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Abstract

Selective classifiers improve model reliability by abstaining on inputs the model
deems uncertain. However, few practical approaches achieve the gold-standard
performance of a perfect-ordering oracle that accepts examples exactly in order of
correctness. Our work formalizes this shortfall as the selective-classification gap
and present the first finite-sample decomposition of this gap to five distinct sources
of looseness: Bayes noise, approximation error, ranking error, statistical noise, and
implementation- or shift-induced slack. Crucially, our analysis reveals that mono-
tone post-hoc calibration—often believed to strengthen selective classifiers—has
limited impact on closing this gap, since it rarely alters the model’s underlying
score ranking. Bridging the gap therefore requires scoring mechanisms that can
effectively reorder predictions rather than merely rescale them. We validate our
decomposition on synthetic two-moons data and on real-world vision and language
benchmarks, isolating each error component through controlled experiments. Our
results confirm that (i) Bayes noise and limited model capacity can account for
substantial gaps, (ii) only richer, feature-aware calibrators meaningfully improve
score ordering, and (iii) data shift introduces a separate slack that demands distri-
butionally robust training. Together, our decomposition yields a quantitative error
budget as well as actionable design guidelines that practitioners can use to build
selective classifiers which approximate ideal oracle behavior more closely.

1 Introduction

In high-stakes applications like finance [[Coenen et al., |2020], healthcare [[Guan et al., 2020]], and
autonomous driving [[Ghodsi et al.| 2021]], machine learning (ML) models are increasingly tasked
with making decisions under uncertainty, where dependable predictions are critical. Selective
classifiers [[Chow, 1957, El-Yaniv et al., 2010] formalize the option to abstain on inputs deemed
unreliable, reducing the risk of costly errors by refusing to predict when uncertain. Their effectiveness
depends on identifying which predictions to trust and which to defer. A common evaluation metric is
the accuracy—coverage tradeoff, which quantifies how performance degrades as the model accepts a
broader set of inputs. The benchmark is a hypothetical oracle that ranks inputs by their true likelihood
of correctness, yielding a perfect-ordering upper bound [Geifman et al., 2019, Rabanser et al.,[2023].
While some selective predictors approach this bound, others fall short—revealing persistent gaps and
raising open questions about what properties of the learning setup truly govern selective performance.

Classical theory explains selective classification in two idealized regimes. In the realizable setting [El+
Yaniv et al, 2010]], where the data is noiseless and the true predictor lies within the hypothesis
class, the model can asymptotically achieve the ideal accuracy—coverage curve. In the more general
agnostic setting [Wiener and El-Yaniv} |2011]], the classifier competes with the best-in-class predictor,
but this benchmark may itself fall well below the oracle bound—and the theory does not isolate
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the source of the gap. Yet in practice, we never operate in such asymptotic or idealized conditions:
models are often misspecified, the data used for training and evaluation are finite, and asymptotic
guarantees offer little actionable insight. As a result, even the strongest formal guarantees provide
limited guidance, which leaves practitioners with the following question:

For my finite model on finite data, what aspects of the learning setup will actually
move my trade-off curve closer to the perfect-ordering upper bound?

To answer this question, we re-frame selective performance around the selective classification

gap A(c): the mismatch between a model’s accuracy—coverage curve and the oracle bound for all

coverage levels ¢ (see Figure[T). Our work shows that this gap admits a finite-sample decomposition:
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Each term corresponds to a distinct—and of-
ten measurable—source of looseness. The first
term, Egayes (¢), reflects irreducible uncertainty:
if the true label is inherently unpredictable from
the input (e.g., due to label noise), even a perfect
classifier must abstain on some examples. Next,
aappmx(c) captures limits of the model class: if
the function class is too weak to approximate
the Bayes-optimal decision rule, the gap widens.
The third term, €0k (c), quantifies the model’s
failure to correctly order inputs by their likeli-
hood of correctness—typically due to poor con-
fidence estimation or miscalibration. The sta-
tistical term e, (c) accounts for finite-sample
fluctuations that affect both learning and evalua-
tion. Finally, s (c) aggregates practical imper-
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Figure 1: Visualization of the selective classifi-
cation gap A(c). The dashed curve is the oracle
frontier acc(as, ¢) under which coverage levels
left of ¢ = agy (blue) accept all correct predictions
first, and rank incorrect predictions last ( ).
This constitutes the ideal behavior of a selective

fections, such as optimization error or test-time
distribution shift. Equation (I thus provides
a coverage-uniform “error budget” that trans-
forms the qualitative question posed earlier into
a concrete quantitative diagnosis.

predictor. On the other hand, the solid curve shows
the realized selective accuracy acc.(h,g). The
mismatch between acc(agy, ¢) and acc.(h, g) at
coverage c is the gap A(c); the gray shaded area
visualizes this gap over the full coverage spectrum.

Two key insights, developed further in later sections, are worth previewing. First, we show that
monotone post-hoc calibration—a technique that is often thought to improve selective prediction
performance—only possess a limited ability of reducing the ranking term e.,x(c). In contrast,
methods that directly yield improved uncertainty scores by leveraging richer feature representations or
aggregating diverse model perspectives dominate post-hoc calibration methods. Second, Equation (I
serves as an error budget that identifies cost-effective levers leading to actionable recommendations
for practitioners: (i) use additional or repeated labels and noise-robust losses to reduce egayes;
(ii) increase capacity or distill from a more expressive teacher to shrink €,pprox; (iii) enlarge validation
data to lower eg,; and (iv) apply domain adaptation or importance weighting to address €pisc-

Contributions. We summarize our main contributions below:

* Problem formulation. We recast selective prediction in terms of a coverage-uniform selective
classification gap—the key quantity to minimize to approach perfect selective prediction. This
framing unifies prior work and highlights which failure modes dominate at each coverage level.

* Theoretical analysis. We present the first finite-sample decomposition of the selective classification
gap (Equation (I)), dividing it into five terms: Bayes, approximation, ranking, statistical, and
miscellaneous errors. Our analysis further shows that monotone calibration is ineffective at
reducing the gap, motivating the use of methods that can change the ranking more flexibly.

* Empirical validation. Our synthetic and real-world experiments confirm the decomposition:
Bayes noise and capacity limits drive large gaps; temperature scaling improves calibration but not
ranking; and shift-aware methods remain essential under distribution shift. These results clarify
which factors matter most and how to target them effectively in practice.



2 Background & Related Work on Selective Classification
Selective classification extends the standard supervised classification framework as follows:

Definition 1 (Selective Classifier [[Chowl |[1957] [El-Yaniv et al.| [2010]]). A selective classifier
is a pair (h, g), where h : X — ) is a classifier over covariates X = R” and labels )} =
{1,...,K},and g : X x (X = ) — Ris a selection function that assigns a confidence score.
Given a threshold 7 € R, the model abstains when the score falls below the threshold:

(o) = {7 Toe =T @

otherwise

Intuitively, a selective classifier predicts only when confident. The selection score g(x, h) determines
whether to accept or abstain: if g(x, h) > 7, the model outputs h(x); otherwise, it returns L.

Many prior works have developed selective classification methods for training competitive pairs
(h,g). A popular method is Maximum Softmax Probability (MSP) [Hendrycks and Gimpel, 2017}
Geifman and El-Yaniv, [2017]], which uses classifier confidence as the selection score. To improve
calibration and reduce predictive variance, ensembling approaches have been explored: Deep En-
sembles (DE) [Lakshminarayanan et al., [2017] train multiple models with different initializations,
while Selective Classification via Training Dynamics (SCTD) [Rabanser et al., [2022]] ensembles
intermediate checkpoints. Other methods—such as SelectiveNet (SN)[Geifman and EI-Yaniv} 2019],
Deep Gamblers (DG)[Liu et al.l 2019]], and Self-Adaptive Training (SAT) [Huang et al.,[2020]—alter
the model architecture or loss function ensuring that prediction and rejection are learned jointly.

The efficacy of a selective classifier is evaluated using the empirical accuracy-coverage tradeoff.

Definition 2 (Empirical Accuracy—Coverage Tradeoff). Let D = {(z;,y;)}Y; be a dataset.
For a selective classifier (h, g) and threshold 7, define

bug(r) = 5 |2 gl h) 2 7], )
|{i: h(x;) = ys and g(wi, h) > 7} .

) f Oa
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0, if &, 4(7) = 0.

The pair (&, &) as 7 varies is the empirical accuracy—coverage curve.

The score g(x, h) therefore induces a total order over D: x is accepted before x5 if g(x1,h) >
g(x2, h). This ordering governs which inputs are retained as coverage decreases. Effective strategies

aim to maximize & at each coverage level &, often trading off accuracy and coverage.

Accuracy—coverage tradeoff evaluation. The accuracy—coverage tradeoff is often summarized
by the area under the accuracy—coverage curve (AUACC), integrating selective accuracy over all
coverage levels [Traub et al.,|2024]. However, |Geifman et al.| [2019]] show that AUACC favors models
already accurate at full coverage. To address this issue, |Geifman et al. [2019] and [Rabanser et al.
[2023] propose oracle-based bounds, which become loose at low utility [Galil et al., 2023]]. To
avoid accuracy bias, |Galil et al.| [2023]] and |Pugnana and Ruggieri| [2023]] recommend using the
classifier’s AUROC instead. But AUROC is not monotonic in AUACC [[Cattelan and Silval, [2023| [Ding
et al.}2020], thus favoring methods tuned for AUROC over selective accuracy. Recently, Traub et al.
[2024] introduced the Area Under the Goals-Reweighted Curve (AUGRC), which multiplies accuracy
by coverage to mitigate bias toward low-coverage regions, while Mucsanyi et al.| [2024]] provide a
benchmark disentangling uncertainty sources for fairer comparison. These efforts refine evaluation
metrics, whereas our work complements them by analyzing what causes selective performance gaps.
Earlier work [El-Yaniv et al., 2010, [Wiener and El-Yaniv, |2011]] characterizes optimal selective
classifiers in both realizable and agnostic regimes but focuses on existence rather than practical
instantiation—unlike our finite-sample perspective.



3 Decomposing the Selective Classification Gap

We characterize the optimal performance achievable by a selective classifier given its full-coverage
accuracy, establishing a reference against which all practical selective classifiers can be evaluated.

3.1 Oracle Bound and Selective Classification Gap

Definition 3 (Perfect Ordering Upper Bound [|Geifman et al.} 2019} |Rabanser et al.} [2023]]). Fix
a base classifier h whose full-coverage (standard) accuracy is ag := Pr(h(X )= Y) € [0,1].
For any desired coverage level ¢ € (0, 1], the best selective accuracy—achieved by accepting
the c-fraction of points with the highest posterior correctness Pr(h(X) =Y | X)—is
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Assuming no Bayes noise—that is, all errors are avoidable given perfect confidence—this piecewise
curve (see Figure [I) traces the oracle accuracy—coverage frontier based on a perfect ranking of
examples by correctness probability. Any real selective classifier falls below this bound—potentially
far below, depending on its calibration, expressivity, and sensitivity to noise. To quantify how far a
given classifier falls short of this ideal, we define the selective classification gap.

Definition 4 (Selective Classification Gap). Let (h, g) be a selective classifier with full-coverage
accuracy ag = Pr(h(X) = Y). For a coverage level ¢ € (0, 1], let 7. be the threshold
satisfying Pr(g(X, h) > TC) = c¢. The selective accuracy at coverage c is acc.(h, g) :=
Pr(h(X ) =Y | g(X,h) > TC). The selective classification gap at coverage c is then defined
as the deviation from the perfect-ordering upper bound:

Alc) := W(afun,c) — acce(h, g). (6)

This gap A(c) can be interpreted as the excess selective risk at a given coverage c. We note that

integrating A(c) over the entire coverage spectrum, fol A(c)de, is equivalent to the definition of the
Excess-AURC (E-AURC) metric proposed by |Geifman et al.| [2019].

The function A(c) offers a coverage-resolved diagnostic of selective performance. A small gap indi-
cates near-oracle behavior—accepting only examples it can confidently and correctly classify—while
a large gap suggests limitations in estimating correctness or ranking examples reliably. Understanding
the magnitude and shape of this gap is key to analyzing and improving selective classifiers.

3.2 Why Is the Upper Bound Loose?

The oracle bound in Definition [3]relies on two idealized assumptions: perfect prediction on all inputs
and perfect ranking by the true correctness posterior. In practice, selective classifiers deviate in four
principal ways, each corresponding to a term in our later decomposition (€gayes, Eapprox » Erank Estat):

1. Bayes noise (cgayes)- Even a Bayes-optimal rule errs on intrinsically ambiguous points (where
max, Pr(Y =y | X) < 1), unavoidable in real data [Devroye et al., 2013|]. As coverage increases,
the oracle must accept some of these noisy inputs, lowering the achievable accuracy.

2. Approximation limits (capprox). A learned model i drawn from a restricted hypothesis class may
misclassify inputs with high posterior confidence under the Bayes rule [Bishop| [2006]]. This gap
reduces full-coverage accuracy and limits selective performance.

3. Ranking error (cran). Let np(2) := Pr(h(z) =Y | X = z) denote the true correctness
posterior, i.e., the probability that the model’s prediction is correct given the input. Ideally, the
confidence score g(X, h) should rank examples in decreasing order of 7, (x)—so that samples
the model is likely to classify correctly (high 7, (z), examples that are “easy”) are accepted
before those it is likely to misclassify (low 7, (x), examples that are “hard”). When g(X, h) fails
to preserve this ordering, high-confidence errors and low-confidence corrects are interleaved,
increasing the selective gap A(c).




4. Statistical noise (c44¢). Estimating the threshold 7, and selective accuracy from a finite validation

set introduces randomness of order O(/log(1/d)/n). This follows from concentration bounds;
see |Shalev-Shwartz and Ben-David| [2014] for standard applications in learning theory.

The selective classification gap A(c) reflects a mix of irreducible noise, model
misspecification, ranking errors, and sampling variability. Addressing each—via cleaner labels,
stronger models, or improved ranking—can tighten selective prediction performance.

In the next subsection, we formalize this decomposition and provide a general bound on the total gap.

3.3 Formal Decomposition of the Gap

We now give a principled decomposition of the selective classification gap and provide a correspond-
ing finite-sample upper bound. For clarity and notational simplicity, we treat the binary-label case
Y = {0, 1}; the multiclass extension follows by a standard one-vs-rest reduction.

Notation. Let n(z) := Pr(Y =1|X= x) be the Bayes posterior. For a fixed classifier h : X — Y
define its (induced) correctness posterior

np(x) = Pr(h(x) =Y |X= x) = n(x) Iip@)=1} + (1 - n(x))]l{h(m)zo}. @)

All expectations and probabilities are taken w.r.t. the true data distribution D. Throughout let g(x, h)
be the confidence score. For a target coverage ¢ € (0, 1] denote by

t. s.t Pr(g(X7 h) > tc) =c )

the population threshold, and write the accepted region A. .= {x : g(x,h) > t.}. The oracle that
attains the perfect-ordering bound accepts A} := {x : Mp(x) is among the largest c—fraction}.

Error terms. We isolate the following sources of error affecting selective prediction performance:

Enuyes(€) = E[1 = max{5(X), 1 - n(X)} | X € 4], )
Eapprox (€) = E[\nh(X) —n(X)| ‘ Xe Ac}, (10)
erank(€) = E[n(X) | X € A7) —E[m(X) | X € Ac]  (20), (11)
eqa(c) = C M, (12)

where n is the evaluation-set size, § € (0,1) a confidence parameter, and C' > 0 an absolute constant.
Intuitively, epayes is the irreducible label noise inside the accepted region; €,pprox measures how far b
is from Bayes-optimal on the selected inputs; €,y 1S a ranking regret measuring the accuracy loss
due solely to picking the wrong c-fraction of samples; and e, captures the sampling uncertainty due
to evaluating on a finite dataset. Note that we freeze the acceptance set A, defined by the current
scoring function and ask how much worse the learned classifier h is than the Bayes-optimal rule.

Remark (Distance to a Perfect Ranker). A natural way to gauge how far the learned acceptance
rule is from the oracle is the mass mis-ordered
Drank(c) = Pr(X € AZ\ A;) + Pr(X € A.\ 4}). (13)

It equals the total probability of examples that would have to be swapped between A, and A% to
recover perfect ordering. Hence Dynk(c) = 0 iff A, = A, in which case &40k (c) also vanishes.

Theorem 1 (Selective Gap Bound). For a coverage level ¢ € (0, 1] and a selective classifier
(h, g) the population gap obeys

A(C) = m(afullv C) - aCCc(ha 9) < EBayes (C) + 5approx(C) + Erank(C)- (14)




Let E(c) be the empirical gap on n i.i.d. test points. Then, with probability at least 1 — 4,

A(€) < EBayes(C) + Eapprox(€) + Erank(€) + O/ LD, (15)

Proof. Because acc.(h, g) = E[np(X) | Ac], the gap decomposes as
Ac) =Elnn | A7] = Elgn | Ac] + Elnn — Iin=yy | Ac] + E[1 —max{n,1 —n} | A].

Erank (€) Eapprox (€) EBayes (C)

This yields the population bound (T4). For each expectation in the decomposition apply
Hoeffding’s inequality, a union bound over the three terms gives, with probability 1 — §,
IA(c) — A(c)| < C+/log(1/5)/n. Adding this deviation to (T4)) establishes (T3).

See Appendix [B.T|for an extended proof with detailed intermediate steps. U

A single design choice can shrink multiple error terms. We note that the individual error terms
from the decomposition in Equation (T3)) can still interact with each other. For example, when the
confidence score is the maximum softmax probability (MSP), a better approximation of the true
conditional 7 not only lowers the approximation term €,pprox (¢) but also tends to align MSP more
closely with 7y, thereby indirectly reducing the ranking error e,k (c). Conversely, a non-monotone
calibration head can reduce p,nk (¢) without improving e,pprox (€).

3.4 Calibration and Its (Limited) Effect on the Gap

As shown in Theorem [1| the selective classification gap includes a ranking error term egnk(c),
which captures misalignment between the confidence score and true correctness. Model calibra-
tion [Niculescu-Mizil and Caruana, 2005]—widely used to reduce over- or underconfidence—is often
assumed to improve this alignment by transforming scores to better reflect correctness likelihood.
Yet its effect on selective performance remains ambiguous and context-dependent. Prior work has
reached conflicting conclusions: [Zhu et al.| [2022] argue that calibration may degrade abstention
behavior, while|Galil et al.|[2023]] find that temperature scaling can improve selective prediction in
practice. We show that the impact on the gap depends critically on the fype of calibration method used
and its influence on the induced ranking. We begin by recalling the formal definition of calibration.

Definition 5 (Perfect Calibration). For each input « let a model produce a predicted label §(x)
and an associated confidence score s(x) € [0, 1]. We say the model is perfectly calibrated if

Pr(Y =9(X) | s(X)=t) =t for every confidence level ¢ € [0, 1]. (16)

Practical estimators approximate (I6)) via a post-hoc map ¢ such that 5(z) = ¢(s(z)) approaches
prefect calibration. Expected Calibration Error (ECE) [Naeini et al.||2015] quantifies this closeness:

B
e bl ] T SN — N 2
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where I}, is the set of indices in bin b, n is the total number of examples, and B is the number of bins.

Monotone score-level calibration leaves the gap intact. Isotonic regression [Zadrozny and Elkan,
2002]] and histogram binning [Zadrozny and Elkanl [2001]] fit a monotone ¢: [0,1] — [0, 1] that
preserves score ordering. Because monotone maps preserve ordering, the acceptance set A, = {z :
3(z) > 7.} is identical to the one obtained from s(x); hence the selective accuracy acc.(h, g) and
the gap A(c) = acc(aun, ¢) — acce(h, g) are unchanged. Monotone calibration thereby reduces the
approximation error €gpprox (¢) in Section but leaves the ranking error &,k (¢) untouched.

The effect of temperature scaling on the SC gap. Temperature scaling, the most widely used
post-hoc calibration technique, divides every logit vector z(z) € R¥ by a scalar T > 0,

(1) () = _XP(2(@)/T)
P S (a0 1) 9



While this operation leads to a monotone rescaling of the logits, it can lead to a non-monotone
rescaling of the softmax probabilities. Since the softmax function is non-linear with respect to
the temperature parameter, temperature scaling can therefore change the ranking of samples by
confidence. This re-ranking can lead to small but empirically validated improvements in selective
classification performance, as measured by metrics like AUROC [Galil et al.,|2023| |Cattelan and
Silval [2023]]. However, the magnitude of this effect is inherently limited (see Appendix [B.2|for an
extended discussion). While temperature scaling can refine the ordering, it does not fundamentally
alter the underlying quality of the model’s uncertainty estimates.

Moving the gap requires non-monotone scoring. To reduce the selective classification gap A(c),
it is not enough to calibrate scores post-hoc using monotone mappings. One must actively change
the ranking of accepted examples to better reflect their true likelihood of correctness. Achieving
this typically requires non-monotone scoring mechanisms that incorporate richer, instance-specific
information—such as deep ensembles (DE), self-adaptive training (SAT), or learned correctness heads
gy () that map hidden representations to confidence estimates. These approaches leverage model
diversity, stochasticity, or internal feature structure to distinguish samples that would otherwise
receive identical or wrongly ordered confidence values under standard softmax outputs.

Why binning and vector scaling should not be used. Histogram binning [Naeini et al., [2015]]
and vector/Dirichlet scaling [Kull et al.l 2019]—while widely to improve calibration—are poorly
suited for selective classification. Histogram binning quantizes scores into a small number of bins,
mapping wide score intervals to the same value and destroying within-bin ordering, which leads
to effectively random selection among tied examples. Vector and Dirichlet scaling are post-hoc
calibration methods that generalize temperature scaling by learning class-specific transformations of
logits—vector scaling applies a linear transformation, while Dirichlet scaling interprets the logits as
parameters of a Dirichlet distribution to better model uncertainty. Recent work by [Le-Coz et al.|[2024]]
shows that histogram binning and vector/Dirichlet scaling consistently degrade AUROC in selective
classification. These results underscore our central claim: improving calibration does not guarantee
better ranking. Reducing the selective classification gap requires score functions that explicitly learn
to separate easy from hard examples, not just to produce better-calibrated probabilities.

Loss prediction as a multicalibration litmus test. A complementary view on how calibration
connects to ranking ability arises from the notion of multicalibration |[Hébert-Johnson et al., 2018]],
which requires that a model’s confidence be calibrated not only overall but also across many subgroups
of inputs. Recent work by (Gollakota et al.| [2025] shows that achieving strong multicalibration is
equivalent to learning an accurate predictor of one’s own loss—that is, training an auxiliary model
to estimate, for each input, the probability that the base predictor will be correct. Viewed this way,
reliability becomes a self-forecasting problem: if a model (or an auxiliary head) can successfully
predict its own 0-1 loss, then its confidence scores must already be well aligned with correctness,
leaving little residual ranking error. We formalize this equivalence in Appendix [E|and show, both
theoretically and empirically, that the degree to which a model’s loss can be predicted corresponds
directly to the magnitude of the ranking-error term &gnk (¢). In short, when no auxiliary predictor can
outperform the model’s own confidence scores at identifying its mistakes, the model is effectively
multicalibrated and near the oracle frontier; conversely, any nontrivial loss-prediction advantage
exposes where—and by how much—its internal ranking deviates from perfect ordering.

While post-hoc calibration with temperature scaling can provide modest improve-
ments to ranking, it is not sufficient to close the SC gap. Substantially reducing the ranking
error (rnk) requires more powerful scoring methods that actively re-rank examples based on
richer information, such as feature-aware heads, ensembles, or non-monotone transformations.

3.5 Additional Practical Sources of Looseness

The decomposition in Theorem [I| captures the intrinsic sources of error—Bayes noise, approximation
limits, ranking error, and sampling slack—forming a principled bound that holds even under perfect
optimization, infinite data, and i.i.d. testing. In practical deployments, however, additional imperfec-
tions can inflate the empirical gap A(c). These stem from implementation details, scoring granularity,
and distribution shift—not fundamental limits, but contingent slack terms reducible through better
engineering. We summarize them below under a single residual slack term &yis.(c).



1. Optimization error c,p.. In practice, gradient-based solvers rarely attain the empirical risk
minimizer. If L(#) denotes the end-to-end training objective—encompassing model architecture,
loss (e.g. cross-entropy), and training data—and 6 its final iterate, then e,y = L(#) — ming L(6),
which—uvia standard surrogate-to-0/1 calibration bounds—translates into a nonzero selective-
accuracy loss that persists even under infinite data.

2. Distribution shift cgig(c). When the test distribution pest deviates from the training distribution
Dtrain» Doth calibration and ranking typically degrade. In particular, for a hypothesis class H, the
gap due to shift can be bounded by an Integral Probability Metric (IPM) [Miiller, [1997]:

gshift(c) < IPMH (ptraina ptest) = ?ug |Eptrain [f] - Eptest [f]l . (19)
€

Hence, larger shifts in distribution (relative to ) lead to wider selective classification gaps.

Residual slack. The dominant practical sources of looseness are optimization error and distribution
shift, summarized by emisc(¢) 1= €opt + Esniri(¢). These two terms capture the main drivers of residual
deviation between the theoretical and empirical gaps. For completeness, we discuss additional minor
contributors such as threshold-selection noise or score quantization in Appendix Together, these
effects make the bound in Equation (20) sufficient, not merely necessary, for explaining all observed
looseness in practical selective classifiers, yielding the streamlined high-probability bound.

3(C) < EBayes (C) + Eapprox(c) + Erank(c) + Estat(c) + Z‘:misc(c)~ (20)

intrinsic

Only egayes reflects irreducible uncertainty; the other intrinsic terms—=¢pprox» Eranks
and e4,—can be reduced with better models, calibration, and data. The miscellaneous slack
€misc highlights optimization and shift-robustness as levers for closing the gap to the oracle.

4 Empirical Results

Our experimental study is organized around three guiding questions that reflect the theoretical
decomposition in Section [3] Unless otherwise specified, all results are averaged over 5 random seeds.

4.1 QI1: How do Bayes error and approximation error shape the gap?

Setup. We conduct both synthetic and real-world experiments. For our synthetic results, which
give us precise control over the data generation process, we simulate two sources of intrinsic
difficulty on the two-moons dataset: (i) noise o € {0.1, 0.33,0.66, 1.5} controls how much the
two moons expand into each other; and (ii) model capacity, varied from logistic regression (low
capacity) to a shallow MLP (high capacity). For our real-world experiments we tackle the analysis
similarly: for (a) we evaluate a trained CIFAR-10 model on the CIFAR-10N/100N [Wei et al.,
2022 datasets to assess which data points have large labeling disagreement; and for (b) we vary
the model architecture across a simple CNN (details in Appendix [D.3)), a ResNet-18 [He et al.
2016], and a WideResNet-50 [Zagoruyko and Komodakis, 2016|] on CIFAR-100 [Krizhevsky et al.|
2009] and StanfordCars [Krause et al., 2013|]. For each setting, we compute the Excess-AURC (E-

AURC) [Geifman et al.,[2019] by integrating the empirical gap ﬁ(c) across all coverage levels.

Findings. In terms of approximation error, Figure [2] demonstrates that limited model capacity leads to
larger gaps, while more expressive models yield tighter alignment with the perfect-ordering bound.
This suggests that approximation error is a key driver of looseness. In terms of Bayes error, Figure[3]
shows that increasing label noise consistently lowers the accuracy—coverage curve, indicating that
Bayes error introduces an irreducible component to the gap. These results validate the canonical
bound (Equation (T3))): large Bayes or approximation error can explain substantial looseness.

4.2 Q2: When—and what kind of—calibration helps?

Setup. We study the same three model classes as before on CIFAR-100: a lightweight CNN,
a ResNet-18, and a WideResNet-50. On each backbone we evaluate the following confi-
dence—scoring variants: (i) maximum softmax probability (MSP) [Hendrycks and Gimpel, [2017]);
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Figure 2: Experiments on approximation error. We find that approximation error is a major
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tradeoffs for various model architectures on CIFAR-100 and StanfordCars, respectively.
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Figure 3: Experiments on Bayes error. We find that irreducible noise significantly contributes to the
gap. (a) We show the two moons dataset with varying degrees of noise o € {0.1,0.33,0.66,1.5} as
well as the corresponding accuracy-coverage tradeoffs. (b) + (c) Accuracy-coverage tradeoffs for the
10% (blue), 25% (orange), and 50% (green) most noisy images in CIFAR-10N/100N, respectively.

(ii) a temperature-scaled softmax (monotone probability calibration, TEMP) [|Guo et al.| 2017]]; (iii)
self-adaptive training (SAT) [Huang et al.|[2020], which implicitly calibrates by relabelling uncertain
samples during training; and (iv) deep ensembles (DE) [Lakshminarayanan et al., [2017] of five
independently initialised networks (non-monotone aggregation; improves ranking via variance). Our
inclusion of the MSP baseline is motivated by the large-scale study ofJaeger et al.|[2023]], who find that
MSP, while simple and easy to implement, is often hard-to-beat in practice. For each score we report
(a) the weighted Expected Calibration Error (ECE); and (b) the Excess-AURC (E-AURC) [Geifman
et al.,[2019]] metric measuring selective prediction performance.

Findings. We summarize our findings in Table [T} While temperature scaling (TEMP) consistently
improves ECE across model classes relative to MSP, it leaves the selective classification gap largely
unchanged—highlighting the limitations of monotone calibration. In contrast, SAT slightly improves
both ECE and gap by perturbing rankings through relabeling, while deep ensembles (DE) achieve the
largest gap reductions by explicitly reordering predictions via averaging. These trends confirm that
only methods capable of re-ranking—implicitly (SAT) or explicitly (DE)—can meaningfully improve
selective performance. Consistent with this, we find that only SAT and DE models reliably predict
their own loss, reinforcing their stronger alignment with correctness. See Appendix [E-3]for details.

4.3 Q3: How does the gap evolve under distribution shift?

Setup. As in QI1, we explore this question using both synthetic and real-world distribution shifts.
For synthetic experiments, we use the two moons dataset with three types of input shift: shear,
rotation, and translation (details in Appendix [D.4). For real data with synthetic corruptions, we use
CIFAR-10C [Hendrycks and Dietterichl |[2019], which applies algorithmic covariate corruptions to
the CIFAR-10 test set across five severity levels (1-5). To evaluate under a real distribution shift, we
also consider Camelyon17-WILDS [Koh et al.,|2021]]—a cancer detection dataset where test data is
collected from a different hospital system than the training data.



Table 1: Experiments on calibration across model classes on CIFAR-100. Temperature scaling
(TEMP) significantly improves ECE over the Maximum Softmax Probability (MSP) baseline but does
not help to close the selective classification gap. Self-Adaptive Training (SAT) and Deep Ensembles
(DE) improve calibration non-monotonically and also improve selective classification acceptance
ordering through re-ranking. A corresponding plot is given in FigureE]; more datasets in Tables E], E}
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Figure 4: Experiments on distribution shifts. We find that shifts can also significantly contribute to
the gap. (a) Two moons under shear, rotation, and translation with corresponding accuracy—coverage
curves. (b) CIFAR-10C across three distinct corruption severities. (¢) Camelyon17 OOD shift.

Findings. Figure[d] shows a clear trend: as covariate shifts intensify, the accuracy—coverage curve
moves farther below its oracle bound, indicating that abstention no longer isolates easy inputs.
Selective classifiers thus become over-confidently wrong, echoing evidence that many uncertainty
metrics deteriorate under shift or misspecification [[Snoek et al.,|2019]]. As the gap grows with shift
severity, deployments must pair selective prediction with robust ranking or shift-detection safeguards.

5 Conclusion

Building a truly performant selective classifier hinges on understanding and closing the gap between
practical models and the oracle perfect-ordering bound. To answer what it takes, we introduce
a coverage-uniform selective-classification gap and derive the first finite-sample decomposition
that pinpoints exactly five limiting factors: three intrinsic sources—Bayes noise, approximation
error, and ranking (calibration) error—and two contingent slack terms—sampling variability and
implementation or distribution-shift artifacts. Our experiments show that each component can
be individually measured and, importantly, directly improved: stronger model backbones reduce
approximation error, non-monotone or feature-aware scoring shrinks ranking error, and shift-robust
training with larger validation sets minimizes residual slack. Together, these insights provide a clear
recipe for designing and evaluating high-performance selective classifiers.

Limitations and future work. While our decomposition cleanly bounds the selective-classification
gap, its error budgets can interact—for example, increasing capacity often improves both approxi-
mation and ranking—which makes unique attribution challenging. Many training-time calibration
schemes (e.g., SAT, mixup, focal loss) simultaneously affect ranking and full-coverage accuracy,
confounding the separation of budgets. Our core experiments focus on synthetic and vision bench-
marks; extending these insights to large-scale foundation models would be an important direction.
We present a preliminary exploration on large language models in Appendix [F.2] Finally, because
our oracle bound and gap are defined for 0—1 loss, adapting to asymmetric or class-dependent cost
Sfunctions—often required in high-stakes decision-making—will require generalizing both the bound
and its decomposition. Our finite-sample gap decomposition lays the groundwork for a more unified
reliability framework; extending it to (i) settings where out-of-distribution inputs must be rejected
and (ii) open-ended language generation constitutes a promising agenda for future work.
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A Broader Impact

This work introduces a decomposition of the selective-classification gap into measurable com-
ponents—Bayes noise, approximation error, ranking error, statistical noise, and deployment
slack—offering practical guidance for improving abstaining classifiers. By diagnosing which source
dominates in a given setting, our method supports more targeted model design and evaluation.

Positive implications. Our decomposition improves transparency and supports safer deployment in
high-stakes domains by helping practitioners understand whether their model underperforms due to
ranking, capacity, or robustness. Because each gap component is explicitly quantified, our approach
can serve as a tool for model debugging, monitoring, and fairer benchmarking.

Potential risks. Selective classifiers may disproportionately defer on certain groups, amplifying
disparities—a risk previously observed by |Jones et al.|[2021]]. Additionally, institutions may exploit
uncertainty estimates to justify strategic abstention—deliberately deferring on individuals they prefer
not to serve [Rabanser et al.}[2025]]. While our framework identifies which part of the gap drives poor
performance, it does not control how deferred inputs are handled.

Mitigations. We recommend reporting gap components disaggregated by sensitive attributes,
auditing scoring functions for spurious correlations, and documenting fallback policies. These steps
are essential to ensure that abstention mechanisms improve reliability without undermining fairness.

Outlook. We hope this work encourages more precise evaluations of selective classifiers, shifting
focus from aggregate calibration to interpretable, component-wise gap analysis that can inform both
technical improvements and policy safeguards.

B Methods Extension

B.1 Detailed Proof of Theorem[Il

‘We restate the theorem for convenience.

Theorem 2 (Selective classification Gap; detailed). Fix a coverage level ¢ € (0, 1], a score
function g(-, h), and its associated population threshold ¢ satisfying Pr(g(X,h) > t.) = c.
Define the accepted region A. := {x : g(x,h) > t.} and the oracle region A% := {z :
N (x) is among the largest c-fraction}. With the error terms

EBayCS(C) =E [1 - maX{U(X)a = U(X)} | X € AC] ) (21)
€approx(c) = E [Inn(X) —n(X)| | X € A], (22)
erank(¢) = E[nn(X) | X € AT —E[nn(X) [ X € Ac] (20), (23)

the population gap satisfies
A(C) = m(a/fullu C) - a'CCc(h7 g) S EBayes (C) + Eapprox(c) + €rank(c)~ (24)

Moreover, let ﬁ(c) be the empirical gap computed on n independent test samples. Then for any
d € (0,1), with probability at least 1 — 9,

3(0) S EBayes(C) + 5approx(c) + <C:rank(c) + C bg(%7 (25)

where C' > 0 is an absolute constant.

Proof. We split the argument into four self-contained steps.

Step 0. Oracle upper bound revisited. For completeness we justify the piecewise form
of m(afuu,c) in Deﬁnition Because aqyy = Pr(h(X) = Y) = E[pn(X)], the set
{z : np(x) = 1} has probability mass at least as,;. Hence an oracle that retains the
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highest-confidence points achieves perfect accuracy for all coverages ¢ < ag,;. For ¢ > agy,
the best it can do is include only those perfect points plus a (¢ — agy)-fraction of the remaining
examples, which contribute at worst zero accuracy. Therefore

___ Gfull
acc(ap, c) = Z , aran < ¢ < 1. (26)

Step 1. Algebraic decomposition of the gap. Recall that acc.(h, g) = E[nn(X) | X € A.].
We repeatedly add and subtract the same quantity:

A(c) := acc(agan, ¢) — acce(h, g)
= acc(asu, ) — Efgn | A7] + Elnn | AZ] —Elnn | Ac]

< E[nn | A7] — Elnn | A (rank)
+ E[nn — Lin=yy | Al (approx+Bayes)
— Gl (@) S G @) - By CE)k 27)

Explanation of the two labelled inequalities.

1. (rank) isolates the ranking error, epn () := E[ny, | A%] — E[nn | Ac]. The inequality
holds because the remaining term from the previous line, acc(ag, ¢) — E[ny, | AZ], is
a non-negative quantity that is bounded by the error sources introduced next.

2. (approx+Bayes) adds and subtracts 7(X) inside the expectation, then splits the abso-
lute value:
M — Iin=yy = (M — ) + (1 — Ipp=yy)- (28)
The second summand satisfies the deterministic bound [7(X) —I{,—y}| = max{n, 1 -
n} — Itp—yy <1 —max{n, 1 — n}, yielding exactly gayes(c). The first summand
contributes €,pprox(C).

Step 2. Non-negativity of ..,k (c). Because 75, (X) € [0,1] and A} contains the c-fraction of
points with the largest n-values, E[ny, | A%] > E[ny | Ac), hence erank(c) > 0 as stated.

Step 3. Finite-sample deviation. Let /i be any empirical average of a [0, 1]-valued random
variable with expectation . Hoeffding’s inequality gives Pr(|fi — p| > €) < 2¢=2"<". Apply
this bound separately to the three empirical estimates that constitute A(c), and take a union
bound with e = 1/ 228/ " This yields, with probability at least 1 — &, |A(c) — A(e)| <
C+/log(1/4)/n for an absolute constant C'. Combining with (24) proves (23).

Step 4. Connection to ranking distance. Define the mass of mis-ordered points D,k (c) :
Pr(X € A\ Ac) + Pr(X € A\ A}). Because i, € [0,1],

erank(c) = E[ny | A7] — E[nn | Ac] (29)
S thHoo Drank(c) (30)
S Drank(c)~ (31)

Hence &;ank(c) = 0 if and only if A, = A%.

This completes the proof. O

Multiclass remark. For K > 2 labels, define n(z) = (Pr(Y =1 | x),...,Pr(Y = K | z))

and its complement confidence n™**(x) = maxy 1 (z). Then the inequality |7
1—

max

— Ifp=yy| <
n™* replaces the binary bound above, and the rest of the argument goes through verbatim. The

approximation term becomes E[||n;, — n||1 | Ac; all other quantities are unchanged.
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B.2 When Can Temperature Scaling Re-rank Confidence Scores?

Temperature scaling multiplies every logit by the same factor 1/7" (T > 0) before the softmax,

p(T)(x) _ exp(z;(z)/7T)
’ >k exp(zk(2)/T)
Although the predicted label arg max; z;(z) is invariant to 7', the confidence score sp(x) =

(1)
J

(32)

max; p,; ’(x) can change its cross-sample ordering.

General form. Let j, = argmax; z;(z) and r;(x) = exp(z;(z) — zj, (x)) (j # j«). Then

1
) = s @

For binary classification, the sum has a single term and collapses to the familiar logistic form
sr(z) =1/(1 +e /Ty with A = zj, — 23_;,.

(33)

. . 1/T
Two-sample condition. For two inputs x1, x let S;(T) = Zj 25 rij/ . Because each r;; < 1,
every ril j/ ' is monotone non-decreasing in 7" (strictly increasing unless there is a tie), and the ordering
st(x1) > st(x2) can change exactly at those temperatures 7" where S1 (T') = So(T).

Ilustrative example (K = 3).
20 = (=2,-3,-3), 2 =(0,-0.1,-3). (34)

At T = 1 one finds si(z1) = 0.576 > 0.512 = s1(x2), while at 7' = 3 we see that s3(x1) =
0.411 < 0.428 = s3(x2), so temperature scaling would now accept x5 before 1.

How likely is a swap? Equation (33) shows that a swap requires the one-dimensional curves S7(T")
and S2(T') to intersect. Since the curves are continuous and monotone, the intersection occurs— if at
all—at isolated temperatures and only when the competing logit patterns are finely tuned.

Practical implication. Temperature scaling can in principle tighten the selective-classification gap,
but only for the vanishingly small subset of inputs whose non-maximum logits happen to satisfy
S1(T*) = S2(T*). To obtain a meaningful re-ordering one must therefore adopt non-monotone
calibration strategies.

B.3 Additional Contingent Slack

In the main text (Sec. [3.5) we folded all implementation-level imperfections into a single residual
term €pisc (¢), retaining only optimization error and distribution shift explicitly. Here we list two
further slack terms omitted there:

3. Threshold-selection noise ey (c).
When the coverage threshold ¢, is chosen on a validation set of size m, the realized coverage

deviates from the target c by
O(Ve(l —c)/m), (35)

inducing a corresponding vertical shift in selective accuracy.

4. Tie-breaking / score quantization e (c).
Discrete confidence values (e.g. low-precision logits) create equivalence classes of samples with
identical scores. If x denotes the maximum number of tied samples at any score level, then

K
gie(c) < —, (36)
n
where n is the size of the evaluation set.

Residual slack revisited. Together with optimization error &, and shift snife(€), these yield

smisc(c) = Eopt + 5shift(c) + 5thr(c) + stie(c)~ (37)

21



C Practitioner Checklist for Tightening the Selective-Classification Gap

Below is an expanded, actionable checklist to help practitioners systematically tackle each component
of the selective-classification gap. For each item, we list concrete steps, recommended tools, and
pointers to reduce the corresponding error term.

* capprox — Shrink Approximation Error

— Model capacity: Upgrade to deeper or wider architectures like ResNeXt, ViT, or ConvNeXt
to better approximate complex functions and reduce base error [Xie et al., 2017, |Dosovitskiy
et al.| 2021} [Liu et al., 2022} |[Kadavath et al., 2022].

— Pre-training: Initializing with rich features from self-supervised methods (SimCLR, BYOL)
or foundation models (CLIP, DINO) can improve out-of-the-box performance, convergence,
and uncertainty scores [Chen et al.|[2020] |Grill et al.} 2020} Radford et al.,|2021}, |Caron et al.|
2021, Hendrycks et al.| 2019]. However, pre-training can also sometimes negatively affect
selective classification performance [Galil et al., [2023].

— Distillation: Use teacher—student training with logit matching or feature hints to inherit
accuracy from a larger model at lower cost [Galil et al., [2023| [Hinton et al., [2015| [Dietmiiller|
et al.,2024].

— Data augmentation: Augmentations can often improve generalization with policy-based (Au-
toAugment, RandAugment) or mixing-based (MixUp, CutMix) augmentations to regularize
the learner [[Cubuk et al.| 2018|2020, Zhang et al., 2018}, |Yun et al.,|2019]. However, strong
augmentations may also degrade selective classification performance for certain minority
classes [Jones et al.} 2021]].

* crank — Improve Ranking Calibration:

— Feature-aware scoring: Train auxiliary heads like ConfidNet to learn correctness scores using
both logits and input features [Corbiere et al., 2019]], often improving uncertainty estimates.
Self-Adaptive Training (SAT) further enhances this by encouraging internal representations
to separate correct and incorrect predictions through contrastive regularization or supervised
signals [Huang et al., [2020].

— Deep ensembles: Use the disagreement or predictive entropy across multiple independently
trained models to estimate uncertainty [Lakshminarayanan et al., 2017].

— Conformal methods: Generate conformal p-values or risk-controlled selection sets that respect
desired coverage guarantees [Vovk et al., 2005, |Angelopoulos et al.,|[2024].

— Use caution with vector/Dirichlet scaling: While previous work has shown that vector, matrix,
or Dirichlet transformations can be beneficial to reshape confidence distributions [Guo et al.,
2017, [Kull et al.|, [2019]], Le-Coz et al.| [2024] shows that these techniques can harm ranking
under a large number of classes.

* copt — Reduce Optimization Error:

— Convergence diagnostics: Track training/validation loss curves to detect underfitting and
determine optimal stopping points [Salakhutdinovl, [2014]].

— Learning-rate schedules: Employ dynamic LR strategies like cosine decay, OneCycle, or CLR
to reach better optima more consistently [[Loshchilov and Hutter, 2017, |Smith and Topinl [2019]
Smith| 2017].

— Early stopping / checkpoints: Save and average late-stage checkpoints or use snapshot ensem-
bling to smooth optimization variance [|[Huang et al., 2017, |[Lakshminarayanan et al., [2017,
Rabanser et al., [2022].

— Regularization: Use dropout, weight decay, or stochastic depth to prevent overfitting and
stabilize training [Srivastava et al.,[2014, /Huang et al.,|2016} |[Loshchilov et al., 2017].

* £Bayes — Quantify Irreducible Noise:
— Repeated labels: Collect multiple annotations (e.g., CIFAR-10H) to estimate human-level
disagreement and the Bayes error floor [Peterson et al.,|2019, |[Wei et al.|, [2022].

— Noise-robust training: Mitigate label noise using bootstrapped or Taylor-truncated loss func-
tions that temper reliance on hard labels [Reed et al.,[2014} [Feng et al., 2020].

— Dataset curation: Apply confident learning to flag likely label errors or use active learning for
data relabeling [Northcutt et al.| [2021]].
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¢ et — Control Statistical Slack:
— Validation set size: Use a sufficiently large holdout set to estimate thresholds and calibrate
uncertainty reliably [Hart et al.|[2001]].

— Confidence intervals: Use DKW or Clopper—Pearson bounds to set conservative thresholds
with statistical guarantees on coverage [|[Massart, 1990, |Clopper and Pearson, [1934]).

— Cross-validation: Average selection thresholds over folds to reduce their variance and avoid
overfitting to a single validation set [Kohavi et al., [1995]].
* eshite — Mitigate Distribution Shift:
— Shift detection: Detect covariate shift via statistical two-sample tests such as MMD or KL
divergence between feature distributions [Gretton et al., [2012} |Rabanser et al., 2019].

— Importance weighting: Correct mismatched data distributions with density ratio weighting,
e.g., using kernel mean matching [Huang et al., 2000].

— Domain adaptation: Finetune with in-domain examples or use unsupervised techniques like
AdaBN or domain-adversarial training (DANN) [[Ganin et al., 2016} [Li et al., [2016].

— Test-time adaptation: Adapt models at inference using entropy minimization (Tent) or batch
norm recalibration to restore accuracy under shift [Nado et al., 2021} Wang et al., 2021].
* ¢imr — Threshold—Selection Noise:
— Bootstrap resampling: Estimate variability in the selection threshold 7, by computing its
standard error across bootstrap samples [Tibshirani and Efron, {1993]].
— Smooth thresholds: Interpolate between adjacent scores or accept a random subset at the
threshold to reduce coverage discontinuities [[Angelopoulos and Bates}, [ 2021]).
* ¢te — Tie-Breaking & Score Quantization:
— Higher precision: Use higher float precision (e.g., FP32 or FP64) or more logits bits to
distinguish close scores and avoid ties [Micikevicius et al., [ 2018]].

— Dithering: Add tiny random noise to scores before thresholding to stochastically resolve ties
and reduce instability.

— Refrain from binning: Histogram binning (HQ) or Bayesian Binning into Quantiles (BBQ)
often improve calibration but not selective classification performance [Naeini et al.l 2015}
Le-Coz et al.| 2024].

Putting it all together. After addressing each bullet above, recompute your selective accu-
racy—coverage curve and compare to the oracle bound (Def. [3)). Iterating over these steps will

systematically shrink ﬁ(c) toward its irreducible floor.

D Experimental Details

D.1 Computational Resources

Our experiments were conducted on a mix of GPU-equipped compute nodes with varying hardware
configurations. Some machines are equipped with Intel Xeon Silver CPUs (10 cores, 20 threads) and
128GB of RAM, each hosting 4x NVIDIA GeForce RTX 2080 Ti GPUs with 11GB VRAM. Others
feature AMD EPYC 7643 processors (48 cores, 96 threads), 512GB of RAM, and 4x NVIDIA A100
GPUs, each with 80GB VRAM.

D.2 Hyper-Parameters

We follow standard literature-recommended training settings across all datasets. For each architec-
ture—dataset pair, we use a fixed learning rate, weight decay, and batch size as detailed below:

* SimpleCNN:
— Learning rate: 0.01

— Weight decay: 1 x 10™*
— Batch size: 128

¢ ResNet-18:
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— Learning rate: 0.1 for CIFAR datasets; 0.01 for Stanford Cars, Camelyon17
— Weight decay: 5 x 10™*
— Batch size: 128
* WideResNet-50-2:
— Same settings as ResNet-18
* Epochs:
— 200 epochs for all datasets except Camelyon17, which uses 10

* Optimization: SGD with momentum 0.9, Nesterov enabled, and a cosine annealing learning rate
schedule.

* Selective prediction methods:

— MSP: Standard cross-entropy training

— SAT: Cross-entropy pretraining for half of training epochs, followed by Self-Adaptive Training
(momentum 0.9) with an extra abstain class

All experiments use fixed random seeds for reproducibility and standard data augmentation per
dataset (random crops, flips, normalization).

D.3 SimpleCNN Architecture

The SimpleCNN model is a compact convolutional neural network used for experiments on lower-
resolution image datasets. The architecture is defined by the following sequence of layers:

* A 3 x 3 convolution with 32 filters and padding 1, followed by ReLU and 2 x 2 max-pooling.

* A second 3 x 3 convolution with 64 filters and padding 1, followed by ReLU and 2 x 2
max-pooling.

* A flattening layer, followed by a fully connected layer with 128 hidden units and ReL.U
activation.

A final fully connected layer projecting to the number of output classes.

Let s = input_size//4 denote the spatial resolution after two 2 x 2 pooling layers. Then, the full

model is:
SimpleCNN(z) = Linear (128 — num_classes) o ReLUo

Linear (64 cs2 128) oFlatteno

MaxPool2d o ReLU o Conv2d(32 — 64)o
MaxP0012d o ReLU o Conv2d(3 — 32)(x)

The number of output classes is set as follows:

10  for CIFAR-10,
1 _ ) 100 for CIFAR-100, with an optional extra class if ext 1 is True
PUM-CHASSES = 1196 for Stanford Cars, P extra_class '

2 for Camelyon17,

The input size is dataset-dependent and set to:

32  for CIFAR-10 and CIFAR-100,

input Size —
input_size {224 for Stanford Cars, Camelyonl17.

The model structure is summarized below:

SimpleCNN (
(net): Sequential(
(0): Conv2d (3, 32, kernel_size=(3, 3), stride=(1, 1), padding=1)
(1): ReLUQ)
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(2): MaxPool2d(kernel_size=2, stride=2)

(3): Conv2d (32, 64, kernel_size=(3, 3), stride=(1, 1), padding=1)
(4): ReLUQ)

(5): MaxPool2d(kernel_size=2, stride=2)

(6): Flatten(start_dim=1)

(7): Linear(in_features=4096, out_features=128)

(8): ReLU()

(9): Linear(in_features=128, out_features=num_classes)

D.4 Synthetic Distribution Shifts on Two Moons

To evaluate robustness under controlled covariate shifts, we apply a series of synthetic affine transfor-
mations to the test set of the standard two moons dataset. Each transformation simulates a distinct
type of distribution shift:

* Original: No transformation; the unperturbed test set.

* Shear: A shear transformation along the z-axis defined by:

1 1.25

Shear matrix S = [O 1 } , sothat 2’ =Sz = [

T+ 1.25y] ' (38)

Y

* Rotation: A rotation by 30 degrees counterclockwise, using:

cosf) —sinf T
R:[sme cos@}’ 626' (39)

» Translation: A shift of the input space by a fixed vector:

’_ |1 1.0
' =x+t, where t= [0.5} . (40)

Each transformation is applied to the test data matrix X via matrix multiplication or translation,
yielding the following test sets:
Original:  Xieg

Shear: Xiegt - S '

Rotation: X - RT
Translation: X + ¢

(41)

These transformations create meaningful distribution shifts while preserving label semantics, enabling
precise evaluations of model robustness under shift.

D.5 CIFAR-10C Severity Levels

For the CIFAR-10C severity levels (1-5), we aggregate all 15 corruption types at a given severity to
form a single validation set. For severity level [, we collect all corruptions labeled as severity [ across
the following categories:

¢ Noise: gaussian_noise, shot_noise, impulse_noise

* Blur: defocus_blur, glass_blur, motion_blur, zoom_blur

* Weather: snow, frost, fog, brightness

* Digital: contrast, elastic_transform, pixelate, jpeg_compression

This results in a single validation set per severity level [, where each image is sampled from one of
these 15 corruptions applied at the specified severity.
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Figure 5: Comparison between gap and calibration on CIFAR-100. 7op: selective accuracy curves
across four training methods and three architectures. Bottom: corresponding reliability diagrams
(ECE shown in parentheses). Temperature scaling (TEMP) consistently improves calibration but does
not reduce the gap. By contrast, SAT and DE reduce the gap more effectively—especially for larger
models—by improving the ranking.

E Loss Prediction, Multicalibration, and Ranking Error

This appendix offers an alternative perspective on the ranking error term &, (¢) by framing it as a
challenge of per-example loss prediction. Instead of building directly on the calibration discussion in
Section [3.4] we show how the ability to forecast one’s own 0—1 loss tightly controls the selective-
classification gap. We formalize this connection through the recent theory of loss prediction [Gollakota
et al., [2025]] and multicalibration [Hébert-Johnson et al.,2018]]. Throughout we adopt the binary-label
conventions of Section[3.3] Extensions to multiclass losses likewise follow by one-vs-rest reduction.

E.1 Loss-Prediction Preliminaries

Let ¢(h(z),y) = I{h(z) # y} denote the 0-1 loss of a fixed classifier h. A loss predictor LP: & — R
maps auxiliary features ¢(z,h) € ® to an estimate of £(h(x),y). The canonical baseline is the
self-entropy predictor SEP(x) := E[¢(h(z),y) | h(x)] (which equals min{p, 1 — p} for probabilistic
p = h(zx)).

Definition 6 (Advantage over the self-entropy predictor). The (squared-error) advantage of a
loss predictor LP is
Adv(LP) := E[(¢ — SEP)?*] —E[(¢ — LP)?]. (42)

A positive advantage means LP forecasts the instance-wise loss better than the model itself.

Depending on ¢, we obtain a hierarchy of predictors: prediction-only (¢ = h(z)), input-aware
(¢ = (h(z), x)), and representation-aware (¢ = (h(x),x,r(zx))); we refer to|Gollakota et al.|[2025]
for a detailed taxonomy.

E.2 Multicalibration Background

Multicalibration is a fine-grained notion of reliability that asks not just for global calibration, but for
calibration conditional on a rich class of subpopulations or features [Hébert-Johnson et al., 2018]]. At
a high level, a model is multicalibrated if its predicted scores match outcomes not only on average,
but also across a large collection of subsets defined by auxiliary variables or internal representations.
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Definition 7 (Multicalibration Error). Let C be a class of weighting functions ¢: ® — [—1, 1],
and let h: X — [0, 1] be a classifier. The multicalibration error of h with respect to C' is
defined as

MCE(C, h) := maC);‘IE[(Y — h(X)) e(¢(X, h))] ‘ 43)

ce

Each function ¢ € C defines a subpopulation or slice of the input space via its support. The quantity
MCE(C, h) measures how well the model’s predicted scores h(x) match the true label Y when
weighted over these slices. When C consists of indicator functions over discrete demographic sub-
groups, small MCE(C| h) implies groupwise calibration. More generally, if C' includes continuous
or data-dependent functions (e.g., based on internal features), low multicalibration error guarantees
alignment between predicted and true outcomes across a flexible set of conditions.

In our selective classification setting, ¢(x, h) may include the model’s output confidence, the input z,
or hidden representations from the network. The class C' can be constructed accordingly to enforce
calibration in feature-dependent or risk-sensitive regions of the input space.

E.3 Loss Prediction <= Multicalibration

We now describe how the ability to predict one’s own 0—1 loss is deeply connected to multicalibration.
This perspective stems from the work of |Gollakota et al.| [2025]], who characterize when a model
“knows its own loss” in terms of multicalibration violations.

Let F be a class of loss predictors LP: ¢(z, h) — £ € [0, 1], which estimate the 01 loss £(h(x), y) =
I{h(z) # y} of a fixed classifier h. As discussed in Section[E.1] a loss predictor is considered good
if it has a significant squared-error advantage over the model’s self-estimate SEP(x).

Remarkably, Gollakota et al.|[2025]] show that this predictive advantage is tightly characterized by
the multicalibration error of the model—measured over a derived weight class C' that depends on the
predictors in F'. The following theorem formalizes this connection:

Theorem 3 (Gollakota et al.| [2025], Thm. 4.1—adapted). For any function class F' of loss
predictors and the associated weight class C' = {(f — SEP) - H,(h(z)) : f € F},
2

L max Adv(LP) < MCE(C,h) < max Adv(LP), (44)
LPeF LPeF’

where F’ augments F' with linear mixtures of SEP and elements of F'. Thus a non-trivial
advantage is possible iff h exhibits a multicalibration violation of similar magnitude.

This result bridges two domains: learning to predict loss (a regression task) and satisfying a general-
ization constraint (calibration under distributional conditions). In the selective classification setting,
this insight underpins Corollary [T} which shows that the ranking error—and hence the gap to oracle
performance—is tightly controlled by the model’s ability to forecast its own mistakes.

E.4 Bounding the Ranking-Error Term ¢,k (c¢)

Theorem [3]translates into a bound on the ranking error that drives the selective-classification gap.

Corollary 1 (Loss-prediction advantage controls mis-ranking). Fix coverage ¢ € (0, 1] and let
Adv* = maxy,pecr Adv(LP) for some input-aware class F'. Then the ranking-error term in
Theorem satisfies ernk(c) < V2 Adv™.

Write

Proof. Recall that A% = {x : n, () is in the top c-mass} and A, = {z : g(z, h) > t.}.
= Pr(d. =

the difference indicator 6.(x) := la:(z) — Ia () € {-1,0,1} so Pr(é. = 1)
—1) =cand E[¢.] = 0.
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Step 1: Express ranking error as a covariance. With r(z) := I{h(z) = Y} we have

erank(€) =E[r | AZ] —E[r | A.] = %]E[’I"(X) 6e(X)]. (45)

Step 2: Replace correctness by residual Y — h(X). Becauser =1 —fand{ = (Y — h)?
for binary labels,

roe= (1= (¥ = W) = (¥ = h)3. Gince E[6] = 0). (46

Hence
<C-‘rank(c) = % |]E[(Y - h(X)) (SL(X)] | . A7

Step 3: Bound the covariance by multicalibration error. Define the bounded weight
function ¢*(z) := d.(z); then |c*(z)| < 1, so ¢* € C (the weight class in Theorem [3). By
definition of multicalibration error,

[E[(Y — (X)) c*(X)]| < MCE(C,h). (48)
Combining and (@8) with ¢ < 1 yields
Erank(c) < NICE(C’7 h) (49)

Step 4: Invoke the loss-prediction bound. Theorem states MCE(C,h) <
\/mapreF/ Adv(LP). Since F C F’ and /- is monotone, we finally have

Erank(€) < V 2 Adv*, (50)
where the factor 2 absorbs the two-sided F' <> F” constant in Theorem 3l O

Interpretation. Let ¢ := maxyper Adv(LP) be an upper bound on loss-prediction advantage. If
no loss predictor can beat self-entropy by more than €2, then the selective classifier is within O(€) of
the oracle at every coverage level. Conversely, a large loss-prediction advantage is a certificate of
poor ranking and therefore of a wide gap A(c).

Loss prediction and multicalibration offer a principled lens on selective prediction:
if you cannot beat your own self-entropy predictor, you are already close to the oracle frontier.
Otherwise, the loss predictor pinpoints exactly which inputs are being mis-ranked and by how
much, providing both a diagnostic and a blueprint for tightening the selective-classification gap.

E.5 Empirical Evaluation

To illustrate and validate our gap-decomposition framework, we compared four selective-classification
strategies on CIFAR-10, CIFAR-100, and StanfordCars:

* MSP: standard maximum-softmax-probability abstention.

» TEMP: MSP with post-hoc temperature scaling.

e SAT: self-adaptive training, which co-trains an abstain class.
* DE: a deep ensemble of five MSP models.

For each method, we first trained a ResNet-18 on 80% of the training set (using the usual data
augmentations and a held-out 20% for LP fitting). At each epoch we then:

1. Extract the 512-dim “penultimate” feature vector ¢ () from the ResNet backbone (or its ensemble
average).

2. Compute the model’s self-entropy score

SEP(z) = 1—max p;(z) with p;(z)=softmax;(logits(x)/T).
J
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Figure 6: Relative LP advantage over training epochs across datasets. For each method, we
plot the shift in test-set advantage AAdviest (¢) relative to epoch 1, indicating how much additional
ranking signal the loss predictor learns over time. Larger values imply greater misalignment between
the model’s confidence and correctness.

3. Train a small MLP LP: ¢(z) — e [0, 1] to minimize E[(Zf {g(x) # y})Q] on the held-out
20% split.

4. Measure the LP advantage on the test set,
Adviess = E[(¢ — SEP)?] —E[(¢ —LP)?], ¢=I{g(z) # y},
and record its shift relative to the first epoch AAdviest (t) = Adviest(t) — Adviest(1).
Loss—Prediction Network. Below is the PyTorch representation of our two-hidden-layer LP head.

It takes the ResNet features (optionally concatenated with SEP) and regresses the per-example 0—1
loss via mean-squared error.

LossPredictor (

(net): Sequential(
(0): Linear(in_features=512, out_features=128, bias=True)
(1): ReLUQ)
(2): Dropout(p=0.5)
(3): Linear(in_features=128, out_features=64, bias=True)
(4): ReLU()
(5): Dropout(p=0.5)
(6): Linear(in_features=64, out_features=1, bias=True)

)

)

Key observations. On CIFAR-10 (left panel of Figure @ all methods stay close to zero AAdvyest,
indicating that the model’s own confidence scores already capture most of the available ranking
signal. On CIFAR-100 (middle panel), MSP and TEMP exhibit large positive shifts in LP advantage,
suggesting that a dedicated loss predictor can substantially improve ranking—consistent with a larger
gap from the oracle. By contrast, SAT and DE remain near zero, indicating that their confidence scores
are already well aligned with correctness. On StanfordCars (right panel), the gap widens even further:
both MSP and TEMP allow for significant gains via loss prediction, and even SAT leaves nontrivial
room for improvement. Only DE consistently resists such gains, implying that deep ensembling is
uniquely effective at preserving reliable ranking in high-variance domains.

Conclusion. These results match our theory perfectly: whenever the LP head cannot improve on

self-entropy, the selective classifier is effectively oracle-optimal; whenever it can, the size of that
advantage precisely quantifies the remaining ranking error and the gap from the ideal frontier.

F Additional Results

F.1 Calibration Experiments

E-AURC vs ECE We provide additional comparisons on more datasets (CIFAR-10 and Stanford-
Cars) on the relationship between the selective classification gap and the model’s expected calibration
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error. See Tables [2]and [3| for exact results. In general, our conclusions from Section .2 hold here
as well: while temperature scaling (TEMP) improves ECE over MSP, it does not reduce the selective
classification gap—underscoring the limits of monotone calibration. In contrast, SAT and deep
ensembles (DE) improve both ECE and gap by altering the ranking, confirming that only re-ranking
methods yield meaningful gains in selective performance.

Table 2: Experiments on calibration across model classes on CIFAR-10. Similar as Table

CNN ResNet-18 WideResNet-50
MSP TEMP SAT DE MSP TEMP SAT DE MSP TEMP SAT DE

E-AURC 0.024 0.023 0.019 0.016 0.004 0.004 0.003 0.002 0.003 0.003 0.002 0.002
ECE 0.075 0.025 0.035 0.010 0.025 0.014 0.016 0.007 0.027 0.022 0.019 0.010

Table 3: Experiments on calibration across model classes on StanfordCars. Similar as Table

CNN ResNet-18 WideResNet-50
MSP TEMP SAT DE MSP TEMP SAT DE MSP TEMP SAT DE

E-AURC 0.176 0.177 0.166 0.159 0.030 0.029 0.26 0.022 0.026 0.026 0.23 0.020
ECE 0.110 0.025 0.058 0.025 0.040 0.027 0.037 0.025 0.017 0.017 0.015 0.015

F.2 Extension to Large Language Models

Our primary experiments focus on vision and synthetic datasets, where uncertainty and selective
prediction have well-established definitions and evaluation metrics. In these domains, notions such as
confidence calibration, abstention rates, and oracle coverage curves provide a clear framework for
measuring reliability. Extending the same analysis to large language models, however, presents new
difficulties as outlined in particlar by the following two challenges:

1. Uncertainty for generative models remains ill-defined. Even for classification-style
prompts, the community has not fully converged on how to translate sequence-level proba-
bilities into abstention scores.

2. Prompting artefacts add variance. Small changes in in-context examples or decoding
settings can swamp the effects we wish to isolate.

Despite these challenges, we have added a focused set of LLM experiments to demonstrate that our
five-term decomposition still diagnoses the gap.

F.2.1 Approximation Error — Scaling from 4B — 12B

We evaluate Gemma 3-IT 4B and 12B [Team et al.|[2025]] on ARC-Challenge (ARC-C, 25-shot) [Clarkl
et al.} 2018] and MMLU (5-shot, top-1) [Hendrycks et al.,[2021]] using the standard MSP score on the
first answer token (no further fine-tuning).

Table 4: Accuracy comparison across model scales.

Model ARC-C Accuracy MMLU Accuracy
Gemma 3-IT 4B 56.2% 59.6%
Gemma 3-IT 12B 68.9% 74.5%

Observation. Consistent with our vision experiments, increasing capacity reduces the gap.

F.2.2 Bayes Error — Separating Easy vs. Noisy Questions

Following the MMLU-Pro protocol [Wang et al.|[2024], we partition the validation set into the easiest
25% and noisiest 25% questions (based on human-LLM agreement).

30



Table 5: Selective-classification gap area (lower is better).

Model ARC-C E-AURC MMLU E-AURC
Gemma 3-IT 4B 0.114 0.107
Gemma 3-IT 12B 0.091 0.082

Table 6: E-AURC across data difficulty levels on Gemma 3-1T 4B.

Split E-AURC
Full MMLU 0.107
Easiest quartile 0.018

Noisiest quartile 0.316

Observation. When intrinsic Bayes noise is low (easy questions), the gap nearly vanishes; when noise
is high, the gap widens.

F.2.3 Ranking Quality — Calibration vs. Re-ranking

We keep the backbone fixed on Gemma 3-IT 4B and compare the ranking quality of the following
uncertainty scores:

* MSP,
» TEMP (scalar 7 fitted on a held-out validation split),
* DE of five LoRA-fine-tuned replicas.

Table 7: Calibration and gap performance across ranking methods on Gemma 3-IT 4B.

ARC-C MMLU
MSP TEMP DE MSP TEMP DE

E-AURC 0.127 0.126 0.087 0.122 0.122 0.079
ECE 0.171 0.092 0.056 0.135 0.084 0.052

Observation. Temperature scaling lowers ECE yet leaves the gap untouched; the ensemble both
calibrates and improves ranking, shrinking the gap.

Summary. These results confirm that our decomposition extends to LLMs: capacity, Bayes noise,
and ranking quality each contribute measurable terms. A full generative-text study (e.g., free-form
question answering or code synthesis) will require new abstention semantics and we leave a more
thorough treatment for future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Our abstract and intro reflects the contributions accurately.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 3
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide a short proof in the main paper and a more extensive analysis and
proof in Appendix
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We include our full experimental suite and details for reproducibility.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: All of our reported results are reported as mean values over 5 random runs.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix [D.T}
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper conforms to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Appendix [A]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We are not releasing any new assets that require any specific safeguards.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited related work appropriately.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: We are releasing our codebase to aid reproducibility.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We did not conduct any crowdsourcing and/or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We did not conduct any user studies requiring IRB approval.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: We only used LLMs to help with paper editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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