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ABSTRACT

Diffusion models achieve outstanding generative performance in various domains.
Despite their great success, they lack semantic latent space which is essen-
tial for controlling the generative process. To address the problem, we propose
asymmetric reverse process (Asyrp) which discovers the semantic latent space
in frozen pretrained diffusion models. Our semantic latent space, named h-space,
has nice properties to accommodate semantic image manipulation: homogeneity,
linearity, robustness, and consistency across timesteps. In addition, we introduce a
principled design of the generative process for versatile editing and quality boost-
ing by quantifiable measures: editing strength of an interval and quality deficiency
at a timestep. Our method is applicable to various architectures (DDPM++, iD-
DPM, and ADM) and datasets (CelebA-HQ, AFHQ-dog, LSUN-church, LSUN-
bedroom, and METFACES). Project page: https://kwonminki.github.io/Asyrp/

1 INTRODUCTION

In image synthesis, diffusion models have advanced to achieve state-of-the-art performance regard-
ing quality and mode coverage since the introduction of denoising diffusion probabilistic models
(Ho et al., 2020). They disrupt images by adding noise through multiple steps of forward process
and generate samples by progressive denoising through multiple steps of reverse (i.e., generative)
process. Since their deterministic version provides nearly perfect reconstruction of original images
(Song et al., 2020a), they are suitable for image editing, which renders target attributes on the real
images. However, simply editing the latent variables (i.e., intermediate noisy images) causes de-
graded results (Kim & Ye, 2021). Instead, they require complicated procedures: providing guidance
in the reverse process or finetuning models for an attribute.

Figure 1(a-c) briefly illustrates the existing approaches. Image guidance mixes the latent variables
of the guiding image with unconditional latent variables (Choi et al., 2021; Lugmayr et al., 2022;
Meng et al., 2021). Though it provides some control, it is ambiguous to specify which attribute to
reflect among the ones in the guide and the unconditional result, and it lacks intuitive control for the
magnitude of change. Classifier guidance manipulates images by imposing gradients of a classifier
on the latent variables in the reverse process to match the target class (Dhariwal & Nichol, 2021;
Avrahami et al., 2022; Liu et al., 2021). It requires training an extra classifier for the latent variables,
i.e., noisy images. Furthermore, computing gradients through the classifier during sampling is costly.
Finetuning the whole model can steer the resulting images to the target attribute without the above
problems (Kim & Ye, 2021). Still, it requires multiple models to reflect multiple descriptions.

On the other hand, generative adversarial networks (Goodfellow et al., 2020) inherently provide
straightforward image editing in their latent space. Given a latent vector for an original image, we
can find the direction in the latent space that maximizes the similarity of the resulting image with
a target description in CLIP embedding (Patashnik et al., 2021). The latent direction found on one
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Figure 1: Manipulation approaches for diffusion models. (a) Image guidance suffers ambiguity
while controlling the generative process. (b) Classifier guidance requires an extra classifier, is hardly
editable, degrades quality, or alters the content. (c) DiffusionCLIP requires fine-tuning the whole
model. (d) Our method discovers a semantic latent space of a frozen diffusion model.

image leads to the same manipulation of other images. However, given a real image, finding its exact
latent vector is often challenging and produces unexpected appearance changes.

It would allow admirable image editing if the diffusion models with the nearly perfect inversion
property have such a semantic latent space. Preechakul et al. (2022) introduces an additional input to
the reverse diffusion process: a latent vector from an original image embedded by an extra encoder.
This latent vector contains the semantics to condition the process. However, it requires training from
scratch and does not match with pretrained diffusion models.

In this paper, we propose an asymmetric reverse process (Asyrp) which discovers the semantic latent
space of a frozen diffusion model such that modifications in the space edits attributes of the original
images. Our semantic latent space, named h-space, has the properties necessary for editing applica-
tions as follows. The same shift in this space results in the same attribute change in all images. Linear
changes in this space lead to linear changes in attributes. The changes do not degrade the quality of
the resulting images. The changes throughout the timesteps are almost identical to each other for a
desired attribute change. Figure 1(d) illustrates some of these properties and § 5.3 provides detailed
analyses. To the best of our knowledge, it is the first attempt to discover the semantic latent space in
the frozen pretrained diffusion models. Spoiler alert: our semantic latent space is different from the
intermediate latent variables in the diffusion process. Moreover, we introduce a principled design
of the generative process for versatile editing and quality boosting by quantifiable measures: edit-
ing strength of an interval and quality deficiency at a timestep. Extensive experiments demonstrate
that our method is generally applicable to various architectures (DDPM++, iDDPM, and ADM) and
datasets (CelebA-HQ, AFHQ-dog, LSUN-church, LSUN-bedroom, and METFACES).

2 BACKGROUND

We briefly describe essential backgrounds. The rest of the related work is deferred to Appendix A.

2.1 DENOISING DIFFUSION PROBABILITY MODEL (DDPM)

DDPM is a latent variable model that learns a data distribution by denoising noisy images (Ho et al.,
2020). The forward process diffuses the data samples through Gaussian transitions parameterized
with a Markov process:

q (xt | xt−1) = N
(
xt;
√
1− βtxt−1, βtI

)
= N

(√
αt

αt−1
xt−1,

(
1− αt

αt−1

)
I

)
, (1)

where {βt}Tt=1 is the variance schedule and αt =
∏t

s=1(1− βs). Then the reverse process becomes
pθ (x0:T ) := p (xT )

∏T
t=1 pθ (xt−1 | xt), starting from xT ∼ N (0, I) with noise predictor ϵθt :

xt−1 =
1√

1− βt

(
xt −

βt√
1− αt

ϵθt (xt)

)
+ σtzt, (2)

where zt ∼ N (0, I) and σ2
t is a variance of the reverse process which is set to σ2

t = βt by DDPM.
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2.2 DENOISING DIFFUSION IMPLICIT MODEL (DDIM)

DDIM redefines Eq. (1) as qσ(xt−1|xt,x0) = N (
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt−

√
αtx0√

1−αt
, σ2

t I)

which is a non-Markovian process (Song et al., 2020a). Accordingly, the reverse process becomes

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

θ
t (xt)√

αt

)
︸ ︷︷ ︸

”predicted x0 ”

+
√
1− αt−1 − σ2

t · ϵθt (xt)︸ ︷︷ ︸
”direction pointing to xt ”

+ σtzt︸︷︷︸
random noise

, (3)

where σt = η
√
(1− αt−1) / (1− αt)

√
1− αt/αt−1. When η = 1 for all t, it becomes DDPM. As

η = 0, the process becomes deterministic and guarantees nearly perfect inversion.

2.3 IMAGE MANIPULATION WITH CLIP

CLIP learns multimodal embeddings with an image encoder EI and a text encoder ET whose sim-
ilarity indicates semantic similarity between images and texts (Radford et al., 2021). Compared to
directly minimizing the cosine distance between the edited image and the target description (Patash-
nik et al., 2021), directional loss with cosine distance achieves homogeneous editing without mode
collapse (Gal et al., 2021):

Ldirection
(
xedit, ytarget;xsource, ysource

)
:= 1− ∆I ·∆T

∥∆I∥∥∆T∥
, (4)

where ∆T = ET (ytarget) − ET (ysource) and ∆I = EI

(
xedit

)
− EI (x

source) for edited image
xedit, target description ytarget, original image xsource, and source description ysource. We use the
prompts ‘smiling face’ and ‘face’ as the target and source descriptions for facial attribute smiling.

3 DISCOVERING SEMANTIC LATENT SPACE IN DIFFUSION MODELS

This section explains why naive approaches do not work and proposes a new controllable reverse
process. Then we describe the techniques for controlling the generative process. Throughout this
paper, we use an abbreviated version of Eq. (3):

xt−1 =
√
αt−1 Pt(ϵ

θ
t (xt)) +Dt(ϵ

θ
t (xt)) + σtzt, (5)

where Pt(ϵ
θ
t (xt)) denotes the predicted x0 and Dt(ϵ

θ
t (xt)) denotes the direction pointing to xt. We

omit σtzt for brevity, except when η ̸= 0. We further abbreviate Pt(ϵ
θ
t (xt)) as Pt and Dt(ϵ

θ
t (xt))

as Dt when the context clearly specifies the arguments.

3.1 PROBLEM

We aim to allow semantic latent manipulation of images x0 generated from xT given a pretrained
and frozen diffusion model. The easiest idea to manipulate x0 is simply updating xT to optimize
the directional CLIP loss given text prompts with Eq. (4). However, it leads to distorted images or
incorrect manipulation (Kim & Ye, 2021).

An alternative approach is to shift the noise ϵθt predicted by the network at each sampling step.
However, it does not achieve manipulating x0 because the intermediate changes in Pt and Dt cancel
out each other resulting in the same pθ(x0:T ), similarly to destructive interference.
Theorem 1. Let ϵθt be a predicted noise during the original reverse process at t and ϵ̃θt be its
shifted counterpart. Then, ∆xt = x̃t−1 − xt−1 is negligible where x̃t−1 =

√
αt−1 Pt(ϵ̃

θ
t (xt)) +

Dt(ϵ̃
θ
t (xt)). I.e., the shifted terms of ϵ̃θt in Pt and Dt destruct each other in the reverse process.

Appendix C proves above theorem. Figure 13(a-b) shows that x̃0 is almost identical to x0.

3.2 ASYMMETRIC REVERSE PROCESS

In order to break the interference, we propose a new controllable reverse process with asymmetry:

xt−1 =
√
αt−1 Pt(ϵ̃

θ
t (xt)) +Dt(ϵ

θ
t (xt)), (6)
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Figure 2: Generative process of Asyrp. The green box on the left illustrates Asyrp which only
alters Pt while preserving Dt shared by DDIM. The right describes that Asyrp modifies the original
reverse process toward the target attribute reflecting the change in h-space.

i.e., we modify only Pt by shifting ϵθt to ϵ̃θt while preserving Dt. Intuitively, it modifies the original
reverse process according to ∆ϵt = ϵ̃θt − ϵθt while it does not alter the direction toward xt so that
xt−1 follows the original flow Dt at each sampling step. Figure 2 illustrates the above intuition.

As in Avrahami et al. (2022), we use the modified Pedit
t and the original Psource

t as visual inputs for
the directional CLIP loss in Eq. (4), and regularize the difference between the modified Pedit

t and
the original Psource

t . We find ∆ϵ = argmin∆ϵ Et L(t) where

L(t) = λCLIPLdirection
(
Pedit

t , yref ;Psource
t , ysource

)
+ λrecon

∣∣Pedit
t −Psource

t

∣∣ (7)

Although ∆ϵ indeed renders the attribute in the xedit
0 , ϵ-space lacks the necessary properties of the

semantic latent space in diffusion models that will be described in the following.

3.3 h-space

Note that ϵθt is implemented as U-Net in all state-of-the-art diffusion models. We choose its bottle-
neck, the deepest feature maps ht, to control ϵθt . By design, ht has smaller spatial resolutions and
high-level semantics than ϵθt . Accordingly, the sampling equation becomes

xt−1 =
√
αt−1 Pt(ϵ

θ
t (xt|∆ht)) +Dt(ϵ

θ
t (xt)) + σtzt, (8)

where ϵθt (xt|∆ht) adds ∆ht to the original feature maps ht. The ∆ht minimizing the same loss in
Eq. (7) with Pt(ϵ

θ
t (xt|∆ht)) instead of Pt(ϵ̃

θ
t (xt)) successfully manipulates the attributes.

We observe that h-space in Asyrp has the following properties that others do not have.

• The same ∆h leads to the same effect on different samples.
• Linearly scaling ∆h controls the magnitude of attribute change, even with negative scales.
• Adding multiple ∆h manipulates the corresponding multiple attributes simultaneously.
• ∆h preserves the quality of the resulting images without degradation.
• ∆ht is roughly consistent across different timesteps t.

The above properties are demonstrated thoroughly in § 5.3. Appendix D.3 provides details of h-space
and suboptimal results from alternative choices.

3.4 IMPLICIT NEURAL DIRECTIONS

Although ∆h succeeds in manipulating images, directly optimizing ∆ht on multiple timesteps re-
quires many iterations of training with a carefully chosen learning rate and its scheduling. Instead,
we define an implicit function ft(ht) which produces ∆ht for given ht and t. ft is implemented as
a small neural network with two 1 × 1 convolutions concatenating timestep t. See Appendix E for
the details. Accordingly, we optimize the same loss in Eq. (7) with Pedit

t = Pt(ϵ
θ
t (xt|ft)).

Learning ft is more robust to learning rate settings and converges faster than learning every ∆ht. In
addition, as ft learns an implicit function for given timesteps and bottleneck features, it generalizes
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Figure 3: Intuition for choosing the intervals for editing and quality boosting. We choose the
intervals by quantifying two measures (top left inset). The editing strength of an interval [T, t] mea-
sures its perceptual difference from T until t. We set [T, t] to the interval with the smallest editing
strength that synthesizes Pt close to x, i.e., LPIPS(x,Pt) = 0.33. Editing flexibility of an interval
[t, 0] measures the potential amount of changes after t. Quality deficiency at t measures the amount
of noise in xt. We set [t, 0] to handle large quality deficiency (i.e., LPIPS(x,xt) = 1.2) with small
editing flexibility.

to unseen timesteps and bottleneck features. The generalization allows us to borrow the accelerated
training scheme of DDIM defined on a subsequence {xτi}∀i∈[1,S] where {τi} is a subsequence of
[1, ..., T ] and S < T . Then, we can use the generative process with a custom subsequence {τ̃i}
with length S̃ < T through normalization: ∆h̃τ̃ = fτ̃ (hτ̃ )S/S̃. It preserves the amount of

∑
∆ht,

∆h̃τ̃ S̃ = ∆htS. Therefore, we can use ft trained on any subsequence for any length of the genera-
tive process. See Appendix F for details. We use ft to get ∆ht for all experiments except Figure 6.

4 GENERATIVE PROCESS DESIGN

This section describes the entire editing process, which consists of three phases: editing with Asyrp,
traditional denoising, and quality boosting. We design formulas to determine the length of each
phase with quantifiable measures.

4.1 EDITING PROCESS WITH ASYRP

Diffusion models generate the high-level context in the early stage and imperceptible fine details in
the later stage (Choi et al., 2022). Likewise, we modify the generative process in the early stage to
achieve semantic changes. We refer to the early stage as the editing interval [T, tedit].

LPIPS(x,PT ) and LPIPS(x,Pt) calculate the perceptual distance between the original image and
the predicted image at time steps T and t, respectively. Intuitively, the high-level content is already
determined by the predicted terms at the respective timesteps and LPIPS measures the remaining
component to be edited through the remaining reverse process. Consequently, we define editing
strength of an interval [T, t]:

ξt = LPIPS(x,PT )− LPIPS(x,Pt)

indicating the perceptual change from timestep T to t in the original generative process. Figure 3
illustrates LPIPS(x, ·) for Pt and xt with examples and the inset depicts editing strength. The
shorter editing interval has the lower ξt, and the longer editing interval brings more changes to
the resulting images. We seek the shortest editing interval which will bring enough distinguishable
changes in the images in general. We empirically find that tedit with LPIPS(x,Ptedit) = 0.33 builds
the shortest editing interval with enough editing strength as Ptedit has nearly all visual attributes in
x.

However, some attributes require more visual changes than others, e.g., pixar > smile. For
such attributes, we increase the editing strength ξt by δ = 0.33d(ET (ysource), ET (ytarget)) where
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ET (·) produces CLIP text embedding, y(·) denotes the descriptions, and d(·, ·) computes the cosine
distance between the arguments. Choosing tedit with LPIPS(x,Ptedit) = 0.33 − δ expands the
editing interval to a suitable length. It consistently produces good results in various settings. The
supporting experiments are shown in Appendix G.

4.2 QUALITY BOOSTING WITH STOCHASTIC NOISE INJECTION

Although DDIM achieves nearly perfect inversion by removing stochasticity (η = 0), Karras et al.
(2022) demonstrate that stochasticity improves image quality. Likewise, we inject stochastic noise
in the boosting interval [tboost, 0].

Though the longer boosting interval would achieve higher quality, boosting over excessively long
intervals would modify the content. Hence, we want to determine the shortest interval that shows
enough quality boosting to guarantee minimal change in the content. We consider the noise in the
image as the capacity for the quality boosting and define quality deficiency at t: γt = LPIPS(x,xt)
indicating the amount of noise in xt compared to the original image. We use xt instead of Pt because
we consider the actual image rather than the semantics. Figure 3 inset depicts editing flexibility and
quality deficiency. We empirically find that tboost with γtboost

= 1.2 achieves quality boosting
with minimal content change. We confirmed that the editing strength of the intervals [tboost, 0] is
guaranteed to be less than 0.25. In Figure 3, after tboost, LPIPS(x,xt) sharply drops in the original
generative process while LPIPS(x,Pt) changes little. Note that most of the quality degradation of
the resulting images is caused by DDIM reverse process, not by Asyrp. We use this quality boosting
for all experiments except ablation in Appendix H.

4.3 OVERALL PROCESS OF IMAGE EDITING

Using tedit and tboost determined by the above formulas, we modify the generative process of DDIM
with

p
(t)
θ (xt−1 | xt) =


N
(√

αt−1 Pt(ϵ
θ
t (xt|ft)) +Dt, σ

2
t I
)
, η = 0 if T ≥ t ≥ tedit

N
(√

αt−1 Pt(ϵ
θ
t (xt)) +Dt, σ

2
t I
)
, η = 0 if tedit > t ≥ tboost

N
(√

αt−1 Pt(ϵ
θ
t (xt)) +Dt, σ

2
t I
)
, η = 1 if tboost > t

(9)

The visual overview and comprehensive algorithms of the entire process are in Appendix I.

5 EXPERIMENTS

In this section, we show the effectiveness of semantic latent editing in h-space with Asyrp on various
attributes, datasets and architectures in § 5.1. Moreover, we provide quantitative results including
user study in § 5.2. Lastly, we provide detailed analyses for the properties of the semantic latent
space on h-space and alternatives in § 5.3.

Implementation details. We implement our method on various settings: CelebA-HQ (Karras
et al., 2018) and LSUN-bedroom/-church (Yu et al., 2015) on DDPM++ (Song et al., 2020b) (Meng
et al., 2021); AFHQ-dog (Choi et al., 2020) on iDDPM (Nichol & Dhariwal, 2021); and MET-
FACES (Karras et al., 2020) on ADM with P2-weighting (Dhariwal & Nichol, 2021) (Choi et al.,
2022). Please note that all models are official pretrained checkpoints and are kept frozen. De-
tailed settings including the coefficients for λCLIP and λrecon, and source/target descriptions can
be found in Appendix J.1. We train ft with S = 40 for 1 epoch using 1000 samples. The real
samples are randomly chosen from each dataset for in-domain-like attributes. For out-of-domain-
like attributes, we randomly draw 1,000 latent variables xT ∼ N (0, I). Details are described in
Appendix J.2. Training takes about 20 minutes with three RTX 3090 GPUs. All the images in
the figures are not used for training. We set S̃ = 1, 000 for inference. The code is available at
https://github.com/kwonminki/Asyrp official

5.1 VERSATILITY OF h-space WITH ASYRP

Figure 4 shows the effectiveness of our method on various datasets and any existing U-Net based
architectures. Our method can synthesize the attributes that are not even included in the training
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Real image Recon. Smiling Sad Angry Man↔Woman Young Curly hair

Real image Recon. Department Factory Gothic Red bricks Temple Wooden

Real image Real image Real imageSmiling Disgusted Sleepy Happy Hotel Princess

Figure 4: Editing results of Asyrp on various datasets. We conduct experiments on CelebA-HQ,
LSUN-church, METFACES, AFHQ-dog, and LSUN-bedroom.

Real image Nicolas Cage NeanderthalModiglianiPixar Frida

Figure 5: Editing results of Asyrp for unseen domains in CelebA-HQ dataset.

dataset, such as church −→ {department, factory, and temple}. Even for dogs, our method
synthesizes smiling Poodle and Yorkshire, the species that barely smile in the dataset. Figure 5
provides results for changing human faces to different identities, painting styles, and ancient pri-
mates. More result can be found in Appendix N. Versatility of our method is surprising because
we do not alter the models but only shift the bottleneck feature maps in h-space with Asyrp during
inference.
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CelebA-HQ in-domain CelebA-HQ unseen-domain LSUN-church
quality attribute overall quality attribute overall quality attribute diversity overall

Asyrp (ours) 98.36% 88.13% 94.92% 71.56% 59.84% 63.13% 73.19% 71.81% 87.50% 76.81%
DiffusionCLIP 1.64% 11.88% 5.08% 28.44% 40.16% 36.88% 26.81% 28.19% 12.50% 23.19%

Table 1: User study with 80 participants. The details are described in § K.1

Real image Real image Real image

(a) Result of optimization (b) Result of adaptation to other images

Figure 6: Optimization for smiling on h-space and ϵ-space. (a) Optimizing ∆ht for a sample
with smiling results in natural editing while the change due to optimizing ∆ϵt is relatively small.
(b) Applying ∆ht from (a) to other samples yields the same attribute change while ∆ϵt distorts the
images. The result of ∆ϵt is the best sample we could find.

Real image
+ Smiling  (trained)- Smiling  (untrained)

Figure 7: Linearity of h-space. Linear interpolation and extrapolation on h-space lead to grad-
ual changes even to the unseen intensity and directions. Right side shows the interpolation results
by positive scaling of ∆hsmilingt . Left side shows the extrapolation results by negative scaling of
∆hsmiling

t . Note that we did not train ft for the negative direction.

5.2 QUANTITATIVE COMPARISON

Considering that our method can be combined with various diffusion models without finetuning,
we do not find such a versatile competitor. Nonetheless, we compare Asyrp against DiffusionCLIP
using the official code that edits the real images by finetuning the whole model. We asked 80 partic-
ipants to choose the images with better quality, natural attribute change, and overall preference for
given total of 40 sets of original images, ours, and DiffusionCLIP. Table 1 shows that Asyrp outper-
forms DiffusionCLIP in the all perspectives including the attributes unseen in the training dataset.
We list the settings for fair comparison including the questions and example images in Appendix
K.1. See § K.2 for more evaluation metrics: segmentation consistency (SC) and directional CLIP
similarity(Sdir).

5.3 ANALYSIS ON h-space

We provide detailed analyses to validate the properties of semantic latent space for diffusion models:
homogeneity, linearity, robustness, and consistency across timesteps.

Homogeneity. Figure 6 illustrates homogeneity of h-space compared to ϵ-space. One ∆ht opti-
mized for an image results in the same attribute change to other input images. On the other hand,
one ∆ϵt optimized for an image distorts other input images. In Figure 10, applying ∆hmean

t =
1
N

∑
∆hi

t produces almost identical results where i indicates indices of N = 20 random samples.

Linearity. In Figure 7, we observe that linearly scaling a ∆h reflects the amount of change in
the visual attributes. Surprisingly, it generalizes to negative scales that are not seen during train-
ing. Moreover, Figure 8 shows that combinations of different ∆h’s yield their combined semantic
changes in the resulting images. Appendix N.2 provides mixed interpolation between multiple at-
tributes.
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Real image SadYoung N+SNeanderthal N+Y Y+S Y+S+N

Figure 8: Linear combination. Combining multiple ∆hs leads to combined attribute changes.

Real image (a) (b) (c) 

Figure 9: Ramdom manipulation on h-space and ϵ-space. (a) Adding random noise with mag-
nitude of ∆hsmiling

t and random direction in h-space leads to realistic images with small changes.
(b) Adding random noise with magnitude of ∆ϵsmilingt and random direction in ϵ-space leads to
severely distorted images. (c) Adding random noises with tripled magnitude produce diverse visual
changes in realistic images.

Real image Real image

Young Pixar

Figure 10: Consistency on h-space. Results of ∆ht, ∆hmean
t and ∆hglobal are almost identical for

in-domain samples. However, we choose ∆ht over others to prevent unexpected small difference in
the unseen domain. We provide more results in § L.1.

Robustness. Figure 9 compares the effect of adding random noise in h-space and ϵ-space. The
random noises are chosen to be the vectors with random directions and magnitude of the example
∆ht and ∆ϵt in Figure 6 on each space. Perturbation in h-space leads to realistic images with a
minimal difference or some semantic changes. On the contrary, perturbation in ϵ-space severely
distorts the resulting images. See Appendix D.2 for more analyses.

Consistency across timesteps. Recall that ∆ht for all samples are homogeneous and replacing
them by their mean ∆hmean

t yields similar results. Interestingly, in Figure 10, we observe that adding
a time-invariant ∆hglobal = 1

Te

∑
t ∆hmean

t instead of ∆ht also yields similar results where Te

denotes the length of the editing interval [T, tedit]. Though we use ∆ht to deliver the best quality
and manipulation, using ∆hmean

t or even ∆hglobal with some compromise would be worth trying
for simplicity. We report more detail about mean and global direction in Appendix L.1.

6 CONCLUSION

We proposed a new generative process, Asyrp, which facilitates image editing in a semantic latent
space h-space for pretrained diffusion models. h-space has nice properties as in the latent space
of GANs: homogeneity, linearity, robustness, and consistency across timesteps. The full editing
process is designed to achieve versatile editing and high quality by measuring editing strength and
quality deficiency at timesteps. We hope that our approach and detailed analyses help cultivate a new
paradigm of image editing in the semantic latent space of diffusion models. Combining previous
finetuning or guidance techniques would be an interesting research direction.
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Figure 11: Editing dog to smile. We provide high-resolution results of editing real images in the
teaser and more.

A RELATED WORK

After Sohl-Dickstein et al. (2015), denoising diffusion probabilistic models (DDPMs) provide a uni-
versal approach for generative modeling (Ho et al., 2020). On the other hand, Song et al. (2020b)
suggests score-based model and unifies SDEs incorporating diffusion models with score-based mod-
els. Subsequent works renovate diffusion models by focusing on architectures, scheduling, weight-
ing, and fast sampling (Nichol & Dhariwal (2021), Karras et al. (2022), Choi et al. (2022), Song
et al. (2020a), Watson et al. (2022)). They mainly consider random generation rather than controlled
generation.

In the meantime, Dhariwal & Nichol (2021) introduces classifier guidance not only improving the
quality of images but also retrieving specific class of images. Since it can apply any guidance, its
variants have emerged (Sehwag et al. (2022), Avrahami et al. (2022), Liu et al. (2021), Nichol et al.
(2021)). However it requires a noise-dependent classifier (or any off-the-shelf models) and additional
cost to compute gradients for the guidance during its sampling process. The other works try to
control the generative process using image-space guidance (Choi et al. (2021), Meng et al. (2021),
Lugmayr et al. (2022), Avrahami et al. (2022)). They manipulate resulting images by matching noisy
images with target images during the reverse process. Still, it is hard to expect delicate control of the
reverse process from the image guidance. Furthermore, Preechakul et al. (2022) introduces an extra
encoder which encodes the semantic features of a real image in order to condition the generative
process. Although the semantics allow one to control diffusion models, it requires additional training
from scratch with the encoder and inherently can not use the other pretrained diffusion models.

For controllability, Rombach et al. (2022) and Vahdat et al. (2021) apply another approach which
adapts VAE (Kingma & Welling, 2013) and autoencoder (Rumelhart et al., 1985) to diffusion mod-
els. In spite of their great success in editing, their diffusion models learn the distribution of the
learned embeddings in VAE or autoencoder, not the images. Kim & Ye (2021) proposes another
strategy: fine-tuning a whole diffusion model for image editing. It shows valid performance but it
requires each fine-tuned model corresponding each attribute.

In comparison, Asyrp enables outstanding manipulation without high computation, specifically de-
signed architectures, or fine-tuning whole models.

Meanwhile, generative adversarial network Goodfellow et al. (2020) address their latent space for
image editing (Ling et al. (2021), Härkönen et al. (2020), Chefer et al. (2021), Shen et al. (2020),
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Yüksel et al. (2021), Patashnik et al. (2021), Gal et al. (2021), Dai et al. (2019), Xu et al. (2022)).
However they have to conduct ‘inversion’ to their latent space for real image editing and ‘GAN
inversion’ is often challenging and produces unexpected appearance changes.

On the contrary, Asyrp enables to use latent space of real images by nearly perfect easy inversion of
DDIM.

B MORE DISCUSSION

In this section, we discuss the pros and cons of diffusion-model-based and GAN-based methods.
And we provide guidelines for further improvements.

GAN-based latent manipulation methods Patashnik et al. (2021); Gal et al. (2021)require careful
inversion from real images to latent codes for real image editing. On the contrary, our proposed
method based on diffusion models has a powerful advantage; the sophisticated inversion method is
not necessary. This means that we can obtain the latent code of an arbitrary real image even if the
image is not in the trained domain. On the other hand, several inversion methods have been proposed
for GANs to obtain the latent of the real image, and the corresponding latent manipulation method
should be considered for each inversion method. For example, it is difficult to apply the method of
editing in w space to the method of inversion using w+ space.

However, GANs have the advantage of fast sampling. In addition, diffusion models have a relatively
slow sampling time. Additionally, we have to be aware of the time steps of diffusion models, which
is still less well known.

The advantage of being free from Inversion provides the following milestones. The manipulation in
the latent of the diffusion models is the same as the editing in real images. It can be expanded to
segmentation, clustering, classification, etc. in h-space for real-world images.

It would be an interesting research direction to employ previous techniques. Our method can be used
in conjunction with gradient guidance methods. Although we do not focus on random sampling, ours
works effectively for sampling with stochastic. (See §M.) It may bring more diverse methods to steer
diffusion models.

h-space in the latent diffusion models such as stable diffusion, is another interesting research di-
rection. The main contribution of our paper is only modifying Pt while preserving Dt, and can be
adapted with latent diffusion models. However, since the latent meaning may be different due to
structural differences, research on this is needed.

Furthermore, all of the properties of h-space according to the time step has not been fully discussed
so far. Research on them can be expected to expand further.

Limitations. Editing with Asyrp seldom yields changes in overall style or peripheral objects but
edits attributes of the main object. Style transfer using frozen diffusion models is our future work.

Societal impact / Ethics statement. Techniques for high-quality image manipulation such as
Asyrp should be accompanied by social and/or technical solutions to prevent abuse. We acknowledge
the potential ethical implications that may arise from the use of our image manipulation technique,
Asyrp. We advocate for the development and implementation of social and technical solutions to
prevent potential abuses such as spreading disinformation or propaganda. We are committed to en-
suring fairness and non-discrimination, legal compliance, and research integrity in our work.

C PROOF OF THEOREM 1

Proof of Theorem 1. Let ϵθt be a predicted noise during the original reverse process at t and ϵ̃θt be
its shifted counterpart. Then, ∆xt = x̃t−1−xt−1 is negligible where x̃t−1 =

√
αt−1 Pt(ϵ̃

θ
t (xt))+

Dt(ϵ̃
θ
t (xt)).
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Figure 12: Illustration of Theorem 1. Upper blue line describes applying noise ϵ̃t = ϵt + ∆ϵt
to produce Pt(ϵ̃t) = the shifted predicted x0. However, the shift due to ∆ϵt is canceled out by the
shift in Dt(ϵ̃t) due to ∆ϵt. As a results, applying ∆ϵt both on Pt and Dt brings identical outputs to
the original.

Define ϵ̃θt (xt) = ϵθt (xt) + ∆ϵt, {βt}Tt=1 = {β1 = βmin, ..., βT = βmax}, and αt =
∏t

s=1(1 −
βs). Note that βmax is defined as a small value (e.g., βmax = 0.001) and {βt}Tt=1 are defined by a
decreasing schedule from βT = βmax to β1 = βmin ≈ 0 (e.g., βmin = 0.00001). Then,

x̃t−1 =
√
αt−1 Pt(ϵ̃

θ
t (xt)) +Dt(ϵ̃

θ
t (xt)) (10)

=
√
αt−1

(
xt −

√
1− αt

(
ϵθt (xt) + ∆ϵt

)
√
αt

)
+
√
1− αt−1 ·

(
ϵ
(θ)
t (xt) + ∆ϵt

)
(11)

=
√
αt−1 Pt(ϵ

θ
t (xt)) +Dt(ϵ

θ
t (xt))−

√
αt−1

√
1− αt√

αt
·∆ϵt +

√
1− αt−1 ·∆ϵt (12)

= xt−1 +

(
−
√
1− αt√
1− βt

+
√
1− αt−1

)
·∆ϵt (13)

= xt−1 +

−√1− αt√
1− βt

+

√
1−

∏t−1
s=1 (1− βs)

√
1− βt

√
1− βt

 ·∆ϵt (14)

= xt−1 +

(√
1− αt − βt −

√
1− αt√

1− βt

)
·∆ϵt ∵ αt =

t∏
s=1

(1− βs) (15)

∴ ∆xt = x̃t−1 − xt−1 =

(√
1− αt − βt −

√
1− αt√

1− βt

)
·∆ϵt is negligible ∵ βt < βmax

(16)
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D ADDITIONAL SUPPORTS FOR h-space WITH ASYRP

D.1 RANDOM PERTURBATION ON ϵ-space WITHOUT ASYRP

In § 3.1, we argue that if both Pt and Dt are shifted, we can not manipulate x0. In Figure 13, we do
not observe the noticeable difference between (a) and (b) which are the result of the original reverse
process of DDIM and the one with shifting both terms, respectively.

D.2 ROBUSTNESS AND SEMANTICS IN h-space AND ϵ-space WITH ASYRP

In § 3.2, we also argue that h-space is more robust than ϵ-space with Asyrp. In Figure 13, we
observe that small random noise z ∼ N (0, I) in ϵ-space degrades the resulting image without
semantic changes (c) and much larger random noise in h-space yields random semantic changes
without severe artifacts (d).

Note that diffusion models are designed as latent variable models with learned Gaussian transitions
and the reverse process should also be close to Gaussian. Based on the assumption, we manage ϵθt
to follow the original Gaussian distribution as follows. Adding z ∼ N (0, σI) to ϵθt expands the
distribution of the predicted noise and may produce distorted images. To preserve the distribution,
we scale ϵ̃θt = (ϵθt + z)/

√
12 + σ2. Still, the resulting images are almost identical compared to the

original images where ϵ̃θt = ϵθt + z as shown in Figure 13. It is no wonder that the scaling does not
improve the distorted results since the additive random noise disturbs the denoising operation of the
predicted random noise.

Figure 13: (a) The reconstructed image by the original DDIM inversion process which is almost
indistinguishable to the real image. (b) The result from adding random noise z both on Pt and Dt.
(a) looks identical to (b). The insets of (b, c) depict the full SSIM image from (a). It shows that
simply shifting ϵθt without Asyrp does not affect the result. (c) Adding z ∼ N to ϵ-space with Asyrp
easily degrades image with little semantic change. (d) Adding z ∼ N to h-space with Asyrp yields
random semantic change without image degradation. (e) Correlation between image degradation and
noise strength in the two spaces.

D.3 CHOICE OF h-space IN U-NET

As shown in Figure 14, there are many other candidates for h-space in the architecture. Among the
layers, we choose the 8th layer, the bridge of the U-Net based architecture. The layer is not influ-
enced by any skip connection, has the smallest spatial dimension with compressed information, and
is located just before the upsampling blocks. Thus, we assume that it could possibly be considered as
the most suitable latent embedding. To confirm the assumption, we train ft on the other layers. The
results are shown in Figure 15. We carefully tuned the training hyperparameters (λCLIP and λrecon)
for fair comparison. The 1st to the 6th layers hardly bring visible changes. The 7th and 9th layers
bring not only the desired changes but also difficulty in finding optimal hyperparameters. After the
9th layer, the results bear severe artifacts.

E IMPLICIT NEURAL DIRECTIONS

Figure 16 illustrates the neural implicit function ft. It has only two 1x1 convolution layers with 512
channels. Note that we haven’t explored the network architecture much.
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Figure 14: Location of h-space. The U-Net architecture of diffusion models outputs 256 × 256
images. Each layer is indexed with a number along the operating sequence of the model. The 8th
layer is our h-space which is not directly influenced by a skip connection.

F QUALITY IMPROVEMENTS BY NON-ACCELERATED SAMPLING WITH
SCALED ∆ht

Figure 17 shows the quality improvements by non-accelerated sampling with scaled ∆ht described
in § 3.4. Even with different number of inference steps, we observe similar changes of an attribute
if we preserve the sum of ∆ht. This scaling technique allows non-accelerated sampling with 1000
steps for the models trained by accelerated training with 40 steps. Using non-accelerated sampling
with scaled ∆ht leads to the same magnitude of manipulation and higher-quality images. In our
experiments, it takes about 1.5 seconds to sample for 40 steps and 40 seconds for 1000 steps.

G EDITING STRENGTH AND EDITING FLEXIBILITY

G.1 EDITING STRENGTH AND tedit

Figure 18 shows the results according to tedit. If tedit is too high, the length of the editing process
becomes too short resulting in insufficient changes. On the contrary, too low tedit causes excessively
unnecessary manipulation from the long editing process.

We observe that tedit is one of the important hyperparameters. We argue that the formula for choos-
ing tedit using editing strength is reasonable because it applies to all five different datasets despite its
sensitivity, even though the choice of LPIPS = 0.33 is empirical. We provide ablation of thresholds
in Figure 22.

Additionally, these results imply why we need to use sufficiently low tedit in the unseen domains.
Editing interval with insufficient editing strength struggles to escape from the training domain.

G.2 EDITING FLEXIBILITY AND tboost

Table 2 shows the prompts, tedit, and tboost. Intuitively, the attributes with larger visual changes
have smaller cosine similarity and require longer editing interval. Figure 19 shows the average
LPIPS(x,Pt) and LPIPS(x,xt) of 100 samples on all datasets. Note that tedit and tboost dif-
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Figure 15: Exhaustive enumeration over the choices for semantic latent space. We show the
result of the training data. We observe that the eighth layer (h-space) of the U-net suits the best for
the semantic latent space.
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Figure 16: Illustration of ft. We use group norm and swish following DDPM.

fer across datasets and attributes, and they are chosen by the formulas in § 4. We provide ablation of
tboost in Figure 23.

H QUALITY BOOSTING

We validate the effectiveness of our quality boosting (§ 4.2) in the original DDIM process and in
Asyrp.
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Real image 40 steps 1000 steps

Smiling with

Figure 17: Quality improvements by non-accelerated sampling with scaled ∆ht. We observe
quality improvements by non-accelerated (1000-step) sampling with scaled ∆ht from accelerated
(40-step) training described in § 3.4. Please zoom in for detailed comparison.

Figure 18: Importance of choosing proper tedit. We explore various tedit with smiling. Too
short editing interval struggles to manipulate attributes. Excessive editing strength results in de-
graded images.
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Dataset src txt trg txt CLIP similarity tedit tboost

CelebA-HQ

Person Young person 0.905 515 167
Face Smiling face 0.899 513 167
Face Sad face 0.894 513 167
Face Angry face 0.892 512 167
Face Tanned face 0.886 512 167
Face Disgusted face 0.880 511 167

Person Person with makeup 0.875 509 167
Human Zombie 0.868 506 167
Person Person with bald head 0.861 505 167
Person Person with curly hair 0.835 499 167
Human Neanderthal 0.802 490 167
Person Mark Zuckerberg 0.797 489 167
Person Nicolas Cage 0.710 461 167
Human Painting in the style of Pixar 0.667 446 167
Photo Painting in Modigliani style 0.565 403 167
Photo Self-portrait by Frida Kahlo 0.443 321 167

LSUN-church

Church Gothic Church 0.912 371 293
Church Temple 0.898 367 293
Church Department store 0.841 349 293
Church Wooden House 0.793 333 293
Church Ancient traditional Asian tower 0.784 330 293
Church Red brick wall Church 0.774 326 293
Church Factory 0.702 301 293

LSUN-bedroom Bedroom Princess Bedroom 0.912 370 221
Bedroom Hotel Bedroom 0.917 371 221

AFHQ

Dog Happy Dog 0.883 430 167
Dog Sleepy Dog 0.866 422 167
Dog Angry Dog 0.860 419 167
Dog Wolf 0.850 412 167
Dog Yorkshire Terrier 0.690 302 167

METFACES

Painting of a person Painting of a Sad person 0.921 330 180
Painting of a person Painting of a Smiling person 0.908 320 180
Painting of a person Painting of a Disgusted person 0.879 291 180

Table 2: Prompts, CLIP similarity, tedit, and tboost for all attributes in the experiments.

Figure 19: Average LPIPS(x,Pt) and LPIPS(x,xt) of 100 samples on all datasets.

Figure 20 shows the effect of quality boosting with the original DDIM reverse process. Although
the reverse process of DDIM has a nearly-perfect inversion property, we observe some noise by
zooming in. Our quality boosting improves the quality of a sample and concurrently keeps nearly
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Real image w/ Quality boostingw/o Quality boosting

Figure 20: Ablation study of quality boosting on the original DDIM process without Asyrp. Our
quality boosting enhances fine details and prevents images from being noisy in the original DDIM
process. Please zoom in for detailed comparison.

Real image w/ Quality boosting

Smiling

w/o Quality boosting

Figure 21: Ablation study of quality boosting with Asyrp. Our quality boosting enhances fine
details and prevents images from being noisy. Note that the source of degradation is DDIM process,
not Asyrp, confirmed in Figure 20. Please zoom in for detailed comparison.
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Real image

Pixar

Young

Smiling

0.1 0.2 0.3 0.33 0.36 0.4 0.5

Figure 22: Analyzing the effect of the hyperparameters The figure shows that the calculated
parameter works effectively as the maximum boundary of editing while maintaining the quality of
the image.

Real image

Pixar

Young

Smiling

0.5 0.8 1.0 1.2 1.3 1.35 1.38

Figure 23: Analyzing the effect of the hyperparameters We observe that the quality of results has
robustness to γtboost

, except for too large γtboost
.

perfect inversion property. We observe that tboost is not sensitive, but the larger interval brings the
less preservation.

Figure 21 shows quality improvements by our quality boosting in Asyrp.

I ALGORITHM

Figure 24 illustrates generative process. Algorithm 1 and 2 describe training algorithm and inference
algorithm of Asyrp, respectively.

J TRAINING DETAILS

J.1 LOSS COEFFICIENTS

Table 3 reports loss coefficients for each attribute. λCLIPs near 0.8 are suitable for most in-domain
attributes. For unseen domains, higher coefficient leads to more noticeable changes. Note that we
use λrecon = CLIP similarity ∗ 3 which reduces L1 loss when an attribute needs a lot of change.
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Adding

(a) Editing (b) Denoising (c) Quality boosting

Semantic encoder

Frozen U-Net

… … …Real image

Smiling

Figure 24: Overview of our generative process.

J.2 TRAINING WITH RANDOM SAMPLING INSTEAD OF THE TRAINING DATASETS

Apparently, for training, inverting real-images can be replaced by random sampling. It refers to using
xT ∼ N (0, I) instead of xT = q(x0) ·

∏T
t=1 q (xt | xt−1) where x0 ∼ pdata(x). It allows us to

train Asyrp only with the pretrained network and without extra dataset. Using random samples has
tradeoff between preservation of contents and possible amount in editing. It take advantages when
a target attribute requires large amount changes. We assume that the inversion of real-image is in
the long tail of a Gaussian distribution because of realistic background or detailed clothes. On the
other hand, random noise is considered to be closer to the mean of the normal, so it is easier to
find directions. It can easily bring larger changes but also easily alter the contents. On the contrary,
training with inversion shows the opposite property.

We train ft with random sampling for attributes whose identity preservation is not important to take
advantage of these properties. The rightmost column in Table 3 shows the choices.

K EVALUATION

K.1 USER STUDY

We conduct user study to compare the performance of Asyrp and DiffusionCLIP (Kim & Ye, 2021)
on Celeba-HQ (Liu et al., 2015) and LSUN-church (Yu et al., 2015). We use official checkpoints
provided by DiffusionCLIP except for some facial attributes whose checkpoint do not exist. We
tried our best to tune their hyperparameters following the manual for fair comparison. Example
images are shown in Figure 25-27.

We use smiling and sad for in-domain CelebA-HQ attributes, Pixar and Neanderthal for
unseen-domain CelebA-HQ attributes, and department store, ancient, and wooden for
LSUN-church.

In unseen domain and Lsun-church, we use official checkpoints provided by DiffusionCLIP. We
also randomly select 8 images for each CelebA-HQ attribute and 12 images for each LSUN-church
attribute.

We observe that DiffusionCLIP works better in changing the holistic style of images. At the same
time, it is short of the ability to bring semantic changes and suffers noisy results and a lack of
diversity. The problems would be caused by fine-tuning the whole diffusion model.

We use the following questions for the survey. 1) Quality: Which image quality do you think is
better? (clear and less noisy) 2) Attribute: Which image do you think is “Attribute(e.g., Smiling)
naturally”? 3) Overall: Which image do you think is better considering the above evaluation criteria?
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Algorithm 1: Editing(Inference)

Input: x0(Input image), {f i
t}Mi=1(M Neural implicit functions for M attributes), {ci}Mi=1(user

defined M scaling coefficients for M attributes), ϵθ (frozen pretrained model), Sfor (# of
inversion steps), Sgen(# of inference steps), tedit (computed from § 4.1), tboost
(computed from § 4.2)

1 Function Editor(x0, ϵθ, {ci}Mi=1, Sfor, Sgen,∗):
// step 1: Semantic encoding

2 Define {τs}
Sfor

s=1 s.t τ1 = 0, τSfor
= T

3 for s = 1, 2, ..., Sfor − 1 do
4 ϵ←− ϵθ(xτs , τs)
5 xτs+1

=
√
ατsxτs +

√
1− ατsϵ

// step 2: Manipulation

6 Define {τ̃s}
Sgen

s=1 s.t τ̃1 = 0, τ̃Sedit
= tedit, τ̃Snoise

= tboost and τ̃Sgen
= T

7 x̃τ̃Sgen
= xτ̃Sfor

8 for s = Sgen, Sgen − 1, ..., 2 do
// phase 1: editing

9 if s ≥ Sedit then
10 Extract feature map hτ̃s

from ϵθ(x̃τ̃s
)

11 ∆hτ̃s =
Sfor

Sgen
(
∑M

i=1 cif
i
τ̃s
(hτ̃s))

12 ϵ̃ = ϵθ(x̃τ̃s
|∆hτ̃s

)
13 ϵ = ϵθ(x̃τ̃s

)
14 στ̃s

= 0

// phase 2: denoising
15 else if s ≥ Snoise then
16 ϵ̃ = ϵ = ϵθ(x̃τ̃s

)
17 στ̃s

= 0

// phase 3: quality boosting
18 else
19 ϵ̃ = ϵ = ϵθ(x̃τ̃s)

20 στ̃s =
√
(1− ατ̃s−1) / (1− ατ̃s)

√
1− ατ̃s/ατ̃s−1

21 z ∼ N(0, 1)

22 x̃τ̃s−1
=
√
ατ̃s−1

(
x̃τ̃s−
√

1−ατ̃s ϵ̃√
ατ̃s

) +
√

1− ατ̃s−1
− σ2

τ̃s
ϵ+ στ̃s

z

23 return x̃0 (manipulated image)

As for LSUN-church, we provide a set of four images at once and add a question: 3) Diversity:
Which group do you think has a more diverse style? 4) Overall: Which image do you think is better
considering the above evaluation criteria?

K.2 SEGMENTATION CONSISTENCY AND DIRECTIONAL CLIP SIMILARITY

We compare Asyrp and DiffusionCLIP using directional CLIP similarity (Sdir) and segmentation-
consistency (SC) following the protocols in DiffusionCLIP in Table 4 and Table 5. A pretrained
CLIP (Radford et al., 2021) and segmentation models (Yu et al. (2018); Zhou et al. (2019; 2017); Lee
et al. (2020)) are used to compute Sdir and SC, respectively. We choose three attributes (smiling,
sad, tanned) for CelebA-HQ-in-domain, two attributes (Pixar,Neaderthal) for CelebA-HQ-
unseen-domain and three attributes (department store, ancient, red brick) for LSUN-
church.

For a fair comparison, we use official checkpoints of DiffusionCLIP and provide scores of the at-
tributes (tanned, red brick) following Kim & Ye (2021). Regarding attributes without the
official checkpoints (smiling,sad), we train DiffusionCLIP by ourselves with the official code.
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Algorithm 2: Training Neural implicit function ft

Input: ϵθ(pretrained model), {x(i)
0 }Ni=1(images to precompute), ft(Neural implicit function of

an attribute), ysrc(source text), ytar(target text), Sfor(# of inversion steps), K(# of
training epochs), tedit (computed from § 4.1), tboost (computed from § 4.2)

// step 1: Precompute latents

1 Define {τs}
Sfor

s=1 s.t τ1 = 0,τSfor
= T

2 for i = 1, 2, ..., N do
3 for s = 1, 2, ..., Sfor − 1 do
4 ϵ←− ϵθ(x

(i)
τs , τs)

5 x
(i)
τs+1 =

√
ατsx

(i)
τs +

√
1− ατsϵ

6 Save the latent x(i)
τSfor

7 τSedit
= tedit

// step 2: Update ft

8 for epoch= 1, 2, ...,K do
9 for i = 1, 2, ..., N do

10 Clone the latent x̃(i)
τSfor

= x
(i)
τSfor

11 for s = Sfor, Sfor − 1, ..., Sedit do
12 Extract feature map hτs

from ϵθ(x̃
(i)
τs )

13 ∆hτs = fτs(hτs)

14 P =
x̃(i)
τs

−
√

1−ατsϵθ(x̃
(i)
τs

|∆hτs )√
ατs

; Psrc =
x(i)
τs

−
√

1−ατsϵθ(x
(i)
τs

)
√
ατs

15 x̃
(i)
τs−1 =

√
ατs−1P +

√
1− ατs−1ϵθ(x̃

(i)
τs )

16 x
(i)
τs−1 =

√
ατs−1

Psrc +
√
1− ατs−1

ϵθ(x
(i)
τs )

17 Ltotal ←− λCLIPLdirection(P, ytar, Psrc, ysrc) + λrecon|P − Psrc|
18 Take a gradient step on Ltotal and update ft

We use 100 samples per attribute. Asyrp outperforms DiffusionCLIP on Sdir for all attributes. On
SC, DiffusionCLIP achieves better or competitive scores. Because DiffusionCLIP manipulates im-
ages mostly by focusing on texture or color while preserving structure and shape, it takes advantage
of getting higher SC scores. However, in Figure 28, results of smiling show that it is not proper to
edit attributes which require structural manipulation. Note that better SC scores do not guarantee bet-
ter qualitative performance. Results of Pixar also show the similar tendency of each method. We
allow more structural changes than DiffusionCLIP while editing. Lower SC of our method comes
from desirable structural changes as shown in Figure 28.

Sdir (xgen, ytar;xref, yref) :=
⟨∆I,∆T ⟩
∥∆I∥∥∆T∥

, (17)

L DIRECTIONS

L.1 GLOBAL DIRECTION

Figure 29 and Figure 30 show that the effects of mean direction and global direction are quite
similar with ∆ht by ft in various attributes. We compute mean direction and global direction from
20 different images.

We argue that h-space is roughly homogeneous across samples and timesteps. However, we ob-
serve that h-space is not completely independent to the conditions especially on unseen-domain
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Dataset src txt trg txt λCLIP λrecon from random noise

CelebA-HQ

Person Young person 0.8 0.905*3 X
Face Smiling face 0.8 0.899*3 X
Face Sad face 0.8 0.894*3 X
Face Angry face 0.8 0.892*3 X
Face Tanned face 0.8 0.886*3 X
Face Disgusted face 0.8 0.880*3 X

Person Person with makeup 0.8 0.875*3 X
Person Person with curly hair 0.8 0.835*3 X
Photo Self-portrait by Frida Kahlo 0.5 0.4433 O

Human Zombie 0.6 0.868*3 O
Person Nicolas Cage 0.8 0.710*3 O
Human Painting in the style of Pixar 0.8 0.667*3 O
Photo Painting in Modigliani style 0.8 0.565*3 O

Human Neanderthal 1.2 0.802*3 O

LSUN-church

Church Gothic church 0.8 0.912*3 O
Church Temple 0.8 0.898*3 O
Church Department store 0.8 0.841*3 O
Church Wooden house 0.8 0.793*3 O
Church Ancient traditional Asian tower 0.8 0.784*3 O
Church Red brick wall Church 0.8 0.774*3 O
Church Factory 0.8 0.702*3 O

LSUN-bedroom Bedroom Princess bedroom 1.5 0.912*3 O
Bedroom Hotel bedroom 1.5 0.917*3 O

AFHQ-dog

Dog Happy dog 1.5 0.883*3 O
Dog Sleepy dog 1.5 0.866*3 O
Dog Wolf 1.7 0.850*3 O
Dog Yorkshire terrier 2 0.690*3 O

METFACES

Painting of a person Painting of a Sad person 1.5 0.921*3 X
Painting of a person Painting of a Smiling person 1.5 0.908*3 X
Painting of a person Painting of a Disgusted person 1.5 0.879*3 X

Table 3: The coefficients range from 0.5 to 0.8 for in-domain attributes. Unseen domains need
slightly stronger λCLIPs. We also report which attributes we train with random noise sampling.
The criterion is which attributes require relatively less maintenance of identity. We use λrecon =
CLIP similarity ∗ 3 which reduces L1 loss when an attribute needs a lot of change.

CelebA-HQ-in-domain CelebA-HQ-unseen-domain
Smiling Sad Tanned Pixar Neanderthal

Sdir SC Sdir SC Sdir SC Sdir SC Sdir SC
Asyrp (ours) 0.921 89.02% 0.964 88.90% 0.991 85.71% 0.956 76.51% 0.805 79.03

DiffusionCLIP 0.813 91.41% 0.760 89.93% 0.888 92.85% 0.811 89.91% 0.661 81.23%

Table 4: Quantitative evaluation on CelebA-HQ.
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Figure 25: Asyrp vs. DiffusionCLIP on CelebA-HQ in-domain attributes. We observe that Dif-
fusionCLIP struggles to change semantic facial attributes. Their official checkpoints do not exist and
we ran careful hyperparameter tuning for training.
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Figure 26: Asyrp vs. DiffusionCLIP on CelebA-HQ unseen-domain attributes. We use the offi-
cial checkpoint provided by DiffusionCLIP. Asyrp works well even for the unseen-domains.

LSUN church
Department store ancient red brick
Sdir SC Sdir SC Sdir SC

Asyrp (ours) 0.778 57.62% 0.943 62.65% 0.989 65.83%
DIffusionCLIP 0.661 54.50% 0.907 64.82% 0.964 65.02%

Table 5: Quantitative evaluation on LSUN-church.

(See Figure 29). Note that unseen-domains require a longer editing interval with small tedit. There-
fore, we conjecture that the consistency of h-space decreases at the end of the generative process. It
is supported by additional experiments that L2 distance between ∆ht and global direction gradually
increases along with timesteps. We leave a more detailed analysis on h-space at different timesteps
as a future work.
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Figure 27: Asyrp vs. DiffusionCLIP on LSUN-church. Note that we use the official checkpoint
provided by DiffusionCLIP. We observe DiffusionCLIP produces narrow range of styles while Asyrp
produces diverse styles.

L.2 COMPARE THREE METHODS

In this section, we compare three methods: implicit neural direction ft, optimized ∆ht, and opti-
mized ∆hglobal.

Training time ft ≈ ∆hglobal < ∆ht

We have to optimize each ∆ht for each time step t. Additionally, it needs specific hyperparameters
for each ∆ht, e.g., higher learning rates for larger t. On the contrary, time-consuming for ft is
similar to optimizing ∆hglobal.

Quality ft ≈ ∆ht > ∆hglobal

ft and ∆ht, where directions can be obtained for each timestep, have the best quality. As can be
shown in Figure 10, ∆hglobal is sometimes accompanied by slight differences in hair, etc.

Extensibility ft > ∆ht > ∆hglobal
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Original Asyrp (Ours) DiffusionCLIP

LSUN-church
Department store

CelebA-HQ
Pixar

CelebA-HQ
Smiling

Figure 28: Example segmentations for computing segmentation-consistency (SC).

∆ht can be obtained from ft, and ∆hglobal can be obtained by aggregating ∆ht.

We opt to use ft for above three advantages.

M RANDOM SAMPLING

We conduct extra experiments: generating images with target attributes using Asyrp not from inver-
sion but from random Gaussian noises. As a consequence, the generative process can be used for
conditional random sampling. We provide the results in Figure 31. However, it is beyond the scope
of this paper.
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Figure 29: We compute mean direction and global direction from 20 other images on CelebA-
HQ. The effect of mean direction and global direction are quite similar with ∆ht by ft at diverse
attributes.
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Department 

store

Gothic

Temple

Figure 30: We obtain mean direction and global direction from 20 other images on LSUN-church.
The effect of mean direction and global direction are quite similar with ∆ht by ft at diverse at-
tributes.

Young Pixar Smiling Frida

(a) DDIM process (b) DDPM process

Figure 31: Uncurated random sampling. We generate images from random noise with Asyrp.
Although we do not focus on these results, Asyrp can be used for conditional sampling.
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N MORE SAMPLES

N.1 IMAGENET

We conduct extra experiments: editing images with target class using Asyrp with ImageNet pre-
trained model. We verified that models trained on large datasets, such as ImageNet, can be edited
using Asyrp. However, we also observed that in this case the latent space is not partitioned by classes.
For an orange, we have different latents for a single orange, for many oranges, for a cross-section of
cut orange, and for a single piece of orange. Therefore, we learned the implicit function by collecting
similar images to find the direction.

Real image Apple Burger School bus HouseReal image

Figure 32: Result of Asyrp in ImageNet. The result shows that Asyrp works even in ImageNet
dataset.

N.2 MULTI-INTERPOLATION

Figure 33 provides mixed interpolation between multiple attributes. We observe that any interpola-
tion with any attribute is possible.

N.3 MORE RESULTS ON ALL DATASETS

We provide more results on CelebA-HQ (Figure 34), LSUN-church (Figure 35), AFHQ, LSUN-
bedroom, METFACES (Figure 36).
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Figure 33: Combination of multiple attributes. The result shows that Asyrp works for combined
∆h of smiling and young.
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Real image Smiling Sad Angry
Man↔
Woman

Young Curly hair Nicolas Pixar Modigliani Neanderthal Frida

Real image Smiling Sad Angry
Man↔
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Young Curly hair Nicolas Pixar Modigliani Neanderthal Frida

Figure 34: We provide more results on CelebA-HQ dataset.
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Real image Department Factory Gothic Red brick Temple Wooden Real image Department Factory Gothic Red brick Temple Wooden

Figure 35: We provide more results on LSUN-church dataset.

Real image Sleepy Happy Wolf Yorkshire HotelReal image Princess Smiling DisgustedReal image

Figure 36: We provide more results on AFHQ, LSUN-bedroom and METFACES datasets respec-
tively.
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