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Abstract

Current benchmarks that test LLMs on static, already-solved problems (e.g., math
word problems) effectively demonstrated basic capability acquisition. The natural
progression has been toward larger, more comprehensive and challenging collec-
tions of static problems, an approach that inadvertently constrains the kinds of
advances we can measure and incentivize. To address this limitation, we argue
for progress-oriented benchmarks, problem environments whose objectives are
themselves the core targets of scientific progress, so that achieving state of the art
on the benchmark advances the field. As an introductory step, we instantiate an
environment based on the NanoGPT speedrun. The environment standardizes a
dataset slice, a reference model and training harness, and rich telemetry, with run-
time verification and anti-gaming checks. Evaluation centers on the scientific delta
achieved: best-attained loss and the efficiency frontier. Using this environment, we
achieve a new state-of-the-art training time, improving upon the previous record
by 3 seconds, and qualitatively observe the emergence of novel algorithmic ideas.
Moreover, comparisons between models and agents remain possible, but they are
a means, not the end; the benchmark’s purpose is to catalyze reusable improve-
ments to the language modeling stack. With this release, the overarching goal is
to seed a community shift from static problem leaderboards to test-time research
on open-ended yet measurable scientific problems. In this new paradigm, progress
on the benchmark is progress on the science, thus reframing "benchmarking" as a
vehicle for scientific advancement. [1]

1 Introduction

Progress in large language models (LLMs) is commonly tracked through static evaluations of already-
solved problems: competition math and coding challenges, academic multiple-choice tests, and
curated domain tasks such as reproducing known research results [12} 21} 25} IS]]. While these
benchmarks are important for evaluating whether models could master basic reasoning skills, they
fail to evolve beyond measuring incremental improvements on closed-ended problems.

As models and agentic systems approach capabilities for genuine scientific discovery, we argue
for a fundamental shift toward progress-oriented benchmarks, where evaluation environments
have objectives that are themselves targets of scientific progress. By adopting this new paradigm,
performance gains become synonymous with advancing the field. We instantiate this paradigm
through a standardized environment around the community NanoGPT speed-run [14], adapted for
LLMs. The environment provides standardized data slices, reference models, training harnesses,
and rich feedback metrics such as validation loss, profiling information, and training times, while
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Figure 1: Overview of our evaluation environment and the associated evolutionary system to
interact with it. The system stores prior programs in a database (purple). The prompt sampler
(brown) then samples a child program and inspirations from the database, and uses various strategies
to prompt the language model (yellow) for improvements. The resulting code is sent to the evaluation
environment (blue), which executes the standardized training harness and returns rich feedback
metrics that are stored in the database.

also enforcing scientific integrity through anti-gaming protections. While model and agent com-
parisons remain valuable as diagnostic tools, lowering training times is the final goal, thus framing
benchmarking as a vehicle for scientific advancement instead of mere performance ranking.

2 NanoGPT Evaluation Environment

Motivated by open-ended, progress-oriented benchmarks, we introduce a rich evaluation environment
centered around the NanoGPT speedrun [14]. Inspired by AlphEvolve-style evolution [18]], we fork
and build on the open source OpenEvolve [23] implementation as the primary method to test and
interact with our environment. The LLM system has four key components: a database D, a program
and prompt sampler P'S, an evaluator E, and a language model LM. For each evolutionary cycle
1, a parent program p; is sampled from D. The prompt sampler then creates a prompt involving p;,
which is used to prompt LM. LM then suggests changes to p; to create child program c;, which
is evaluated by E. Lastly, ¢; and its accompanying feedback metrics are stored in D and the next
evolutionary cycle begins. In order to maintain scientific integrity, we inject anti-gaming checks
during evaluation time to prevent exploitation. Specific details are provided in Appendix [B]

3 Experiments

By framing evaluation around scientific objectives, progress on the benchmark directly translates
to progress in language modeling. However, comparing models and agents is possible, as our
environment and scaffolding support the plug-and-play of various models or even model ensembles.
However, these comparisons should serve as a means for analysis, with the ultimate goal being faster
training times. To this end, we investigate whether such evaluation environments can actually lead to
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Figure 2: Prolonged run of approximately 900 programs on the NanoGPT evaluation environment.
The dotted red line in (c) marks the shift from stochastic templated prompting to meta-prompting.

discovery and new SOTA times by running experiments on various frontier models, and also provide
comparisons amongst these models in Figure [3|and Appendix [C|

3.1 Experimental Setup

We experiment with our environment using various configurations of the modified OpenEvolve
system. In order to scale up evolution, we generate and evaluate multiple children in parallel. The
number of child programs created each iteration is termed the branching factor. For all the following
experiments, we use a branching factor of 10, a database elite archive size of 20, and Np,g = 3 fast
retry attempts during evaluation. Because we notice meta-prompting often leads to more erroneous
code, we disable meta-prompting for the first 20 iterations to build a strong parent pool of programs,
relying solely on the stochastic template-based prompting.

3.2 State-of-Art on NanoGPT

We instantiate our system with the current (August 2025) leading NanoGPT code and perform a
prolonged run using 03 [20] with 90 iterations. The results and details of the run are shown in Figure
[2 and an intermediary analysis is given in section 4.3.

Open-ended, environment-driven benchmarking shows potential for continuous discovery.
Table[2a]highlights the benefits of shifting to this evaluation paradigm, as evolution with our NanoGPT
environment yields a new SOTA time. The resulting core optimization is shown in Figure 2b]
intelligently casting down the precision of optimizer operations on large hidden layer weight matrices.
We see that the performance gain is non-trivial with the margin of improvement mirroring the previous
human-set gains. Figure [2c| plots the training times of all programs that pass the validation loss
threshold. We find that meta-prompting significantly degrades successful program rate, but greatly
improves working program quality, and is thus important for state-of-art discovery. This suggests that
our environment provides signals for discovery that stronger algorithms can meaningfully use, whether
it be through stronger models, systems, or by scaling compute. Furthermore, the downwards trend
line and low meta-prompt success rate emphasize the opportunity for improvements such as stronger
models or deeper evolution runs, reinforcing the potential for continued discovery. Overall, shifting
the benchmarking paradigm towards open-ended problems promotes progress towards advancing
scientific fields.

3.3 Emergence of Interesting Ideas

A key phenomenon throughout evolution is the emergence of novel and interesting ideas. We present
(code in Appendix [D) two of the most interesting concepts found by our system, both of which
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Figure 3: Our new benchmarking paradigm still allows for comparisons, but they are a means and not
the end. The evaluation environment enables open-ended analysis of models and agents, offering
insights beyond static numbers.

compile and execute successfully. Figure [5a]shows an innovative optimization to sliding window
attention proposed by GPT-5. Instead of having each head repeat the same partial KV set, this new
method keeps a small core of shared KV blocks every head attends to, and then distrubutes the
remaining blocks in round-robin fashion amongst heads while maintaining relative order. This means
that heads all attend to complementary “stripes” of KV blocks, resulting in the same coverage as
earlier but with much fewer operations needed.

Figure [5b| was proposed by Gemini 2.5 and depicts an AdaptiveComputeBlock, a novel routing
idea for transformers. This block contains a token difficulty predictor that use pooling to route tokens
based on the current state and global context (the context being the surrounding tokens). These
subpaths range from small MLPs to full attention layers. The AdaptiveComputeBlock also includes
token memory and a learnable compute budget.

Although not groundbreaking by themselves, the emergence of these ideas throughout evolution
highlights the potential of shifting to this open-ended evaluation paradigm.

4 Conclusion

The results from our initial NanoGPT environment show the potential for open-ended evaluation
environments to promote scientific discovery. The state-of-art speedrun result and emergence of
interesting ideas during evolution help reinforce this idea. We present future and related work in

Appendices[A]and

In this paper, we argue for a shift from static, puzzle-like benchmarking to progress-oriented, open-
ended environments. These static evaluations have been invaluable for charting early progress in rea-
soning, but they increasingly fail to measure advances that materially improve the language-modeling
stack. We demonstrate the potential of this new paradigm by instantiating a NanoGPT speedrun
environment and run experiments using evolutionary test-time scaling methods on frontier models.
These experiments produce a new state-of-the-art on the speedrun and qualitative analysis show
the emergence of innovative algorithmic ideas, emphasizing the potential for continued scientific
discovery.



1

2

1
114

w

115
116
17
118

119
120
121
122
123
124
125
126
127
128
129

130
131
132

133
134

136

137
138
139
140
141
142

143
144

145
146
147
148

149

151

152
153
154

155
156
157

158
159
160
161

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

Anthropic. System card: Claude opus 4 & claude sonnet 4, May 2025. URLhttps://www-cdn|
anthropic.com/4263b940cabb546aa0e3283£35b686f4f3b2ff47.pdf. System card.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Lilian Weng, and Aleksander Madry.
Mle-bench: Evaluating machine learning agents on machine learning engineering. 2024. URL
https://arxiv.org/abs/2410.07095|

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. 2021.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham,
Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery
of optimization algorithms, 2023. URL https://arxiv.org/abs/2302.06675,

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning,
Caroline Falkman Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, Olli
Jarviniemi, Matthew Barnett, Robert Sandler, Matej Vrzala, Jaime Sevilla, Qiuyu Ren, Elizabeth
Pratt, Lionel Levine, Grant Barkley, Natalie Stewart, Bogdan Grechuk, Tetiana Grechuk,
Shreepranav Varma Enugandla, and Mark Wildon. Frontiermath: A benchmark for evaluating
advanced mathematical reasoning in ai, 2025. URL https://arxiv.org/abs/2411.04872,

Google. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context,
and next generation agentic capabilities, 2025. URL https://arxiv.org/abs/2507.06261.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual
multimodal scientific problems, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding, 2021. URL https
//arxiv.org/abs/2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
NeurIPS, 2021.

Anson Ho, Tamay Besiroglu, Ege Erdil, David Owen, Robi Rahman, Zifan Carl Guo, David
Atkinson, Neil Thompson, and Jaime Sevilla. Algorithmic progress in language models, 2024.
URL https://arxiv.org/abs/2403.05812.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github issues?
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=VTF8yNQM66,


https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2302.06675
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2411.04872
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2403.05812
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66

162
163
164

165
166
167
168

169
170
171

172
173
174
175
176

177
178
179
180

181
182
183
184
185

186
187

188
189

190
191
192
193
194
195
196
197
198
199

201
202
203
204
205

207
208
209
210
211
212
213
214
215

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Ligiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming
Zhang, Xinya Du, and Dong Yu. Dsbench: How far are data science agents to becoming data
science experts?, 2024. URL https://arxiv.org/abs/2409.07703.

Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado,
You Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt:
Speedrunning the nanogpt baseline, 2024. URL https://github.com/KellerJordan/
modded-nanogpt.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and
Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL
https://kellerjordan.github.io/posts/muon/.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John Palowitch, Chrysovalantis Anastasiou,
Sanket Vaibhav Mehta, Lalit K. Jain, Virginia Aglietti, Disha Jindal, Peter Chen, Nishanth
Dikkala, Gladys Tyen, Xin Liu, Uri Shalit, Silvia Chiappa, Kate Olszewska, Yi Tay, Vinh Q.
Tran, Quoc V. Le, and Orhan Firat. Big-bench extra hard, 2025. URL https://arxiv.org/
abs/2502.19187.

Patrick Tser Jern Kon, Jiachen Liu, Xinyi Zhu, Qiuyi Ding, Jingjia Peng, Jiarong Xing, Yibo
Huang, Yiming Qiu, Jayanth Srinivasa, Myungjin Lee, Mosharaf Chowdhury, Matei Zaharia,
and Ang Chen. Exp-bench: Can ai conduct ai research experiments? 2024. URL https:
//arxiv.org/abs/2410.07095,

Alexander Novikov, Ngan Vii, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt
Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco J. R. Ruiz, Abbas Mehrabian,
M. Pawan Kumar, Abigail See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian
Nowozin, Pushmeet Kohli, and Matej Balog. Alphaevolve: A coding agent for scientific and
algorithmic discovery, 2025. URL https://arxiv.org/abs/2506.13131.

OpenAl. Gpt-5 system card. System card, OpenAl, August 2025. URL https://cdn.openai
com/gpt-5-system-card.pdfl

OpenAl. Openai 03 and 04-mini system card. Technical report, OpenAl, 2025. URL https:
//openai.com/index/03-04-mini-system-card.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, Michael Choi, Anish Agrawal, Arnav Chopra,
Adam Khoja, Ryan Kim, Richard Ren, Jason Hausenloy, Oliver Zhang, Mantas Mazeika, Dmitry
Dodonov, Tung Nguyen, Jacho Lee, Daron Anderson, Mikhail Doroshenko, Alun Cennyth
Stokes, Mobeen Mahmood, Oleksandr Pokutnyi, Oleg Iskra, Jessica P. Wang, John-Clark Levin,
Mstyslav Kazakov, Fiona Feng, Steven Y. Feng, Haoran Zhao, Michael Yu, Varun Gangal,
Chelsea Zou, Zihan Wang, Serguei Popov, Robert Gerbicz, Geoff Galgon, Johannes Schmitt,
Will Yeadon, Yongki Lee, Scott Sauers, Alvaro Sanchez, Fabian Giska, Marc Roth, Sgren Riis,
Saiteja Utpala, Noah Burns, Gashaw M. Goshu, Mohinder Maheshbhai Naiya, Chidozie Agu,
Zachary Giboney, Antrell Cheatom, Francesco Fournier-Facio, Sarah-Jane Crowson, Lennart
Finke, Zerui Cheng, Jennifer Zampese, Ryan G. Hoerr, Mark Nandor, Hyunwoo Park, Tim
Gehrunger, Jiaqi Cai, Ben McCarty, Alexis C Garretson, Edwin Taylor, Damien Sileo, Qiuyu
Ren, Usman Qazi, Lianghui Li, Jungbae Nam, John B. Wydallis, Pavel Arkhipov, Jack Wei Lun
Shi, Aras Bacho, Chris G. Willcocks, Hangrui Cao, Sumeet Motwani, Emily de Oliveira Santos,
Johannes Veith, Edward Vendrow, Doru Cojoc, Kengo Zenitani, Joshua Robinson, Longke
Tang, Yuqi Li, Joshua Vendrow, Natanael Wildner Fraga, Vladyslav Kuchkin, Andrey Pupasov
Maksimov, Pierre Marion, Denis Efremov, Jayson Lynch, Kaiqu Liang, Aleksandar Mikov,
Andrew Gritsevskiy, Julien Guillod, G6zdenur Demir, Dakotah Martinez, Ben Pageler, Kevin
Zhou, Saeed Soori, Ori Press, Henry Tang, Paolo Rissone, Sean R. Green, Lina Briissel, Moon
Twayana, Aymeric Dieuleveut, Joseph Marvin Imperial, Ameya Prabhu, Jinzhou Yang, Nick
Crispino, Arun Rao, Dimitri Zvonkine, Gabriel Loiseau, Mikhail Kalinin, Marco Lukas, Ciprian
Manolescu, Nate Stambaugh, Subrata Mishra, Tad Hogg, Carlo Bosio, Brian P Coppola, Ju-
lian Salazar, Jaehyeok Jin, Rafael Sayous, Stefan Ivanov, Philippe Schwaller, Shaipranesh
Senthilkuma, Andres M Bran, Andres Algaba, Kelsey Van den Houte, Lynn Van Der Sypt,
Brecht Verbeken, David Noever, Alexei Kopylov, Benjamin Myklebust, Bikun Li, Lisa Schut,
Evgenii Zheltonozhskii, Qiaochu Yuan, Derek Lim, Richard Stanley, Tong Yang, John Maar,


https://arxiv.org/abs/2409.07703
https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt
https://kellerjordan.github.io/posts/muon/
https://arxiv.org/abs/2502.19187
https://arxiv.org/abs/2502.19187
https://arxiv.org/abs/2502.19187
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2506.13131
https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf
https://cdn.openai.com/gpt-5-system-card.pdf
https://openai.com/index/o3-o4-mini-system-card
https://openai.com/index/o3-o4-mini-system-card
https://openai.com/index/o3-o4-mini-system-card

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

256
257
258
259
260
261
262
263
264
265
266
267

269
270
271
272
273
274

Julian Wykowski, Marti Oller, Anmol Sahu, Cesare Giulio Ardito, Yuzheng Hu, Ariel Ghis-
lain Kemogne Kamdoum, Alvin Jin, Tobias Garcia Vilchis, Yuexuan Zu, Martin Lackner, James
Koppel, Gongbo Sun, Daniil S. Antonenko, Steffi Chern, Bingchen Zhao, Pierrot Arsene,
Joseph M Cavanagh, Daofeng Li, Jiawei Shen, Donato Crisostomi, Wenjin Zhang, Ali Dehghan,
Sergey Ivanov, David Perrella, Nurdin Kaparov, Allen Zang, Ilia Sucholutsky, Arina Khar-
lamova, Daniil Orel, Vladislav Poritski, Shalev Ben-David, Zachary Berger, Parker Whitfill,
Michael Foster, Daniel Munro, Linh Ho, Shankar Sivarajan, Dan Bar Hava, Aleksey Kuchkin,
David Holmes, Alexandra Rodriguez-Romero, Frank Sommerhage, Anji Zhang, Richard Moat,
Keith Schneider, Zakayo Kazibwe, Don Clarke, Dae Hyun Kim, Felipe Meneguitti Dias, Sara
Fish, Veit Elser, Tobias Kreiman, Victor Efren Guadarrama Vilchis, Immo Klose, Ujjwala Anan-
theswaran, Adam Zweiger, Kaivalya Rawal, Jeffery Li, Jeremy Nguyen, Nicolas Daans, Haline
Heidinger, Maksim Radionov, Véclav Rozhoii, Vincent Ginis, Christian Stump, Niv Cohen,
Rafal Poswiata, Josef Tkadlec, Alan Goldfarb, Chenguang Wang, Piotr Padlewski, Stanislaw
Barzowski, Kyle Montgomery, Ryan Stendall, Jamie Tucker-Foltz, Jack Stade, T. Ryan Rogers,
Tom Goertzen, Declan Grabb, Abhishek Shukla, Alan Givré, John Arnold Ambay, Archan
Sen, Muhammad Fayez Aziz, Mark H Inlow, Hao He, Ling Zhang, Younesse Kaddar, Ivar
Angquist, Yanxu Chen, Harrison K Wang, Kalyan Ramakrishnan, Elliott Thornley, Antonio
Terpin, Hailey Schoelkopf, Eric Zheng, Avishy Carmi, Ethan D. L. Brown, Kelin Zhu, Max
Bartolo, Richard Wheeler, Martin Stehberger, Peter Bradshaw, JP Heimonen, Kaustubh Sridhar,
Ido Akov, Jennifer Sandlin, Yury Makarychev, Joanna Tam, Hieu Hoang, David M. Cunning-
ham, Vladimir Goryachev, Demosthenes Patramanis, Michael Krause, Andrew Redenti, David
Aldous, Jesyin Lai, Shannon Coleman, Jiangnan Xu, Sangwon Lee, Ilias Magoulas, Sandy
Zhao, Ning Tang, Michael K. Cohen, Orr Paradise, Jan Hendrik Kirchner, Maksym Ovchyn-
nikov, Jason O. Matos, Adithya Shenoy, Michael Wang, Yuzhou Nie, Anna Sztyber-Betley,
Paolo Faraboschi, Robin Riblet, Jonathan Crozier, Shiv Halasyamani, Shreyas Verma, Prashant
Joshi, Eli Meril, Zigiao Ma, Jérémy Andréoletti, Raghav Singhal, Jacob Platnick, Volodymyr
Nevirkovets, Luke Basler, Alexander Ivanov, Seri Khoury, Nils Gustafsson, Marco Piccardo,
Hamid Mostaghimi, Qijia Chen, Virendra Singh, Tran Quoc Khanh, Paul Rosu, Hannah Szlyk,
Zachary Brown, Himanshu Narayan, Aline Menezes, Jonathan Roberts, William Alley, Kunyang
Sun, Arkil Patel, Max Lamparth, Anka Reuel, Linwei Xin, Hanmeng Xu, Jacob Loader, Freddie
Martin, Zixuan Wang, Andrea Achilleos, Thomas Preu, Tomek Korbak, Ida Bosio, Fereshteh
Kazemi, Ziye Chen, Biré Balint, Eve J. Y. Lo, Jiagi Wang, Maria Inés S. Nunes, Jeremiah
Milbauer, M Saiful Bari, Zihao Wang, Behzad Ansarinejad, Yewen Sun, Stephane Durand,
Hossam Elgnainy, Guillaume Douville, Daniel Tordera, George Balabanian, Hew Wolff, Lynna
Kvistad, Hsiaoyun Milliron, Ahmad Sakor, Murat Eron, Andrew Favre D. O., Shailesh Shah,
Xiaoxiang Zhou, Firuz Kamalov, Sherwin Abdoli, Tim Santens, Shaul Barkan, Allison Tee,
Robin Zhang, Alessandro Tomasiello, G. Bruno De Luca, Shi-Zhuo Looi, Vinh-Kha Le, Noam
Kolt, Jiayi Pan, Emma Rodman, Jacob Drori, Carl J Fossum, Niklas Muennighoff, Milind
Jagota, Ronak Pradeep, Honglu Fan, Jonathan Eicher, Michael Chen, Kushal Thaman, William
Merrill, Moritz Firsching, Carter Harris, Stefan Ciobacd, Jason Gross, Rohan Pandey, Ilya
Gusev, Adam Jones, Shashank Agnihotri, Pavel Zhelnov, Mohammadreza Mofayezi, Alexander
Piperski, David K. Zhang, Kostiantyn Dobarskyi, Roman Leventov, Ignat Soroko, Joshua Duer-
sch, Vage Taamazyan, Andrew Ho, Wenjie Ma, William Held, Ruicheng Xian, Armel Randy
Zebaze, Mohanad Mohamed, Julian Noah Leser, Michelle X Yuan, Laila Yacar, Johannes
Lengler, Katarzyna Olszewska, Claudio Di Fratta, Edson Oliveira, Joseph W. Jackson, Andy
Zou, Muthu Chidambaram, Timothy Manik, Hector Haffenden, Dashiell Stander, Ali Dasouqi,
Alexander Shen, Bita Golshani, David Stap, Egor Kretov, Mikalai Uzhou, Alina Borisovna
Zhidkovskaya, Nick Winter, Miguel Orbegozo Rodriguez, Robert Lauff, Dustin Wehr, Colin
Tang, Zaki Hossain, Shaun Phillips, Fortuna Samuele, Fredrik Ekstrom, Angela Hammon,
Oam Patel, Faraz Farhidi, George Medley, Forough Mohammadzadeh, Madellene Pefiaflor,
Haile Kassahun, Alena Friedrich, Rayner Hernandez Perez, Daniel Pyda, Taom Sakal, Omkar
Dhamane, Ali Khajegili Mirabadi, Eric Hallman, Kenchi Okutsu, Mike Battaglia, Mohammad
Maghsoudimehrabani, Alon Amit, Dave Hulbert, Roberto Pereira, Simon Weber, Handoko, An-
ton Peristyy, Stephen Malina, Mustafa Mehkary, Rami Aly, Frank Reidegeld, Anna-Katharina
Dick, Cary Friday, Mukhwinder Singh, Hassan Shapourian, Wanyoung Kim, Mariana Costa,
Hubeyb Gurdogan, Harsh Kumar, Chiara Ceconello, Chao Zhuang, Haon Park, Micah Carroll,
Andrew R. Tawfeek, Stefan Steinerberger, Daattavya Aggarwal, Michael Kirchhof, Linjie Dai,
Evan Kim, Johan Ferret, Jainam Shah, Yuzhou Wang, Minghao Yan, Krzysztof Burdzy, Lixin
Zhang, Antonio Franca, Diana T. Pham, Kang Yong Loh, Joshua Robinson, Abram Jackson,



275
276
277
278
279
280
281
282
283
284
285
286
287

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

308
309
310
311
312
313
314
315
316
317
318
319

321
322
323
324
325
326
327
328
329
330
331
332
333

Paolo Giordano, Philipp Petersen, Adrian Cosma, Jesus Colino, Colin White, Jacob Votava,
Vladimir Vinnikov, Ethan Delaney, Petr Spelda, Vit Stritecky, Syed M. Shahid, Jean-Christophe
Mourrat, Lavr Vetoshkin, Koen Sponselee, Renas Bacho, Zheng-Xin Yong, Florencia de la Rosa,
Nathan Cho, Xiuyu Li, Guillaume Malod, Orion Weller, Guglielmo Albani, Leon Lang, Julien
Laurendeau, Dmitry Kazakov, Fatimah Adesanya, Julien Portier, Lawrence Hollom, Victor
Souza, Yuchen Anna Zhou, Julien Degorre, Yigit Yalin, Gbenga Daniel Obikoya, Rai, Filippo
Bigi, M. C. Boscd, Oleg Shumar, Kaniuar Bacho, Gabriel Recchia, Mara Popescu, Nikita
Shulga, Ngefor Mildred Tanwie, Thomas C. H. Lux, Ben Rank, Colin Ni, Matthew Brooks,
Alesia Yakimchyk, Huanxu, Liu, Stefano Cavalleri, Olle Haggstrom, Emil Verkama, Joshua
Newbould, Hans Gundlach, Leonor Brito-Santana, Brian Amaro, Vivek Vajipey, Rynaa Grover,
Ting Wang, Yosi Kratish, Wen-Ding Li, Sivakanth Gopi, Andrea Caciolai, Christian Schroeder
de Witt, Pablo Hernandez-Camara, Emanuele Rodola, Jules Robins, Dominic Williamson,
Vincent Cheng, Brad Raynor, Hao Qi, Ben Segev, Jingxuan Fan, Sarah Martinson, Erik Y.
Wang, Kaylie Hausknecht, Michael P. Brenner, Mao Mao, Christoph Demian, Peyman Kas-
sani, Xinyu Zhang, David Avagian, Eshawn Jessica Scipio, Alon Ragoler, Justin Tan, Blake
Sims, Rebeka Plecnik, Aaron Kirtland, Omer Faruk Bodur, D. P. Shinde, Yan Carlos Leyva
Labrador, Zahra Adoul, Mohamed Zekry, Ali Karakoc, Tania C. B. Santos, Samir Shamseldeen,
Loukmane Karim, Anna Liakhovitskaia, Nate Resman, Nicholas Farina, Juan Carlos Gonzalez,
Gabe Maayan, Earth Anderson, Rodrigo De Oliveira Pena, Elizabeth Kelley, Hodjat Mariji,
Rasoul Pouriamanesh, Wentao Wu, Ross Finocchio, Ismail Alarab, Joshua Cole, Danyelle
Ferreira, Bryan Johnson, Mohammad Safdari, Liangti Dai, Siriphan Arthornthurasuk, Isaac C.
McAlister, Alejandro José Moyano, Alexey Pronin, Jing Fan, Angel Ramirez-Trinidad, Yana
Malysheva, Daphiny Pottmaier, Omid Taheri, Stanley Stepanic, Samuel Perry, Luke Askew,
Radl Adridn Huerta Rodriguez, Ali M. R. Minissi, Ricardo Lorena, Krishnamurthy Iyer, Ar-
shad Anil Fasiludeen, Ronald Clark, Josh Ducey, Matheus Piza, Maja Somrak, Eric Vergo,
Juehang Qin, Benjdmin Borbés, Eric Chu, Jack Lindsey, Antoine Jallon, I. M. J. McInnis, Evan
Chen, Avi Semler, Luk Gloor, Tej Shah, Marc Carauleanu, Pascal Lauer, Tran Duc Huy, Hossein
Shahrtash, Emilien Duc, Lukas Lewark, Assaf Brown, Samuel Albanie, Brian Weber, Warren S.
Vaz, Pierre Clavier, Yiyang Fan, Gabriel Poesia Reis e Silva, Long, Lian, Marcus Abramovitch,
Xi Jiang, Sandra Mendoza, Murat Islam, Juan Gonzalez, Vasilios Mavroudis, Justin Xu, Pawan
Kumar, Laxman Prasad Goswami, Daniel Bugas, Nasser Heydari, Ferenc Jeanplong, Thorben
Jansen, Antonella Pinto, Archimedes Apronti, Abdallah Galal, Ng Ze-An, Ankit Singh, Tong
Jiang, Joan of Arc Xavier, Kanu Priya Agarwal, Mohammed Berkani, Gang Zhang, Zhehang
Du, Benedito Alves de Oliveira Junior, Dmitry Malishev, Nicolas Remy, Taylor D. Hartman,
Tim Tarver, Stephen Mensah, Gautier Abou Loume, Wiktor Morak, Farzad Habibi, Sarah
Hoback, Will Cai, Javier Gimenez, Roselynn Grace Montecillo, Jakub Lucki, Russell Campbell,
Asankhaya Sharma, Khalida Meer, Shreen Gul, Daniel Espinosa Gonzalez, Xavier Alapont,
Alex Hoover, Gunjan Chhablani, Freddie Vargus, Arunim Agarwal, Yibo Jiang, Deepakkumar
Patil, David Outevsky, Kevin Joseph Scaria, Rajat Maheshwari, Abdelkader Dendane, Priti
Shukla, Ashley Cartwright, Sergei Bogdanov, Niels Miindler, Séren Moller, Luca Arnaboldi,
Kunvar Thaman, Muhammad Rehan Siddiqi, Prajvi Saxena, Himanshu Gupta, Tony Fruhauff,
Glen Sherman, Métyds Vincze, Siranut Usawasutsakorn, Dylan Ler, Anil Radhakrishnan, Inno-
cent Enyekwe, Sk Md Salauddin, Jiang Muzhen, Aleksandr Maksapetyan, Vivien Rossbach,
Chris Harjadi, Mohsen Bahaloohoreh, Claire Sparrow, Jasdeep Sidhu, Sam Ali, Song Bian,
John Lai, Eric Singer, Justine Leon Uro, Greg Bateman, Mohamed Sayed, Ahmed Menshawy,
Darling Duclosel, Dario Bezzi, Yashaswini Jain, Ashley Aaron, Murat Tiryakioglu, Sheeshram
Siddh, Keith Krenek, Imad Ali Shah, Jun Jin, Scott Creighton, Denis Peskoff, Zienab EL-Wasif,
Ragavendran P V, Michael Richmond, Joseph McGowan, Tejal Patwardhan, Hao-Yu Sun, Ting
Sun, Nikola Zubi¢, Samuele Sala, Stephen Ebert, Jean Kaddour, Manuel Schottdorf, Dianzhuo
Wang, Gerol Petruzella, Alex Meiburg, Tilen Medved, Ali ElSheikh, S Ashwin Hebbar, Lorenzo
Vaquero, Xianjun Yang, Jason Poulos, Vilém Zouhar, Sergey Bogdanik, Mingfang Zhang, Jorge
Sanz-Ros, David Anugraha, Yinwei Dai, Anh N. Nhu, Xue Wang, Ali Anil Demircali, Zhibai Jia,
Yuyin Zhou, Juncheng Wu, Mike He, Nitin Chandok, Aarush Sinha, Gaoxiang Luo, Long Le,
Mickaél Noyé, Michat Peretkiewicz, loannis Pantidis, Tianbo Qi, Soham Sachin Purohit, Letitia
Parcalabescu, Thai-Hoa Nguyen, Genta Indra Winata, Edoardo M. Ponti, Hanchen Li, Kaustubh
Dhole, Jongee Park, Dario Abbondanza, Yuanli Wang, Anupam Nayak, Diogo M. Caetano,
Antonio A. W. L. Wong, Maria del Rio-Chanona, Déniel Kondor, Pieter Francois, Ed Chalstrey,
Jakob Zsambok, Dan Hoyer, Jenny Reddish, Jakob Hauser, Francisco-Javier Rodrigo-Ginés,
Suchandra Datta, Maxwell Shepherd, Thom Kamphuis, Qizheng Zhang, Hyunjun Kim, Ruiji



334
335
336
337
338
339
340
341
342
343
344
345

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

380
381
382
383
384

385
386

388

389
390

[22]

[23]

Sun, Jianzhu Yao, Franck Dernoncourt, Satyapriya Krishna, Sina Rismanchian, Bonan Pu,
Francesco Pinto, Yingheng Wang, Kumar Shridhar, Kalon J. Overholt, Glib Briia, Hieu Nguyen,
David, Soler Bartomeu, Tony CY Pang, Adam Wecker, Yifan Xiong, Fanfei Li, Lukas S. Huber,
Joshua Jaeger, Romano De Maddalena, Xing Han L1, Yuhui Zhang, Claas Beger, Patrick
Tser Jern Kon, Sean Li, Vivek Sanker, Ming Yin, Yihao Liang, Xinlu Zhang, Ankit Agrawal,
Li S. Yifei, Zechen Zhang, Mu Cai, Yasin Sonmez, Costin Cozianu, Changhao Li, Alex Slen,
Shoubin Yu, Hyun Kyu Park, Gabriele Sarti, Marcin Brianiski, Alessandro Stolfo, Truong An
Nguyen, Mike Zhang, Yotam Perlitz, Jose Hernandez-Orallo, Runjia Li, Amin Shabani, Felix
Juefei-Xu, Shikhar Dhingra, Orr Zohar, My Chiffon Nguyen, Alexander Pondaven, Abdurrahim
Yilmaz, Xuandong Zhao, Chuanyang Jin, Muyan Jiang, Stefan Todoran, Xinyao Han, Jules
Kreuer, Brian Rabern, Anna Plassart, Martino Maggetti, Luther Yap, Robert Geirhos, Jonathon
Kean, Dingsu Wang, Sina Mollaei, Chenkai Sun, Yifan Yin, Shiqi Wang, Rui Li, Yaowen Chang,
Anjiang Wei, Alice Bizeul, Xiaohan Wang, Alexandre Oliveira Arrais, Kushin Mukherjee,
Jorge Chamorro-Padial, Jiachen Liu, Xingyu Qu, Junyi Guan, Adam Bouyamourn, Shuyu Wu,
Martyna Plomecka, Junda Chen, Mengze Tang, Jiaqi Deng, Shreyas Subramanian, Haocheng
Xi, Haoxuan Chen, Weizhi Zhang, Yinuo Ren, Haoqgin Tu, Sejong Kim, Yushun Chen, Sara Vera
Marjanovié, Junwoo Ha, Grzegorz Luczyna, Jeff J. Ma, Zewen Shen, Dawn Song, Cedegao E.
Zhang, Zhun Wang, Gaél Gendron, Yunze Xiao, Leo Smucker, Erica Weng, Kwok Hao Lee, Zhe
Ye, Stefano Ermon, Ignacio D. Lopez-Miguel, Theo Knights, Anthony Gitter, Namkyu Park,
Boyi Wei, Hongzheng Chen, Kunal Pai, Ahmed Elkhanany, Han Lin, Philipp D. Siedler, Jichao
Fang, Ritwik Mishra, Kdroly Zsolnai-Fehér, Xilin Jiang, Shadab Khan, Jun Yuan, Rishab Kumar
Jain, Xi Lin, Mike Peterson, Zhe Wang, Aditya Malusare, Maosen Tang, Isha Gupta, Ivan Fosin,
Timothy Kang, Barbara Dworakowska, Kazuki Matsumoto, Guangyao Zheng, Gerben Sewuster,
Jorge Pretel Villanueva, Ivan Rannev, Igor Chernyavsky, Jiale Chen, Deepayan Banik, Ben
Racz, Wenchao Dong, Jianxin Wang, Laila Bashmal, Duarte V. Gongalves, Wei Hu, Kaushik
Bar, Ondrej Bohdal, Atharv Singh Patlan, Shehzaad Dhuliawala, Caroline Geirhos, Julien Wist,
Yuval Kansal, Bingsen Chen, Kutay Tire, Atak Talay Yiicel, Brandon Christof, Veerupaksh
Singla, Zijian Song, Sanxing Chen, Jiaxin Ge, Kaustubh Ponkshe, Isaac Park, Tianneng Shi,
Martin Q. Ma, Joshua Mak, Sherwin Lai, Antoine Moulin, Zhuo Cheng, Zhanda Zhu, Ziyi
Zhang, Vaidehi Patil, Ketan Jha, Qiutong Men, Jiaxuan Wu, Tianchi Zhang, Bruno Hebling
Vieira, Alham Fikri Aji, Jae-Won Chung, Mohammed Mahfoud, Ha Thi Hoang, Marc Sperzel,
Wei Hao, Kristof Meding, Sihan Xu, Vassilis Kostakos, Davide Manini, Yueying Liu, Christo-
pher Toukmaji, Jay Paek, Eunmi Yu, Arif Engin Demircali, Zhiyi Sun, Ivan Dewerpe, Hongsen
Qin, Roman Pflugfelder, James Bailey, Johnathan Morris, Ville Heilala, Sybille Rosset, Zishun
Yu, Peter E. Chen, Woongyeong Yeo, Eeshaan Jain, Ryan Yang, Sreekar Chigurupati, Ju-
lia Chernyavsky, Sai Prajwal Reddy, Subhashini Venugopalan, Hunar Batra, Core Francisco
Park, Hieu Tran, Guilherme Maximiano, Genghan Zhang, Yizhuo Liang, Hu Shiyu, Rongwu
Xu, Rui Pan, Siddharth Suresh, Ziqi Liu, Samaksh Gulati, Songyang Zhang, Peter Turchin,
Christopher W. Bartlett, Christopher R. Scotese, Phuong M. Cao, Aakaash Nattanmai, Gordon
McKellips, Anish Cheraku, Asim Suhail, Ethan Luo, Marvin Deng, Jason Luo, Ashley Zhang,
Kavin Jindel, Jay Paek, Kasper Halevy, Allen Baranov, Michael Liu, Advaith Avadhanam,
David Zhang, Vincent Cheng, Brad Ma, Evan Fu, Liam Do, Joshua Lass, Hubert Yang, Surya
Sunkari, Vishruth Bharath, Violet Ai, James Leung, Rishit Agrawal, Alan Zhou, Kevin Chen,
Tejas Kalpathi, Ziqi Xu, Gavin Wang, Tyler Xiao, Erik Maung, Sam Lee, Ryan Yang, Roy
Yue, Ben Zhao, Julia Yoon, Sunny Sun, Aryan Singh, Ethan Luo, Clark Peng, Tyler Osbey,
Taozhi Wang, Daryl Echeazu, Hubert Yang, Timothy Wu, Spandan Patel, Vidhi Kulkarni,
Vijaykaarti Sundarapandiyan, Ashley Zhang, Andrew Le, Zafir Nasim, Srikar Yalam, Ritesh
Kasamsetty, Soham Samal, Hubert Yang, David Sun, Nihar Shah, Abhijeet Saha, Alex Zhang,
Leon Nguyen, Laasya Nagumalli, Kaixin Wang, Alan Zhou, Aidan Wu, Jason Luo, Anwith
Telluri, Summer Yue, Alexandr Wang, and Dan Hendrycks. Humanity’s last exam, 2025. URL
https://arxiv.org/abs/2501.14249,

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang,
Julien Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-
proof g&a benchmark. In First Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=Ti67584b98,

Asankhaya Sharma. Openevolve: an open-source evolutionary coding agent, 2025. URL
https://github.com/codelion/openevolvel


https://arxiv.org/abs/2501.14249
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://github.com/codelion/openevolve

391
392
393

394
395
396
397

398
399
400
401
402

404
405
406
407
408

409
410
411

412

413
414
415
416
417
418
419
420
421
422

423
424
425
426
427
428
429
430
431
432
433
434
435
436

[24] Parshin Shojaee, Ngoc-Hieu Nguyen, Kazem Meidani, Amir Barati Farimani, Khoa D Doan,
and Chandan K Reddy. LIm-srbench: A new benchmark for scientific equation discovery with
large language models. arXiv preprint arXiv:2504.10415, 2025.

[25] Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin,
Rachel Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Amelia
Glaese, and Tejal Patwardhan. Paperbench: Evaluating ai’s ability to replicate ai research, 2025.
URL https://arxiv.org/abs/2504.01848,

[26] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex
Zhuang, Rongqi Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark, 2024. URL https://arxiv.org/abs/2406!
01574.

[27] Bingchen Zhao, Despoina Magka, Mingqi Jiang, Xian Li, Roberta Raileanu, Tatiana Shavrina,
Jean-Christophe Gagnon-Audet, Kelvin Niu, Shagun Sodhani, Michael Shvartsman, Andrei
Lupu, Alisia Lupidi, Edan Toledo, Karen Hambardzumyan, Martin Josifoski, Thomas Foster,
Lucia Cipolina-Kun, Abhishek Charnalia, Derek Dunfield, Alexander H. Miller, Oisin Mac
Aodha, Jakob Foerster, and Yoram Bachrach. The automated 1lm speedrunning benchmark:
Reproducing nanogpt improvements, 2025. URL https://arxiv.org/abs/2506.22419.

[28] Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
models, 2023. URL https://arxiv.org/abs/2304.06364.

A Related Works

Reasoning Benchmarking. Model and agent capabilities have increased rapidly in recent years,
leading to the need to meaningfully evaluate their reasoning capabilities in fields such as math or
science. Early work such as MMLU [9] evaluated broad academic and professional knowledge, but
top models quickly reached saturation, prompting the development of harder, broader, and more
reasoning-heavy benchmarks [26, |16} 28]]. Domain-specific benchmarks with problem difficulties
ranging from grade-school to graduate-level also emerged in math [5} [10, |6]], science [22} 18], and
coding [12} 3]]. More recently, Humanity’s Last Exam [21] assembled thousands of frontier problems
across multiple subjects, positioning itself as the “final” academic benchmark for language models.
However, even at this frontier of human knowledge, the paradigm of all aforementioned benchmarks
remains static, where all problems have essentially been solved and solutions are closed-ended.

Open-Ended Benchmarking. A growing line of work seeks to evaluate systems on more open-
ended metrics. DSBench [13]] and MLE-Bench [2] assess agent capabilities on machine learning
engineering tasks, such as hyperparameter tuning or code implementation, on constrained environ-
ments like Kaggle challenges. Although open-ended, scientific discovery is not emphasized as the
evaluations have upper bounds on scores. Paperbench [25], EXP-Bench [[17], and the Automated
LLM Speedrunning Benchmark [27] test the ability for systems to replicate prior scientific advance-
ments. Given a research question and a brief description of methods, the system is evaluated on
its ability to reproduce known results, with judging done using rubrics and LLM-as-judge. While
science-centered, these benchmarks still fail to emphasize novel discovery. Other benchmarks such
as LLM-SRBench [24] evaluate the equation discovery capabilities of models, requiring them to
uncover symbolic relationships given a set of data. These relationships are typically constructed
by rearranging existing equations and generating data under controlled settings, thus limiting the
true scientific novelty of the evaluation. Nevertheless, open-ended benchmarks rarely evaluate on
open-ended problems, especially in the reasoning realm.
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B Implementation Details

B.1 Evaluation Metrics

Evaluation centers around two key metrics: cross-entropy validation loss and overall training time.
Whereas the validation loss metrics primarily serves as a requirement check, achieving new bests on
training time strongly implies the discovery of language modeling innovations.

The environment also captures incremental metrics. At designated training steps, we calculate the
current step-averaged training time, the current number of iterations, as well as the current validation
loss. This feedback can be used to inform of intermediary performance, or simply as additional
calculated metrics after training is completed.

Although the aforementioned metrics enable more detailed performance tracking at an algorithmic
level, they still lack fine-grained resource utilization feedback. To address this, we provide both
profiling and hardware-level feedback in our NanoGPT environment. We profile key sections of the
code—model forward pass, loss backward pass, optimizer steps, and data loading—tracking total
run times, average run times, percentage of total time, and the number of calls for each one. At the
hardware level, we capture the fifteen most time-consuming CUDA kernels and CPU operations along
with there total call counts. Lastly the environment provides overall training token throughput and
peak memory usage amount. This suite of metrics provides a holistic picture of program performance,
forming a rich reward surface for optimization.

B.2 Core Algorithm

Inspired by AlphEvolve-style evolution [18]], we fork and build on the open source OpenEvolve [23]]
implementation as the primary method to test and interact with our environment. The LLM system
has four key components: a database D, a program and prompt sampler PSS, an evaluator E, and a
language model LM. For each evolutionary cycle ¢, a parent program p; is sampled from D. The
prompt sampler then creates a prompt involving p;, which is used to prompt LM. LM then suggests
changes to p; to create child program c;, which is evaluated by E. Lastly, ¢; and its accompanying
feedback metrics are stored in D and the next evolutionary cycle begins.

Why NanoGPT Speedrunning? Language model pre-training represents a foundational area where
algorithmic innovations routinely generalize beyond their initial tasks, from optimizer refinements
to floating point precision changes and other architectural discoveries [[L5, 4} [11]. The NanoGPT
speedrun [[14] serves as a strong base for advancing pre-training techniques. This community-driven
challenge searches for the fastest algorithm to train a language model to reach 3.28 cross-entropy
validation loss on the FineWeb dataset, using a single 8xH100 GPU node. Since the first efforts in
June 2024, the training time has steadily decreased from 45 minutes to just under 3 minutes. These
advances were brought about by various algorithmic enhancements such as the Muon optimizer [15].
Discoveries improving NanoGPT training times often generalize to language modeling as a whole,
making the speedrun an ideal environment for discovery.

Database. The database maintains all programs and their associated metrics. In order to promote
quality-diversity, we implement basic island evolution, where programs evolve within individual
islands, and top perfomers periodically migrate between islands. The database serves to balance
exploration and exploitation, and provides programs for inspiration sampling.

Prompt Sampler. The prompt sampler is responsible for both formatting prompts and sampling
programs. As a baseline method, the sampler uses templates that are sampled from a pool of potential
templates. Each prompt contains a top program set 7" and a diverse program set D, where |T| and
| D| are hyperparameters. Each top program ¢; € T is sampled from the database. which maintains
an archive of all elite programs across all islands. Each diverse program d; € D is randomly sampled
from the database from the set of non-elite programs D \ T'. The prompt sampler compiles all of
these programs with their associated metrics into a single prompt and asks for improvements. We
then prompt for changes using unified search/replace blocks following aider.

Meta-Prompting. Although using static, templated prompts results in performance improvements,
they struggle to elicit creative reasoning and idea generation. To address this, we implement a
simple two-stage meta-prompting method. Given a prompt P that already has program information
formatted, we first ask the LM to provide a natural language solution S. The proposed solution S is a

11



489
490
491

492
493
494
495
496
497

499
500

501

502
503
504

505
506
507
508

509
510
511
512
513
514
515

516

517
518
519
520
521
522
523

524
525
526
527

529
530
531
532

533
534
535
536

538
539

high-level idea sketch emphasizing novelty and creativity. We then re-prompt the LM to implement
S using the same search/replace blocks as earlier. The key idea here is to decouple idea generation
from code generation, thus reducing the cognitive load on the model and increasing creativity.

Evaluator. The evaluator executes child programs inside the environment, captures the rich feedback,
and then updates the database accordingly. Our system also utilizes a fast error catcher where
candidate programs are executed briefly to verify that they compile and run correctly. Erroneous
programs are prompted for fixing by the LM before being fast-evaluated again. This cycle continues
Niyg times or until the program compiles, and is then sent to full evaluation. We also compute a
singular score metric s, = tyep * fval, Where tqp is the overall step average time and £, is the final
validation loss. s is used as the ultimate comparison metric within the database.

Language Model. The LM component of the system exposes a simple interface to plug-and-play
various models.

B.3 Anti-Gaming

A significant challenge in providing a flexible optimization environment is its susceptibility to reward
hacking, where trivial programs are discovered that maximize the reward signal but fail to achieve
the intended goal. Our evaluation environment is explicitly designed to guard against these exploits.

Runtime Injection of Evaluation Parameters. Although the language model is free to modify any
part of the code, we still guard against critical parameters. The environment injects key parameters
during evaluation runtime to ensure integrity, overriding any earlier modifications. We enforce the
exact training data slice, the validation slice, as well as the validation sequence length.

Immutable Core Logic. Another area where programs reward-hack is by changing core scientific
logic. Our environment injects its own cross-entropy loss function, overriding the loss function
implemented in the program. Although this restricts innovations involving loss calculation, the
trade-off is necessary to prevent exploitation via trivial, non-equivalent loss functions. Future work
could explore more robust guardrails such as verifying functional equivalence. The environment
also prevents modification of the training document and causal masks. This prevents tokens from
attending to prior tokens or to tokens from other documents.

C Frontier Model Performance

Shifting to this new benchmarking paradigm still allows for the comparison of models and agents.
Our environment and scaffolding support the plug-and-play of various models or even ensembles of
models, enabling benchmarking comparisons in the traditional sense. However, these comparisons
should serve as a means for introspection, with the true goal being faster training times. To that
end, we run experiments on GPT-5 thinking [19], Gemini 2.5 Pro [7], and Claude Sonnet 4 [[1]. We
initialize each model environment in the same manner as the 03 prolonged run, except only for 50
iterations. The results and some comparison analysis are provided in Figure 4] below.

Straightforward comparisons can be made using the primary optimization metric. We can
make quick comparisons across model, agent, or algorithm capabilities by examining the fastest final
training times. From Table[@ we find that Claude 4 yields the best time, and thus can be crowned the
strongest in the traditional benchmarking sense. However, Figure [db|suggests that Claude struggles
to consistently generate acceptable programs, and thus GPT-5 Thinking may perform better as we
increase iterations due to its downwards trend line. Gemini still finds improvements from the current
SOTA, but its trend line remains relatively flat throughout, suggesting a poorer ability to generate
novel ideas or to integrate robust environmental feedback. These results highlight that comparisons
serve as a strong means for analysis, but are not the end.

Evolution analysis. Open-ended evaluation environments also allow for intermediary analysis of
models and agents, which can be more valuable than static numbers. Figure [4c|shows the fraction of
programs in one of three categories at each evolution iteration. The red area denotes buggy programs,
the orange represents non-buggy programs that have a validation loss too high for NanoGPT, and
the green represents non-buggy, acceptable programs. Despite struggling greatly with producing
working programs, Claude 4 still performs strongly, suggesting that improving its code generation
capabilities could yield to strong discoveries. We also observe that after 20 iterations, all models see
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GPT-5 Thinking Claude 4

[ Model [ Time (s) |

GPT-5 Thinking 174.48 *
Gemini 2.5 Pro 174.78
Claude 4 173.28

Training Time (5)
13

(a) Best found programs
with acceptable loss. The
reframed  benchmarking
paradigm still allows for (b) Performance of all acceptable programs on frontier models. The dotted red
comparisons. line represents when meta-prompting begins.

ol

B Buggy ¢ Runs Successfully, Unacceptable Loss @ Runs Successfully, Acceptable Loss

1.0
0.8
0.6
0.4
0.2
0.0

GPT-5 thinking Gemini 2.5 Pro Claude 4 03 Prolonged

Fraction

(c) Breakdown of all programs found throughout evolution.

Figure 4: Our new benchmarking paradigm still allows for comparisons, but they are a means and not
the end. The evaluation environment enables open-ended analysis of models and agents, offering
insights beyond static numbers.

a spike in buggy program rate corresponding to the beginning of meta-prompting. Thus improving
the meta-prompting and code generation capabilities of models is another promising avenue for
improving performance on the benchmark.
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sss D Code for Interesting Ideas

partial_kv_num_blocks, partial_kv_indices = dense_to_ordered(blockmask_any & ~blockmask_all)
full_kv_num_blocks, full_kv_indices = dense_to_ordered(blockmask_all)

H = self.num_heads
K = partial_kv_indices.size(-1)
CORE = 2 # shared core partial-KV blocks per head

def build_bm(window_size_blocks: Tensor) -> BlockMask:
# Cap counts by window size
p_cap = torch.clamp_max(partial_kv_num_blocks,
torch.clamp_min(window_size_blocks - full_kv_num_blocks, 1))
f_cap = torch.clamp_max(full_kv_num_blocks, window_size_blocks - 1)

# Expand across heads

p_cap_h = p_cap.expand(1, H, -1).contiguous() # (1,H,Q)
f_cap_h = f_cap.expand(1, H, -1).contiguous() # (1,H,Q)
p_idx_h = partial_kv_indices.expand(1l, H, -1, -1).contiguous() # (1,H,Q,K)
f_idx_h = full_kv_indices.expand(1, H, -1, -1).contiguous() # (1,H,Q,K)

# Build per-head mask: shared core + strided remainder across heads
pos = torch.arange(K, dtype=torch.int32, device="cuda")[None, None, None, :]
.expand(1, H, p_idx_h.size(2), K) # (1,H,Q,K)

head_idx = torch.arange(H, dtype=torch.int32, device="cuda")[None, :, None, None] # (1,H,1,1)
core = torch.clamp_max(p_cap_h,

torch.tensor(CORE, dtype=torch.int32, device="cuda"))[..., Nonel # (1,H,Q,1)
p_cap_b = p_cap_h[..., None] # (1,H,Q,1)

core_mask = pos < core
rem_mask = (pos >= core) & (pos < p_cap_b) & (((pos - core - head_idx) % H) == 0)
choose = core_mask | rem_mask # (1,H,Q,K)

# Reorder so chosen positions are first, preserving relative order
K_const = torch.tensor(K, dtype=torch.int32, device="cuda")

score = pos + (~choose) * K_const

order = score.argsort(dim=-1)

p_idx_ord = torch.gather(p_idx_h, -1, order.to(torch.int64))
p_num_h = choose.sum(dim=-1, dtype=torch.int32)

return BlockMask.from_kv_blocks(
p_num_h,
p_idx_ord,
f_cap_h,
f_idx_h,
BLOCK_SIZE=BLOCK_SIZE,
mask_mod=document_causal,

(a) Sliding window attention optimization proposed by GPT-5.

class AdaptiveComputeBlock(nn.Module):
def __init__(self, dim: int, num_heads: int, max_seq_len: int, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.dim = dim

# Multi-resolution processing: different compute budgets
self.micro_processor = nn.Sequential( # 1/8 compute
nn.Linear(dim, dim // 4),
nn.ReLU(),
nn.Linear(dim // 4, dim)
)

self.mini_processor = nn.Sequential( # 1/4 compute
nn.Linear(dim, dim // 2),
nn.ReLU(),
nn.Linear(dim // 2, dim)

self.standard_attn = CausalSelfAttention(dim, max(1l, num_heads // 2), max_seq_len) if layer_idx != 7 else None
self.standard_mlp = MLP(dim)

self.premium_attn = CausalSelfAttention(dim, num_heads, max_seq_len) if layer_idx != 7 else None
self.premium_mlp = MLP(dim * 2) # Larger MLP for hard tokens

# Revolutionary idea: Token Difficulty Oracle
# This predicts not just current difficulty, but future difficulty across layers
self.difficulty_oracle = nn.Sequential(
nn.Linear(dim + 64, dim // 2), # +64 for positional/contextual features
nn.ReLU(),
nn.Linear(dim // 2, 5) # micro, mini, standard, premium, skip
)

# Context encoder for difficulty prediction

self.context_encoder = nn.Sequential(
nn.Convld(dim, 64, kernel_size=3, padding=1),
nn.ReLU(),
nn.AdaptiveAvgPoolld(1)

)

# Learnable compute budget allocation
self.compute_budget = nn.Parameter(torch.tensor(1.0))
self.lambdas = nn.Parameter(torch.tensor([1., 0.]))
# Initialize token memory

self.register_buffer('token_memory', None)
self.memory_gate = nn.Linear(1l, 1)

(b) Token difficulty predictor and router proposed by Gemini.

14



544

545
546
547

548
549
550
551

553
554
555
556

E Future Work

The results from our initial NanoGPT environment show the potential for open-ended evaluation
environments to promote scientific discovery. The state-of-art speedrun result and emergence of
interesting ideas during evolution help reinforce this idea. Key future directions include:

* Further scaling test-time compute. Although our experiments used a non-trivial amount
of test-time compute, scaling evolution to weeks or even months could lead to promising
results. Future work could also explore additional frontier models (e.g. Grok or Claude
Opus) as well as ensembling these models.

* Creating more environments across reasoning domains. The current NanoGPT environ-
ment primarily centers on pre-training advances. Similar environments extend naturally to
post-training, with opportunities for discoveries in alignment and preference tuning. In math,
environments would focus on unsolved problems, with progress to be measured through a
combination of LLM-as-judge and formal theorem provers such as Lean.
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