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ABSTRACT

The key issue of zero-shot image recognition (ZIR) is how to infer the relation-
ship between visual space and semantic space from seen classes, and then effec-
tively transfer the relationship to unseen classes. Recently, most methods have
focused on how to use images and class semantic vectors or class names to learn
the relationship between visual space and semantic space. The relationship es-
tablished by these two methods is class-level and coarse-grained. The differences
between images of the same class are ignored, which leads to insufficiently tight
relationships and affects the accurate recognition of unseen classes.To tackle such
problem, we propose Common Feature learning for Zero-shot Image Recognition
(CF-ZIR) method to learn fine-grained visual semantic relationships at the image-
level. Based on the inter class association information provided by class semantic
vectors, guide the extraction of common visual features between classes to obtain
image semantic vectors. Experiments on three widely used benchmark datasets
show the effectiveness of the proposed approach.

1 INTRODUCTION

In recent years, the development of general artificial intelligence has been rapid, and as a key link,
zero-shot learning has received widespread attention. The key problem of zero-shot learning is how
to infer potential knowledge between visual space and semantic space from seen categories, and then
effectively transfer knowledge to unseen categories, finding corresponding semantic categories for
the visual features of unseen class images, and achieving accurate class prediction of unseen class
images.

Among the existing two types of ZSL methods, the generative model based method|Wu et al.[(2020);
Chen et al.[(2021a) learns the mapping from semantic space to visual space to generate visual fea-
tures of unseen categories, thereby transforming the ZSL task into a traditional image classification
task. This article believes that this method does not fundamentally solve the zero-shot problem and
requires a large amount of computational resources, which is inconsistent with the original intention
of the zero-shot problem. Another ZSL method, based on embedding methods/Radford et al.[(2021));
Chen et al.|(2022b);Shen et al.|(2022); Wang et al.|(2022), typically learns a common representation
space between visual space and semantic space, where visual features and semantic vectors are pro-
jected onto the common representation space, enabling knowledge transfer from seen categories to
unseen categories. However, most of these embedding based methods rely on image visual features
and class semantic vectors to establish visual semantic connections, ignoring the fine-grained inter
class association information provided by attributes.

It is worth noting that most methods focus on how to use images and class semantic vectors or class
names to learn the relationship between visual space and semantic space, and the relationships estab-
lished by these two methods are class level and coarse-grained. The differences between images of
the same class are ignored, which leads to insufficient closeness and affects the accurate recognition
of unseen classes.

Considering the above issues, this paper proposes a Common Feature learning for Zero-shot Image
Recognition (CF-ZIR) method, which guides the extraction of common visual features between
categories through attributes, and simulates expert scoring to obtain the degree to which an image
contains a certain attribute, thus forming an image semantic vector. Specifically, by constructing a
visual attribute cross domain dictionary, guidance is provided for the extraction of visual common
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features by attributes. At the same time, the semantic vectors of images obtained based on common
visual features are constrained to be similar to the semantic vectors of their respective categories,
ensuring the effectiveness of common visual features. Finally, a fine-grained visual semantic cross
domain dictionary is constructed based on image visual features and image semantic vectors to better
capture the fine-grained associations between class independent visual and semantic information,
thus achieving high-precision zero-shot image classification tasks.

Our contributions in this paper are summarized as follows:

e We propose the Common Feature learning for Zero-shot Image Recognition (CF-ZIR)
method, which breaks new ground by discerning fine-grained visual-semantic relationships
at the image level. This method leverages inter-class association information from class se-
mantic vectors to guide the extraction of common visual features, leading to more nuanced
image semantic vectors.

e CF-ZIR introduces a dual-layer embedding method, two layers of embeddings were estab-
lished between visual-attribute and visual-semantic, respectively.

e A large number of experiments have been conducted to demonstrate that the CF-ZIR pro-
posed in this chapter has achieved significant performance improvements on three bench-
mark datasets.

The remainder of this paper is organized as follows. Section [2]introduces related work. Section 3|
introduces the methodology of CF-ZIR. Section [d] gives experimental results on three typical ZSL
benchmark datasets. The conclusion is given in Section 3]

2 RELATED WORK

Zero-shot learning (ZSL) emerged from the challenge introduced by Larochelle et al. |Larochelle
et al.[ (2008)), which questioned how to recognize images with limited labeled or unlabeled data.
Lampert et al. [Lampert et al.| (2009) further propelled interest in ZSL within the image recogni-
tion community by introducing the Animals with Attributes (AwA) dataset, built on the concept of
utilizing unlabeled data.

ZSL diverges from conventional image recognition by enabling the identification of new class im-
ages not encountered during model training, thus offering potential for numerous practical appli-
cations.Existing ZSL techniques can be broadly categorized into generative and embedding-based
approaches.

Generative methods typically address ZSL by generating samples of unseen classes to train clas-
sifiers. Various methods leveraging Generative Adversarial Networks (GANs) (Goodfellow et al.
(2014) and other generative models have been proposed Xian et al.| (2018)); Ji et al.| (2019); |Han
et al.|(2021); Wu et al.|(2020); [Zhao et al.| (2022);(Chen et al.| (2021al); Radford et al.|(2021). Xian et
al. Xian et al.|(2018) presented a conditional GAN-based Mirza & Osindero| (2014} approach where
the discriminator was trained with class attribute classification loss, and the generator employed
class attributes to produce visual features. Ji et al. |[Ji et al,| (2019) suggested a dictionary-based
method to generate pseudo-images for unseen classes, learning a dictionary for each seen class and
generating pseudo-images for unseen classes by combining seen class dictionaries based on attribute
distances. Recent generative ZSL methods, such as SDGN [Wu et al.| (2020) and FREE |Chen et al.
(2021a), focus on enhancing the discriminative power of generated visual features using constraints
like feature refinement and self-supervised learning. However, generative methods tend to be more
complex and computationally intensive than embedding-based approaches.

Embedding-based methods [Jiang et al.| (2018)); |Chen et al.| (2022b); |Shen et al.| (2022)); |[Yang et al.
(2022); |Wang et al.| (2022) generally map visual features and semantic attributes into an embedding
space and use distance metrics to find the closest class attributes to unseen class images. Jiang et al.
Jiang et al|(2018)) introduced CDL, an embedding-based method, which creates structured embed-
dings and aligns visual and semantic spaces by training a coupled dictionary with visual prototypes
and class attributes. Chen et al. |Chen et al.|(2022b) proposed a mutual semantic distillation network
that builds visual-semantic embeddings from regional visual features and attribute features. Shen et
al. [Shen et al.| (2022) introduced a spherical ZSL method that measures similarities in a spherical
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embedding space. Wang et al. Wang et al|(2022) incorporated local image information through a
fully pixel-to-attribute embedding approach.

However, existing embedding-based methods concentrate on leveraging images and class semantic
vectors or class names to establish the correlation between the visual and semantic domains, inculd-
ing CLIP Radford et al.|(2021) et.al cross-modal large model. These approaches typically construct
relationships at a class-level, which are broad and do not account for fine-grained details. As a result,
they overlook the variations among images within the same class. This oversight can lead to a lack
of closeness in the learned relationships, thereby adversely impacting the precision of recognizing
classes that were not seen during the training phase.

In this paper, we introduce the Common Feature learning for Zero-shot Image Recognition method,
which delves into the fine-grained visual-semantic relationships at the image level. Utilizing inter-
class association cues from class semantic vectors, CF-ZIR enhances the extraction of common
visual features across classes, resulting in more discriminative image semantic vectors.

3 METHODOLOGY

Firstly, the task ZSL is described formally in Section [3.1] Then, the proposed framework is briefly
introduced in Section [3.2] Finally, the details of training the hierarchical coupled dictionary and
recognizing the unseen image are described in Section [3.3]and Section [3.4]respectively.

3.1 PROBLEM FORMULATION

The task ZSL can be described as: given a seen class sample-label set { (v, h$)} N, where 3 is a
sample of seen class, and k] € H? is its corresponding class label, the goal of ZSL is to predict the
corresponding class label by € H" for an unseen sample y'. It should be emphasized that the label
set of seen classes H* and that of unseen classes H" are disjoint, i.e., H* N H* = (). Each class

(both seen and unseen) is provided with a class attribute vector as available auxiliary information.

3.2 OVERALL FRAMEWORK
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Figure 1: Framework of Common Feature Learning Zero-shot Image Recognition method. It shows
the recognition performed in the semantic space based on the image-level coupled dictionary.

As shown in Fig. [T} the cross domain dictionary learning model for common feature perception
proposed in this paper can be divided into two stages: visual attribute embedding stage and visual
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semantic embedding stage. The gray solid line represents the feature extraction process, the blue
solid line represents the model construction process in the visual attribute embedding stage, the
green solid line represents the model construction process in the visual semantic embedding stage,
and the gray dashed line represents the class prediction process for unseen class images.

In the visual attribute embedding stage, seen class images are first subjected to a visual feature ex-
traction network (e.g. Res NetlO1) to extract visual features. The dictionary trained based on the
visual features of seen class images can serve as common visual features between categories. By
designing a visual attribute cross domain dictionary, the relationship between visual space and at-
tribute space is established, which constrains the expression of common visual features and attribute
features in the embedding space to be the same. In other words, common visual features are the
corresponding expressions of attribute features in the visual space. Therefore, the sparsity coeffi-
cient obtained from the reconstruction of the common visual feature dictionary atom for a seen class
image can describe the degree to which each attribute is included in the seen class image, that is, to
obtain the semantic vector of the seen class image. By constraining the semantic vector of the seen
class image to be similar to the semantic vector of the image’s class, the accuracy of the common
visual feature dictionary is ensured.

In the visual semantic embedding stage, the relationship between visual space and semantic space is
established by constraining the seen class visual features and the seen class image semantic vectors
to have the same expression in the embedding space. This relationship is class independent, so it
can be generalized from the seen class to the unseen class, ensuring the model’s recognition ability
on the unseen class.

On the basis of the above two stages of model construction, there are three ways to predict the
categories of unseen class images, namely: recognition in visual space, recognition in embedding
space, and recognition in semantic space. Fig. [I] shows the process of semantic space recognition.
unseen class images obtain visual features through feature extraction networks, generate semantic
vectors of unseen class images through a visual semantic cross domain dictionary, and then find
the closest class to the unseen class image by calculating the distance between the image semantic
vector and each unseen class semantic vector.

3.3 TRAINING OF COMMON FEATURE LEARNING ZERO-SHOT IMAGE RECOGNITION
METHOD

The proposed method trains the model through two stages, including the establishment of a visual-
attribute coupled dictionary and the establishment of a visual-semantic coupled dictionary.

Visual-Attribute Embedding

At the first stage, based on a single dictionary learning model, a dictionary corresponding to the
visual features of a seen class image is trained, and the semantic vector of the image is generated.
The formula of the loss function is as follows:

Log(F,X%) = ||V — FX°|[% + A|IX* - Z| %, (D

where Y, € RMvxN ° is the visual feature matrix of seen images, M, is the dimension of feature,
and N* is the number of seen images, F € RM»*K s the common visual feature dictionary, F
contains K dictionary atoms, each atoms is the description of each attributes in visual space, X® €
RE*Ns 5 the semantic feature matrix of seen images which describes the degree an image contains
an attribute, Z € R *Ns is the class semantic matrix of seen images.

The first constraint in Eq. 1| can reconstruct image visual features from the common visual feature
dictionary F and the semantic feature matrix X°, while the second constraint the generates seman-
tic feature matrix X? that are close to the corresponding class semantic matrix Z, A is a balance
parameter used to adjust the contribution of the two constraints.

Extracting common visual features between categories based on attribute feature constraints, where
each attribute feature corresponds to a common visual feature between categories. The formula of
the loss function is as follows:

Ls(F,Dp,Da,X,) = |F - DpX, |7 + ul|A - DaX, |3, (2)

where A € RM«*K is the attribute feature matrix extracted by the feature extraction network for
attribute phrases, Dp € RMvxK g the visual dictionary of the visual-attribute coupled dictionary,
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D4 € RMoXE jg the attribute dictionary of the visual-attribute coupled dictionary, X, € RE>*K
is the common description of attribute features and visual features in the embedding space, p is a
balance parameter used to adjust the contribution of the two constraints.

Totally, the loss function of the visual-attribute coupled dictionary learning stage is as follows:
Eatt = Lag + Oéﬁcf; (3)
where « is a balance parameter used to adjust the contribution of the two constraints.

The objective of optimization is to minimize the loss function L. The variables to be solved
include the common visual feature dictionary F, the visual dictionary D, the attribute dictionary
D 4, the semantic feature matrix X?, the common description matrix X,..

Visual-Semantic Embedding

At the second stage, align seen class images with seen class image semantic vectors by constructing
a visual semantic cross domain dictionary pair. The corresponding formula is as follows:

Ed(Dvavae) =Y, - DyXeH%‘ + ]| X* — DerH%“v “)

where D,, € RMv*L js the visual dictionary of visual-semantic coupled dictionary, D, € RE*L js
the semantic dictionary of visual-semantic coupled dictionary, L is the number of dictionary atoms,
X, € REXNT s the description of seen image in embedding space.

The discriminant loss is adopted to further constrain the discriminability of cross domain dictionar-
ies, the corresponding formula is as follows:

£,(Q,X) = [H - QX |7, (5)
where Q € RE°*L i the discriminator, H € RE“ <" is the label matrix of seen class image.
Totally, the loss function of the visual-semantic coupled dictionary learning stage is as follows:

Los=La+ BL,, (©)
where (3 is a balance parameter used to adjust the contribution of the two constraints.

The objective of optimization is to minimize the loss function £,s. The variables to be solved
include the visual dictionary D,, the semantic dictionary D, the discriminator Q, the description

of seen image in embedding space X, € REXN,

Details of the training process of CF-ZIR are shown in Algorithm[I} The Line 1 to Line 7 are the
visual-attribute embedding process, which includes common feature extraction and image semantic
vector generation. The Line 8 to Line 13 are the visual semantic embedding process, which involves
learning a visual semantic cross domain dictionary to obtain a dictionary pair. The initialization of
the dictionary and classifier in algorithm is based on the KSVD algorithm, while the initialization of
other variables is in the form of a random matrix.

3.4 RECOGNITION OF UNSEEN IMAGE

Based on the proposed framework, ZSL task is performed by mapping the data in visual space
and semantic space into a definite space using the hierarchical coupled dictionaries. The definite
space can be chosen from visual space, embedding space and semantic space, i.e., recognition in
the visual space, recognition in the embedding space and recognition in the semantic space. In the
following formulas, we take the recognition using image-level coupled dictionary as an example,
and the class-level ones are similar.

Recognition in the Visual Space

In order to perform recognition in the visual space, the unseen class attributes P is firstly mapped
into the embedding space using the image-level semantic dictionary D%"?9¢. The corresponding
formula is as follows: ‘

arg min [P — D" X" |7, )

where X* € REXC" is the embedding-description of unseen classes.
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Algorithm 1: Training of CF-ZIR.

Input : Seen class sample pairs (Y, H); Class attributes A; Semantic matrix of seen image
Z; Hyperparameters A, a, B, p and n; Number of visual-semantic coupled dictionary
atoms L;
Output : Visual-Semantic Coupled dictionaries (D,,, D,);
// Visual-Attribute Coupled Dictionary Learning
Initialize F, Dp, D 4;
repeat
Update X5 via minimizing Eq. (1));
Update X, via minimizing Eq. (2);
Update Dy and D 4 via minimizing Eq. ;
Update F via Eq. (3);
until maximum iteration;
// Visual-Semantic Coupled Dictionary Learning
Initialize Dy, D, Q;
repeat
Update X, via minimizing Eq. (6);
Update D,, and D, via minimizing Eq. ();
Update Q via minimizing Eq. (5);
until maximum iteration,

Then, the visual-description of unseen class is computed using the image-level visual dictionary
image ; uwl __ imageyu
D ,ie, Py =Dy X,

Finally, the cosine distance is adopted to measure the distances between the unseen image y,, and
the visual-description of unseen classes P%’, searching the class nearest to the unseen image. The
corresponding formula is as follows:

argmince{l,...7cu,}(M(Pg/[CLYv))a ®)

where P%'[¢] € RMv*! indicates the visual-description of the cth unseen class, M(-, -) indicates
the cosine distance between two vectors.

Recognition in the Embedding Space

To perform recognition task in the embedding space, both the unseen image y,, and the unseen class
attributes P¥ are mapped into the embedding space using the image-level coupled dictionary.

The embedding-description of unseen class is computed using Eq.[/] The embedding-description
of unseen image is computed using the image-level visual dictionary D™%9¢. The corresponding
formula is as follows: .

argmin [y, — Dy x| ©)

Then, the cosine distances between the two embedding-descriptions are measured, and the class
nearest to the unseen image is searched in the embedding space. The corresponding formula is as
follows:

argmin ... cuy (M(X"[e],x")), (10)
where X*[c] € RE*! indicates the embedding-description of the cth unseen class.
Recognition in the Semantic Space

To perform recognition task in the semantic space, the unseen image is firstly mapped into the
embedding space using the image-level visual dictionary, shown as Eq. [0l Then, the semantic-
description of the unseen image is computed by y; = D7*9°x".

The distance between each column of unseen class attributes P, and semantic-description of the
unseen image y are measured by computing the cosine distance, and the class nearest to the unseen
image is searched. The corresponding formula is as follows:

argmin.c ... cuy (M(P{[c],y5)), (11)

where P[c] € RM:*! indicates the attribute of the cth unseen class.
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Table 1: Statistics for attribute datasets: aPY, AwA1l, AwWA2 in terms of the number of seen im-
age (Image.S), the number of unseen image (Image.U), the dimension of class attribute (Attr.), the
number of seen class (Seen) and the number of unseen class (Unseen).

Dataset | Image.S | Image.U | Attr. | Seen | Unseen
aPY |Farhadi et al.|(2009)) 5,932 7,924 64 20 12
AwA1 |Lampert et al.[(2009) | 19,832 5,685 85 40 10
AWAZ2 [Xian et al.[(2019) 23,527 7,913 85 40 10

4 EXPERIMENTAL RESULTS

We give experimental results in this section. We show the results on four benchmarks (Section 4.2)).
Then, we demonstrate the effectiveness and necessity of each part of the proposed model, including
the unseen adaptation, image attribute generation, and image-level coupled dictionary (Section4.3).
Finally, we analyze the quality of generated image attributes (Section [4.4).

4.1 DATASETS

We perform experiments on four ZSL datasets including aPascal & aYahoo (aPY) [Farhadi et al.
(2009), Animals with Attributes 1 (AwAl) |[Lampert et al.| (2009) and Animals with Attributes 2
(AwAZ2) [Xian et al.| (2019) to verify the effectiveness of the proposed method. The statistics of all
datasets are shown in Table[l| To make fair comparisons, we use the class attribute, image feature,
data splits provided by |Xian et al.| (2017). The image features are extracted by the 101-layered
ResNet |He et al|(2016). Value of hyperparameters A, «, 5,7, , 7 are selected in the set {0.001,
0.01, 0.1, 1, 10}. The average per-class top-1 accuracy is used to measure the performance of
models.

The three widely used benchmarks are briefly introduced as follows:

e aPY contains 32 categories, including bird, cow, chair, bus, etc.. They belong to three
major classes, i.e., animal, object and vehicle. Images and attributes in this dataset are
collected from Yahoo and Pascal VOC.

e AwA1 is an animal dataset, which contains 40 seen classes, including antelope, beaver,
tiger, elephant, etc., and 10 unseen classes, including sheep, seal, rat, bobcat, etc..

e AwA2 contains the same fifty animal categories as AwA1 dataset. Different from AWAI
dataset, AWA?2 dataset provides images collected from public sources, all licensed for free
use and redistribution.

4.2 COMPARISON WITH STATE-OF-THE-ART

As the results shown in Table 2] our proposed method belongs to embedding-based methods, and
achieves competitive results compared with the more complicated generative methods. Among the
embedding-based methods, CF-ZIR achieves the best accuracy on AwA?2 dataset, and second accu-
racy on aPY and AwA1 datasets.

4.3 ABLATION STUDIES

In order to demonstrate the effectiveness of each component in CF-ZIR, including the discrimination
loss and the learning of image-semantic coupled dictionary, we design several ablation experiments
on the three datasets. The results of ablation experiments are shown in Table 3]

Discrimination Loss: By comparing the CF-ZIR w/o DL and CF-ZIR in Table [3|row 1 and row 3,
adding the discrimination loss brings improvements on the three datasets, especially on the AwA?2
dataset. This phenomenon indicates that using discriminative loss can constrain the discriminability
of cross domain dictionary pairs, thereby facilitating the recognition of unseen class images.

Visual-Semantic Alignment: The row 2 and row 3 in Table 3| show the results of ablation experi-
ments on whether visual-semantic alignment, the CF-ZIR w/o VSA and CF-ZIR. Note that instead
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Table 2: Recognization accuracies (unit: %) of CF-ZIR vs comparative methods on aPY, AwA1 and
AwA?2 datasets. The best and second-best results are marked in Red and Blue, respectively. “*”
indicates the methods of adopting attribute features.

Type \ Methods | aPY | AwAl | AwA2
CCSS|Liu et al.|{(2018a) 355 | 563 63.7
RAS-cGAN Zhang et al.[(2019) | 40.1 | 674 -
Generative LisGAN|L1 et al. (2019) 43.1 | 70.6 -
EDE |[Zhang et al.|(2020) 204 | 70.1 66.5
ACGN Liu et al.|(2021) 444 | 69.2 69.7
CE-GZSL |Han et al.|(2021) - 71.0 70.4
GAZSL Zhang et al.|(2018) 41.2 | 68.3 70.2
DCN Liu et al.|(2018b) 436 | 65.2 -
CDL |Jiang et al.|{(2018) 43.0 | 69.9 68.2
HSVA |Chen et al.|(2021b) - 70.6 -
TransZero* (Chen et al.|(2022a) - - 70.1
Embedding-based MSDN* Chen et al.|(2022b) - - 70.1
ERPCNet|Li et al.|(2022) 43.5 - 71.8
HCDDL |L1 et al.|(2023) 50.6 | 71.8 70.8
TAAC-net/Chen & Zhou|(2024) - - 70.7
RSR [Liu et al.|(2024) 454 - 68.4
CF-ZIR 48.0 | 71.5 72.0

Table 3: Results of ablation experiments, Discrimination Loss (DL), Visual-Semantic Align-
ment(VSA).

Model | aPY | AwA1 | AwA2
CF-ZIR w/o DL ‘47.7‘ 70.9 ‘ 70.4

CF-ZIR w/o VSA | 46.0 | 675 | 66.0
CF-ZIR | 480 | 715 | 72.0

of using visual-semantic alignment, the semantic vectors of the unseen class images are generated
based on the common visual feature dictionary learned in the first stage, and the class semantic vec-
tors closest to these vectors are found to predict the categories of the unseen class images. We can
see that using visual-semantic alignment outperforms without it on the three datasets, especially by
4.0% and 6.0% on AwA1 and AwA?2 datasets, respectively.

4.4 FURTHER ANALYSIS

This subsection analyzes the quality of image semantic vectors generated by CF-ZIR. High quality
image semantic vectors help to learn better visual semantic cross domain dictionary pairs, ensuring
the accuracy of visual semantic mapping. Therefore, in order to analyze the quality of image seman-
tic vectors generated by CF-ZIR more intuitively, we visualizes the seen visual features of images
and their corresponding image semantic vectors separately. Using the unsupervised dimensionality
reduction method t-SNE, project high-dimensional vectors into a two-dimensional space.

As shown in Fig. 2} compared with the visual feature distribution of the image in the top line, the
semantic vector distribution of the image in the bottom line exhibits more obvious intra class clus-
tering and inter class dispersion. This not only indicates that the image semantic vectors generated
by CF-ZIR are reasonable and reliable, but also shows that the image semantic vectors are of high
quality, which is conducive to the establishing of visual semantic alignment.
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Figure 2: T-SNE visualization of the seen image features and the generated image attributes from
aPY, AwAI and AwA?2 datasets (randomly selected several classes).

5 CONCLUSION

This paper proposed a common feature learning method for zero-shot image recognition (CF-ZIR),
innovatively segmented into visual attribute and visual semantic embedding stages. By extract-
ing common visual features and achieving cross-domain alignment between visual and semantic
spaces, CF-ZIR adeptly captures the subtleties essential for recognizing classes not encountered
during training. The method’s efficacy is underscored by its exceptional performance on three major
benchmark datasets, with ablation studies confirming the pivotal role of the discriminative term loss
and cross-domain alignment in bolstering recognition accuracy.
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