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Abstract

Current benchmarks that test LLMs on static, already-solved problems (e.g., math1

word problems) effectively demonstrated basic capability acquisition. The natural2

progression has been toward larger, more comprehensive and challenging collec-3

tions of static problems, an approach that inadvertently constrains the kinds of4

advances we can measure and incentivize. To address this limitation, we argue5

for progress-oriented benchmarks, problem environments whose objectives are6

themselves the core targets of scientific progress, so that achieving state of the art7

on the benchmark advances the field. As an introductory step, we instantiate an8

environment based on the NanoGPT speedrun. The environment standardizes a9

dataset slice, a reference model and training harness, and rich telemetry, with run-10

time verification and anti-gaming checks. Evaluation centers on the scientific delta11

achieved: best-attained loss and the efficiency frontier. Using this environment, we12

achieve a new state-of-the-art training time, improving upon the previous record13

by 3 seconds, and qualitatively observe the emergence of novel algorithmic ideas.14

Moreover, comparisons between models and agents remain possible, but they are15

a means, not the end; the benchmark’s purpose is to catalyze reusable improve-16

ments to the language modeling stack. With this release, the overarching goal is17

to seed a community shift from static problem leaderboards to test-time research18

on open-ended yet measurable scientific problems. In this new paradigm, progress19

on the benchmark is progress on the science, thus reframing "benchmarking" as a20

vehicle for scientific advancement. 121

1 Introduction22

Progress in large language models (LLMs) is commonly tracked through static evaluations of already-23

solved problems: competition math and coding challenges, academic multiple-choice tests, and24

curated domain tasks such as reproducing known research results [12, 21, 25, 5]. While these25

benchmarks are important for evaluating whether models could master basic reasoning skills, they26

fail to evolve beyond measuring incremental improvements on closed-ended problems.27

As models and agentic systems approach capabilities for genuine scientific discovery, we argue28

for a fundamental shift toward progress-oriented benchmarks, where evaluation environments29

have objectives that are themselves targets of scientific progress. By adopting this new paradigm,30

performance gains become synonymous with advancing the field. We instantiate this paradigm31

through a standardized environment around the community NanoGPT speed-run [14], adapted for32

LLMs. The environment provides standardized data slices, reference models, training harnesses,33

and rich feedback metrics such as validation loss, profiling information, and training times, while34

1Code available at https://anonymous.4open.science/r/open-ended-benchmarks-private-DC26
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Figure 1: Overview of our evaluation environment and the associated evolutionary system to
interact with it. The system stores prior programs in a database (purple). The prompt sampler
(brown) then samples a child program and inspirations from the database, and uses various strategies
to prompt the language model (yellow) for improvements. The resulting code is sent to the evaluation
environment (blue), which executes the standardized training harness and returns rich feedback
metrics that are stored in the database.

also enforcing scientific integrity through anti-gaming protections. While model and agent com-35

parisons remain valuable as diagnostic tools, lowering training times is the final goal, thus framing36

benchmarking as a vehicle for scientific advancement instead of mere performance ranking.37

2 NanoGPT Evaluation Environment38

Motivated by open-ended, progress-oriented benchmarks, we introduce a rich evaluation environment39

centered around the NanoGPT speedrun [14]. Inspired by AlphEvolve-style evolution [18], we fork40

and build on the open source OpenEvolve [23] implementation as the primary method to test and41

interact with our environment. The LLM system has four key components: a database D, a program42

and prompt sampler PS, an evaluator E, and a language model LM. For each evolutionary cycle43

i, a parent program pi is sampled from D. The prompt sampler then creates a prompt involving pi,44

which is used to prompt LM. LM then suggests changes to pi to create child program ci, which45

is evaluated by E. Lastly, ci and its accompanying feedback metrics are stored in D and the next46

evolutionary cycle begins. In order to maintain scientific integrity, we inject anti-gaming checks47

during evaluation time to prevent exploitation. Specific details are provided in Appendix B.48

3 Experiments49

By framing evaluation around scientific objectives, progress on the benchmark directly translates50

to progress in language modeling. However, comparing models and agents is possible, as our51

environment and scaffolding support the plug-and-play of various models or even model ensembles.52

However, these comparisons should serve as a means for analysis, with the ultimate goal being faster53

training times. To this end, we investigate whether such evaluation environments can actually lead to54
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Program Val. Loss Time (s)
Previous SOTA 3.280 176.7
Current SOTA 3.2797 175.2
Best Evolved 3.280 172.68

(a) Comparison of top performers. Prolonged evo-
lution within the evaluation environment yields
human-level improvements.

(b) Core optimization found in the best evolved pro-
gram.

(c) Performance of all programs that pass the validation
loss threshold. We notice that meta-prompting enables
state-of-art discovery but greatly reduces program suc-
cess rate.

Figure 2: Prolonged run of approximately 900 programs on the NanoGPT evaluation environment.
The dotted red line in (c) marks the shift from stochastic templated prompting to meta-prompting.

discovery and new SOTA times by running experiments on various frontier models, and also provide55

comparisons amongst these models in Figure 3 and Appendix C.56

3.1 Experimental Setup57

We experiment with our environment using various configurations of the modified OpenEvolve58

system. In order to scale up evolution, we generate and evaluate multiple children in parallel. The59

number of child programs created each iteration is termed the branching factor. For all the following60

experiments, we use a branching factor of 10, a database elite archive size of 20, and Nfast = 3 fast61

retry attempts during evaluation. Because we notice meta-prompting often leads to more erroneous62

code, we disable meta-prompting for the first 20 iterations to build a strong parent pool of programs,63

relying solely on the stochastic template-based prompting.64

3.2 State-of-Art on NanoGPT65

We instantiate our system with the current (August 2025) leading NanoGPT code and perform a66

prolonged run using o3 [20] with 90 iterations. The results and details of the run are shown in Figure67

2, and an intermediary analysis is given in section 4.3.68

Open-ended, environment-driven benchmarking shows potential for continuous discovery.69

Table 2a highlights the benefits of shifting to this evaluation paradigm, as evolution with our NanoGPT70

environment yields a new SOTA time. The resulting core optimization is shown in Figure 2b,71

intelligently casting down the precision of optimizer operations on large hidden layer weight matrices.72

We see that the performance gain is non-trivial with the margin of improvement mirroring the previous73

human-set gains. Figure 2c plots the training times of all programs that pass the validation loss74

threshold. We find that meta-prompting significantly degrades successful program rate, but greatly75

improves working program quality, and is thus important for state-of-art discovery. This suggests that76

our environment provides signals for discovery that stronger algorithms can meaningfully use, whether77

it be through stronger models, systems, or by scaling compute. Furthermore, the downwards trend78

line and low meta-prompt success rate emphasize the opportunity for improvements such as stronger79

models or deeper evolution runs, reinforcing the potential for continued discovery. Overall, shifting80

the benchmarking paradigm towards open-ended problems promotes progress towards advancing81

scientific fields.82

3.3 Emergence of Interesting Ideas83

A key phenomenon throughout evolution is the emergence of novel and interesting ideas. We present84

(code in Appendix D) two of the most interesting concepts found by our system, both of which85
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Model Time (s)
GPT-5 Thinking 174.48
Gemini 2.5 Pro 174.78
Claude 4 173.28

(a) Best found programs
with acceptable loss. The
reframed benchmarking
paradigm still allows for
comparisons.

(b) Performance of all acceptable programs on frontier models. The dotted red
line represents when meta-prompting begins.

(c) Breakdown of all programs found throughout evolution.

Figure 3: Our new benchmarking paradigm still allows for comparisons, but they are a means and not
the end. The evaluation environment enables open-ended analysis of models and agents, offering
insights beyond static numbers.

compile and execute successfully. Figure 5a shows an innovative optimization to sliding window86

attention proposed by GPT-5. Instead of having each head repeat the same partial KV set, this new87

method keeps a small core of shared KV blocks every head attends to, and then distrubutes the88

remaining blocks in round-robin fashion amongst heads while maintaining relative order. This means89

that heads all attend to complementary “stripes” of KV blocks, resulting in the same coverage as90

earlier but with much fewer operations needed.91

Figure 5b was proposed by Gemini 2.5 and depicts an AdaptiveComputeBlock, a novel routing92

idea for transformers. This block contains a token difficulty predictor that use pooling to route tokens93

based on the current state and global context (the context being the surrounding tokens). These94

subpaths range from small MLPs to full attention layers. The AdaptiveComputeBlock also includes95

token memory and a learnable compute budget.96

Although not groundbreaking by themselves, the emergence of these ideas throughout evolution97

highlights the potential of shifting to this open-ended evaluation paradigm.98

4 Conclusion99

The results from our initial NanoGPT environment show the potential for open-ended evaluation100

environments to promote scientific discovery. The state-of-art speedrun result and emergence of101

interesting ideas during evolution help reinforce this idea. We present future and related work in102

Appendices A and E.103

In this paper, we argue for a shift from static, puzzle-like benchmarking to progress-oriented, open-104

ended environments. These static evaluations have been invaluable for charting early progress in rea-105

soning, but they increasingly fail to measure advances that materially improve the language–modeling106

stack. We demonstrate the potential of this new paradigm by instantiating a NanoGPT speedrun107

environment and run experiments using evolutionary test-time scaling methods on frontier models.108

These experiments produce a new state-of-the-art on the speedrun and qualitative analysis show109

the emergence of innovative algorithmic ideas, emphasizing the potential for continued scientific110

discovery.111
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A Related Works412

Reasoning Benchmarking. Model and agent capabilities have increased rapidly in recent years,413

leading to the need to meaningfully evaluate their reasoning capabilities in fields such as math or414

science. Early work such as MMLU [9] evaluated broad academic and professional knowledge, but415

top models quickly reached saturation, prompting the development of harder, broader, and more416

reasoning-heavy benchmarks [26, 16, 28]. Domain-specific benchmarks with problem difficulties417

ranging from grade-school to graduate-level also emerged in math [5, 10, 6], science [22, 8], and418

coding [12, 3]. More recently, Humanity’s Last Exam [21] assembled thousands of frontier problems419

across multiple subjects, positioning itself as the “final” academic benchmark for language models.420

However, even at this frontier of human knowledge, the paradigm of all aforementioned benchmarks421

remains static, where all problems have essentially been solved and solutions are closed-ended.422

Open-Ended Benchmarking. A growing line of work seeks to evaluate systems on more open-423

ended metrics. DSBench [13] and MLE-Bench [2] assess agent capabilities on machine learning424

engineering tasks, such as hyperparameter tuning or code implementation, on constrained environ-425

ments like Kaggle challenges. Although open-ended, scientific discovery is not emphasized as the426

evaluations have upper bounds on scores. Paperbench [25], EXP-Bench [17], and the Automated427

LLM Speedrunning Benchmark [27] test the ability for systems to replicate prior scientific advance-428

ments. Given a research question and a brief description of methods, the system is evaluated on429

its ability to reproduce known results, with judging done using rubrics and LLM-as-judge. While430

science-centered, these benchmarks still fail to emphasize novel discovery. Other benchmarks such431

as LLM-SRBench [24] evaluate the equation discovery capabilities of models, requiring them to432

uncover symbolic relationships given a set of data. These relationships are typically constructed433

by rearranging existing equations and generating data under controlled settings, thus limiting the434

true scientific novelty of the evaluation. Nevertheless, open-ended benchmarks rarely evaluate on435

open-ended problems, especially in the reasoning realm.436
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B Implementation Details437

B.1 Evaluation Metrics438

Evaluation centers around two key metrics: cross-entropy validation loss and overall training time.439

Whereas the validation loss metrics primarily serves as a requirement check, achieving new bests on440

training time strongly implies the discovery of language modeling innovations.441

The environment also captures incremental metrics. At designated training steps, we calculate the442

current step-averaged training time, the current number of iterations, as well as the current validation443

loss. This feedback can be used to inform of intermediary performance, or simply as additional444

calculated metrics after training is completed.445

Although the aforementioned metrics enable more detailed performance tracking at an algorithmic446

level, they still lack fine-grained resource utilization feedback. To address this, we provide both447

profiling and hardware-level feedback in our NanoGPT environment. We profile key sections of the448

code—model forward pass, loss backward pass, optimizer steps, and data loading—tracking total449

run times, average run times, percentage of total time, and the number of calls for each one. At the450

hardware level, we capture the fifteen most time-consuming CUDA kernels and CPU operations along451

with there total call counts. Lastly the environment provides overall training token throughput and452

peak memory usage amount. This suite of metrics provides a holistic picture of program performance,453

forming a rich reward surface for optimization.454

B.2 Core Algorithm455

Inspired by AlphEvolve-style evolution [18], we fork and build on the open source OpenEvolve [23]456

implementation as the primary method to test and interact with our environment. The LLM system457

has four key components: a database D, a program and prompt sampler PS, an evaluator E, and a458

language model LM. For each evolutionary cycle i, a parent program pi is sampled from D. The459

prompt sampler then creates a prompt involving pi, which is used to prompt LM. LM then suggests460

changes to pi to create child program ci, which is evaluated by E. Lastly, ci and its accompanying461

feedback metrics are stored in D and the next evolutionary cycle begins.462

Why NanoGPT Speedrunning? Language model pre-training represents a foundational area where463

algorithmic innovations routinely generalize beyond their initial tasks, from optimizer refinements464

to floating point precision changes and other architectural discoveries [15, 4, 11]. The NanoGPT465

speedrun [14] serves as a strong base for advancing pre-training techniques. This community-driven466

challenge searches for the fastest algorithm to train a language model to reach 3.28 cross-entropy467

validation loss on the FineWeb dataset, using a single 8xH100 GPU node. Since the first efforts in468

June 2024, the training time has steadily decreased from 45 minutes to just under 3 minutes. These469

advances were brought about by various algorithmic enhancements such as the Muon optimizer [15].470

Discoveries improving NanoGPT training times often generalize to language modeling as a whole,471

making the speedrun an ideal environment for discovery.472

Database. The database maintains all programs and their associated metrics. In order to promote473

quality-diversity, we implement basic island evolution, where programs evolve within individual474

islands, and top perfomers periodically migrate between islands. The database serves to balance475

exploration and exploitation, and provides programs for inspiration sampling.476

Prompt Sampler. The prompt sampler is responsible for both formatting prompts and sampling477

programs. As a baseline method, the sampler uses templates that are sampled from a pool of potential478

templates. Each prompt contains a top program set T and a diverse program set D, where |T | and479

|D| are hyperparameters. Each top program ti ∈ T is sampled from the database. which maintains480

an archive of all elite programs across all islands. Each diverse program di ∈ D is randomly sampled481

from the database from the set of non-elite programs D \ T . The prompt sampler compiles all of482

these programs with their associated metrics into a single prompt and asks for improvements. We483

then prompt for changes using unified search/replace blocks following aider.484

Meta-Prompting. Although using static, templated prompts results in performance improvements,485

they struggle to elicit creative reasoning and idea generation. To address this, we implement a486

simple two-stage meta-prompting method. Given a prompt P that already has program information487

formatted, we first ask the LM to provide a natural language solution S. The proposed solution S is a488
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high-level idea sketch emphasizing novelty and creativity. We then re-prompt the LM to implement489

S using the same search/replace blocks as earlier. The key idea here is to decouple idea generation490

from code generation, thus reducing the cognitive load on the model and increasing creativity.491

Evaluator. The evaluator executes child programs inside the environment, captures the rich feedback,492

and then updates the database accordingly. Our system also utilizes a fast error catcher where493

candidate programs are executed briefly to verify that they compile and run correctly. Erroneous494

programs are prompted for fixing by the LM before being fast-evaluated again. This cycle continues495

Nfast times or until the program compiles, and is then sent to full evaluation. We also compute a496

singular score metric sc = tstep · ℓval, where tstep is the overall step average time and ℓval is the final497

validation loss. sc is used as the ultimate comparison metric within the database.498

Language Model. The LM component of the system exposes a simple interface to plug-and-play499

various models.500

B.3 Anti-Gaming501

A significant challenge in providing a flexible optimization environment is its susceptibility to reward502

hacking, where trivial programs are discovered that maximize the reward signal but fail to achieve503

the intended goal. Our evaluation environment is explicitly designed to guard against these exploits.504

Runtime Injection of Evaluation Parameters. Although the language model is free to modify any505

part of the code, we still guard against critical parameters. The environment injects key parameters506

during evaluation runtime to ensure integrity, overriding any earlier modifications. We enforce the507

exact training data slice, the validation slice, as well as the validation sequence length.508

Immutable Core Logic. Another area where programs reward-hack is by changing core scientific509

logic. Our environment injects its own cross-entropy loss function, overriding the loss function510

implemented in the program. Although this restricts innovations involving loss calculation, the511

trade-off is necessary to prevent exploitation via trivial, non-equivalent loss functions. Future work512

could explore more robust guardrails such as verifying functional equivalence. The environment513

also prevents modification of the training document and causal masks. This prevents tokens from514

attending to prior tokens or to tokens from other documents.515

C Frontier Model Performance516

Shifting to this new benchmarking paradigm still allows for the comparison of models and agents.517

Our environment and scaffolding support the plug-and-play of various models or even ensembles of518

models, enabling benchmarking comparisons in the traditional sense. However, these comparisons519

should serve as a means for introspection, with the true goal being faster training times. To that520

end, we run experiments on GPT-5 thinking [19], Gemini 2.5 Pro [7], and Claude Sonnet 4 [1]. We521

initialize each model environment in the same manner as the o3 prolonged run, except only for 50522

iterations. The results and some comparison analysis are provided in Figure 4 below.523

Straightforward comparisons can be made using the primary optimization metric. We can524

make quick comparisons across model, agent, or algorithm capabilities by examining the fastest final525

training times. From Table 4a, we find that Claude 4 yields the best time, and thus can be crowned the526

strongest in the traditional benchmarking sense. However, Figure 4b suggests that Claude struggles527

to consistently generate acceptable programs, and thus GPT-5 Thinking may perform better as we528

increase iterations due to its downwards trend line. Gemini still finds improvements from the current529

SOTA, but its trend line remains relatively flat throughout, suggesting a poorer ability to generate530

novel ideas or to integrate robust environmental feedback. These results highlight that comparisons531

serve as a strong means for analysis, but are not the end.532

Evolution analysis. Open-ended evaluation environments also allow for intermediary analysis of533

models and agents, which can be more valuable than static numbers. Figure 4c shows the fraction of534

programs in one of three categories at each evolution iteration. The red area denotes buggy programs,535

the orange represents non-buggy programs that have a validation loss too high for NanoGPT, and536

the green represents non-buggy, acceptable programs. Despite struggling greatly with producing537

working programs, Claude 4 still performs strongly, suggesting that improving its code generation538

capabilities could yield to strong discoveries. We also observe that after 20 iterations, all models see539
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Model Time (s)
GPT-5 Thinking 174.48
Gemini 2.5 Pro 174.78
Claude 4 173.28

(a) Best found programs
with acceptable loss. The
reframed benchmarking
paradigm still allows for
comparisons.

(b) Performance of all acceptable programs on frontier models. The dotted red
line represents when meta-prompting begins.

(c) Breakdown of all programs found throughout evolution.

Figure 4: Our new benchmarking paradigm still allows for comparisons, but they are a means and not
the end. The evaluation environment enables open-ended analysis of models and agents, offering
insights beyond static numbers.

a spike in buggy program rate corresponding to the beginning of meta-prompting. Thus improving540

the meta-prompting and code generation capabilities of models is another promising avenue for541

improving performance on the benchmark.542
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D Code for Interesting Ideas543

(a) Sliding window attention optimization proposed by GPT-5.

(b) Token difficulty predictor and router proposed by Gemini.
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E Future Work544

The results from our initial NanoGPT environment show the potential for open-ended evaluation545

environments to promote scientific discovery. The state-of-art speedrun result and emergence of546

interesting ideas during evolution help reinforce this idea. Key future directions include:547

• Further scaling test-time compute. Although our experiments used a non-trivial amount548

of test-time compute, scaling evolution to weeks or even months could lead to promising549

results. Future work could also explore additional frontier models (e.g. Grok or Claude550

Opus) as well as ensembling these models.551

• Creating more environments across reasoning domains. The current NanoGPT environ-552

ment primarily centers on pre-training advances. Similar environments extend naturally to553

post-training, with opportunities for discoveries in alignment and preference tuning. In math,554

environments would focus on unsolved problems, with progress to be measured through a555

combination of LLM-as-judge and formal theorem provers such as Lean.556
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