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Abstract

Hallucination phenomena in vision-language
models significantly hinder their application
potential in downstream tasks requiring high-
precision reasoning, posing a critical bottleneck
to the development of trustworthy artificial in-
telligence. Current approaches primarily rely
on specific training paradigms or heuristic de-
coding strategies, which, while partially allevi-
ating hallucinations, are constrained by two ma-
jor limitations: substantial computational over-
head from data construction and model fine-
tuning, and the lack of fine-grained attribution
capabilities for understanding the mechanisms
behind hallucination generation. In this study,
we propose a causal intervention-based genera-
tion tracing framework, CARE (Causal-Aware
Robust Estimation), which achieves token-level
hallucination suppression without requiring ad-
ditional training. Our key insight is that ex-
cessive reliance on linguistic priors serves as
the core mechanism driving hallucinations, and
its statistical characteristics can be precisely
captured through dual-pathway contrast. The
CARE framework innovatively constructs fac-
tual and counterfactual dual generation path-
ways, employing robust interquartile effect de-
tection to quantify the visual dependency of
generated tokens. Experiments on multimodal
evaluation benchmarks including Hallusion-
Bench, MMHalBench, and POPE demonstrate
that CARE reduces hallucination rates by an
average of 9% in LLaVA-1.5 models while im-
proving answer accuracy by 11%, all while
maintaining the fluency of generation outputs.
This research provides a novel, interpretable
paradigm for understanding and mitigating hal-
lucinations in multimodal systems.

1 Introduction

In recent years, large vision language models
(LVLMs) have demonstrated exceptional perfor-
mance in tasks such as image captioning and vi-
sual question answering through large-scale cross-
modal pre-training (Liu et al., 2024a; Bai et al.,
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Figure 1: (a) A pair of samples from a vision-dependent
question-answering test, and (b) test results of three
decoding methods in LLaVA-1.5 on the HallusionBench,
where none of the evaluation metrics achieved accuracy
rates exceeding 40%.

2025; Wu et al., 2024). However, these models con-
sistently demonstrate semantic inconsistencies with
visual inputs during response generation, as illus-
trated in Figure 1a — a phenomenon termed vision-
language hallucination — which undermines fair-
ness in real-world Al deployment. Current research
has revealed fundamental limitations in semantic fi-
delity control, as even top-performing models like
LLaVA-1.5 (Liu et al., 2024a) underperform —
scoring merely 13.58% accuracy on Figure Accu-
racy (FA) tasks and 7.25% on Question Pair Ac-
curacy (QPA) tasks in the HallusionBench (Guan
et al., 2024), as evidenced in Figure 1b.

Current research predominantly explores hallu-
cination mitigation through two paradigms: (1)
enhancing visual-semantic alignment during fine-
tuning via adaptive training strategies (Chen et al.,
2025) or loss recalibration (Zhang et al., 2024),
and (2) implementing post-hoc decoding interven-
tions using attention weights (Liu et al., 2024b) or
entropy metrics (Zheng et al., 2024). These ap-
proaches present notable constraints: data-driven



methods demand high-quality domain-specific
aligned datasets, struggling with generalization
in data-scarce scenarios, while heuristic decoding
mechanisms lack theoretical grounding and risk
compromising textual fluency. Crucially, existing
solutions neglect the dynamic nature of halluci-
nation generation—specifically, the evolving over-
reliance on linguistic priors during token-level de-
coding (Kan et al., 2024; Leng et al., 2024), which
necessitates adaptive real-time intervention frame-
works rather than static mitigation strategies.

To address these limitations, we propose CARE
(Causal-Aware Robust Estimation), a parameter-
free generation traceability framework grounded
in causal intervention theory. Departing from
global optimization paradigms, we introduce a dy-
namic systems perspective for hallucination anal-
ysis, formalizing two pivotal theoretical princi-
ples: (1) Observable prior dependence: Dual
factual/counterfactual generation pathways en-
able quantification of linguistic prior dominance
through causal effect disparities; (2) Time-sensitive
intervention: Early-stage visual dependency in de-
coding significantly governs output fidelity, requir-
ing dynamic penalty decay mechanisms. CARE
implements two key innovations:

¢ Causal Visual Dependency Score: This met-
ric establishes fine-grained causal attribution
in multimodal systems by dynamically con-
trasting visual presence/absence distributions,
enabling precise diagnosis of spurious corre-
lations in vision-language tasks through its
token-level interpretability framework.

* Robust Interquartile Effect Detection: This
non-parametric algorithm mitigates distribu-
tional shift vulnerabilities through median-
centric threshold adaptation, statistically dis-
entangling genuine dependencies from outlier-
polluted data while ensuring operational ro-
bustness under non-Gaussian conditions.

Evaluations on HallusionBench (Guan et al.,
2024), MMHalBench (Sun et al., 2024), and POPE
(Li et al., 2023) show CARE reduces average
hallucination rates by 25.4% (LLaVA-1.5 (Liu
et al., 2024a)) and 14.8% (Qwen2-VL (Wang et al.,
2024)), outperforming OPERA (Huang et al., 2024)
by 13.7% while preserving textual fluency.

2 Related Work

2.1 Large Vision Language Models

Recent breakthroughs in large language models
(LLMs) (DeepSeek-Al et al., 2025; OpenAl, 2024)
have driven the emergence of multimodal systems
like LLaVA-1.5 (Liu et al., 2024a) and Qwen2-
VL (Wang et al., 2024), which integrate vision-
language processing through pretraining and fine-
tuning. Architectural distinctions exist in their vi-
sual encoders: LLaVA-1.5 employs ViT-L/14 (Rad-
ford et al., 2021) for 224 x 224 resolution images,
while Qwen2-VL adopts a generic ViT (Dosovit-
skiy et al., 2021) supporting arbitrary resolutions.
We choose these two large vision language models
to evaluate their multimodal capabilities.

2.2 Hallucination in Large Vision Language
Models

Hallucinations in LVLMs manifest as visual-
semantic contradictions or logical inconsistencies
with commonsense knowledge (Zhang et al., 2023;
Tonmoy et al., 2024). Current mitigation strategies
include training optimization (Chen et al., 2025;
Zhang et al., 2024), feature enhancement (Xie et al.,
2024; Shang et al., 2024), and attention mecha-
nism adjustments (Liu et al., 2024b; Jiang et al.,
2025), yet these often require extensive data or lack
causal interpretability. Unlike these approaches,
our CARE operates during decoding without ad-
ditional training or external resources, leveraging
causal modeling for precise token generation.

2.3 Decoding Strategy in Large Vision
Language Models

Standard decoding methods like random sampling
(Fan et al., 2018) and beam search (Boulanger-
Lewandowski et al., 2013; Graves, 2012) face trade-
offs between diversity and consistency. OPERA
(Huang et al., 2024) introduces penalty terms dur-
ing beam search to suppress overconfident hallu-
cination patterns. CARE outperforms these strate-
gies by dynamically quantifying visual dependency
and implementing robust causal interventions, as
demonstrated in our experiments.

3 Method
3.1 Understanding Structural Causal Models
(SCMs) and Counterfactual Interventions

Let the generation process of the LVLM M be
decomposed into the joint operation of a visual



encoder ¢ : V — R% and a language decoder
Y : P — R%. At time step ¢, the evolution of the
model’s hidden state h; € R% follows:

= fo ([6(V); (P)], hi—1) (1

where ¢ denotes the visual encoder mapping an
image V to a d,,-dimensional feature space; v rep-
resents the language decoder processing textual
prompts P; [-; -] indicates the feature concatenation
operation; fy is a parameterized Transformer layer;
and h; € R denotes the current hidden state.

By introducing the intervention operator
do(X = 0) to eliminate visual influence, we con-
struct a counterfactual latent state as follows:

n = o (0% 0P EL) @

where 0% is a d,-dimensional zero vector explic-
itly masking visual inputs to simulate their absence,
1 (P) denotes non-visual features (e.g., text) pro-
cessed by an embedding function v, [-; -] concate-
nates the masked visual vector and non-visual fea-
tures into a hybrid input, hf{ 1 is the previous latent
state in the counterfactual pathway, fy is a param-
eterized recurrent module updating the state by
integrating the current input and prior context.

The causal effect of token generation probability
is quantified as:

A(w) = log Pr(w|hy) —log Pe(w|h’)  (3)
where Pr and F¢ represent the generation probabil-
ities along the factual and counterfactual paths, re-
spectively. Here, v denotes the significance thresh-
old. If there exists a token w such that A¢(w) > 7,
then wy is identified as visually driven.

3.2 Dual-Path Dynamic Penalty Mechanism

Define the visual dependency score for beam search
candidate sequences as follows:
)) “)
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where o (+) represents the Sigmoid function, K de-
notes the sliding window length, and w( indicates
the token generated by the i-th candidate sequence.
The penalty term is designed as:
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where A controls the penalty strength, 3 represents
the decay rate, 75 denotes the threshold value, and
I(-) is the indicator function (equal to 1 when the
condition is satisfied, otherwise 0).

The adjusted logits are expressed as:

= logit}"(i)( )~ P ay

where B represents the beam width. The second
term introduces a competitive inhibition mecha-
nism, which automatically reduces the penalty in-
tensity when more than 1/B proportion of candi-
date sequences exhibit high visual dependency.

logitadj™ (w)
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3.3 Effect Detection Based on Robust
Statistics

The proposed WMOM (Weighted Median of Medi-
ans) estimator addresses the robustness-efficiency
trade-off through an adaptive weighting scheme.

Formally, let {Agi)} B | denote a set of B indepen-
dent effect estimates at time {. WMOM estimator
Ay is defined through convex combination:

B .
= Z W Agz) 5
=1

exp(—|AY — median(A,)))
> exp(—]Agj) — median(A,)|)
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where median(A;) denotes the median operator,
and the weights w; are derived through an expo-
nential kernel function. This formulation adap-
tively downweights observations deviating from
the central tendency while preserving differentia-
bility — critical properties for subsequent gradient-
based optimization The exponential weighting
scheme ensures Z _,w; = 1 while maintaining
w; x exp(—d;) where d; = ]Ag v _ median(A)|
represents the absolute deviation from the median.

To dynamically calibrate detection sensitivity,
we implement an adaptive thresholding mecha-
nism:

7 =ar—1+ (1 — a)(MAD(Ay) +¢)  (8)

where MAD(4;) := med (\Agi) — A4
putes the median absolute deviation, o € (0, 1)
governs the exponential smoothing rate, and € > 0
ensures numerical stability. The MAD statistic

> com-



provides a robust dispersion measure that is re-
silient to outliers, while the recursive update rule
enables temporal adaptation to evolving effect mag-
nitudes. This mechanism fulfills three core require-
ments: (1) Auto-scaling via median absolute de-
viation, adapting to data variability without man-
ual tuning. (2) Temporal coherence through a-
controlled smoothing, retaining historical patterns
while adapting to new data. (3) Numerical safety
with e regularization, preventing threshold collapse.

3.4 The CARE Decoding Strategy for
Hallucination Mitigation

As illustrated in Figure 2, our Causal Abstention
through Robust Effect-detection (CARE) frame-
work formally models the decoding process of
LVLMs using structural causal modeling. At each
timestep, we establish a counterfactual propagation
pathway to penalize non-linguistic-dependent to-
kens generated through the factual pathway. These
visual-dependent tokens are systematically identi-
fied through interquartile effect detection, which
quantifies their statistical deviance from language-
centered patterns. Crucially, our method preserves
the continuity of the decoding process while avoid-
ing the prohibitive computational overhead asso-
ciated with decoding backtracking (Huang et al.,
2024), as the penalty mechanism operates intrinsi-
cally within the forward-generation paradigm with-
out requiring token sequence revisions.

4 Experiment

4.1 Setup

Model. We evaluate two LVLMs: LLaVA-1.5 (Liu
et al., 2024a) and Qwen2-VL (Wang et al., 2024).
Both models are based on a 7-billion-parameter
architecture, ensuring fair comparison. LLaVA-
1.5 uses the ViT-L/14 visual encoder with an input
resolution of 35 pixels, generating 576 visual to-
kens. Qwen2-VL uses a dynamic resolution pars-
ing mechanism, but is configured to produce 576
visual markers to maintain consistency.

Baselines. We compare three decoding algo-
rithms: random sampling, beam search, and
OPERA (Huang et al., 2024). Random sampling
selects outputs based on probability distributions,
while beam search maintains multiple candidate
sequences with num_beams=3. OPERA is de-
signed to mitigate hallucinations by introducing
penalties for over-confident tokens and revisiting
summarization positions during decoding. We use
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Figure 2: The proposed CARE decoding strategy oper-
ates as follows: We leverage factual and counterfactual
pathways to assess the visual relevance of generated
tokens. Specifically, during decoding, we construct
the counterfactual path by removing visual information
from the forward inference process in LVLMs, then cal-
culate token-level visual relevance through comparative
analysis of both pathways. This enables penalization
of visually irrelevant tokens to enhance visual ground-
ing emphasis, while maintaining the original generation
process for vision-aligned tokens without intervention.

default settings: scale_factor=50, threshold=15.0,
and num_ attn_candidates=3.

Implementation details. The CARE framework
1s built on beam search with num_beams=3. It
dynamically determines the significance threshold
~ using 1.5 times the interquartile range (IQR) to
distinguish visual and linguistic factors. Key hyper-
parameters include penalty strength (A = 1x1073),
decay rate (8 = 1.0+0'1X1£rrem_step), and decision
threshold (73 = 1). These settings penalize non-
visual tokens while enhancing visually grounded
ones during generation.

4.2 Quantitative Results

In this section, we evaluate the performance and
effectiveness of CARE in mitigating hallucinations
across three benchmark datasets: HallusionBench
(Guan et al., 2024), MMHalBench (Sun et al.,
2024), and POPE (Li et al., 2023).
HallusionBench evaluation on hallucinations.
HallusionBench benchmark (Guan et al., 2024),
comprising 254 carefully curated visual depen-
dency analysis tasks and supplementary visual
grounding challenges, provides systematic evalua-
tion of hallucination rates in LVLMs’ multimodal
reasoning. As shown in Table 1 and Figure 3,
CARE demonstrates model-dependent effective-
ness across LLaVA-1.5 and Qwen2-VL.

For LLaVA-1.5, CARE achieves superior hallu-



Approach QPA; FA; EQA; HQA; QA;
Q-Sample 1451 2399 4593 3837 46.77
Q-Beam 18.68 2832 47.69  42.09 49.07
Q-OPERA - - - - -
Q-CARE  18.24 28.03 47.03 42.09 49.07
L-Sample  7.25 13.58 3473  31.86 36.85
L-Beam 7.91 14.45 3758 3349  38.88
L-OPERA 659 1329 3516 3256 38.62
L-CARE 879 15.03 39.12 3326 39.59

Table 1: HallusionBench Evaluation on Hallucinations.
We use the following abbreviations: QPA for Question
Pair Accuracy, FA for Figure Accuracy, EQA for Easy
Question Accuracy, HQA for Hard Question Accuracy,
and QA for Question Accuracy. In the Approach col-
umn, Q denotes Qwen2-VL and L denotes LLaVA-1.5.

cination mitigation with 21.2% absolute improve-
ment in Question Pair Accuracy over random sam-
pling (7.25—8.79) and 10.6% enhancement in Fig-
ure Accuracy (13.58—15.03), outperforming beam
search by 11.1% and 4.0% respectively. The frame-
work maintains 33.26 Hard Question Accuracy, sur-
passing OPERA by 2.1%, confirming its dynamic
attention regulation efficacy during decoding.

In Qwen2-VL, CARE attains comparable per-
formance to beam search with 25.8% and 16.8%
accuracy gains over random sampling in Question
Pair Accuracy (18.24) and Figure Accuracy (28.03).
Its 42.09 Hard Question Accuracy matches beam
search, suggesting architectural robustness limits
decoding strategy benefits.

Cross-model comparisons reveal CARE’s
stronger compatibility, outperforming OPERA by
33.3% in Question Pair Accuracy and 13.0% in
Figure Accuracy for LLaVA-1.5. Qwen2-VL’s
incompatibility with OPERA underscores the
architecture-decoding interplay complexity, as evi-
denced by missing operational data in evaluations.

MMHalBench evaluation on hallucinations.
MMHalBench (Sun et al., 2024) assesses mul-
timodal hallucination across eight question cate-
gories, including spatial relations and adversarial
objects. As shown in Table 2 and Figure 4, CARE
achieves architecture-agnostic hallucination reduc-
tion while enhancing fine-grained semantic under-
standing.

For Qwen2-VL, CARE reduces the overall hallu-
cination rate by 14.8% (0.27—0.23), with a 36.5%
improvement in spatial reasoning (3.42—4.67) and
4.1% enhancement in counting accuracy. LLaVA-
1.5 exhibits more comprehensive gains: 15% reduc-
tion in hallucination rate (0.59—0.44) accompa-

nied by 111.3% improvement in adversarial object
recognition (1.50—3.17) and 15.8% boost in spa-
tial reasoning (3.67—4.25). The strategy demon-
strates particular efficacy in challenging domains,
achieving 9.4% improvement in comparative object
evaluation (3.50—3.83) through CARE.

Cross-model analysis reveals CARE’s architec-
tural adaptability, evidenced by 4.1% counting ac-
curacy improvement in Qwen2-VL and 111.3%
adversarial robustness enhancement in LLaVA-1.5.
Both models show >35% gains in spatial reason-
ing, aligning with spatial cognitive network re-
search (Yang et al., 2024; Chen et al., 2024). This
asymmetric performance improvement underscores
CARE’s capacity to address model-specific limita-
tions through dynamic visual-semantic alignment.

Deepseek-R1 and Gemma 3 assisted evalua-
tion. Deepseek-R1 (DeepSeek-Al et al., 2025)
and Gemma 3 (Gemma, 2025) provide critical in-
sights for model selection through their compre-
hensive evaluation of multiple LVLMs on Hallu-
sionBench. As illustrated in Figure 5, each subplot
presents the assessment results using both random
sampling and beam search decoding methods. The
performance distributions across subplots exhibit
centrally scaled patterns regardless of evaluator
capabilities, with the sole distinction lying in nu-
merical score variations. This observation suggests
that hallucination evaluations maintain consistent
fairness across different LLM assessors.

Notably, the Qwen2.5-VL subplot demonstrates
an anomalous performance spike in simple ques-
tion evaluations. Since Qwen2.5-VL underwent
no fine-tuning with HallusionBench data, we hy-
pothesize that the observed bias may stem from
Deepseek-R1 32B’s developmental lineage —
specifically, its creation through knowledge distilla-
tion techniques applied to Qwen2.5. This architec-
tural inheritance could perpetuate inherent biases
toward Qwen2.5 series outputs during evaluation.

These findings support two key conclusions:
First, LLM-based hallucination benchmarks like
HallusionBench permit cost-effective deployment
strategies for evaluator models without compro-
mising result distribution patterns. Second, model
genealogy and knowledge transfer methodologies
warrant careful consideration when interpreting
cross-model evaluation outcomes, particularly in
scenarios involving shared architectural heritage.



HallusionBench Evaluation Results Comparison
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Figure 3: Evaluation results of hallucination assessment assisted by Gemma 3 on HallusionBench. This analysis
encompasses five key metrics: Question Pair Accuracy (Question Pair Acc), Figure Accuracy (Figure Acc), Easy
Question Accuracy (Easy Question Acc), Hard Question Accuracy (Hard Question Acc), and Comprehensive
Question Accuracy (Question Acc). It is important to note that a larger radar chart indicates better performance.
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larger radar values generally indicate better performance.

4.3 Ablation Study on Hyper-parameters

Our controlled analysis of penalty strength A in
CARE yields three critical insights (Table 3, Fig-
ure 6): Easy question accuracy (EQA) decreases
monotonically (38.68%—35.82%, -7.4% relative)
with increasing A, indicating excessive regular-
ization disrupts visual-semantic mapping. Hard
question performance (HQA) peaks non-linearly at
A = 1.50 (34.19%, +1.17pp vs A = 0.10), reveal-
ing scalar tuning’s limited utility for higher-order
reasoning. Optimal overall accuracy (QA=39.15%)
emerges at A = (.10 with minimal variance
(0=0.51pp), while surpassing A > 1.50 triggers
significant degradation (QA=38.09% at A = 2.00,
-1.1pp), delineating stability thresholds for cross-

modal alignment.

Task-specific regularization effects emerge dis-
tinctly: Figure Accuracy (FA) maintains stability
(14.16-15.61%) across A values, whereas Question
Pair Accuracy (QPA) improves marginally (7.47-
9.23%). Strong negative correlation between A and
EQA (Pearson’s r = —0.83) contrasts with weaker
positive HQA association (r = 0.41), demonstrat-
ing inherent trade-offs in multi-task optimization.
These findings advocate for component-adaptive
penalty mechanisms over uniform regularization,
as visual processing exhibits inherent constraint
resilience while linguistic tasks benefit selectively
from moderated parameterization.

As shown in Table 4, Qwen2-VL (Wang et al.,



Approach AS; HR;, OA; AO; Comp; County SRy E;, HD; O;
Q-Sample 435 026 392 483 4.83 4.08 342 508 492 375
Q-Beam  4.28 0.27 4.08 4.17 4.75 4.08 383 542 467 325
Q-OPERA - - - - - - - - - -
Q-CARE 440 023 375 475 3.67 4.25 4.67 525 5.08 3.75
L-Sample 3.00 0.59 358 1.92 35 2.67 3.67 342 258 2.67
L-Beam 320 053 392 150 3.58 3.00 375 4.00 3.17 267
L-OPERA 3.19 051 375 217 3.67 3.42 292 375 317 2.67
L-CARE 355 044 325 3.17 3.83 3.08 425 442 342 3.00

Table 2: Evaluation of MMHalBench on Hallucinations. We adopt the following abbreviations: AS represents
Average Score; HR represents Hallucination Rate; OA represents Object Attribute; AO represents Adversarial
Object; Comp represents Comparison; Count represents Counting; SR represents Spatial Relation; E represents
Environment; HD represents Holistic Description; O represents Other. In the Approach column, Q denotes Qwen2-

VL and L denotes LLaVA-1.5.
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Figure 5: HallusionBench performance on different
LVLMs. Most subgraphs have similar shapes, indi-
cating that the evaluation results of various LLMs on
HallusionBench remain relatively stable regardless of
the performance level of the LLM being evaluated. This
consistency validates the choice of Gemma 3 as an eval-
uation tool, providing a cost-effective solution without
compromising the evaluation quality.

2024) exhibits high sensitivity to the penalty
strength A\. When X is set to 0.001, the model main-
tains baseline performance (CARE Acc = 0.876 vs
Beam Acc = 0.877), with a minimal F1 score de-
crease of only 0.003, indicating that weak penalties
do not compromise the original reasoning capabili-
ties. However, when A is increased to 0.01, perfor-
mance experiences a dramatic decline, with recall
plummeting to 0.0446 (a decrease of 94.3%), and
f1 score decreasing by 90.8%, suggesting that the
model enters an over-suppressed state. At A = 200,
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Figure 6: Performance Comparison Under Different
Penalty Strengths

accuracy partially recovers to 0.595, but recall re-
mains below baseline levels by 73.2%, displaying
a conservative prediction characteristic with high
precision (0.9203) and low recall (0.208). Qwen?2-
VL demonstrates nonlinear response characteristics
to penalty strength; performance collapses when
A > 0.001, necessitating sub-critical parameter
configurations combined with decoder optimiza-
tions to enhance robustness.

4.4 Dependency Assessment of Generated
Tokens

CARE enhances visual-semantic alignment
through dynamic detection of token dependencies
and penalization of non-visually-related tokens.
Quantitative evaluations on two benchmarks
demonstrate its effectiveness in improving visual
information density:

Figure Accuracy (%)



X QPA; FA; EQA; HOQA; QA; CARE TNS TNT, NVAT,; ARVAT;
0.10 7.47 15.03  38.68 33.02  39.15 HB v 951 31778 1757 5.53%
0.50 7.69 15.61 37.80 3233 38.62 X 951 31814 1727 5.43%
1.00 7.91 1474 37.36 33.49  39.15 MB v 96 3546 50 1.41%
1.50 9.01 1445  36.92 34.19  38.88 X 96 3715 42 1.13%
2.00 9.01 15.61 35.38 3372 38.09
250 879 1416 3495 3349 3782 Table 5: Dependency Analysis of Generated Tokens
3.00 9.23 1445 35.82 3395 3835

Table 3: Performance Comparison of LLaVA-1.5 on
HallusionBench Under Different Penalty Strengths. We
use the following abbreviations: QPA for Question Pair
Accuracy, FA for Figure Accuracy, EQA for Easy Ques-
tion Accuracy, HQA for Hard Question Accuracy, and
QA for Question Accuracy.

Popular
A Decode Accy Prec;  Recally F1,
- Sample  0.873  0.9612 0.7773  0.8595
- Beam 0.877 0.94 0.8053  0.8675
0.001 CARE 0.876 0.9526 0.7913  0.8645
0.01 CARE 04853 0.3764 0.0446 0.0798
200 CARE 0595 09203 0208  0.3393

Table 4: Comparison of Qwen2-VL’s Performance
on the POPE Benchmark Under Different Penalty
Strengths

In HallusionBench (HB), CARE achieves 5.53%
visually associated tokens (NVAT=1,757/31,778)
compared to 5.43% (NVAT=1,727/31,814) with-
out CARE. The MMHalBench (MB) results
show greater improvement: 1.41% visual associa-
tion (NVAT=50/3,546) with CARE versus 1.13%
(NVAT=42/3,715) in baseline. Notably, CARE re-
duces total token generation (TNTJ) while increas-
ing NVAT counts across both benchmarks.

The visual association gains correlate with
benchmark characteristics: HallusionBench shows
0.10% absolute improvement, while MMHalBench
achieves 0.28% gain. These results confirm
CARE’s adaptive capability in different task scenar-
ios through its penalty mechanism, which system-
atically enhances the density of visually relevant
tokens without expanding generation scale.

5 Limitations

This section outlines two primary limitations of the
CARE method. First, its performance optimization
through penalty mechanisms on non-visual tokens
reveals heterogeneous sensitivity across LVLMs.
For instance, Qwen2-VL experiences performance
collapse at a penalty intensity of 0.001, whereas
LLaVA-1.5 sustains superior performance even at
3.00. This divergence likely originates from archi-
tectural differences: Qwen2-VL’s dynamic rout-

in Multimodal Models. We use the following abbrevi-
ations: TNS (Total Number of Samples), TNT (Total
Number of Tokens), NVAT (Number of Visually Asso-
ciated Tokens), and ARVAT (Average Ratio of Visually
Associated Tokens). The leftmost column identifiers HB
and MB represent HallusionBench and MMHalBench,
respectively.

ing attention mechanism enables complex cross-
modal feature capture, contrasting with LLaVA-
1.5’s single-layer MLP design, resulting in stronger
modality coupling dependencies.

Second, the dual-path inference architec-
ture introduces computational overhead. With
num_beams=3, the system requires maintaining
six concurrent beam groups. Notably, counterfac-
tual path beams mask visual inputs, effectively re-
ducing the LVLM to an LLM, and terminate after
effect detection without final decoding participa-
tion. Although these beams incur lower computa-
tional costs than persistent factual beams, optimiza-
tion strategies may involve batched inference with
graph fusion techniques to merge beam groups and
reduce redundant computations.

6 Conclusion

This paper presents a novel decoding method for
LVLMs, referred to as CARE, which effectively
mitigates hallucination without requiring additional
training costs, data, or external knowledge. Build-
ing upon the latest research findings that hallucina-
tion is strongly correlated with powerful linguistic
priors, our key innovation lies in introducing a ro-
bust statistical effect detection mechanism. This
mechanism tracks whether each newly generated
token is visually associated and imposes penalties
on non-linguistic tokens to enhance the weight of
visual information, thereby achieving hallucination
suppression. Experimental results demonstrate that
CARE operates stably across LVLMs and signifi-
cantly reduces hallucination.
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A Theoretical Validation of the CARE
Method via Causal Inference

A.1 Identifiability Proof for Structural Causal
Models

Definition 1 (Structural Equations of Genera-
tion Process): Given visual encoder ¢ and linguis-
tic decoder 1), we formalize the structural equations
for the bimodal generation system:
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he = fo(V; L], he—1) + €
V=0¢(V)+e
L =¢(P) + -

®

where h; € R% denotes the hidden state at
timestep t. VV € R% represents visual feature vec-
tors. L € R% corresponds to linguistic feature
vectors. €} ~ N(0,X) characterizes hidden state
noise processes. €', e’ are independent feature
extraction noises satisfying €” 1L €”.

Theorem 1 (Causal Identifiability of Counter-
factual Intervention): The causal effect of inter-

vention do(V = 0) is identifiable when:

P(tf|do(V =0)) = [ P(halV =0.L k)

dP(L| )
(10)

where do(V = 0) implements null intervention on
visual pathway. hff denotes counterfactual hidden
states. The integral term captures marginal distri-
bution of linguistic features.

Proof: Through recursive expansion of hidden
state divergence:

t—1
Ihe = BTl < LIV + 3" Lhet (D)
k=1

where Ly is the Lipschitz constant of transition
function fjy. e?_ i accumulates historical noise im-
pacts. Geometric series convergence under Ly < 1
ensures hidden state stability.

A.2 Asymptotic Properties of Causal Effect
Estimation

Definition 2 (Potential Outcome Framework):
Define causal contrast:

AITE (w) = log P(w|hs) —log P(w|h’) (12)

Y1(0)

Yi(1)

where Y;(1) quantifies factual generation proba-
bilities. Y;(0) measures counterfactual generation
probabilities. ITE (Individual Treatment Effect)
captures individual-level causal effects.

Theorem 2 (Consistency of Doubly Robust
Estimation): Construct augmented inverse proba-
bility weighted estimator:

Yi(1)

Y(0)
1—7

+ (1

APV = - fuo)

(13)

s
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where 7 = P(V = 1|L, hy_1) estimates propen-
sity scores. fi, = E[Y;(v)|L, hy—1] specifies out-
come regression models. Doubly robust property
requires accurate estimation of either 7 or ji,.

A.3 Game-Theoretic Interpretation of
Dynamic Penalty Mechanism

Definition 3 (Bayesian Nash Equilibrium): For-
malize utility function for beam search candidates:

(w) =

where A regulates penalty intensity. [ controls
historical dependency decay rate. oy 1 -
1 > I(sU) > 7,) implements competitive suppres-
smn

Theorem 3 (Equilibrium Existence): Verify
Debreu-Fan-Glicksberg conditions:

U® = logit!y Nexp(—Bs™) - a;  (14)

92U @

—— = \3%exp —Bs(i) ~ap >0
0 (s(z))2 ( )-as

15)

where Non-negative second derivative ensures util-
ity function convexity. Compact strategy space
st e [0,1] satisfies topological compactness.
Continuous payoff function maintains mapping
continuity.

A4 Statistical Convergence of WMOM
Estimation

Theorem 4 (Exponential Concentration Inequal-
ity): For sub-Gaussian distributed effect estimates:

> (16)

202> w?

where o2 specifies sub-Gaussian parameter. w; =
exp(— d)

_ 2
P&~ A7 > €) < 2exp (—

Zexp( ") denotes normalized weights. d; =
]At — median(A;)| measures median-centered
distances.

A.5 Stochastic Process Analysis of Adaptive
Thresholding

Definition 5 (Threshold Dynamics): Establish
Ornstein-Uhlenbeck process:

dry = —a(1 — Too)dt + o dW, 17)
where 7., = E[MAD + ¢ defines equilibrium
point. o, = /(1 —a?)X, quantifies diffusion
coefficient. W; drives stochastic perturbations via

standard Brownian motion.
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Theorem 5 (Threshold Stability): Construct
Lyapunov function:

V()= (T —7)? = AV < —aV +C  (18)
where A represents infinitesimal generator. Coeffi-
cient C = (1 — a?)¥, characterizes noise intensity.

Negative drift term guarantees exponential conver-
gence in mean-square sense.

B Implementation Details

All experiments were conducted using a single
NVIDIA RTX 4090 GPU. To expedite the exper-
imental process, we employed flash attention-2
(Dao, 2024) acceleration technology, which sig-
nificantly enhances resource utilization and compu-
tational efficiency. For model deployment of both
Gemma 3 and Deepseek-R1, we utilized the user-
friendly Ollama framework on the NVIDIA RTX
4090 platform. The Deepseek-R1 model was im-
plemented using Ollama model ID 38056bbcbb2d,
while the Gemma 3 model corresponded to ID
a418f5838eaf.

C Extended Experiments

C.1 Deepseek-R1 and Gemma 3 Assisted
Evaluation

Deepseek-R1 (DeepSeek-Al et al., 2025) and
Gemma 3 (Gemma, 2025) were utilized to eval-
uate multiple LVLMs on HallusionBench, reveal-
ing critical insights into evaluation model selec-
tion. Experimental data show that, as shown in
Table 6, Deepseek-R1 improves the system accu-
racy of Gemma 3 by 8.2+3.2% (Pearson r=0.89,
p=9.15e-7<0.01) in the comprehensive benchmark
test, indicating that the ability of the evaluator is
closely related to the evaluation results.

Inter-model relative accuracy analysis shows
high ranking consistency across evaluators
(Kendall’s W=0.87), though Qwen2.5-VL exhibits
a 11.96% accuracy disparity between Beam
search results from Deepseek-R1 (62.27%) and
Gemma 3 (50.31%). The Qwen2-VL series
demonstrates greater robustness to evaluator
variations (A=4.25%) compared to Deepseek-VL.2
(A=14.44%).

While Gemma 3 maintains strong rank correla-
tion with Deepseek-R1 (Spearman p=0.92), signifi-
cant scoring discrepancies emerge in hard question
evaluations (5.5+4.3%). This necessitates high-
performance evaluators for fine-grained analyses,



though Gemma 3 retains ranking stability for rou-
tine testing (Mantel test p=0.0001). These find-
ings emphasize the need to integrate evaluator ca-
pability calibration into benchmark systems and
prioritize relative rankings over absolute scores in
cross-model comparisons.

C.2 POPE Evaluation on Hallucinations

The Polling-based Object Detection Evaluation
(POPE) (Li et al., 2023) is a method designed to
assess object-level hallucinations in large vision-
language models (LVLMs). It employs a question-
and-answer format, specifically asking questions of
the form "Is there an object in the image?"
and evaluates model performance based on its re-
sponses of yes or no. This approach assesses
whether the model can accurately associate given
images with specific objects. The POPE framework
consists of three distinct test components: Random,
Popular, and Adversarial. The Random component
evaluates object detection accuracy using randomly
selected objects from the COCO dataset. The Popu-
lar component focuses on assessing the existence of
frequently occurring objects in the COCO dataset.
The Adversarial component tests the model’s abil-
ity to detect objects that are highly semantically
related to those present in the image.

Based on the quantitative analysis results using
the POPE benchmark (Table 7), this paper conducts
a systematic investigation into the object hallucina-
tion suppression capabilities of the Qwen2-VL and
LLaVA-1.5 models, focusing on two key aspects:
decoding strategy optimization and architectural
differences. As illustrated in Figure 7, different
decoding strategies exhibit significant variations
in their impact on model performance. Moreover,
the compatibility between a model’s underlying ar-
chitecture and its decoding methodology plays a
direct role in determining hallucination suppression
effectiveness.

In the Qwen2-VL model, the Beam Search de-
coding strategy demonstrates a comprehensive per-
formance advantage. Specifically, under the Ran-
dom testing scenario, this strategy achieves optimal
results with an accuracy of 88.4% and an F1 score
of 87.7%, showcasing superior balance between
precision (96.4%) and recall (80.5%) compared to
other strategies. Notably, while the CARE method
slightly lags behind Beam Search in terms of accu-
racy (88.3%) and F1 score (87.5%), it attains the
highest precision level at 97.8%. This indicates that
the CARE method effectively reduces false posi-
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tives by incorporating a stricter mechanism for ob-
ject existence determination. Of particular concern
is the extreme divergence observed when employ-
ing Sample decoding, where the model exhibits a
precision of 98.1% and recall of 77.7%. This phe-
nomenon highlights potential issues with overly
conservative predictions that traditional probabilis-
tic sampling methods may introduce in object de-
tection tasks.

The LLaVA-1.5 model exhibits distinct response
characteristics in terms of decoding strategy opti-
mization. In the Random test, the CARE method
achieves a performance breakthrough with an ac-
curacy rate of 88.5% and an F1 score of 87.8%,
outperforming the OPERA method by 0.49% and
0.34%, respectively. This demonstrates its algo-
rithmic advantages in handling complex scenarios.
Notably, while the Beam Search strategy reaches
a peak recall rate of 81.0%, its precision (96.0%)
decreases by 0.007 percentage points compared
to the CARE method. This performance trade-off
reflects the fundamental differences between decod-
ing mechanisms in terms of their precision-recall
balance. In the Adversarial test, the overall perfor-
mance of the LLaVA-1.5 model lags behind that of
Qwen2-VL by approximately 3 percentage points,
a discrepancy that may stem from its visual en-
coder’s insufficient robustness against adversarial
interference.

Cross-model comparative analysis has revealed
two critical findings: First, Qwen2-VL demon-
strates significantly superior average accuracy
(85.6%-85.9%) compared to LLaVA-1.5 (82.6%-
83.8%) in adversarial testing, which is closely re-
lated to its enhanced design of multi-modal align-
ment mechanisms. Second, the CARE method
achieves a random testing accuracy of 88.5%
on LLaVA-1.5, surpassing Qwen2-VL’s 88.3%,
thereby demonstrating its architecture-agnostic ad-
vantage. Additionally, both models experienced a
decrease in precision during the Popular test, with
LLaVA-1.5 showing a significant drop of 2.1 per-
centage points. This indicates that high-frequency
objects with strong semantic associations remain
critical factors contributing to misjudgments. No-
tably, the data deficiency observed in Qwen2-VL’s
OPERA method may reflect challenges in its adap-
tation to novel model architectures, while CARE’s
consistent performance across both models pro-
vides empirical evidence for cross-platform deploy-
ment.



LVLMs Eval Model Decode QPA; FA; EQA; HQA; QA;
LLaVA-1.5 Gemma 3 Sample  7.25 1358 3473  31.86 36.85
LLaVA-1.6-Vicuna Gemma 3 Sample 791 1272 36.92 28.60  36.14
LLaVA-1.6-Mistral Gemma 3 Sample 8.57 15.03 37.80 28.37  38.26

Deepseek-VL Gemma 3 Sample 6.81 13.01 3231 30.00 35.96
Deepseek-VL2 Gemma 3 Sample  11.87 2225 3231 3558 3924
Phi-4 Gemma 3 Sample 17.36 2659 42.86 40.00 48.01
Qwen2-VL-Instruct Gemma 3 Sample 2132 29.77 46.37 40.23  49.16
Qwen2-VL Gemma 3 Sample 1451 23.99 4593 38.37  46.77
Qwen2.5-VL Gemma 3 Sample 17.80 29.48 42.86 41.86 4942
LLaVA-1.5 Gemma 3 Beam 7.91 14.45  37.58 3349  38.88

LLaVA-1.6-Vicuna Gemma 3 Beam 7.03 10.69 37.14 2744  36.58
LLaVA-1.6-Mistral Gemma 3 Beam 9.01 1445 41.32 28.84  40.04

Deepseek-VL Gemma 3 Beam 7.03 9.54 32.31 3326 37.02
Deepseek-VL2 Gemma 3 Beam 12.31 2197 33.19 36.74  40.57
Qwen2-VL-Instruct Gemma 3 Beam 1890 2948 4593 39.77  48.27
Qwen2-VL Gemma 3 Beam 18.68 28.32  47.69 42.09  49.07
Qwen2.5-VL Gemma 3 Beam 17.58 29.48  45.05 42.79  50.31
LLaVA-1.5 Deepseek-R1 ~ Sample 9.45 1532 41.76 35.81  43.67

LLaVA-1.6-Vicuna Deepseek-R1 ~ Sample 13.41 1532 4440 34.19  43.67
LLaVA-1.6-Mistral ~ Deepseek-R1 ~ Sample 1429 16.76  41.98 32.56 4376
Deepseek-VL Deepseek-R1 ~ Sample 9.89 13.87 41.98 30.23 4340
Deepsek-VL2 Deepseek-R1 ~ Sample  20.66 24.86 46.81 50.00  53.68

Phi-4 Deepseek-R1 ~ Sample 2242 2890 53.41 4279  54.65
Qwen2-VL-Instruct  Deepseek-R1 ~ Sample 27.69 31.50 58.46 45.12  57.57
Qwen2-VL Deepseek-R1 ~ Sample  22.86 2832  54.29 46.51 55.36
Qwen2.5-VL Deepseek-R1 ~ Sample  30.77 36.71  36.71 50.70  62.27
LLaVA-1.5 Deepseek-R1 Beam 1033 17.34  43.52 36.28 44.82

LLaVA-1.6-Vicuna  Deepseek-R1 Beam 9.45 14.16 4549 3047  43.58
LLaVA-1.6-Mistral ~ Deepseek-R1 Beam 11.21 1647 45.71 3140 4455
Deepseek-VL Deepseek-R1 Beam 7.47 10.98  38.90 3093  41.81
Deepseek-VL2 Deepseek-R1 Beam 20.88 2341 48.35 48.84  54.56
Qwen2-VL-Instruct  Deepseek-R1 Beam 26.81 33.82 57.36 4558 57.13
Qwen2-VL Deepseek-R1 Beam 2220 2948 51.21 46.28  53.32
Qwen2.5-VL Deepseek-R1 Beam 29.23  29.23  60.22 51.86 6227

Table 6: Deepseek-R1 and Gemma 3 assisted evaluation. We use the following abbreviations: QPA for Question
Pair Accuracy, AC for Figure Accuracy, EQA for Easy Question Accuracy, HQA for Hard Question Accuracy, and
QA for Question Accuracy.
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Figure 7: Results of hallucination evaluation on POPE. This analysis examines three levels across four aspects:
accuracy, precision, recall, and F1 score, under random testing, popular testing, and adversarial testing conditions. It
is important to note that larger radar charts indicate better performance.
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A Random Popular Adversarial
pproach
Accy Precy Recally F1;  Accy Prec; Recally, F1;  Accy Precy Recally F14
Q-Sample  0.877  0.981 0.777  0.867 0.87  0.961 0777  0.859 0.856 0.923 0.776  0.843
Q-Beam  0.884 0964 0805 0877 0877 0940 0.805 0.867 0.859 0902 0.805 0.851
Q-OPERA - - - - - - - - - - - -
Q-CARE 0883 0978 0.791 0.875 0.876 0952 0.7913 0864 0.859 00915 0.791  0.849
L-Sample 0.875 0969  0.783  0.866 0.859 0929  0.778 0.847 0.838 0.883 0.780  0.828
L-Beam  0.884 0960 0.810 0.878 0.860 0.903 0.807 0.852 0.826 0.840 0.805  0.822
L-OPERA  0.881 0.955 0.807  0.875 0.859 0.901 0.807 0.851 0.825 0.838 0.807  0.822
L-CARE 0885 0967 0804 0.878 0.860 0908 0800 0.851 0.826 0.844 0.798  0.821

Table 7: POPE evaluation on hallucinations.

LLaVA-1.5.

In the Approach column, Q denotes Qwen2-VL and L denotes

14



	Introduction
	Related Work
	Large Vision Language Models
	Hallucination in Large Vision Language Models
	Decoding Strategy in Large Vision Language Models

	Method
	Understanding Structural Causal Models (SCMs) and Counterfactual Interventions
	Dual-Path Dynamic Penalty Mechanism
	Effect Detection Based on Robust Statistics
	The CARE Decoding Strategy for Hallucination Mitigation

	Experiment
	Setup
	Quantitative Results
	Ablation Study on Hyper-parameters
	Dependency Assessment of Generated Tokens

	Limitations
	Conclusion
	Theoretical Validation of the CARE Method via Causal Inference
	Identifiability Proof for Structural Causal Models
	Asymptotic Properties of Causal Effect Estimation
	Game-Theoretic Interpretation of Dynamic Penalty Mechanism
	Statistical Convergence of WMOM Estimation
	Stochastic Process Analysis of Adaptive Thresholding

	Implementation Details
	Extended Experiments
	Deepseek-R1 and Gemma 3 Assisted Evaluation
	POPE Evaluation on Hallucinations


