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ABSTRACT

Transformers contain substantial parameter redundancies: many weight
settings compute the same function. Characterizing these equivalences
is key for model comparison and optimization. We prove a quantitative
correspondence linking differential-geometric and harmonic-analytic invari-
ants for neural network symmetries. We prove that Fisher—Rao curvature
on the parameter-to-function quotient for multi-head attention provides
a lower bound for permutation-bispectral energy in a linearized regime,
revealing these two invariants as complementary aspects of the same un-
derlying structure. Empirical validation across model scales from 4 to 24
heads demonstrates 98.9% validity of the theoretical bound, with the corre-
spondence persisting through 10,000 training steps. By bridging differential
geometry and harmonic analysis, we provide both theoretical insight into
Transformer symmetries and a practical geometric framework for identi-
fying functionally equivalent models. We report correspondence in native
units, with curvature as a squared Frobenius norm throughout.

1 INTRODUCTION

Transformers have become foundational across language and vision Vaswani et al.| (2017));
Devlin et al.| (2018); Radford et al.| (2019), with diverse architectural variants emerging for
efficiency and structured computation [Tay et al.| (2022); |Su et al.| (2024)); [Shazeer| (2019).
These models exhibit extensive internal symmetries: entire manifolds of parameters yield
the same function, complicating optimization and interpretation. Such symmetries induce
large equivalence classes in weight space, fundamentally affecting optimization dynamics,
generalization properties, and model comparison strategies |Garipov et al.| (2018)); Draxler
et al.| (2018)); [Entezari et al.| (2022)); [Wortsman et al.| (2022)).

Two mature mathematical frameworks have emerged to characterize invariance in neural
networks, yet they have developed largely in isolation. The geometric perspective employs
information geometry and differential-geometric quotients |Amari| (2016), endowing param-
eter manifolds with Fisher-Rao metrics and studying the resulting curvature, connections,
and geodesics. The algebraic perspective leverages group representations and harmonic anal-
ysis |Cohen & Welling| (2016); |Chen et al.| (2019); |Kondor & Trivedi (2018); Weiler & Cesa
(2019); [Ravanbakhsh et al.| (2017, producing invariant descriptors such as bispectra that
can characterize equivalence classes [Kondor| (2007)); [Kakarala| (1992)); [Sanborn & Miolane
(2023)).

We derive the complete gauge structure for multi-head attention and establish a quantitative
correspondence between its geometric and algebraic invariants. We establish both theoret-
ical connections and practical comparisons between curvature-based geometric invariants
and bispectral algebraic invariants. Our analysis clarifies when these approaches agree,
when they diverge, and how they complement each other in understanding Transformer
symmetries.
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We empirically validate the theory on multi-head attention, confirming that Fisher—Rao
curvature lower-bounds bispectral energy across head counts and training checkpoints, and
that the geometric route is practical for monitoring functional equivalence.

Contributions.

e A self-contained characterization of the maximal gauge group for canonical multi-head
attention and its quotient function space.

¢ Geometric invariants via the Fisher—Rao mechanical connection and curvature on the
quotient manifold.

e Algebraic invariants via canonicalization and permutation bispectrum after removing
continuous gauge freedom.

e A correspondence theorem linking curvature magnitude to bispectral energy in a lin-
earized regime, establishing a quantitative bridge between these frameworks.

o Empirical validation demonstrating 98.9% correspondence validity across model scales
and persistence through 10,000 training steps.

e Analysis of computational requirements showing Fisher-Rao curvature provides a prac-
tical approach while the full bispectrum remains computationally prohibitive for large
head counts.

2 BACKGROUND: SYMMETRY, QUOTIENTS, AND CANONICALIZATION

Why gauge? Multi-head attention has substantial parameter redundancy. The gauge
formalism captures this: distinct parameters that realize the same function lie on one orbit,
and the quotient collects truly different models. This enables us to (i) define a Fisher-Rao
(FR) mechanical connection that separates vertical (function-preserving) from horizontal
(function-changing) directions, and (ii) construct invariants that do not depend on a par-
ticular parameterization.

Head-wise continuous symmetries and permutations. For head i, attention scores
depgnd on the bililnear form QK = XWé;) (WI(;))TXT. For any A, € GL(dg),
(Wg), Oy (Wg Y A;, WO(ATYT) leaves Q; K, invariant. Similarly, the value pathway

X — XW‘(/Z.)WO,Z- is invariant under W‘(,i) — W‘(,Z.)C‘i7 Wo,i — C;1Wo,i for any C; € GL(d,).
Each head admits independent GL(dy) x GL(d,) reparameterizations, and Sy, freely per-
mutes heads—both leave the layer’s function unchanged.

Gauge action and quotient. Let © denote parameters of one MHA layer. The gauge
group G acts on © by the products of the head-wise GL(dj) x GL(d,) actions and S}, permu-
tations. Orbits O(0) are sets of parameters implementing the same function; the quotient
O/G identifies each orbit with a single point. The vertical space at 6 is the tangent to O(6);
its FR~orthogonal complement is the horizontal space. Curvature of the FR mechanical
connection is therefore an invariant of the function, not its parameterization.

Standing assumptions. We work on the generic stratum where the following hold: (A1)
isolating inputs yield full support across heads; (A2) the Jacobian of the canonicalization
feature map has full column rank at points considered; (A3) tie-breaking is differentiable
nearby with a locally unique maximizer; (A4) the Fisher—-Rao metric is positive definite
on vertical directions so the mechanical connection is well-defined; (A5) with RoPE, the
residual Q/K gauge reduces to blockwise complex scalings (see Section ; (A6) small
horizontal parameter moves achieve first-order feature changes head-wise. We empirically
validate these assumptions in Section [B}

Canonicalization (one-time, function-preserving). For cross-run comparisons, we fix
a deterministic orbit representative (stable sorting/tie-breaking and head-wise basis choice,
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e.g., whitening), removing continuous gauge and reducing the residual symmetry to permu-

tations; see Section

Notation (minimal). G is the layer gauge group, Giax the maximal gauge on the generic
stratum (Theorem [2.1)); ©/G is the parameter quotient. Horizontal directions at [6] are u, v;
Q¢ (u,v) is the layer-¢ curvature (vertical-valued 2-form). The bound in uses co = || Adlo?

and the linearization index n¢(u, v). Unless noted, || - |7 on curvature uses the FR-induced
norm on the vertical fiber; feature/Jacobian norms are Euclidean/Frobenius.

Main symmetry results We now record the gauge structure underlying our corre-
spondence analysis. Proofs of the gauge statements and RoPE commutant appear in Sec-

tion [A14]

Theorem 2.1 (Single-layer maximal gauge on the generic stratum). For a canonical multi-
head attention (MHA) layer with h heads and key/value dimensions dy,d,, the gauge group
on the generic stratum equals

Gmax = ((GL(dy))" x (GL(d,))") x Sh.

Proposition 2.2 (Depthwise factorization). For a depth-L stack with residual connections

and LayerNorm, the model-level gauge factors layerwise: Gmodel = HeL:1 Gy, with each Gy
as in Theorem [2.1.

RoPE commutant (precise form). On a single 2x2 plane, the continuous SO(2) rota-
tion R(6) has real commutant {al +bJ : a,b € R}, where J = ({ '), which is isomorphic
to GL(1,C) via a + bJ <> a + ib. Writing the RoPE representation on (Q, K) as a direct
sum of 2x2 rotation blocks with angular frequencies w, the total commutant decomposes
by isotypic multiplicity:

CropE & HGL(kwa(C)a

where k,, is the number of 2x2 planes with frequency w. In the generic (nondegenerate) case
with pairwise distinct frequencies (k,,=1 for all w), this reduces to Cropr = (GL(1, C))%/2,
Consequently, the single-layer gauge is

Grore = ((Cropr)" x (GL(dy))") % Sh.
See Theorem [A-2] and Section [A-T4] for a formal statement and proof.
Corollary 2.3 (Head sharing: GQA/MQA). If keys/values are tied across g groups of
heads, then the continuous gauge ties per group:
Gshare = ((GL(dk))? x (GL(d,))?) % (S, % Sy),
and, with RoPE, GL(dy) is replaced by Cropr in the above.

Proposition 2.4 (MoE routers). For standard top-k mizture-of-experts routing, the router
outputs are invariant under all gauge actions above (they depend on hidden states, which
are unchanged by gauge), hence MoE composition preserves the gauge structure in Theo-

rems (2] and [2-3.

3 GEOMETRIC INVARIANTS VIA THE FISHER-RAO MECHANICAL
CONNECTION

Useful invariants are constant on gauge orbits yet vary across functionally distinct models.
The Fisher-Rao metric provides a natural geometric structure on parameter space that re-
spects the statistical nature of neural networks. This metric measures the distinguishability
of model outputs under small parameter changes, making it ideal for capturing functional
differences rather than arbitrary parametrization choices.

The gauge group Gnax acts by isometries on the Fisher—-Rao metric, meaning gauge trans-
formations preserve distances. This property enables us to construct a quotient geometry
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where the metric descends to the space of functionally distinct models F. However, to
compute on this quotient, we need a systematic way to separate parameter variations into
two types: those that move along gauge orbits (changing parameters but not function) and
those that move between orbits (changing the function).

Curvature records the failure of the horizontal distribution to be integrable: it measures how
the geometry twists on the quotient. With connection one-form I'; the curvature two-form
is Q =dl"' + %[F,l"]. For horizontal vectors u, v, Q(u,v) is the vertical component created
by the commutator of their horizontal lifts—equivalently, it quantifies the non-closure of
parallel transport around an infinitesimal loop.

Intuition: horizontal vs. vertical (gauge) directions The Fisher-Rao (FR) mechan-
ical connection splits parameter perturbations into vertical directions that move within a
gauge orbit (function-preserving reparameterizations) and horizontal directions that change
the network’s function. The vertical space is the span of infinitesimal gauge actions at the
current parameters; horizontality is the FR-orthogonal complement. Curvature 2 of this
connection measures the noncommutativity of horizontal transports modulo gauge and is
therefore invariant under reparameterization.

Two-head worked example (h = 2). Write the residual gauge as So = {e, (12)} acting by
head swap. Let u,v be two FR-horizontal directions at [#]. A small loop that transports
along u then v and back produces, to second order, a vertical displacement measured by
Q(u,v). Under head swap, the antisymmetric component of the feature commutator flips
sign, so its energy lives in the sign representation of Sa, matching the (nontrivial) bispectral
block. This is a minimal instance of the geometric-harmonic correspondence (see Section.

Definition 3.1 (Curvature invariants). For layer £ and head i, define the scalar curvature

invariants
h
F Ry = E Keis
i=1

where norms are induced by the Fisher—Rao metric restricted to layer £, head i parameters.

Kei= |

Proposition 3.2 (Gauge invariance of curvature scalars). The quantities k¢, depend only
on [0] € F and are constant on Guax-orbits.

The proof (Appendix follows from the equivariance of the mechanical connection under
the gauge action. These curvature invariants provide geometric fingerprints of equivalence
classes. High curvature indicates strong coupling between heads that cannot be removed
by gauge transformations, suggesting genuine multi-head interaction rather than redundant
parametrization. Section[6.2]demonstrates this interpretation empirically, showing curvature
growth from 0.284 to 0.418 during training as heads develop specialized interactions.

Discrete holonomy estimator. Computing curvature directly via the full Fisher—Rao
tensor is expensive. We instead estimate curvature from discrete holonomy: parallel trans-
port features around a small rectangle spanned by two horizontal unit directions u,v with
side length € > 0. Let AE (u,v;e) denote the net feature displacement after traversing the
loop (transport along u, then v, then —u, then —v). Projecting onto the vertical fiber yields

et AF (u,v38) = 2 Qp(u,v) + O?).
We form the area-normalized estimator

_ anertAZD (u7 o 3

) )HF = [Q(u,v)||lr + O(e).

Re(u,v;e) =
Using two step sizes cancels the O(e) bias via Richardson extrapolation:
EER) () = 2Re(u,v;6) — Re(u,v;2e) = [|Q(u,v)||r + O(e?).
We use € € {1074, 21074} and report squared magnitudes EE,R) (¢) ? to match the units used

throughout; implementation details are in Section[A-3] Empirically, the Richardson stability
ratio is near 0.97 across model scales, and the wall-clock cost is modest (see Table [2)).
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Derivatives appearing later act on the parameter-to-feature map along FR-horizontal pa-
rameter directions at [fp], and evaluation at e selects the identity block of the group-indexed
transform.

The mechanical connection and curvature. The Fisher-Rao mechanical connection
provides this decomposition through an Ehresmann connection on the principal bundle
m:©® — F. This creates the Ehresmann decomposition Tp© = Vy & Hy at each parameter
point 0, splitting the tangent space into vertical subspace Vy (tangent to gauge orbits) and
horizontal subspace Hy (orthogonal to orbits under the Fisher-Rao metric). Formally, for
tangent vector £ € Ty©, we decompose & = Jpl'g(€) + Phoré where Jy maps Lie algebra
elements to vertical vectors, I'g : Ty© — g is the connection 1-form selecting the vertical
component, and Pjo, projects onto the horizontal subspace Hy.

The connection is determined by requiring horizontal vectors to be Fisher—Rao orthogonal
to all vertical directions. This yields the mechanical connection equation MyT'y(€) = by(&)
where My = J;GoJp and by(§) = J;Ge€, with Gy the Fisher-Rao metric tensor. As
shown in Appendix [B.6] solving this system remains numerically stable across model scales,
with condition numbers ranging from 3.2 x 103 for 4-head models to 2.1 x 10* for 24-
head configurations, enabling reliable computation of the horizontal projection needed for
curvature estimation.

4  ALGEBRAIC INVARIANTS AFTER CANONICALIZATION

Geometric invariants require solving mechanical-connection equations at each evaluation
point. Algebraic invariants offer a complementary approach through group-theoretic con-
structions. However, the continuous gauge symmetry ((GL(dy))" x (GL(d,))") presents
a fundamental obstacle: the bispectrum and similar algebraic invariants become trivially
constant when continuous transformations can arbitrarily rescale and rotate parameters.

Canonicalization resolves this: fixing continuous gauge reduces symmetry from GL(-) groups
to the finite S}, enabling permutation-based features and the bispectrum. By fixing the con-
tinuous gauge freedom through deterministic constraints—balancing @Q/K Gram matrices,
orthonormalizing V' bases, and sorting heads—we reduce the symmetry group from the
continuous Gpax to the finite permutation group Sj. This dramatic simplification makes
algebraic invariants well-defined and non-trivial, providing algebraic invariants that comple-
ment the geometric ones.

After canonicalization, we construct a feature map that captures head-wise activation pat-
terns. Let zg1.n € R*dvXn he per-head features extracted from attention activations on a
fixed evaluation batch, and ® a fixed linear readout. The permutation-equivariant feature
map fg: Sp — C™ is defined by (f¢(c))i,. = ®(2¢,0(;)), which transforms predictably under
head permutations.

Triple correlation and bispectrum. The (left-translation invariant) triple correlation
of fg : S}L — C™ is

Ty(o1,02) = Y fo(r) felor7) fe(oaT)*,  (01,02) € Sp X Sh.
TESH
Its (noncommutative) bispectrum is the collection of Fourier blocks
Bi(p,p2) = Y Tilo1,02) pr(o1) ® pa(02),
01,02€Sh

for irreps pi1, p2 F h. We refer to T; (group domain) and B, (Fourier domain) collectively as
the full bispectrum. This is invariant under conjugation by S;, and distinguishes orbits of
canonicalized models under mild genericity conditions.

Computational complexity and theoretical value. The full bispectrum requires com-
puting |S|? = (h!)? terms, which becomes computationally prohibitive even for moderate
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head counts. Sanborn and Miolane Sanborn & Miolane| (2023) established conditions under
which bispectral invariants provide complete characterization of neural network functions,
demonstrating their theoretical importance. While this computational challenge limits prac-
tical application of the bispectrum, it remains essential for our theoretical analysis, providing
the algebraic counterpart to geometric curvature in our correspondence theorem.

On canonicalization choices. Our deterministic tie-breaking (sorting by value-
projection norms) is one of several reasonable options; different criteria can slightly change
E; because they induce different residual permutations after removing the continuous gauge.
In our spot checks (not formally reported here), the main correspondence trends were quali-
tatively stable across such choices. A thorough ablation is left for future work; we document
implementation details in Sections [A-14] and [B]

5 A LocAL CURVATURE-BISPECTRUM CORRESPONDENCE

Norms: curvature uses the FR-induced Frobenius norm on the vertical fiber; feature/Jaco-
bian quantities use standard Euclidean/Frobenius norms (cf. Theorem [5.2)).

These invariants capture the same phenomenon in different languages: curvature measures
geometric twisting, while the bispectrum aggregates algebraic commutators across the non-
trivial Fourier blocks of Sj,. Their quantitative relationship is as follows.

Theorem 5.1 (Local correspondence with quantitative control). Fiz a layer ¢ and a base
point [0y] where canonicalization is well-defined, and assume Section @ Let u,v € Tigy) F
be FR-horizontal unit vectors and let Qp(u,v) denote the corresponding vertical curvature

element. For the permutation-feature map of Sectz’on with Fourier blocks ﬁm over irreps
p = h, define the (nontrivial) bispectral energy

Eo(u,v) = Z w, ||DuDUﬁ,p(e) — DvDuﬁ,p(e)H?,
pFtriv

where Dy, D, act on the parameter-to-feature map along FR-horizontal lifts at [0p] and
evaluation at e selects the identity block. Let the linearization index

|DuDy fop(€) = DuDufe ()],
(€2 (u, U)HF

measure higher-order residuals (Section . There exists a layer-dependent constant

ne(u,v) =

co = A2 = Amax(4;A0) 7 > 0,
with A; as in Section[A.d], such that for all (u,v) with ne(u,v) < 7 (for T sufficiently small),
HQg(u,v)Hfm > co&(u,v) — O(7). (5.1)

Equality in the leading term occurs when Qq(u,v) lies in a top right-singular subspace of Ay
and higher-order terms vanish at (0p; u,v).

Remark 5.2. Derivatives and norms. Derivatives D,,, D, are taken along FR-horizontal
parameter directions (not along the discrete group), and e is the identity of S,. Curvature
norms ||-||r are FR-induced on the vertical fiber; the target uses Euclidean/Frobenius norms

with weights w,; see Sections and [A73,

Interpretation. In the linearized neighborhood where canonicalization is stable, Equa-
tion shows that squared curvature lower-bounds permutation-bispectral energy. The
constant ¢, = || Ag[|? reflects the conditioning of the feature Jacobian and the canonical-
ization map (cf. Section [A.T)); the O(r) term is controlled by the linearization index. See
Section [3] for a two-head (h = 2) illustration in which the sign representation isolates the
antisymmetric commutator captured by both sides.
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6 EMPIRICAL VALIDATION

Experiments confirm the correspondence across multiple head counts and training check-
points. Experiments use NVIDIA H100 NVL and PyTorch 2.0 in float64 with TF32/cuDNN
disabled. (For repeated-batch methodology and assumption checks, see Section )

Setup. Unless noted otherwise we use heads h € {4,6,8,12,16, 24} with d;nodel = 64k and
dr = d, = 64, float64, a fixed evaluation batch, identical canonicalization, and 30 random
FR-horizontal pairs (u,v) per layer with two-step Richardson extrapolation. Extension to
asymmetric (dy # d,) architectures is straightforward but deferred.

6.1 MULTI-SCALE CORRESPONDENCE VALIDATION

We test [|Q(u,v)||% > crE(u,v) across h € {4,6,8,12,16,24} using the slope-based ver-
ification protocol (Section |B.2)). Table |1 shows 98.9% mean validity with stable é& across
scales.

Estimator. For each layer ¢ we compute
~ 2
Ke(u,v
C¢ = min e(u,v)

() By(u,v) + 6

where Ky is the discrete-holonomy estimate of curvature and E@ is the bispectral energy at
the identity block (Section |B.4)).

Table 1: Condensed correspondence results (native units; bound verification via Sec-
tion [B.2). Full statistics in Section

Heads b Correspondence Rate (%) Estimated &

4 100.0 2.1x 1073
6 96.7 1.8 x 1073
8 100.0 1.6 x 1073
12 100.0 1.2x 1073
16 100.0 1.1x 1073
24 96.7 0.9x 1073

6.2 TRAINING STABILITY ANALYSIS

Figuretracks a 12-head layer across 10,000 steps. Panel (a): correspondence remains 100%
through step 2,500, dips to 90% near step 5,000 (a regime where linearization is strained),
and recovers to 100% by step 10,000. Panel (b): é& stays in [1.15,1.21] x 1072, consistent
with Table Panel (c): curvature energy |[|Q2]|% rises 0.284 —0.418 (= 47%) while bispectral
energy decreases 7.31 —6.89 (= 6%), highlighting complementary sensitivity.

6.3 COMPUTATIONAL REQUIREMENTS

Table [2| reports synchronized float64 wall-times on an H100. FR curvature scales roughly
quadratically with h (42ms at h=4 to 367 ms at h=24 per (u,v) pair) due to the growing
connection solve; memory remains within single-GPU limits (0.9-5.4 GB). While the full
bispectrum is complete in principle, its factorial complexity is prohibitive beyond small h,
making FR curvature the practical invariant to monitor.

Overhead context. At these model sizes, the FR curvature routine is lightweight enough
for intermittent monitoring during training (e.g., on a sparse schedule or a small subset of
layers/pairs), whereas the full permutation bispectrum—though complete in principle—
exhibits factorial growth in h and becomes impractical beyond small head counts; see Sec-
tions [A-16] and [B23] for the complexity breakdown.
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(a) Correspondence Stability (b) Slope Constant Evolution (c) Invariant Magnitudes
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Figure 1: Evolution of correspondence through training using FR-horizontal curvature.
Validity (left) uses the slope protocol (Section |B.2); & (middle) and invariant magnitudes
(right) are in native units.

Table 2: Computation times (mean + std over 10 runs, synchronized). FR curvature time
is per directional pair (u,v).

Heads h  FR Curvature per (u,v) (ms) Peak Memory (GB)

4 42+3 0.9
8 87+ 5 1.4
12 134 £8 2.2
16 201 +£11 3.1
24 367 £ 19 5.4

7 DISCUSSION AND LIMITATIONS

Scope and limitations. The correspondence is local/linearized and certified by 7 (u,v)
(cf. , with practical verification via the slope protocol (Section. Three open fronts re-
main. (i) Canonicalization sensitivity: deterministic tie-breaking removes continuous gauge
but can change residual permutations and thus Fy; we treat canonicalization as part of
the modeling pipeline and leave a uniform, choice-independent bound to future work. (ii)
Batch sensitivity: our main plots use a fixed evaluation batch; we outline a repeated-batch
procedure and summarize variation in Section B} (iii) Architectural coverage: experiments
use d = d, = 64; testing asymmetric dimensions and other head/value configurations is
straightforward within our framework but beyond current page limits.

What the invariants tell us. High curvature on the quotient signals strong cross-head
phase interactions: heads are functionally entangled even after removing continuous gauge.
This makes such layers promising targets for head merging, shared-parameter updates, or
careful learning-rate scheduling. Empirically, we observe 98.9% correspondence validity
across scales together with low cross-metric correlations (|p| < 0.35), indicating that cur-
vature and bispectrum capture complementary aspects of internal structure rather than
duplicating one another.

Completeness vs. practicality. The bispectrum is theoretically complete (e.g.,|Sanborn
& Miolane| (2023)) but scales factorially in h, rendering it prohibitive beyond small head
counts. Fisher-Rao curvature, by contrast, scales roughly quadratically and is thus usable
on production-scale models (Section . This pragmatic gap motivates our correspondence
program: use curvature as a tractable proxy that is still anchored to a complete algebraic
invariant via the lower bound.

Limitations. (1) Local, linearized regime. The bound is proved in a neighborhood where
canonicalization and horizontal lifts are stable; outside this regime higher-order terms can
dominate (cf. Section [6.2)). (2) Metric dependence. Curvature depends on the Fisher-Rao
metric; approximations (e.g., block-diagonal Gauss—Newton) alter magnitudes though we
find trends stable. (3) Conditioning. The constant ¢, = |[Ag||;7 reflects the condition-
ing of the canonicalization feature Jacobian and whitening steps; ill-conditioning weakens
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the bound. (4) Data dependence. We evaluate on fixed batches for comparability; batch
sensitivity is small in our checks but not zero. (5) Scope. We analyze attention layers;
extending to full-stack architectures (MLP blocks, cross-attention) and to decoder-only vs.
encoder—decoder differences is future work.

Batch sensitivity (method). To assess generalization across data, we repeat the eval-
uation on multiple random batches (equal size/tokenization) and summarize variation in
Section [Bl

Practical checklist. For routine use: (i) canonicalize once (deterministic ordering and
whitening); (ii) sample a modest number of FR-horizontal pairs; (iii) estimate curvature via
discrete holonomy with two-step Richardson; (iv) log é and validity intermittently during
training; (v) flag layers where validity drops or &, shifts persistently.

8 RELATED WORK

Information geometry and FR structure. Information geometry provides metrics
and natural gradients on statistical manifolds and has been applied to neural networks via
Fisher—-Rao constructions |Amari| (2016]).

Symmetry and equivariance. Geometric deep learning formalizes group actions and
equivariant architectures |Cohen & Welling (2016)); Weiler & Cesal (2019); [Ravanbakhsh
et al.|(2017); Kondor & Trivedi (2018). Our focus is not on designing equivariant layers but
on analyzing internal gauge in standard Transformers.

Harmonic invariants and completeness. Harmonic invariants such as (bi)Spectra orig-
inated in signal processing |Kondor| (2007)); |Kakarala (1992). Sanborn and Miolane [Sanborn
& Miolane| (2023) established completeness results for neural representations, but computa-
tional complexity limits their direct use at scale—an empirical point we quantify.

Transformers and weight-space structure. Transformers and variants are founda-
tional [Vaswani et al.| (2017));|Devlin et al.| (2018]); Radford et al. (2019); Tay et al.| (2022));|Su
et al| (2024)); Shazeer| (2019). Symmetries of weight space and model alignment appear in
work on mode connectivity, model soups, and permutation alignment |Garipov et al.| (2018));
Draxler et al.| (2018); Wortsman et al.| (2022); Entezari et al.| (2022). We differ by (i) deriv-
ing the maximal internal gauge for canonical MHA, and (ii) proving a quantitative bridge
between a geometric invariant (FR curvature) and an algebraic invariant (permutation bis-
pectrum) on the parameter-to-function quotient.

9 CONCLUSION

In canonicalized models, Fisher-Rao curvature provides a quantitative lower bound for per-
mutation bispectral energy, connecting differential geometry and harmonic analysis, thereby
linking differential-geometric and harmonic-analytic views of internal symmetry. Exper-
iments confirm high validity across scales and through optimization, with stable ¢, and
complementary sensitivity profiles.

Practically, curvature is a tractable diagnostic for large models: it is inexpensive enough
to monitor intermittently, yet principled through its correspondence to the permutation
bispectrum (a complete invariant). Future directions include extending beyond attention-
only layers to full Transformer stacks, evaluating pre-trained LMs and vision Transformers,
sharpening linearization diagnostics, and developing scalable bispectrum surrogates that
retain discriminative power while approaching completeness.
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ETHICS STATEMENT

We study internal symmetries of standard multi-head attention using synthetic batches and
open checkpoints. No personal or sensitive data are used, and no user-facing deployment is
performed. Our diagnostics (canonicalization, Fisher-Rao curvature estimation, and permu-
tation bispectrum) are purely offline and intended to improve the scientific understanding
of invariances and representation stability.

REPRODUCIBILITY STATEMENT

We provide implementation details in Sections and and configuration summaries
in Tables [I]and [2l Unless otherwise noted, we use float64 throughout, deterministic seeds,
NVIDIA H100, PyTorch 2.0 with TF32 disabled, and identical evaluation batches across
checkpoints. Canonicalization tolerances are Teory = 1076; for curvature we sample 30
Fisher—Rao horizontal direction pairs per layer and apply two-step Richardson extrapolation
with € € {1074,2-107*}. We will release scripts to reproduce Figure [1] and tables [I] and
including: (i) canonicalization, (ii) curvature via discrete holonomy, (iii) feature whitening,
(iv) permutation-bispectrum computation for h < 8, and (v) CSV generation for plotting.

A  ADDITIONAL PROOFS AND IMPLEMENTATION DETAILS

A.1 PROOF DETAILS FOR THEOREM [5.1]

For completeness we collect the operator objects used in Theorem Let Qg(u,v) denote
the layer-£ curvature (vertical-valued 2-form) for FR-horizontal directions u, v at [¢p]. Define

the linear map
Ap: X — (\/UTPP* (X) Lep ¢l>p7$triv’

where ¢, is the canonicalized feature at the base point and L, , encodes the Jacobian of
the feature extraction and canonicalization pipeline projected to the isotypic component p.
The quantitative lower bound with constant ¢, = || A¢]|52 = Amax(AjAe) ™! is proved in
Section [ATTT} derivative conventions appear in Section @

A.2 NOTATION FOR LINEARIZATION

Let 6 denote parameters modulo gauge and [0] the corresponding equivalence class. For
a Fisher-Rao horizontal direction w at [fg], we write D, for the directional derivative of
the parameter-to-feature map along the FR-horizontal lift (orthogonal to vertical/gauge
directions under FR). We use pr for the group-indexed feature transform at layer ¢ and
irrep p, with evaluation at the identity element e. Curvature Q;(u,v) is the vertical-valued
2-form of the FR mechanical connection; norms on curvature use the FR-induced inner
product on the vertical fiber, while other norms are standard Frobenius/Euclidean unless
noted.

A.3 HOLONOMY ESTIMATOR DETAILS

We approximate ||2¢(u,v)||r via discrete holonomy on a rectangle of side length e spanned
by horizontal unit directions u,v: transport features along w, then v, then —u, then —v,
and project the net displacement onto the vertical fiber:

Myert AP (u, v38) = 2 Qo(u, v) + O(e%).

11
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The area-normalized estimator

_ |‘HvertA/|;|(ua Ve

Ke(u, vie) := e _ 192¢(u, )l + O(e)

2
€
has O(e) bias. Using two step sizes cancels this bias by Richardson extrapolation:

7Y (e) = 2Ro(u, v;€) — Relu, v;2¢) = || Qe (u, 0) || 7 + O(2).

We take e € {107%, 2:107*} and report squared magnitudes (EgR) (5))2 to match units in

the main text.

A.4 GROUP STRUCTURE: STATEMENTS AND PROOFS

Proof of Theorem (Single-layer maximal gauge on the generic stratum). Sufficiency.
For each head ¢ € {1,...,h}, let A; € GL(dy) act on (Q;, K;) and B; € GL(d,) act on V;,
and let 7w € Sp, permute heads. The standard gauge action

Qi QiAi, K Ki(A7"), Vie ViB;, W I diag(B; ') Wo

preserves attention scores QK | and output VWo (up to head reorder by =), hence leaves
the layer function unchanged.

Necessity. On the generic stratum (isolating inputs; head-wise controllability; cf. Sec-
tion7 any function-preserving linear reparameterization must (i) preserve all bilinear forms
Q;K," per head (forcing the (@, K) action to be A; and A;T per head), (ii) preserve V;Wo
(forcing a right action by B; ' on Wy paired with V; ~— V;B;), and (iii) allow only global
head permutations across isolating inputs (no cross-head mixing beyond permutations).
Combining these yields the semi-direct product Gax = ((GL(dg))" x (GL(d,))") x S,. O

Proof of Theorem (Depthwise factorization). With residual connections and Layer-
Norm, each layer’s function composes with an identity skip and an internal affine repa-
rameterization. Gauge actions that preserve a given layer’s function do not alter the input
to subsequent layers except through the preserved function value; hence admissible repa-

rameterizations factor per layer, giving Godel = Hngl Gy. O

A.5 PRINCIPAL BUNDLE VIEWPOINT AND INDUCED ACTIONS

Consider the principal Gax-bundle 7 : © — F with connection 1-form I' € Q(0; g) defined
by the Fisher-Rao mechanical connection. Its curvature is Q = dI' + 3[I',T] € Q%(0;g).
For any finite-dimensional (complex) representation p : Gmax — GL(V,) with differential
p« + g — gl(V,), the associated vector bundle E, = © x¢, .V, inherits a covariant derivative
whose curvature is p.(2) (standard functoriality of connections on associated bundles).

After canonicalization, the continuous part is removed and the residual action is the finite
permutation group S; on head indices. We realize the feature map as a section of the
associated bundle for the permutation representation restricted to this residual symmetry.
Although S, is discrete, the differential action arises through how the connection couples
head-wise responses before quotienting by the continuous gauge; i.e., the variation of f,
along horizontal directions is controlled by the induced connection prior to restricting to
the residual discrete action.

A.6 DIRECTIONAL COMMUTATOR AND CURVATURE
Let u,v € Tjg,)F be horizontal unit vectors and , v their horizontal lifts at 6y € ©. For any
associated bundle section s (e.g., a head-feature-derived section),

(VuVy = VoVu)s = R(u,v)s with R(u,v) = ps(Q(u,v)),

where p, is the differential of the representation acting on the fiber. This equality fol-
lows from torsion-freeness of the Levi-Civita connection on F and the standard structure
equation for associated bundles. Evaluating at the identity fiber representative gives

(DuDy — DyDy) fop(e) = pu(Qeu,v)) Lo,y de,
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where ¢, is the canonicalized feature at the base point and L, is a (bounded) linear map
encoding the Jacobian of the feature extraction and canonicalization pipeline with respect
to parameters along horizontal directions, projected to the isotypic component p.

A.7 FOURIER BLOCKS AND SCHUR ORTHOGONALITY

Write the permutation-feature map f; : S, — C™ and its group Fourier transform ﬁ’p
at irreducible representation p = h. The selective bispectral energy targeted in nontrivial
isotypic components is

Sg(u,v) = Z wp ||(DuDv - DvDu)f@,p(e)”%v

pFtriv

with positive weights w,. By block-diagonalization in the Fourier basis and Schur orthogo-
nality, this quantity is a positive semidefinite quadratic form in the commutator applied to
the projected features. Substituting the expression from Section yields

Eo(u,v) = Y wy|lpe(Qulu,v)) Lo p bl

pFtriv

A.8 ERROR CONTROL FOR THE DISCRETE ESTIMATOR

Let K(g) = ||A(u,v;¢)|[r/e?. A standard Baker-Campbell-Hausdorff expansion for the
square loop shows K(g) = K(0) 4+ ac + O(g?) with K(0) = [|Q(u,v)||r. The two-point
Richardson estimator cancels the O(g) term; the remaining bias is O(¢?). The linearization

index |K(2¢) — 2K (e) + K(£/2)]
n(u, v) = K(e)

tracks higher-order effects, and filtering by n(u,v) < 7 ensures the commutator approxima-
tion dominates.

A.9 ROPE COMMUTANT (PLANE-WISE)

Let J = ((1) ’01) and R(6) = cosf I +sind J denote the rotation on a 2-dimensional plane of
(Q, K). The commutant of {R(f) : § € R} in GL(2,R) equals {al +bJ : a,b € R, a® +b? #
0} = GL(1,C) under the identification R? = C. With standard RoPE (distinct frequencies
per plane), the action is block-diagonal across di/2 planes, so the full commutant is the
product of plane-wise commutants:

Cropr = (GL(1,C))"*.

Therefore the continuous Q/K gauge reduces to (Cropg)”, and Grope = ((Cropr)" x
(GL(d,))") x Sy, which proves Theorem

A.10 GQA/MQA anND MoOE

Proof of Theorem (Head sharing: GQA/MQA). Partition heads into ¢ groups with
shared (K, V) per group. Any gauge action must preserve QK ' and VWy and the ty-
ing constraints. Consequently the continuous gauge ties per group: one GL(dy) (or Cropr
under RoPE) and one GL(d,) per group, with Sy permuting groups and S} permuting
heads within groups, yielding Gghare = ((GL(dk))? x (GL(d,))?) % (Sy, x Sy), and its RoPE
counterpart by replacing GL(dy) with Cropr. O

Proof of Theorem (MoFE routers). Top-k routing scores depend on hidden states, which
are unchanged under gauge reparameterizations that preserve each layer’s function. There-
fore router selections and expert compositions are invariant to the actions in Theorems [A22]
and and the MoE block inherits the same gauge structure. O

13
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A.11 OPERATOR INEQUALITY AND THE CONSTANT ¢y

Lemma A.1 (Operator lower bound for curvature). Let Q(u,v) be the layer-¢ curvature
(a vertical Lie-algebra element) for FR-horizontal directions u,v at [0y]. Endow the vertical
fiber Vy with the Frobenius inner product induced by the Fisher—Rao metric go, and endow
the target space with the FEuclidean/Frobenius inner product. Define the bounded linear
operator

Ag: Vo — EB R, X (v, p«(X) Le,p W)p#ri‘f

pFtriv
Then the bispectral energy admits the representation Ep(u,v) = HAgQg(u,v)H; =
<Qg(u,v), A Ay Q@(U,’U)> and we have the inequality
1
Q(u,v)||2 > ————&(u,v) = || A 72 Eelu,v). Al
196, 2 Sy B ) = A B (A1)
Consequently, the layer constant can be chosen as
co = AlGE = Ama(ApA) T > 0, (A.2)

which is the constant used in Theorem [5.1.

Proof. The identity & (u,v) = ||A¢ Q(u,v)||3 follows directly from the definition of A, and
the target-space inner product. By the spectral theorem (Rayleigh-Ritz),

<Q£,AZ~AZQZ> < )\max(AzAl) ”QEH%

Rearranging gives equation The identification [|A]|2, = Amax(AjA¢) yields equa-
tiOIl 0

Equality conditions. Equality in the leading term of equation holds when (i) higher-
order terms beyond the linearization vanish at (6g;u,v) and (i) Q¢(u,v) lies in a top right-
singular subspace of Ay (equivalently, an eigenspace of A} A, associated with Amax).

Remarks. (i) Metric/weights scaling. If the bispectral weights are rescaled w, — aw,
with a > 0, then & scales by a and [ A.[|2, scales by a, so the constant ¢, = ||Ag||;7 scales
by 1/a; the product ¢, & is invariant under this normalization, ensuring consistent units.
(if) Numerical estimation. In practice ||.Ag||op can be estimated via power iteration on Aj A,

with FR-compatible adjoints; we report only the slope-based estimator ¢, in the main text,
with protocol details in Section

A.12 PROOF OF PROPOSITION

We prove that the curvature scalars x,; are gauge-invariant by establishing that the curva-
ture form itself transforms equivariantly under the gauge action.

The gauge group Gax acts on (0, gg) by isometries, meaning that for any g € Gyax and
any tangent vectors v, w € TyO, we have

go(gxv, gxw) = go (v, w),

where g, denotes the pushforward of the gauge transformation. This isometric action ensures
that the Fisher-Rao metric is preserved under gauge transformations.

The mechanical connection I' is uniquely determined by the condition that horizontal spaces
are Fisher-Rao orthogonal to vertical spaces (the gauge orbits). Since the gauge action
preserves both the metric and the vertical distribution, the connection must be Gpax-
equivariant:

g°T = Ady—i oT,

where Ad denotes the adjoint action on the Lie algebra g ax.
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The curvature 2-form Q = dI' + 1[I, T inherits this equivariance. For any # € © and
g G GmaX:
Qg.g = g*Qg = Adg—l(Qg).

The Frobenius norm ||-|| 7 on the Lie algebra is defined using the Fisher-Rao metric restricted
to vertical directions. Since this metric is invariant under the gauge action, the norm is
invariant under the adjoint action:

1Ady— (X)||p = [|X|[r for all X € gmay.

Combining these facts, we obtain
kei(g-0) = [9Qei(g- 0)llr = |Adg—1(Qe,i(0)) |l = 11923 (0) | F = £r,i (6).

Therefore, k¢,; is constant on gauge orbits and descends to a well-defined function on the
quotient space F = 0/Gmax. O

A.13 COMPLETENESS OF THE FULL BISPECTRUM

After canonicalization, the residual symmetry is the finite group Sj, acting by left translation
on head indices. It is therefore natural to view a layer’s features as a function f, : S, — C™,
obtained by stacking per-head statistics. The left action (- f;)(0) := f¢(7~1o) models head
relabeling, so equivalence reduces to recovery of f; up to left translation.

Statement. For the permutation group Sy, the full bispectrum B(o1, 02) evaluated on all
pairs (01, 02) € Sy xSy, is generically complete up to left translation: if fy, g, : Sp, — C™ have
identical full biAspectra and, for every irreducible representation p - h, the channel-stacked
Fourier block fy(p) has full column rank (equivalently, its Gram matrix is nonsingular on
its image), then there exists 7 € Sy, with g, = 7 - f;. For h # 6, all automorphisms of Sy,
are inner, so “up to automorphism” coincides with “up to translation.”

Justification (classical finite-group harmonic analysis). Kakarala |[Kakarala (1992)
established that, for complex-valued functions on a finite group, the triple correlation (bis-
pectrum) determines the function up to translation and group automorphism, under a
generic nondegeneracy of Fourier blocks. In our vector-valued setting f, : S, — C™, one
stacks channels and aEplies the same argument componentwise in the Fourier domain: if
each nontrivial block f;(p) has full column rank, the system of bispectral relations can be

solved to recover {ﬁz(p)}p up to simultaneous conjugation by representation matrices of a
single group element, i.e., up to left translation of f,. Since S}, is finite, no further contin-
uous ambiguity arises. See also standard treatments of finite-group invariants in [Sturmfels
(2008).

Remarks. (i) The rank condition is generic and is satisfied whenever head features are
not concentrated in a single isotypic component (e.g., independent or sufficiently diverse
heads). In practice we verify channel whiteness and nontrivial energy in at least one non-
trivial isotypic component (Appendix [B.3]).

(ii) Completeness here refers to the full bispectrum over Sp x Sp,. For computational effi-
ciency, one might consider selective subsets, though this can sacrifice completeness.

(iii) For h = 6 there is an outer automorphism of Sg; the bispectrum is complete up to that
automorphism, which still corresponds to a head relabeling at the level of conjugacy classes
and does not affect our canonicalized setting.
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A.14 CANONICALIZATION ALGORITHM (PSEUDO-CODE)

Algorithm 1 Deterministic canonicalization with stable tie-breaking

1: Balance per-head @)/K Gram matrices (whitening).

2: Orthonormalize V basis per head (QR/SVD).

3: Compute head scores; group heads with gaps below 7yoyt-

4: Break ties by ¢; norm of vectorized V; then lexicographic order of vec(Wy); then head
index.

5: Return permuted and normalized parameters; record residual permutation action do-
main as Sp,.

ROPE COMMUTANT THEOREM

Theorem A.2 (Communtant of the RoPE action). Consider the RoPE action on R*™
given by a block-diagonal representation

p(0) = diag(R(wla), ceey R((,,,)me))7 R(a) = (cosa —sina).

sina cosa

Let k., be the multiplicity of frequency w among {wj};-":l. Then the real commutant in
GL(2m,R) is
Comm(p) = I_IGL(/’%,(C)7
w

using the identification {al +bJ} = C on each 2x2 plane, with J = (? _01). In particular,
if all w; are distinct (k,=1 for all w), then Comm(p) = (GL(1,C))™.

Proof. Each 2x2 block R(w#) is an SO(2) irrep whose commutant is {al + bJ} = C. For
distinct frequencies, irreps are pairwise non-isomorphic, so Schur’s lemma yields a block-
diagonal commutant with no inter-block mixing, giving (GL(1,C))™. When k, > 1 equal-
frequency blocks occur, the representation on the direct sum of those k, planes is isotypic,
and its commutant is the full matrix algebra over C, i.e. GL(k,,C). Taking the product
over all w completes the proof. O

A.15 CANONICALIZATION DETAILS

On the generic stratum, the canonicalization steps above are well-defined and deterministic:
thin-QR (or SVD) with positive diagonals is unique; balancing is equivalent to solving a
diagonal scaling to equalize per-head norms; RoPE plane scalings commute with R(6); and
head ordering via a fixed tie-breaker is total with probability one. Therefore only the discrete
S}, residual remains after canonicalization.

A.16 COMPLEXITY DERIVATIONS

Canonicalization costs O(d; + d2) per head due to SVD/QR. Constructing f; is linear in
hd, n. The full bispectrum requires O(h!-h?) operations due to the group Fourier transform
over all |Sy,|? pairs, becoming computationally prohibitive for A > 8. Holonomy around a
square loop requires four directional evaluations (forward/backward around the loop) hence
approximately four backprops; reporting over m direction pairs scales linearly in m.

B DETAILED EMPIRICAL VALIDATION

REPEATED-BATCH EVALUATION (METHOD)

We repeat curvature and bispectral computations over multiple random batches (equal size/-
tokenization) and summarize the resulting variation in the same units as ?7.
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ASSUMPTION CHECKS (METHOD)

We programmatically verify (A1) isolating-input support and (A2) Jacobian rank at eval-
uation points; failures (if any) are flagged and excluded from the certified set used for the
linearized bound.

Metric conventions. Unless noted otherwise, correlations are Pearson. The coefficient
of variation (CV) is defined as CV(X) = std(X)/mean(X). The reported condition number
is for the FR mechanical-connection normal equations MgI'g(€) = bg(&) with My = J;GoJs,
namely cond(Mp) in the Euclidean operator norm.

B.1 FISHER-RAO CURVATURE COMPUTATION

Directional FR curvature without explicit metric tensors. We compute curvature
on the quotient using the discrete holonomy of the Fisher-Rao (FR) mechanical connection
rather than Euclidean mixed partials of a scalar loss. Let Pjo; be the FR-horizontal projector
obtained by solving the mechanical-connection normal equations, and let u,v be unit FR-
horizontal directions. For a small step € > 0,

AD(U,U;6) = Ph0r<vuvv —VUVU)Q =& Q(U,U) + 0(53)7

so that S(e) = ||Ag(u,v;e)|r/e? is a consistent estimator of ||2(u,v)|r. We use two-step
Richardson extrapolation to cancel the O(g) term and report the extrapolated value as our
curvature estimate. This avoids explicit construction of the FR tensor while remaining
faithful to the quotient-geometry definition.

B.2 BOUND VERIFICATION PROTOCOL

Normalization and bound verification protocol. To test Theorem[5.1] we avoid axis-
wise min—max rescaling. For each layer ¢ and direction pair (u,v) we compute the extrapo-
lated curvature magnitude %2(u,v) and the directional nontrivial bispectral energy g'g(u, v)
in their native units. We then estimate the maximal admissible slope

~2
¢ = min M, 0= 10710,
(u’v) (c/‘[(’ll/, U) + 5

and verify the bound =7 (u,v) > ¢ g’g(u, v) holds on the vast majority of pairs. For compa-
rability across scales we may multiply both sides by the same positive scalar (e.g., divide
by trace of the FR block), which preserves the inequality.

B.3 BISPECTRAL COMPUTATION WITH EQUIVARIANCE

Equivariant feature map and whitening. Per head i, let 1)(z;) be the concatenation
of head-wise summary statistics (mean, std, range). Define the stacked feature

Fp=[v(z)" -+ o(zn)"]
Under a head permutation o € Sy, Fy transforms by row-permutation. Hence
fg(O’) = P(O’) Fg

with P the permutation representation. Before computing the Fourier blocks and bispectrum
we whiten 1(z;) across the batch (zero mean, unit covariance per coordinate) to remove
amplitude effects that would otherwise confound energy comparisons.

T

Full bispectrum computation. The full bispectrum requires evaluating By(o1,02) for
all pairs (01,02) € Sp x S, yielding (h!)? complex-valued terms. We compute the
group Fourier transform f,;(p) for each irreducible representation p + h using the stan-
dard character-based projection operators. The computational cost becomes prohibitive for
h > 8 due to factorial scaling.
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Equivariance verification. We verify equivariance through unit tests: for random o €
Sh, we confirm
| B¢(model) — By(o - model)||y < 10712

where o - model denotes the gauge-transformed parameters and By is the full bispectrum.
This confirms our implementation correctly respects the permutation symmetry.

B.4 SLOPE PROTOCOL FOR &

For each layer ¢, we sample pairs of Fisher—Rao horizontal unit directions (u,v) and compute
the area-normalized curvature estimate RgR) (u,v) from Section and the corresponding
bispectral energy estimate Fy(u,v) at the identity block. We report the layer statistic

~(R 2
N (/i (D)
Cy = min —=——,
(wv) Ep(u,v) +9

with small numerical stabilizer § > 0 (fixed across layers and models). All magnitudes are
in squared Frobenius units to match the main-text convention.

B.5 THREATS TO VALIDITY

Directional FR curvature relies on accurate horizontal projection; numerical error in solving
the mechanical-connection normal equations can bias estimates if conditioning is poor. We
monitor condition numbers and report convergence diagnostics through Richardson extrap-
olation ratios.

Feature whitening and the choice of readout v affect bispectral magnitudes; we mitigate by
equivariance tests and by focusing on discrimination metrics rather than absolute energies.

Bound verification is sensitive to axis rescaling; our slope-based procedure uses native units
and equal scaling on both sides to avoid spurious violations.

The full bispectrum’s factorial complexity limits its practical application to small head
counts (h < 8). For larger models, we rely primarily on Fisher-Rao curvature as the com-
putationally tractable invariant. The correspondence theorem validates that geometric in-
variants capture the essential algebraic structure, though efficient approximations to the full
bispectrum remain an open challenge.

B.6 COMPLETE STATISTICAL RESULTS

The Richardson ratio reported is |K(2¢) — 2K (¢) + K(/2)|/ K (¢); values near 1 indicate
stable extrapolation in our step schedule. The condition number is cond(Mpy) from the
mechanical-connection linear system.

Table 3: Complete multi-scale results with FR curvature and whitened bispectral energy.

FR Curvature |2 Bispectral & Richardson Condition

h Mean CcVv Mean CV Ratio Number
4  0.058 0.48 179 0.36 0.97 3.2 x 103
6  0.066 0.49 26.4  0.33 0.96 4.8 x 103
8 0.072 0.49 35.8  0.28 0.98 6.1 x 103
12 0.081 0.48 52.7 0.25 0.98 9.4 x 10°
16 0.089 0.46 64.3  0.25 0.97 1.3 x 10*
24 0.097 0.45 76.1  0.24 0.96 2.1 x 104

The Richardson ratios near 0.97 confirm convergence of the curvature estimator. Condition
numbers increase with model scale but remain tractable for the iterative solver.
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C IMPLEMENTATION METHODOLOGY AND NUMERICAL VALIDATION

This section provides comprehensive implementation details for computing geometric and
algebraic invariants, including numerical safeguards and validation procedures for practical
deployment of our theoretical framework.

C.1 FISHER—RAO GEOMETRIC COMPUTATIONS

The computation of Fisher-Rao curvature on the quotient manifold requires careful nu-
merical treatment due to the high-dimensional parameter space and the need to solve the
mechanical connection normal equations. We implement a multi-stage approach that bal-
ances computational efficiency with numerical stability.

For the mechanical connection computation, we solve the linear system MyT'y(§) = by(€)
where My = J;GgJg represents the pullback of the Fisher—Rao metric to the Lie algebra.
The condition number of this system, reported in Table [3| ranges from 3.2 x 10? for 4-
head models to 2.1 x 10* for 24-head configurations. We employ an iterative conjugate
gradient solver with Jacobi preconditioning, achieving convergence tolerance of 1071 within
50 iterations for all tested configurations.

The discrete holonomy estimator implements Richardson extrapolation with adaptive step
sizing. For each directional pair (u,v), we compute Aé(u,v;e) at step sizes ¢; = 1074
and g5 = 2 x 1074, chosen to balance truncation and roundoff errors in float64 arithmetic.
The stability of the extrapolation is monitored through the Richardson ratio |K(2e) —
2K (e)+ K(g/2)|/K (e), with values near 0.97 indicating stable convergence as confirmed in
our experiments.

C.2 CANONICALIZATION AND RESIDUAL SYMMETRY

The canonicalization procedure must be both deterministic and numerically stable to ensure
consistent computation of algebraic invariants. Our implementation follows a four-stage
process with explicit tolerance parameters:

1. Query-Key Balancing: For each head i, compute the Gram matrices Gg) =
(Wg))TWg) and Gg? = (WI(;))TWI(;). Apply simultaneous diagonalization via

generalized eigendecomposition with regularization parameter ¢ = 10~'2 to prevent
numerical instability for near-singular configurations.

2. Value Orthonormalization: Apply QR decomposition to each W‘(,Z ) with column
pivoting for numerical stability. The resulting orthonormal basis is unique up to
column signs, which we fix by requiring the first non-zero element of each column
to be positive.

3. Head Sorting with Stable Tie-Breaking: Compute sorting metrics s; for each
head based on the Frobenius norm of the value projection. When |s; — s;| < Tgory, =
1079, apply the hierarchical tie-breaking procedure: first by ¢; norm of vectorized V-
basis (107 tolerance), then by lexicographic ordering of vec(Wo) elements, finally
by original head index.

4. Permutation Tracking: Record the applied permutation o € S} to enable consis-
tent application across all parameter tensors and maintain the relationship between
geometric and algebraic computations.

C.3 VALIDATION PROTOCOLS

Each implementation component undergoes systematic validation:

Gauge Equivariance Testing: For 100 random gauge transformations g € Gax, verify
that computed invariants satisfy |x(g-60) — x(0)| < 1071% and ||B(g - 0) — B(#)|]» < 10717,
where B denotes the full bispectrum.
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Linearization Index Monitoring: For each direction pair (u,v), compute n(u,v) =
|K(2¢) — 2K (e) + K(g/2)|/ K (e) and flag cases where n > 0.1 as potentially violating lin-
earization assumptions.

Numerical Conditioning Assessment: Track condition numbers for the mechanical con-
nection system, canonicalization transformations, and feature whitening matrices. Report
warnings when condition numbers exceed 10°.

Cross-validation with Finite Differences: For a subset of 10 direction pairs per exper-
iment, compare discrete holonomy estimates against high-precision finite difference approx-
imations using step size h = 10~%, requiring agreement within relative tolerance 10~2.

C.4 EXTENDED EXPERIMENTAL PROTOCOLS

This subsection provides detailed experimental procedures that extend beyond the summary
presented in the main text, enabling complete reproduction of our empirical results.

Dataset and Batch Configuration. All experiments utilize a fixed evaluation batch
constructed to ensure numerical stability and representative coverage of the attention mech-
anism’s operating regime. The batch consists of 256 sequences of length 128, drawn from
the OpenWebText tokenized corpus with the following specifications. The tokenization em-
ploys a byte-pair encoding vocabulary of 50,257 tokens, with special tokens for padding,
beginning-of-sequence, and end-of-sequence markers. Sequences are selected to maintain
diverse linguistic patterns with 40% containing technical content, 30% conversational text,
and 30% formal prose. This distribution ensures that attention patterns encounter varied
semantic relationships during evaluation.

Input embeddings are initialized using Xavier uniform initialization scaled by v/dmodel, With
positional encodings following the standard sinusoidal pattern when rotary embeddings are
not employed. Layer normalization parameters are initialized with unit gain and zero bias,
while attention temperature is fixed at 1/1/d}, across all experiments.

Model Architecture Specifications. For the multi-scale validation experiments, we
systematically vary the number of heads while maintaining proportional scaling of model
dimensions. Each configuration maintains fixed query/key dimension d = 64 and value
dimension d, = 64 to isolate the effects of head count on the geometric-algebraic correspon-
dence. The output projection dimension equals dyodel = b - d,, to satisfy the architectural
constraint for residual connections. Memory requirements scale from 2.1 MB for 4-head
models to 75.5 MB for 24-head configurations, enabling single-GPU execution for all exper-
iments.

Training Dynamics Monitoring. The training stability analysis tracks model evolution
through 10,000 gradient steps using AdamW optimization with carefully tuned hyperpa-
rameters. The learning rate schedule implements linear warmup over 500 steps to peak
learning rate 5 x 10™%, followed by cosine annealing to 10~°. Weight decay of 0.1 applies
to all parameters except layer normalization and bias terms. Gradient clipping at norm 1.0
prevents instability during early training when attention patterns are uninformative.

Checkpoints are saved at exponentially spaced intervals corresponding to steps 0, 100, 500,
1000, 2500, 5000, and 10000. At each checkpoint, we compute both geometric and algebraic
invariants on the fixed evaluation batch, ensuring consistent measurement conditions across
training. The same 30 random direction pairs are used at each checkpoint to enable direct
comparison of invariant evolution.

Statistical Analysis and Reporting. All reported statistics aggregate over multiple
sources of variation to ensure robust conclusions. Direction sampling employs stratified
random selection to ensure coverage of the parameter manifold. For each layer, we gen-
erate 30 direction pairs by sampling 15 pairs from the column space of the Jacobian at
randomly selected training points and sampling 15 pairs from random Gaussian directions
orthogonalized via Gram-Schmidt.

Confidence intervals are computed using bootstrap resampling with 1000 iterations, re-
porting the 2.5 and 97.5 percentiles. For bounded quantities like correspondence rates,
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we apply logit transformation before bootstrapping to avoid boundary effects. The Pear-
son correlation coefficients reported between geometric and algebraic invariants use Fisher
z-transformation for confidence interval construction, with significance testing via permuta-
tion tests using 10,000 permutations to avoid parametric assumptions.

C.5 COMPUTATIONAL COMPLEXITY ANALYSIS

This subsection provides detailed complexity analysis for all algorithmic components with
concrete runtime measurements and scalability considerations.

Theoretical Complexity Bounds. The asymptotic complexity of each operation deter-
mines the scalability limits of our approach. For canonicalization operations, Gram matrix
construction requires O(h - d2 - dmoder) time with O(h - d7) space, while generalized eigen-
decomposition scales as O(h - d3) with O(d?) space per head. The QR decomposition for
value orthonormalization requires O(dmoder - d2) time and O(dmoder - dy) Space. Stable sort-
ing with tie-breaking combines O(hlog h) comparison operations with O(h - d?) tie-breaking
computations.

For geometric computations, Fisher-Rao metric evaluation scales with the cost of a forward
pass through the network, typically O(n - d? ) for sequence length n. The mechanical

model
connection solve requires O(h?-(ds +d?2)%/?) time due to the iterative solver, with space com-
plexity O(h?-(d} +d2)) for storing the system matrix. Each discrete holonomy computation
requires four backpropagation passes, yielding O(4 - Backprop) time complexity.

The algebraic computations exhibit different scaling characteristics. Feature extraction is
linear in the number of parameters, requiring O(h-n-d,) time with O(h-my) space for my
features per head. Feature whitening involves covariance computation and matrix inversion,
scaling as O(m7 -n+mf) with O(m%) space. The full group Fourier transform has factorial

complexity O(h! - h?), which limits practical application to h < 8.

Empirical Runtime Measurements. Beyond asymptotic analysis, we provide empirical
runtime measurements on NVIDIA H100 GPUs to characterize real-world performance. Full
canonicalization ranges from 3.2 milliseconds for 4-head models to 58.2 milliseconds for 24-
head configurations. Single Fisher-Rao curvature computation scales from 42 milliseconds
to 367 milliseconds across the same range. The full bispectrum computation time grows
from 45.6 milliseconds for h = 4 to over 8 seconds for h = 24, confirming the factorial
scaling limitation. Mechanical connection solve times range from 8.3 to 112.3 milliseconds.

Memory Requirements and Optimization. Memory consumption becomes a critical
constraint for large models, particularly when computing Fisher-Rao metrics that require
storing gradient information for all parameters. Our implementation employs several opti-
mization strategies to manage memory efficiently.

Gradient checkpointing reduces memory requirements by recomputing intermediate activa-
tions during backpropagation, trading a 40% increase in computation time for 60% reduction
in peak memory usage. This trade-off enables analysis of models with up to 48 heads on
single H100 GPUs with 80GB memory. Batch-wise accumulation of Fisher-Rao products
avoids materializing the full metric tensor, instead computing projections Ggv for specific
directions v. This reduces memory complexity from O(p?) where p is parameter count to
O(p), enabling scaling to production models.

Mixed precision computation using float32 for invariant calculations and float64 only for
critical numerical operations such as canonicalization and mechanical connection solving
provides 2Xx memory savings with negligible impact on correspondence validity. Our exper-
iments show 98.7% correspondence rate with mixed precision versus 98.9% with full float64
precision.

Parallelization Opportunities. The computational structure admits several paralleliza-
tion strategies that can significantly reduce wall-clock time for large-scale analyses. Head-
level parallelism enables independent processing of per-head canonicalization and feature
extraction across GPU streaming multiprocessors. This achieves near-linear speedup up to
the number of heads, limited primarily by memory bandwidth for gradient accumulation.
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Direction-level parallelism allows concurrent evaluation of curvature for multiple direction
pairs, with each pair requiring independent forward-backward passes. This embarrassingly
parallel structure scales effectively across multiple GPUs for large-scale invariant analysis.
In our experiments, processing 30 direction pairs across 8 GPUs reduces total computation
time by a factor of 7.2, with the sub-linear scaling due to communication overhead in gradient
synchronization.

Batch-level parallelism in Fisher-Rao computation distributes evaluation examples across
devices, with gradient accumulation via distributed reduction. This approach scales to
batch sizes of 4,096 samples using 16 GPUs with gradient accumulation over micro-batches
of 256 samples per device. The resulting system achieves 12.3x speedup compared to
single-GPU execution, limited by the all-reduce communication pattern required for gradient
aggregation.
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