnostic frameworks leaves
unresolved whether failures stem from weak spatial perception, inefficient theorem retrieval, or
limited error correction, stalling targeted advancements.

To address these challenges, we propose GeoBench, a hierarchical geometric reasoning benchmark
containing 1, 021 samples to overcome the limitations of existing geometric reasoning evaluations.
Grounded in the van Hiele model of geometric thinking (Vojkuvkova, 2012), our framework strat-
ifies reasoning into four hierarchical levels: (1) Visual Perception, which focuses on extracting
numerical and structural details from geometric diagrams; (2) Goal-Oriented Planning, requiring
decomposing problems into sub-goals and strategic sequencing of steps; (3) Rigorous Theorem Ap-
plication, demanding precise selection of theorems to ensure logical validity; and (4) Self-Reflective
Backtracking, identifying deviations in reasoning steps and iteratively correcting flawed logic.
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Figure 1: Overview of GeoBench: (1) Generation of formally verified geometry problems with
images, problems and reasoning graphs via TrustGeoGen (Fu et al., 2025), followed by (2) systematic
construction of hierarchical evaluation tasks through four reasoning capability levels.

Grounded in the proposed four-level evaluation framework, we first generate geometric problems
through TrustGeoGen (Fu et al., 2025) with all reasoning steps formally verified via symbolic proof
systems. Subsequently, we construct 1, 021 validated samples across six geometric reasoning tasks
based on the TrustGeoGen-generated problems and their associated reasoning graphs. As shown
in Fig. 1, these tasks systematically operationalize the hierarchical levels: Numerical Perception ex-
tracts quantitative attributes from diagrams, Structural Perception identifies geometric relationships,
Irrelevant Premise Filtering removes distracting conditions, Sub-Goal Decomposition breaks
problems into atomic steps, Theorem Selection filters inapplicable geometric theorems, and Faulty
Branch Localization prevents derailment into unproductive reasoning paths. By evaluating models
across this hierarchy, we dissect their geometric reasoning capabilities while correlating final-answer
accuracy with task-specific competencies.

Our experiments evaluated the capabilities of existing general multimodal LLMs and reasoning mod-
els on six geometry-related tasks, revealing varying performance levels. A general trend shows that
models exhibit declining performance as task difficulty increases, with reasoning models, particularly
OpenAI-o3 (OpenAI, 2025), showing the strongest overall capabilities. Furthermore, we investigated
the correlation between these six tasks and final problem-solving performance. Experiments on
the GeoBench dataset and the OOD GeoQA benchmark indicate that decomposing sub-goals and
eliminating irrelevant conditions play more critical roles in solving complex geometry problems,
providing insights for enhancing geometric reasoning abilities. Additionally, we examined the impact
of Chain-of-Thought (CoT) prompting on geometric task performance in general models. Contrary to
common intuition, CoT does not universally improve performance across all tasks, and even reduces
effectiveness in self-reflective backtracking tasks. These findings challenge conventional assumptions
about CoT’s applicability in geometric reasoning scenarios.

Our contributions are:

• Hierarchical Evaluation Framework: We propose GeoBench, a novel benchmark that system-
atically evaluates geometric reasoning across four progressive levels, enabling detailed diagnosis
of model capabilities beyond answer-only assessments.

• Key Reasoning Bottlenecks Identification: Our experiments reveal that sub-goal decompo-
sition and premise filtering critically determine complex problem-solving success, providing
actionable insights for improving geometric reasoning models.
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• Task-Specific Prompting Limitations: We observe that chain-of-thought prompting fails
in faulty branch localization tasks, suggesting potential interference when prompts contain
misleading reasoning steps, which may divert models from effective error correction.

2 RELATED WORK AND PRELIMINARIES

MLLMs for Geometric Problem-Solving. Recent advances in Multimodal Large Language Models
(MLLMs) (OpenAI, 2024a; 2025; Wu et al., 2024; DeepMind, 2025; Bai et al., 2025) have opened
new possibilities for geometric problem solving (GPS). While general MLLMs demonstrate strong
performance in vision-language tasks (Li et al., 2023; Xia et al., 2023; 2024b; Yang et al., 2024), their
application to GPS remains challenging due to visual-semantic discrepancies, insufficient reasoning
capacity, and lack of self-verification mechanisms, etc. Some works address these gaps by data-
driven: MAVIS (Zhang et al., 2024c) synthesizes 834K chain-of-thought trajectories to enhance
reasoning coherence, while G-LLaVA (Gao et al., 2023) leverages supermodel-guided annotation of
170K geometric solutions, both achieving superior performance over GPT-4o (OpenAI, 2024b) with
compact architectures. GeoX (Xia et al., 2024a) pioneers visual-formal language alignment, enabling
interpretable theorem verification through symbolic solvers. However, current works overemphasize
final answer correctness, calling for developing structured reasoning capacities (i.e., self-reflective
reasoning and theorem orchestration) to solve more advanced geometric problems.

Geometric Problem-Solving Benchmark. Existing benchmarks primarily collect geometry prob-
lems from middle and high school textbooks (Chen et al., 2021; Cao & Xiao, 2022; Lu et al., 2021;
Zhang et al., 2023; 2025; Lu et al., 2024; Zhang et al., 2024b). To mitigate annotation challenges
and data scarcity, synthetic dataset construction methods have emerged. GeomVerse (Kazemi et al.,
2023) enhances authentic problems through LLM-based augmentation, while other approaches (Fu
et al., 2025) generate synthetic data via formal language rules to prevent model-induced biases.
However, current evaluations focus on final answer accuracy, neglecting deeper analysis of reasoning
capabilities. Although GeomRel (Wang et al., 2025) assesses structural diagram comprehension and
GeoSense (Xu et al., 2025) examines theorem application patterns, their narrow scopes fail to system-
atically link subskills to overall problem-solving efficacy. Our GeoBench addresses these limitations
by evaluating four critical reasoning levels, as compared with existing benchmarks in Table 1.

Synthetic Geometry Problems Generation. TrustGeoGen (Fu et al., 2025) is a scalable, rule-
driven formal engine for generating synthetic geometry problems alongside verifiable solutions
and structured reasoning pathways. Built on a formal language framework, it integrates three
core components: constructions (defining geometric elements and premises, e.g., "isosceles
triangle ABC" implies AB=AC), states (logical propositions about geometric relationships),
and rules (deductive operations like triangle congruence or parallelism properties). Starting from
predefined base scenes (geometric configurations with numerical data), the engine iteratively expands
problems by applying constructions to derive initial premises, then progressively generates new states
via rule-based inference, forming a traceable reasoning graph from premises to reasoning objectives
with corresponding visualizations in Fig. 1.

3 METHODOLOGY

This section presents the construction process of GeoBench. In Sec. 3.1, we outline the preparatory
work for this benchmark—establishing a complete and correct reasoning chain. Additional details,
including the hierarchical evaluation framework, data distribution analysis, and problem difficulty
assessment, are presented in Sec. 3.2, 3.3, and 3.4, respectively.

3.1 INPUT DATA PREPARATION

For a concrete approach, without loss of generality we use TrustGeoGen as our preliminary data
engine to obtain geometric diagrams, problems, and their corresponding reasoning graphs through
TrustGeoGen as preliminary input. Specifically, TrustGeoGen initiates with a random base scene
comprising base premises. Through iterative construction augmentation, the engine constructs
complex geometries by expanding the premises, where each newly introduced premise maintains
topological consistency with existing elements validated by the compiler (Sicca et al., 2024). The
premise set can be defined as P = {pri , pnj }, where pri defines geometric relationships (e.g., points
A B C are collinear) and pnj specifies numerical parameters (e.g., AB=3). TrustGenGen then

3
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Table 1: Comparison with Geometric Problem-Solving benchmarks. "F.A." is abbreviated as "Final
Answer", explicitly emphasizing the verification of the problem’s final result. "V.P.", "G.P.", "R.T.A.",
and "S.B." denote "Visual Perception", "Goal-Oriented Planning", "Rigorous Theorem Application",
and "Self-Reflective Backtracking" respectively, denoting four-level capability evaluation in GPS.

Datasets Size Language Level F.A. V.P. G.P. R.T.A. S.B.

GeoQA (Chen et al., 2021) 754 EN&CH Middle School ! % % % %

GeoQA+ (Cao & Xiao, 2022) 755 EN&CH Middle School ! % % % %

Geometry3K (Lu et al., 2021) 601 EN Middle School ! % % % %

PGPS9K (Zhang et al., 2023) 1,000 EN Middle School ! % % % %

GeoEval (Zhang et al., 2025) 2,000 EN&CH Middle&High School ! % % % %

GeomVerse (Kazemi et al., 2023) 2,000 EN Synthetic ! % % % %

MathVista (Lu et al., 2024) 5,487 EN Middle School ! % % % %

MathVerse (Zhang et al., 2024b) 2,612 EN High School ! % % % %

GeomRel (Wang et al., 2025) 2,629 EN Synthetic % ! % % %

GeoSense (Xu et al., 2025) 1,789 EN&CH Synthetic ! % % ! %

GeoBench(ours) 1,021 EN Synthetic ! ! ! ! !

leverages a predefined set of geometric theorems to infer new states from premises, formulating a
complete reasoning graph:

G = (P, S,R, ↪→) (1)

• P represents initial premises from the geometric constructions.

• S denotes the state collection where each element s ∈ S corresponds to a derived conclusion in
reasoning graph.

• R is the set of deductive rules, with each r ∈ R defines the logic coherence among states.

• ↪→⊆ (S ∪ P )×R× S = {(Sr, r, s
′) | Sr ⊂ (S ∪ P ), r ∈ R, s′ ∈ S}. The notation Sr

r
↪−→ s′

formalizes the derivation of state s′ by applying rule r to states subset Sr.

Goal-oriented Reasoning Path. To derive the reasoning path for target state st (final solution / proof
state in geometric problems), TrustGeoGen systematically constructs backward transitions in the
complete reasoning graph G to get the goal-oriented reasoning path:

P = {(Si−1, rs, s) | ∀s ∈ Si, Si−1
rs
↪−→ s, i = n, . . . , 1} (2)

where each triplet (Si−1, rs, si) captures rule application rs generating state si from antecedent states
Si−1. The process initiates from target state st ∈ S and iteratively traces upstream transitions through
rule dependencies until every initial state participating in G is rigorously encapsulated within the
premise set P , formally satisfying S0 ⊆ P where S0 := Si−1 | i = 1.

3.2 HIERARCHICAL EVALUATION FRAMEWORK

Inspired by the van Hiele model (Vojkuvkova, 2012), we categorize the geometry problem-solving
capabilities into four hierarchical levels comprising six specific tasks. All data are derived from
geometry problems, visual diagrams, and corresponding reasoning graphs generated by TrustGeoGen.
For each task, we construct answer choices in a multiple-choice format with one correct option and
three carefully designed distractors. The developed GeoBench provides a comprehensive evaluation
of MLLMs’ geometric reasoning abilities through systematically designed question-answer pairs.

3.3 DATA DISTRIBUTION ANALYSIS

Details about GenBench. Based on the aforementioned methodology, GenBench incorporates six
tasks corresponding to four difficulty levels, comprising a total of 1, 021 question-answer pairs, which
aligns with the typical scale of specialized geometric reasoning benchmarks shown in Table 1. The
quantitative distribution of these tasks is presented in Table 2. Among the geometric problem-solving
objectives, 285 require numerical solutions while the remaining 736 are proof-based. Through
TrustGeoGen implementation, we employed 76 geometric constructions, 42 deduction rules, and
curated 40 base scenarios, covering most real-world geometric problem scenarios. Additional details
are provided in the Appendix C.
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Figure 2: Data Distribution Comparison between GeoBench and GeoQA Chen et al. (2021).

Table 2: Data amount distribution across six tasks in GenBench.

Total Numerical
Perception

Structural
Perception

Irrelevant Premise
Filtering

Sub-Goal
Decomposition

Theorem
Selection

Faulty Branch
Localization

1021 168 135 200 200 171 147

Comparison with OOD Benchmark. To understand the distributional characteristics of GeoBench,
we visualize datasets of images and solutions using t-SNE (Van der Maaten & Hinton, 2008) compared
with GeoQA (Chen et al., 2021).

1) Image-Level. As shown in Fig. 2a, the images embeddings form GeoBench and those from
GeoQA form largely disjoint clusters, with our GeoBench being significantly wider spread. This
indicates that GeoBench covers a more diverse set of visual pattens, reflecting a broader and more
comprehensive range of problem instances.

2) Solution-Level. We perform a similar t-SNE(Van der Maaten & Hinton, 2008) analysis on
solutions1, as shown in Fig. 2b, the GeoBench and GeoQA show small overlap. Notably, the
GeoBench solutions are more dispersed and span a larger region of the embedding space. Furthermore,
we complement this geometric analysis with quantitative comparisons of solution token lengths
between the benchmarks. As demonstrated in Fig. 2c, GeoQA solutions exhibit significantly shorter
token sequences (maximum 189) compared to GeoBench’s solutions, which predominantly maintain
thousand-token-scale complexity that underscores GeoBench’s heightened solving complexity.

3.4 PROBLEMS DIFFICULTY ASSESSMENT

we evaluate geometric problems from GenBench alongside three real-world benchmarks (GeoQA,
Geometry3K, and OlympiadBench-Geo (Zhang et al., 2024a)) across multiple reasoning models.
Experimental results are presented in Table 3, demonstrating that model performance on GenBench is
slightly weaker than that on OlympiadBench-Geo (Olympiad-level), therefore empirically indicating
that the complexity and difficulty of synthetic problems in GeoBench have surpassed the middle-
school difficulty tiers and generally fall within the elite problem-solving tiers.

Table 3: Evaluation results on real-world datasets.

GeoQA
(mid-school level)

Geometry3K
(mid-school level)

OlympiadBench-Geo
(Olympiad level)

GeoBench-solving
(ours)

Qwen2-VL-7b 36.34% 24.46% 7.14% 4.17%

GPT-4o 42.31% 31.45% 13.39% 22.08%

Gemini-2.5-pro 79.58% 80.70% 75.00% 49.58%

4 EXPERIMENTS

In this section, we evaluate state-of-the-art multimodal large models on GeoBench and investigate
the following research questions through experimental results:

1Here, solution refers to the solving or proving process targeting geometric objectives, rather than the
responses to the six tasks in GeoBench

5
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Table 4: Performance of state-of-the-art multi-modal language models on 6 tasks, which are divided
into four difficulty levels. "N.P.", "S.P.", "I.P.F.", "S.D.", "T.S.", "F.B.L." correspond to tasks
Numerical Perception, Structural Perception, Irrelevant Premise Filtering, Sub-Goal Decomposition,
Theorem Selection and Faulty Branch Localization respectively. ∆ denotes accuracy gain versus
random choice and / blocks indicate performance above/below random guessing.

Model
Level 1 Level 2 Level 3 Level 4

N.P. S.P. I.P.F S.D. T.S. F.B.L.
acc ∆ acc ∆ acc ∆ acc ∆ acc ∆ acc ∆

Random Choices 24.64% - 25.78% - 26.15% - 24.55% - 25.57% - 25.71% -

General MLLMs
LLaVA-1.5-7b [13]2 28.57% +3.93% 25.19% -0.59% 24.50% -1.65% 19.00% -5.55% 26.80% +1.23% - -
LLaVA-1.5-13b [13] 25.00% +0.36% 24.44% -1.34% 30.00% +3.85% 32.50% +7.95% 26.80% +1.23% - -
LLaVA-OV-7b [11] 58.93% +34.29% 22.96% -2.82% 26.50% +0.35% 33.00% +8.45% 16.49% -9.08% - -
Qwen2-VL-7b [24] 54.17% +29.53% 18.52% -7.26% 27.00% +0.85% 36.00% +11.45% 23.71% -1.86% 17.69% -8.02%
Qwen2-VL-72b [24] 86.31% +61.67% 29.63% +3.85% 31.00% +4.85% 60.50% +35.95% 37.11% +11.54% 21.77% -3.94%
Qwen2.5-VL-7b [2] 87.50% +62.86% 18.52% -7.26% 32.00% +5.85% 41.00% +16.45% 37.11% +11.54% 25.17% -0.54%
Qwen2.5-VL-72b [2] 85.71% +61.07% 40.74% +14.96% 38.50% +12.35% 77.00% +52.45% 47.42% +21.85% 26.53% +0.82%
GPT-4o [18] 66.67% +42.03% 22.96% -2.82% 44.00% +17.85% 57.50% +32.95% 35.09% +9.52% 23.81% -1.90%
GPT-4V [16] 51.79% +27.15% 34.81% +9.03% 35.50% +9.35% 57.50% +32.95% 38.01% +12.44% 27.89% +2.18%
DeepSeek-VL2 [28] 66.07% +41.43% 25.19% -0.59% 27.00% +0.85% 36.00% +11.45% 23.98% -1.59% 22.45% -3.26%

Reasoning MLLMs
QvQ-72b [20] 61.31% +36.67% 27.41% +1.63% 29.50% +3.35% 59.00% +34.45% 44.33% +18.76% 18.37% -7.34%
OpenAI-o1 [17] 75.00% +50.36% 65.19% +39.41% 61.50% +35.35% 77.00% +52.45% 53.22% +27.65% 27.89% +2.18%
OpenAI-o3 [19] 80.95% +56.31% 74.81% +49.03% 70.00% +43.85% 91.00% +66.45% 54.39% +28.82% 22.45% -3.26%
Claude-3.7-sonnet [1] 87.50% +62.86% 46.67% +20.89% 52.50% +26.35% 67.50% +42.95% 45.03% +19.46% 21.77% -3.94%
Gemini-2.5-pro [6] 80.95% +56.31% 60.00% +34.22% 74.00% +47.85% 87.00% +62.45% 45.03% +19.46% 18.37% -7.34%
DeepSeek-R13 [7] - - - - 57.50% +31.35% 82.00% +57.45% 41.52% +15.95% 21.77% -3.94%

• How do current MLLMs perform in geometric reasoning across different hierarchical levels?

• Which geometric reasoning abilities are more indicative of a multimodal model’s problem-
solving proficiency in geometry?

• Can the evaluation results from GeoBench generalize to OOD geometric test sets?

• Is Chain of Thought (CoT) truly effective for geometric reasoning tasks?

4.1 DATASETS, METRICS AND IMPLEMENTATION DETAILS

Datasets. As written in Sec. 3, we divide geometric reasoning capabilities into four levels and use
TrustGeoGen to generate six specialized geometric tasks covering all levels. Each instance consists
of a multiple-choice question, including a natural language problem description, one correct option,
and three incorrect options. Regarding answer validation, we confirm that our dedicated team of
eight doctoral researchers and PhD candidates, all possessing strong mathematical competencies,
performed comprehensive cross-verification.

Metrics. For General MLLMs, we adjust the prompt to have models output option indices directly.
For Reasoning MLLMs, which generate reasoning processes, we specify an output format in the
prompt that requires placing the deduced option index within \boxed{} brackets. After extracting
answers, we calculate the accuracy(acc) for each task and compare it with the baseline model (random
choices) to derive relative performance difference(∆).

Implementation Details. We conducted all inference evaluations of open-source models on 8
NVIDIA A100 (80G) GPUs, while performing evaluations of proprietary models on CPUs.

4.2 PERFORMANCE ON ALL 4 LEVELS

In Table 4, the results on the GeoBench reveal that MLLMs possess a certain level of reasoning
capability in solving geometric problems, with performance generally declining as the difficulty level
increases. Among the existing open-source models, the evaluation results of the LLaVa-1.5 (Liu et al.,
2024) series are comparable to random selection, indicating relatively weak geometric perception
and reasoning abilities. The LLaVa-OV-7b (Li et al., 2024) model only slightly outperforms others in
Level 1 (Visual Perception) tests. Other models demonstrate strong performance in Level 1 and Level
2 (Goal-Oriented Planning), with modest improvements over baseline models in Level 3 (Rigorous
Theorem Application). Comparative analysis suggests that as model parameters increase and versions
advance, genuine geometric reasoning capabilities also improve.

2LLaVA-1.5 series models cannot be evaluated on the F.B.L. task due to input token length limitations.
3Since DeepSeek-R1 is a text-only model, it cannot be tested on Level 1 visual tasks. For all other tasks,

visual conditions are fully provided in textual descriptions.
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Table 5: Comparative performance state-of-the-art multi-modal language models on 6 tasks in
GeoBench, with final answer accuracy on GeoBench-solving, GeoQA and Geometry3K datasets.

Model
Level 1 Level 2 Level 3 Level 4 GeoBench-

solving GeoQA Geometry3KN.P. S.P. I.P.F. S.D. T.S. F.B.L.
General MLLMs

LLaVa-1.5-7b [13] 28.57% 25.19% 24.50% 19.00% 26.80% - 2.50% 17.11% 1.16%
LLaVa-1.5-13b [13] 25.00% 24.44% 30.00% 32.50% 26.80% - 3.75% 18.57% 2.33%
Qwen2-VL-7b [24] 54.17% 18.52% 27.00% 36.00% 23.71% 17.69% 4.17% 36.34% 24.46%
Qwen2-VL-72b [24] 86.31% 29.63% 31.00% 60.50% 37.11% 21.77% 10.83% 55.70% 34.44%
Qwen2.5-VL-7b [2] 87.50% 18.52% 32.00% 41.00% 37.11% 25.17% 11.67% 54.64% 35.94%
Qwen2.5-VL-72b [2] 85.71% 40.74% 38.50% 77.00% 47.42% 26.53% 17.50% 67.90% 48.42%
GPT-4o [18] 66.67% 22.96% 44.00% 57.50% 35.09% 23.81% 22.08% 42.31% 31.45%
GPT-4v [27] 51.79% 34.81% 35.50% 57.50% 38.01% 27.89% 19.17% 35.94% 20.63%

Reasoning MLLMs
QvQ-72b [20] 61.31% 27.41% 29.50% 59.00% 44.33% 18.37% - 61.67% 45.09%
OpenAI-o1 [17] 75.00% 65.19% 61.50% 77.00% 53.22% 27.89% 48.33% 75.83% 71.29%
OpenAI-o3 [19] 80.95% 74.81% 70.00% 91.00% 54.39% 22.45% 53.33% 83.33% 80.20%
Gemini-2.5-pro [6] 80.95% 60.00% 74.00% 87.00% 45.03% 18.37% 49.58% 79.58% 80.70%
Claude-3.7-Sonnet [1] 87.50% 46.67% 52.50% 67.50% 45.03% 21.77% 35.42% 49.73% 33.28%

Table 6: Spearman correlation (ρ) among six tasks and final-answer evaluation.

N.P. S.P. I.P.F. S.D. T.S. F.B.L.
with GeoBench-Solving 0.40351 0.75657 0.97902 0.88772 0.82954 0.49561
with GeoQA 0.65859 0.67181 0.74945 0.93392 0.84896 0.50057
with Geometry3K 0.59780 0.64374 0.71429 0.88981 0.81932 0.38122

Proprietary commercial models (e.g., OpenAI-o3 (OpenAI, 2025)) exhibit stronger reasoning abilities,
achieving 91.00% accuracy in S.D. task and 54.39% accuracy in T.S. task where other models gener-
ally perform poorly. Additionally, Reasoning MLLMs consistently outperform General MLLMs in
evaluations, confirming their superior reasoning capabilities in geometric problem-solving. Finally, all
evaluated MLLMs exhibited severe limitations in F.B.L. performance. The highest accuracy achieved
by OpenAI-o1 (OpenAI, 2024a) reached merely 27.89%, a statistically insignificant improvement
compared to the 25.71% baseline of random choices.

4.3 CORRELATION AMONG TASK-SPECIFIC CAPABILITIES AND FINAL-ANSWER
PERFORMANCE

To investigate which geometric reasoning abilities have a greater impact on the performance of
MLLMs in solving geometric problems, as detailed in Table 5, we validate the final answer on
GeoBench-solving: the preliminary set of 285 geometric problem-solving questions with numeric
answer from GeoBench. For each task, we constructed a feature vector Xi based on the test results
across different MLLMs and computed the Spearman Correlation Coefficient (De Winter et al., 2016)
between Xi and the GeoBench-solving vector Y to analyze the influence of each task on GPS ability.

The Spearman Correlation Coefficient (ρ) is a rank-based measure that indicates the direction and
strength of the relationship between an independent variable X and a dependent variable Y . Its value
ranges from [−1, 1], where values closer to 1 or −1 indicate a stronger correlation. As observed
in Table 6, the first six tasks exhibit a positive correlation with GeoBench-solving results, meaning
that stronger geometric reasoning abilities correspond to better problem-solving performance. Among
them, task I.P.F., S.D., and T.S. show the strongest correlations, followed by S.P. and N.P., with F.R.L.
having the weakest correlation. This finding confirms that Sub-Goal Decomposition, Irrelevant
Premise Filtering, and Theorem Selection abilities significantly influence MLLMs’ geometric
problem-solving capabilities.

4.4 ANALYSIS ON OUT-OF-DISTRIBUTION DATASET

To validate the out-of-distribution (OOD) generalization ability, we evaluated the geometric problem-
solving performance of MLLMs on GeoQA and Geometry3K (see Table 5) and further computed the
Spearman correlation coefficients between each task and the GeoQA, Geometry3K evaluation results
(in Table 6). The correlation analysis reveals that task S.D. and T.S. exhibit the strongest correlations,
followed by I.P.F., then N.P. and S.P., with F.B.L. showing the weakest correlation. This trend remains
consistent across GeoQA, Geometry3K, and GeoBench-solving, collectively confirming the robust
out-of-distribution generalization capability intrinsic to GeoBench. By leveraging our benchmark,
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Figure 3: Performance comparison w/ & w/o Chain-of-Thought (CoT) across six tasks in GeoBench.

we confirm that the improvement in MLLMs’ geometric reasoning abilities is genuine and not merely
a result of overfitting to the answer patterns in GeoQA or Geometry3K.

4.5 APPLICABILITY OF CHAIN-OF-THOUGHT PROMPTING

To enhance the reasoning capabilities of General MLLMs, we explored the optimization of prompts
using Chain-of-Thought (CoT) (Wei et al., 2022) methodology, which yielded intriguing findings.
Specifically, we conducted ablation studies on the Qwen series (Wang et al., 2024; Bai et al.,
2025) of large models as well as GPT-4o (OpenAI, 2024b), evaluating their performance across
six tasks with both CoT-enhanced prompts and non-CoT prompts. In the CoT condition, models
were prompted with the instruction "let’s think step by step", which elicited detailed
reasoning processes from the models. Conversely, in the non-CoT condition, the prompt "only
output the answer" was employed, restricting the models to provide answers without explicit
reasoning steps. Additional details regarding the prompt construction and implementation are
provided in Appendix D.

The experimental results are visualized in the line chart presented in Fig. 3. Analysis of the trend
lines reveals that the CoT approach demonstrates marginally superior performance compared to
the non-CoT method in tasks S.P., I.P.F., and S.D., while showing inconsistent results in N.P. and
T.S. tasks. Notably, the results of F.B.L. task indicate a systematic underperformance of the CoT
method relative to its non-CoT counterpart, suggesting that CoT is ineffective for this particular task -
specifically, it fails to enhance the models’ Faulty Branch Localization capability.

Upon closer examination, we hypothesize that this phenomenon may be attributed to the presence of
erroneous reasoning chains in F.B.L. task prompts. These misleading cues could potentially interfere
with the reasoning processes of general MLLMs when handling complex geometric problem-solving
tasks. This observation suggests a nuanced perspective: While CoT can enhance model performance
under certain conditions, its effectiveness for geometric reasoning appears contingent on information
reliability. Specifically in complex geometric scenarios, our findings indicate that CoT methodology
might not consistently improve performance across general MLLMs, revealing important limitations
regarding its application in mathematically rigorous domains.

4.6 LIMITATION STUDIES AND OUTLOOK

To investigate the limitations of GeoBench, we conducted a failure analysis on six distinct tasks. For
the N.P. and S.P. tasks, complex geometric diagrams occasionally led to perceptual inaccuracies
in large models. Specific issues included: difficulty in determining which line segment length was
indicated by numerical labels (Fig. 4a), and failure to recognize collinearity among three points
(Fig. 4b). In the I.P.F. task (Fig. 4c), large models generated incorrect intermediate geometric
conclusions and demonstrated misinterpretations of problem descriptions. Regarding the S.D. task
(Fig. 4d), models incorrectly identified redundant information as relevant and introduced hallucinated
intermediate conditions not present in the original problem. For the T.S. task (Fig. 4e), models derived
erroneous conclusions based on incomplete or partial evidence. In the F.B.L. task (Fig. 4f), MLLMs
predominantly identify factual errors in reasoning steps (i.e., incorrect single-step deductions, which
do not occur in our dataset) rather than detecting directional errors (i.e., steps that deviate from the
final goal), which is our primary focus.
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Description:
Please observe this geometry problem image. What 

numerical information can you obtain from the image?

(1) CB=2;

(2) CY=2;

(3) CA=5;

(4) CB=4

Prediction:
(1) CB = 2 

The only segments in the drawing that carry the 

explicit label “2” are CA and the radius of the 

blue circle. ...(1) is false. 

...

(4) CB = 4 

Side CB is not marked with “2”; moreover ...(4) 

the one that matches the figure. 

\boxed{4}

B

E

C

A

D

F

G

H

I

2

2

(a) N.P.

Description:
Please observe this geometry problem image. What 

structural information can you obtain from the 

image?

(1) E, G, I are collinear;

(2) EFG are not sameclock to EGI;

(3) C, E, F are collinear;

(4) B, D, F are collinear

Prediction:
From inspection of the diagram:

• (1) (2) (3) ...

• (4) is false, as B–D is an edge of the 

quadrilateral, and F is not on it. 

Hence the correct choice is 

\[\boxed{2}.\]

A

B

C

D

F

E

H

G

I

19

(b) S.P.

Description:
Consider the following geometric problem: [...] 

Based on this construction, given the following 

premises: [...] Based on these premise, derive the 

conclusion: From seven points A, D, D, F, C, E, E, 

builds G, a point such that AD/DF = CE/EG. Which of 

the following premises are not necessary to reach 

this conclusion?

(1) AB = 11/1

(2) ∠(AB,BC) = 9pi/11
(3) AG ⟂ DF

(4) AB = CD

Prediction:
The conclusion we have to reach is  ...

Examining the four quoted premises one by one:

(1)... 

(2) ∠(AB,BC) = 9π/11 
Fixes the actual position of C (and therefore of D 

and E), i.e. it is needed to have a concrete 

triangle ABC; ...

(3) AG ⟂ DF 

... Thus this perpendicularity is not an 

independent piece of information; it can be proved 

from the construction itself and never has to be 

assumed.

(4) ...

Therefore ...\boxed{3}

AB

E

G

H

F

C D

11

11

(c) I.P.F.

Description:
Consider the following geometric problem: [...] 

Based on this construction, to arrive at the 

conclusion: From seven points B, L, G, L, D, I, D, 

builds G, a point such that BL/GL = DI/DG. Which 

of the following premises are necessary to reach 

this conclusion?

(1) BL = CL ; CL:FL = EI:EG

(2) BL = CL ; BK = CL ; BH:AG = DL:IL

(3) BL = CL ; DI = EI ; BI = DL ; BH:AG = DL:IL ; 

BK = CL

(4) BL = CL ; DI = EI ; CL:FL = EI:EG ; DG:EG = 

GL:FL

Prediction:
• (2) and (3) are wrong ...

• (4) is true but it contains several superfluous 

facts (DI=EI, DG:EG=GL:FL) that are **not 

required** for proving BL / GL = DI / DG. 

• (1) ... 1. BL = CL, 2. CL : FL = EI : EG. 

From these two facts together with the immediate 

consequences of the construction (GL=FL and 

DI=EI=DG=EG) one obtains BL / GL = CL / FL = EI / 

EG = DI / DG. Thus the conclusion follows and no 

premise is redundant.

Hence the only correct option is \boxed{1}

A
D

E

I H

C

FG

K
L

M

B

J

6

(d) S.D.

F

D

A

B

C
E

O

G

4

Description:
From nothing, adds point O with random coordinates. 

[...] Solve that: Points D, E, and F are collinear. 

Which rule was not used to solve this problem? 

(1) Overlapping parallels: [...]

(2) Central angle vs inscribed angle I: [...]

(3) Thales theorem II: [...]

(4) Isosceles triangle equal angles: [...]

Prediction:
The proof that the three points D, E and F are 

collinear needs

• the equality of the base‐angles in the isosceles 
triangle GED (option 4);

• the tangent/inscribed–angle relations in the two 

circles involved, i.e. a central-vs-inscribed-

angle argument (option 2);

• and the basic proportionality coming from a pair 

of parallel segments obtained with Thales’ theorem 

(option 3).

No step of the proof requires the special 

“overlapping-parallels” remark that “if two 

parallel lines intersect they coincide” (option 1).

\\boxed{1}

(e) T.S.

A

B

C

D
E

F

1

Description:
I was solving a mathematical problem but made a 

mistake during the process, which caused me to 

fail in solving it. Here's the problem: [...] 

Based on this construction, solve that: [...] 

These are my reasoning steps: [...] 004. AC = BC , 

A, B, C are not collinear  (r13 Isosceles 

triangle equal angles)=> ∠(AB,AC) = ∠(BC,AB) 005. 
AD = AF , A, D, F are not collinear  (r13 

Isosceles triangle equal angles)=> ∠(AD,DF) = 
∠(DF,AF) [...] Could you please tell me at which 
step I started to go wrong?

(1) Step007

(2) Step004

(3) Step006

(4) Step005

Prediction:
The first incorrect assertion is made in Step005.

Explanation:

• Step004 is valid – AC = BC because C was 

constructed as the vertex of an isosceles 

triangle on base AB.

Because Step005 is already wrong, ...\\boxed{4}

(f) F.B.L.

Figure 4: Failure cases (some question descriptions and prediction content omitted for space limit).

Our next efforts will focus on incorporating these tasks into future evaluation frameworks for
more complex geometric problem-solving scenarios, where we anticipate it may yield meaningful
performance metrics.

5 CONCLUSION

Our work establishes GeoBench as a diagnostic framework for rigorously evaluating geometric
reasoning through four hierarchical capability levels. Experimental analyses on MLLMs reveal two
critical bottlenecks: Sub-Goal Decomposition and Irrelevant Premise Filtering significantly impact
complex problem-solving success, while Chain-of-Thought prompting exhibits task-specific limita-
tions, particularly impairing Self-Reflective Backtracking. These findings challenge the assumption
of universal CoT efficacy in geometric reasoning and highlight the necessity of structured evaluation
beyond final-answer metrics. The GeoBench framework provides actionable pathways for advancing
geometric reasoning through targeted capability enhancement. Future work should expand task
diversity while rigorously refining structured evaluation protocols for mathematical precision.
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Ethics Statement. Our proposed GeoBench may ultimately find applications in the field of educa-
tional technology, such as in intelligent tutoring systems. We are committed to advancing this work
responsibly, with the objective of assisting human learning and fostering interest in mathematics,
rather than replacing deep human reasoning and creative thinking. We will refrain from pursuing
any applications that could potentially facilitate academic misconduct, such as automated problem-
solving for cheating purposes. Besides, we will avoid using language that might lead to public
misunderstanding or excessive hype (claims like "AI has surpassed human mathematical abilities").
Instead, we will accurately and objectively delineate the MLLMs’ capabilities, emphasizing that its
current performance is primarily evaluated within specific, controlled synthetic environments.

Reproducibility Statement. The complete source code and the full evaluation dataset have been
made publicly available at the anonymous link: https://anonymous.4open.science/r/
GeoBench-4BF4. Furthermore, both the code and the data will be open-sourced in the future.
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A DECLARATION OF AI USE

We utilized large language models, including DeepSeek-V3, GPT-4, and Gemini, to assist with the
writing process by:

• Translating technical terms into idiomatic English.

• Correcting grammatical errors and improving sentence fluency.

• Polishing the overall wording.

We assure that ideas, methods, code implementations, experiments, analyses, and conclusions are
done by human researchers ourselves.

B LIMITATIONS AND BROADER IMPACT

B.1 LIMITATIONS

In this work, we propose GeoBench, a novel benchmark that systematically evaluates geometric
reasoning across four progressive levels. Currently, our geoBench is only applicable to planar
geometry, as the utilized data engine TrustGeoGen and generation pipeline are designed specifically
for 2D geometric problems. To extend the benchmark to 3D geometric structures, new spatial rules
and formal definitions tailored to three-dimensional settings would need to be introduced, marking a
promising direction for future research.

B.2 BROADER IMPACT

GeoBench aims to reshape the evaluation paradigm for geometric reasoning in large multimodal
language models by shifting the focus from answer correctness to reasoning fidelity. This benchmark
provides a standardized, verifiable framework for diagnosing fine-grained reasoning failures, which
may inform the design of educational technologies, tutoring systems, and trustworthy models in
mathematics. Furthermore, our task decomposition reveals the intelligence demands required at
different levels of geometric abstraction, offering insights for geometric reasoning improvement and
mathematical curriculum design.

Importantly, we recognize existing score-centric benchmarks could risk overfitting models to
benchmark-specific reasoning templates, thereby reinforcing narrow optimization rather than general
geometric understanding. To mitigate this, we propose the multi-dimensional GeoBench, advocating
that future applications should prioritize diversity, such as image perception, problem formulations,
and reasoning paths. Ultimately, GeoBench contributes toward building more interpretable and
cognitively aligned models capable of solving geometry problems rigorously and systematically.

C EXPERIMENTAL DETAILS

C.1 EVALUATION PROMPT

In this section, we will provide detailed prompt templates along with examples. Fig. 5 illustrates the
basic structure of the prompt template, which consists of the following components: 1) Problem NL;
2) Question; 3) Multiple-choice task description; 4) Options; and 5) Output instructions.

Here, Problem NL refers to the natural language description of the problem. The output instructions
are further divided into two variants: with and without Chain-of-Thought (CoT). Fig. 5a demonstrates
the prompt without CoT, while Fig. 5b presents the prompt incorporating CoT.

C.2 MODEL NAME

In this section, we provide a list of model names corresponding to selected MLLMs that employ API
calls for inference, as shown in Table 7.
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<Problem NL> + <Question> +

"The following will present four numerically 

labeled options, including one correct option 

and three incorrect options. Please verify the 

contents of options (1) to (4) in sequence to 

determine whether they meet the problem's 

requirements, i.e., whether they are correct. 

Finally, output the serial number of the 

correct option.

The options are as follows:

(1) ...

(2) ...

(3) ...

(4) ...

When outputting, only provide the serial number 

without the text following it. Represent the 

serial number using parentheses + a digit, e.g., 

(1), (3), etc.

Please note, only output the answer, without 

any thought process or additional information."

(a) w/o CoT

<Problem NL> + <Question> +

"The following will present four numerically 

labeled options, including one correct option 

and three incorrect options. Please verify the 

contents of options (1) to (4) in sequence to 

determine whether they meet the problem's 

requirements, i.e., whether they are correct. 

Finally, output the serial number of the 

correct option.

The options are as follows:

(1) ...

(2) ...

(3) ...

(4) ...

Please think step by step, output the reasoning 

process, and select the single correct answer. 

Represent the answer as a number in parentheses 

(1-4) and enclose it in \boxed{}. Note that the 

correct answer must be a single choice between 

1 and 4; do not output more or fewer answers, 

and do not output 'None' as an answer. For 

example, ...\boxed{(2)}, ...\boxed{(4)}, etc."

(b) w/ CoT

Figure 5: Prompts Format

Table 7: Model Names for MLLMs employing API Calls

Model Model Name
GPT-4o gpt-4o
GPT-4V gpt-4-1106-preview
OpenAI-o1 o1-2024-12-17
OpenAI-o3 o3-2025-04-16
Claude-3.7-sonnet claude-3-7-sonnet-20250219
Gemini-2.5-pro gemini-2.5-pro-exp-03-25
DeepSeek-R1 deepseek-r1

C.3 ANSWER EXTRACTION

To compute the multiple-choice question accuracy(acc) of MLLMs, it is necessary to extract the
model’s predicted answers from its reasoning outputs for comparison with the ground truth.

For General MLLMs not employing the CoT approach, we instruct them to output only the answer
choice following the prompt template in Sec. C.1. Empirical observations confirm that these models
consistently comply by generating only a single option identifier. We therefore directly compare their
raw outputs with the ground-truth labels for accuracy evaluation.

For Reasoning MLLMs or General MLLMs utilizing the CoT method, the model outputs a complete
reasoning process before generating the final answer. Therefore, we first employ the large language
model to extract the answer from the reasoning output, then match substrings in the form of (1),
(2), etc., and compare them with the ground-truth labels to compute accuracy.

D DETAILS OF GEOBENCH EVALUATION SET

D.1 VISUALIZATION EXAMPLE OF DIFFERENT TASK

In this section, as illustrated in Fig. 6 and Fig. 7, we provide a comprehensive description of the four
levels and six exemplary instances of geometric problems, along with sample option descriptions, in
greater detail.
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D.2 RULES USED

This section presents the complete set of geometric rules utilized by TrustGeoGen to construct reason-
ing graphs and those applied in GeoBench Task 5 (Theorem Selection). All rules are systematically
categorized and listed in Table 8 and Table 9. These rules define the foundational logic for geometric
reasoning within our benchmark framework.

Please observe this geometry problem image. 

What numerical information can you obtain 

from the image?

(1) AB=1;

(2) AB=6;

(3) AB=2;

(4) BM=1

A

B

C

D
F

E
1

(a) Numerical Perception

                                                      

               

 

 

 

 

  

  

 

 

 

 

  

   

 

 

 

 

 

  

   

 

                  
                    
                     
                      
                    
                     
                 

            

                                 

         
               

              
              

           
        

         

                           

                                                                                                                                                                        

  

                    
                        
               
                    
                      

                        
                       

 

 

 

 

 

 

 

 

  

  

  

                             
                               
                    
                
      

        
         

  

                           

                            

  

                                 
                                   
                                
                                   
                               

                               

                                 
            
                 
                                 
                          

                             

  

  

                                 
                                       

                            

                                     
                      
                                  
            
                                         
            
                                     
                      

                
                     
                   
                    
                   
                    
                    
          
             
                 
                      
    
                     
            

               

                                                         

      

           

 

 

 

                 
               
           
               
           

 

       

              

               

              

                            
                                
                            

                           

                            
                                
                            

                           

 

                                 
                                 
                           
                               

                                
                              

                                   

                                 
                                 
                           
                               

                                
                              

                                   

       
        

  

       
        

 

Please observe this geometry problem image. 

What structural information can you obtain 

from the image?

(1) B, C, E are collinear;

(2) A, B, F are not collinear;

(3) D, E, G are collinear;

(4) A, B, C are collinear

(b) Structural Perception

Consider the following geometric problem: A geometric construction 

is given as follows: From nothing, adds point A with random 

coordinates. From a point A, builds B with an integer distance 13 

from A to B. From two points A, B, with A different from B, builds 

C, D, the other two vertices of a square with side AB. From non-

collinear points D, A, B, creates E the center of the circle 

through D, A, B. From four points C, B, A, D, such that C is 

neither B nor A, and such that A and D are distinct, builds F, G, 

H, I on a pair of lines FG and HI that are simultaneously tangent 

to both the circle of center C through B and the circle of center 

A through D. F and H are the tangent points on the circle centered 

at C through B, and G and I are the tangent points on the circle 

centered at A through D. From two points D, G, with D different 

from G, builds J, K, the other two vertices of a square with side 

DG. Based on this construction, given the following premises: AB ⟂
BC; DK∥GJ; AD = AI; CF ⟂ FG; DK ⟂ JK; AB = BC; GJ = JK; DG ⟂ GJ; 

AI ⟂ HI; CH ⟂ HI; DG = GJ; AD = CD; AG ⟂ FG; BC = CH; DG∥JK; DJ ⟂
GK; AB∥CD; AE = DE; BC = CF; BC = CD; AD = AG; DK = JK; AD ⟂ CD; 

DJ = GK; AC ⟂ BD; AE = BE; AD∥BC; AC = BD; AB = 13/1. Based on 
these premise, derive the conclusion: Angle IBI equals angle JCI. 

Which of the following premises are not necessary to reach this 

conclusion?

(1) BC = CD;

(2) AB ∥ CD;

(3) DK ⟂ JK;

(4) AI ⟂ HI

A

B

C

D

E

F

G

H

I

J

K

13

(c) Irrelevant Premise Filtering

Figure 6: Visualization Examples
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Consider the following geometric problem: A geometric 

construction is given as follows: From nothing, adds 

point A with random coordinates. From a point A, builds 

B with an integer distance 6 from A to B. From two 

points A, B, with A different from B, builds C, D, the 

other two vertices of a square with side AB. From two 

distinct points C, A, builds E, another point on the 

line CA. From three non-collinear points B, C, D, adds F, 

G, and H, the midpoints of sides CD, BD, and BC, 

respectively. It also adds I, the center of the circle 

going through F, G, and H, which is also the nine points 

circle of the triangle BCD. Based on this construction, 

to arrive at the conclusion: Angle FDF equals angle IDI. 

Which of the following premises are necessary to reach 

this conclusion?

(1) ▲ADF ≅ ▲AGI ; ▲ADF ≅ ▲FGA
(2) ▲ADF ≅ ▲FGA ; ▲HDF ≅ ▲DGF ; ▲ACF ≅ ▲DFG
(3) ▲ADF ≅ ▲DGI
(4) ▲ACF ≅ ▲DFG ; ▲ACF ≅ ▲DGI ; ▲ADF ≅ ▲PGI ; 
▲CDT ≅ ▲HGI

A

B

C

D

F

E

6

G
H

I

(a) Sub-Goal Decomposition

Consider the following geometric problem: From nothing, 

adds point A with random coordinates. From a point A, 

builds B with an integer distance 3 from A to B. From 

three non-collinear points A, B, and D, adds E, the 

other intersection of the circle of center A through D 

and the circle of center B through D. From non-collinear 

points E, A, B, creates F the center of the circle 

through E, A, B. Solve that: Angle CAD equals angle EAF 

Which rule was not used to solve this problem?

(1) Arc determines inscribed angles (tangent): This rule 

corresponds to r03 in the case the arc is determined by a tangent 

line. An inscribed angle determining that same arc will be 

congruent to the angle determining that arc with one leg being 

the tangent line at the vertex of the arc.

(2) Bisector theorem I: One direction of the bisector theorem: if 

a line through a vertex of a triangle cuts the opposite side into 

two segments that are in proportion as the neighboring sides of 

the triangle, the line bisects the angle at the vertex it cuts.

(3) Bisector is perpendicular: This rule is the reverse direction 

of r22. It says that the locus of the points that are equidistant 

to the two vertices of a segment AB is a straight line 

perpendicular to AB.

(4) Isosceles triangle equal angles: The theorem says that the 

base angles of an isosceles triangle are congruent.

A

B

C

D

F

E

3

(b) Theorem Selection

I was solving a mathematical problem but made a mistake during the process, 

which caused me to fail in solving it.  Here's the problem: From nothing, 

adds point O with random coordinates. From a point O, builds B with an 

integer distance 2 from O to B. From a point O, builds A with an integer 

distance 3 from O to A. From three different points A, B, O, builds X and Y, 

the points of tangency of the two lines through A tangent to the circle of 

center O through B. From three non-collinear points X, Y, A, adds C, D, and 

E, the midpoints of sides YA, XA, and XY, respectively. It also adds F, the 

center of the circle going through C, D, and E, which is also the nine 

points circle of the triangle XYA. From three non-collinear points Y, F, 

and C, builds G a point on the circle through Y, F, and C. Based on this 

construction, solve that: From seven points C, X, F, X, D, Y, F, builds Y, 

a point such that CX/FX = DY/FY.  These are my reasoning steps:  BO = OX , 

BO = 2/1  (Ratio Chasing)=> OX = 2/1 001. AO = 3/1 , OX = 2/1 , AX ⟂ OX  

(Pythagoras Verification)=> Pythagorean Theorem's premises on X, A, O are 

satisfied 002. Pythagorean Theorem's premises on X, A, O are satisfied  

(r57 Pythagoras theorem)=> AX = 38/17 003. BO = OY , BO = 2/1  (Ratio 

Chasing)=> OY = 2/1 004. AO = 3/1 , OY = 2/1 , AY ⟂ OY  (Pythagoras 

Verification)=> Pythagorean Theorem's premises on Y, A, O are satisfied 005. 

Pythagorean Theorem's premises on Y, A, O are satisfied  (r57 Pythagoras 

theorem)=> AY = 38/17 006. AX = 38/17 , AY = 38/17  (Ratio Chasing)=> AX = 

AY 007. BO = OX , BO = OY  (Ratio Chasing)=> OX = OY 008. AX = AY , OX = OY  

(r23 Bisector is perpendicular)=> AO ⟂ XY It seems I've reached a dead end;  

Each  followed by a three-digit number (e.g., 001, 002) represents a step 

in my reasoning process.  Could you please tell me at which step I started 

to go wrong?

(1) Step 5;

(2) Step 4;

(3) Step 7;

(4) Step 6

A

B

C

D

F

E
G

X

O

3

2

(c) Faulty Branch Localization

Figure 7: Visualization Examples
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Table 8: Geometric Rules (Part 1)

Rule Name Rule Statement

Definition of circle Four points A, B, C, D equidistant from a center O all lie on a same circle. (One side
of the definition of a circle.)

Arc determines internal
angles

Two angles with the vertices P, Q on a circle that determine the same arc AB on that
same circle are congruent.

Congruent angles are in a
circle

If P, Q are vertices of congruent angles, and A and B are the intersections of the legs
of the angles with vertices P and Q, there is a circle through A, B, P, and Q.

Same arc same chord Arcs of the same length determine chords of the same length on the same circle.
Base of half triangle The line connecting the midpoints of two sides of a triangle is parallel to the third

side of the same triangle.
Thales Theorem I Two parallel lines AB and CD cut by two intersecting transverse lines AC and BD,

will determine a collection of proportional segments. The original statement of this
rule did not have the non-degeneracy condition ncoll O A B as a hypothesis.

Bisector theorem I If a line through a vertex of a triangle cuts the opposite side into two segments that
are in proportion as the neighboring sides of the triangle, the line bisects the angle at
the vertex it cuts.

Bisector theorem II The internal bisector of a vertex of a triangle divides the opposite side into two
segments that are in proportion to the neighboring sides of the triangle.

Isosceles triangle equal
angles

The base angles of an isosceles triangle are congruent.

Equal base angles imply
isosceles

If the base angles of a triangle are congruent, the triangle is isosceles.

Arc determines inscribed
angles (tangent)

An inscribed angle determining that same arc will be congruent to the angle
determining that arc with one leg being the tangent line at the vertex of the arc.

Same arc giving tangent If two angles with vertices on a circle see the same arc, but one vertex is also an
extremal point of the arc, a leg of the angle through this extremal point is the tangent
to the circle at that same point.

Central angle vs inscribed
angle I

The central angle doubles the inscribed angle when both determine the same arc in a
circle. It mentions bisects the chord as an hypotheis instead of halves the angle
because midpoint of a segment is a predicate, while bisector of an angle is not.

Central angle vs inscribed
angle II

If a central angle has the same measure as a given inscribed angle on a circle, it will
cut the chord corresponding to that angle in half.

Hypotenuse is diameter The hypothenuse of a right triangle is a diameter of its circumcircle, or that the
midpoint of the hypothenuse is the circumcenter of the right triangle.

Diameter is hypotenuse If two points are the edges of the diameter of a circle, and at the same time are
vertices of an inscribed triangle, the triangle has a right angle at the third vertex.

Cyclic trapezoid A cyclic trapezoid is isosceles (refering specifically to the congruence of the angles
on a base).

Bisector Construction The perpendicular line through the midpoint of the segment is the perpendicular
bisector of the segment (the locus of all equidistant points to the vertices of the
segment).

Bisector is perpendicular The locus of the points that are equidistant to the two vertices of a segment AB is a
straight line perpendicular to AB.

Cyclic kite A cyclic kite is always formed by two symmetric right triangles.
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Table 9: Geometric Rules (Part 2)

Rule Name Rule Statement

Diagonals of parallelogram
I

If two segments intersect at their common midpoint, the vertices of the segments are
the vertices of a parallelogram.

Diagonals of parallelogram
II

The diagonals of a parallelogram meet at their common midpoint.

Thales theorem II If two points C and D split to legs of a triangle on the same ratio, the line CD will be
parallel to the base of the triangle.

Overlapping parallels Two intersecting parallel lines are actually the same.
Midpoint is an eqratio Midpoints split segments in the same ratio (1:2).
AA Similarity of triangles
(Direct)

A similarity condition for a pair of triangles: that of two pairs of congruent angles
between the triangles (angle-angle similarity).

AA Similarity of triangles
(Reverse)

A similarity condition for a pair of triangles: that of two pairs of congruent angles
between the triangles (angle-angle similarity).

Thales theorem IV If three parallel lines are cut by two other lines, there is a corresponding pair of
proportional segments determined by the intersection points.

Recognize center of cyclic
(circle)

If three points lie on a circle with a known center, and there is a fourth point on that
circle, the distance of the center of the circle to this fourth point is the same as to
other points in a circle.

Midpoint splits in two This rule converts a symbolic statement (M is the midpoint of AB) into an algebraic
one (the ratio between AM and AB is 1:2).

Properties of similar
triangles (Direct)

This rule goes from the pure statement that two triangles are similar to spilling out
the corresponding statements about the proportion of the lengths of the sides and the
equivalence of angles on both triangles.

Properties of similar
triangles (Reverse)

This rule goes from the pure statement that two triangles are similar to spilling out
the corresponding statements about the proportion of the lengths of the sides and the
equivalence of angles on both triangles.

Definition of midpoint This rule was created to detect midpoints by their defining axiomatic properties. It
solidifies midp as a predicate.

Properties of midpoint
(cong)

This rule extracts from the midp predicate the property that the midpoint is
equidistant from the extremes of the segment.

Properties of midpoint
(coll)

This rule extracts symbolically from the midp predicate the property that the
midpoint is on the line of the segment.

Pythagoras theorem If the proof state symbolically knows the three lengths of the sides of a right triangle
ABC, and they satisfy that the sum of the squares of the lengths of the legs is equal
to the square of the hypothenuse, it will add the proper orthogonal relation to the
proof state.

Same chord same arc I This rule gives conditions for inscribed angles on a circle defining chords of the
same length to have the same measure.

Same chord same arc II This rule gives conditions for inscribed angles on a circle defining chords of the
same length to have the same measure.

SSS Similarity (Direct) Proportional sides with same orientation imply similarity.
SSS Similarity (Reverse) Proportional sides with opposite orientation imply similarity.
SAS Similarity (Direct) Proportional sides with congruent included angle (same orientation) imply

similarity.
SAS Similarity (Reverse) Proportional sides with congruent included angle (opposite orientation) imply

similarity.
Ratio Chasing Manipulating and analyzing ratios between different quantities in a geometric setup

to derive new relationships or prove geometric properties.
Numerical Check Verifying geometric properties by numerical means, typically checking if numerical

values of geometric entities satisfy expected relationships.
Angle Chasing To pursue and derive angle relationships in geometric configurations, often using

angle sum properties, parallel line angles, or circle angle properties.
Pythagoras Verification The Pythagorean relationship (a² + b² = c²) in right triangles, either confirming a

triangle is right-angled or using a known right angle to derive side lengths.

18


	Introduction
	Related Work and Preliminaries
	Methodology
	Input Data Preparation
	Hierarchical Evaluation Framework
	Data Distribution Analysis
	Problems Difficulty Assessment

	Experiments
	Datasets, Metrics and Implementation Details
	Performance on all 4 Levels
	Correlation Among Task-Specific Capabilities and Final-Answer Performance
	Analysis on Out-of-Distribution Dataset
	Applicability of Chain-of-Thought Prompting
	Limitation Studies and Outlook

	Conclusion
	Declaration of AI Use
	Limitations and Broader Impact
	Limitations
	Broader Impact

	Experimental Details
	Evaluation Prompt
	Model Name
	Answer Extraction

	Details of GeoBench Evaluation Set
	Visualization example of different task
	Rules Used


