
HiLD 2024: 2nd Workshop on High-dimensional Learning Dynamics

Langevin Learning Dynamics in Lazy
and Non-Lazy Wide Neural Networks

author names withheld

Under Review for the Workshop on High-dimensional Learning Dynamics, 2024
Abstract

Langevin dynamics—gradient descent with additive stochastic noise—provides a powerful frame-
work for learning dynamics in deep neural networks, bridging deterministic optimization and statis-
tical inference in deep neural networks. It has been shown to unify two prominent theories for wide
networks: the Neural Tangent Kernel (NTK), which assumes linearized gradient descent dynamics,
and the Bayesian Neural Network Gaussian Process (NNGP), which treats learning as posterior
inference. In this work, we extend the framework to compare lazy and non-lazy learning in linear
networks, analyzing how different parameters affect the learning dynamics of both the predictor
and the kernel in each regime. We show that in the non-lazy case, the network is more resilient to
noise and to small initial condition.

1. Introduction

The success of deep learning has spurred intense interest in understanding the underlying dynamics
of neural network training. A central challenge is to connect optimization algorithms with princi-
ples that govern statistical inference [17]. Langevin dynamics—gradient descent with additive noise
[8, 31]—provides a natural bridge between these perspectives, interpolating between initial learning
dominated by deterministic gradient and convergence to equilibrium equivalent to Bayesian infer-
ence. In this work, we use Langevin dynamics to study neural networks in the infinite width regime.
This framework was able to unify two prominent theoretical approaches to the kernel regime [1]:
the Neural Tangent Kernel (NTK) [15], which assumes linearized gradient descent, and the Neural
Network Gaussian Process (NNGP) [7, 16, 22, 32], which describes the long-time behavior domi-
nated by sampling from a posterior distribution. We extend the theory to compare learning in lazy
(kernel regime) and non-lazy (feature learning regime) [33, 34] networks under Langevin dynamics
in linear networks. We analyze how noise, initialization, and network scaling interact to shape the
input-output function dynamics.

2. Notations and Setup for the Dynamical Theory

We consider a fully connected DNN with an input x ∈ RN0 , L hidden layers. and a single output
f (i.e. the predictor). The input-output function is given by:

f(Θ,x) = N−γ
L a · xL(x), a ∈ RNL (1)

xl(x) = ϕ
(
N

−1/2
l Wl · xl−1 (x)

)
, xℓ ∈ RNℓ , ℓ = 1 . . . L (2)

Nl denotes the number of nodes in hidden layer l, and N0 is the input dimension. a ∈ RNL

denotes the linear readout weights and Wl ∈ RNl×Nl−1 denotes the hidden layer weights between
layers l− 1 and l. ϕ is an element-wise nonlinear function of the preactivation vector. The set of all

© .

SPECIFY RUNNING TITLE

network parameters are denoted collectively as Θ ≡
{
W1 . . .WL,a

}
. xl stands for the activations

of the neurons in the l-th layer, and x ∈ RN0 represents the input vector to the first layer of the
network (xl=0 ≡ x). The training data is a set of P labeled examples D : {xµ, yµ}µ=1,··· ,P where
xµ ∈ RN0 is a training data point, and yµ ∈ R is the target label of xµ. It is convenient to define
a vector that contains all the label values Y ∈ RP and a vector of the predictor values on all the
training points ftrain (t) ∈ RP , such that fµ

train = f(Θ,xµ). Importantly, in this work we consider
the infinite-width regime [16, 22, 32], namely N1, . . . NL → ∞, but finite P .

The normalization factor N−γ
L control the level of feature learning in the network, where γ =

1/2 (standard scaling) has been shown to have no feature learning in the infinite width limit [16].
In contrast γ = 1 (mean field scaling), has been shown to have strong feature learning, as the

readout weights a and the activations xL(x) are forced to align to fight the normalization factor.
We consider the following supervised learning cost function:

E (Θt|D) =
1

2

P∑
µ=1

(
fµ

train(t)− yµ
)2

+
T

2σ2
|Θt|2 (3)

We introduce the parameter Tσ−2 as controlling the relative strength of the first term (SE loss)
and the regularization term (weight decay) similar to [18, 21]. σ2 is equivalent to the variance of
the Gaussian prior in a Bayesian framework and T control the level of noise in the dynamics (see
below).

We consider gradient descent learning dynamics with an additive noise given by continuous-
time Langevin equation. The weights of the system start from an i.i.d. Gaussian initial condition
with zero mean and variance σ2

0 . The weights evolve under gradient descent with respect to the cost
function above with noise ξ: d

dt
Θt = −∇ΘE (Θt) + ξ (t) (4)

where ξ (t) has a white noise statistics ⟨ξ (t)⟩ = 0,
〈
ξ (t) ξ⊤ (t′)

〉
= 2ITδ (t− t′).

Given a distribution of initial weights, the Langevin dynamics defines a time-dependent poste-
rior distribution on weight space, Pt (Θ), which converges at long times to an equilibrium Gibbs
distribution, Peq(Θ) ∝ exp

(
− 1

T E(Θ)
)
.

3. Lazy Learning in Nonlinear Deep Network

We present here the results from [1], which used Markov proximal learning approach (see SI Sec.B)
to show that in nonlinear deep network in the lazy learning setup (γ = 1/2), the moments of the
predictor obey a set of integral equations. The equations describing the second moment for a general
nonlinearity are complex, and given in SI Sec. D. Here we bring the equations for the mean predictor
for train and test.

The mean predictor on the training inputs obeys the following integral equation

⟨ftrain (t)⟩ =
t∫

0

dt′KL
d

(
t, t′
) (

Y −
〈
ftrain

(
t′
)〉)

(5)

where the average on ⟨ftrain(t)⟩ is over all possible trajectories of the parameters, encompassing
both the randomness of the noise and the initial condition. The mean predictor on any test point x
is given by

2

SPECIFY RUNNING TITLE

⟨f (t,x)⟩ =
t∫

0

dt′kLd
(
t, t′,x

)⊤ (
Y −

〈
ftrain

(
t′
)〉)

(6)

The quantity KL
d (t, t

′) appearing in Eq.5, is a P × P matrix, KL
d,µν (t, t

′) = KL
d (t, t′,xµ,xν).

This matrix is defined via a time dependent Neural Dynamical Kernel (NDK) function [1], which is
for any two inputs

KL
d

(
t, t′,x,x′) = e−Tσ−2|t−t′| 〈∇Θf(t,x) · ∇Θf(t

′,x′)
〉
0

(7)

Where ⟨ ⟩0 denotes averaging over the time-dependent prior distribution, and is described in SI
Eq.59. The NDK has closed-form expressions for some nonlinearities such as ReLU and error
function, which are given in SI Sec. E (inspired by the static expressions for nonlinear kernels
[7, 32]). In Eq. 6, kLd (t, t′,x) ∈ RP×1 is a vector of the kernels of a test point with the training
data, such that kLd,µ (t, t

′,x) = KL
d (t, t′,x,xµ).

This set of equations has been shown to describe both the NTK theory in the limit of T →
0, t ∼ O(1) and the NNGP theory in the limit t → ∞. However, as previously discussed, in the
lazy learning regime the leading-order of the representations is not affected by learning, and an
analytical expression for the first-order correction for a general nonlinearity is still unknown.

In addition, characterizing feature learning dynamics in the nonlazy (mean-field) scaling regime,
γ = 1, remains challenging and has yet to be fully solved. Therefore, we focus on a simpler setting
that enables analytical derivation of a broader range of relevant quantities.

4. Langevin Dynamics in Linear Networks

We describe the dynamics of a linear network with one hidden layer and a single output, learning
with Langevin dynamics (Eq. 4). The dynamics of the vector a(t) and the matrix W(t) are given
by

d

dt
at =

(
1

N1−γ
Wtq1 −

1

N
WtΣW

⊤
t at

)
− Tσ−2at + ξa(t) (8)

d

dt
Wt =

(
1

N1−γ
atq

⊤
1 − 1

N
ata

⊤
t WtΣ

)
− Tσ−2Wt + ξW (t) (9)

Where NL ≡ N . To account for the different normalizations, we rescaled dt by a factor N2γ−1

as was previously suggested [5].
We define Σ = 1

N0

∑P
µ=1 xµx

⊤
µ ∈ RN0×N0 , the rank-P data covariance matrix, and the task

vector q1 = 1√
PN0

∑P
µ=1 xµyµ ∈ RN0 . ξa(t), ξW (t) are white noise terms similar to the ones

described in Sec.2. Generalizing methods from [28], we express Wt in the eigenbasis of Σ. For
simplicity, we assume here that Σ = IP×P , q2

1 = 1 (the general case is addressed in SI Sec.A).
We construct an orthonormal basis of q1...N0 , where q1 is the task vector. The decomposition is
Wt =

∑N0
n=1wn(t)q

⊤
n . We note that w1 plays a special role in the dynamics, as it is the pair of the

task vector q1 in the decomposition of Wt.
We derive scalar equations by projecting the vectors onto one another u(t) = 1

N ⟨a2(t)⟩, rnm(t) =
1
N ⟨wn(t) · wm(t)⟩, vn(t) = 1

Nγ
√
P
⟨wn(t) · at⟩. We note that u(t) and rnm(t) are self-averaging

3

SPECIFY RUNNING TITLE

and do not fluctuate, while vn(t) fluctuates in standard scaling but not in mean-field scaling, similar
to the predictor in each case. We can write the equations for all O(N2

0) variables (see SI Sec. A).
However, in the infinite-width limit with Gaussian initial conditions, only three variables participate
in the dynamics: u(t), r11(t), and v1(t). Moreover, r11(t) and u(t) follow the same equation with
identical initial conditions, allowing us to solve for just one of them (see SI Sec. A for details). As
a result, the system reduces to two nonlinear ODEs:

d

dt
v1 (t) = 2u (t) (1− v1 (t))− 2Tσ−2v1 (t) (10)

d

dt
u (t) = 2αN2γ−1v1 (t) (1− v1 (t)) + 2T

(
1− σ−2u (t)

)
(11)

4.1. The Predictor and Representations

The predictor on a general point x is dependent only on v1(t)

⟨f(x, t)⟩ = v1(t)

 1

N0

P∑
µ=1

(xµ · x)yµ

 = v1(t)feq (12)

Where feq is the usual predictor equilibrium given by the NNGP solution in linear networks. Thus
analysis of the dynamics of v1(t) is sufficient to understand the dynamics of the mean predictor.

In addition, we can look at the dynamics of the kernel as a means to understand the representa-
tions in the model:

Kµ,ν(t) = δµνσ
2
0 +

1

P
yµyν(u(t)− σ2

0) (13)

As was predicted before by equilibrium calculations [10, 19], there is a learned component
which is rank 1, and is dependent upon the deviation u(t) from its initial condition. From Eq.11,
we see that in the lazy regime, the change in u(t) from the initial condition is related to α, and thus
the learned component in the kernel is negligible. However, in the non-lazy case the deviation is
controlled by P , and thus not small in general.

4.2. Lazy Learning

For γ = 1/2, the factor N2γ−1 disappears. α = P/N → 0 in the infinite width limit, and thus the
equation for u(t) decouples from v1(t). Solving it yields

u (t) = σ2 +
(
σ2
0 − σ2

)
e−2Tσ−2t (14)

Which is the usual prior for lazy networks (see SI Eq.59). We can substitute u(t) in the equation
for v(t) and get a solution in terms of an integral (see SI Sec.D.2), which recovers the solution for
linear NDK of Eqs.5,6. In this limit of T → 0, we get the NTK solution of unit matrix kernel
v1(t) = 1− exp(−2σ2

0t)

4.3. Non-Lazy Learning

For γ = 1, we get the equations

d

dt
v1 (t) = 2u (t) (1− v1 (t))− 2Tσ−2v1 (t) (15)

4

SPECIFY RUNNING TITLE

Figure 1: Lazy and Non-Lazy Dynamics: (a) Comparison between lazy and non-lazy dynamics
for T = 0.2, P = 100, σ = σ0 = 1, and N = 104. In the non-lazy network, the
equilibrium depends on the ratio between P and T , leading to only a small deviation
from the zero-temperature equilibrium (v1 = 1 in this case). In contrast, in the lazy
network, the deviation is governed by the ratio between σ0 and T , and is therefore more
strongly influenced by the temperature. (b)T = 0.001, P = 100, σ = 1, σ0 = 0.3. In
non-lazy dynamics, only the initial slope is controlled by σ0, while the time constant is
related to P . In contrast, in the lazy regime, the time constant scales with σ0, resulting in
slower dynamics.

d

dt
u (t) = 2Pv1 (t) (1− v1 (t)) + 2T

(
1− σ−2u (t)

)
(16)

In general, this set of nonlinear ODEs needs to be solved numerically. However, for T = 0, we can
solve u (v) =

√
Pv2 + σ2

0 , and thus at low T , we can conclude that u(t → ∞) ∼
√
P , which is

in general much larger than σ2
0, σ

2, which determines the scale of u(t) in the lazy case. We note
that σ2

0 determines the timescale of convergence in the lazy case. However, in the non-lazy case,
the time scale is related to

√
P , where σ0 only determines the initial slope. Thus, if σ0 is small,

the lazy dynamics would be slow, while the non-lazy dynamics would be only slightly affected as
can be seen in Fig. 1a. In addition, if we consider a finite T , v1 = 1 is no longer the equilibrium
solution as the two terms of Eq.15 need to be balanced, and the ratio between them is proportional
to the ratio between u(t) and T . In the lazy case, the ratio between σ2 and T would determine the
equilibrium solution, where in the nonlazy case, the ratio between

√
P and T would determine the

equilibrium. Thus the nonlazy dynamics are less affected by finite noise.

5. Summary

This work develops a dynamical theory of Langevin learning in wide neural networks, for both the
lazy and non-lazy learning regimes. We extend current works on lazy nonlinear deep models, and
utilize simpler linear models to study how noise, initialization, and network scaling affect both the
predictor dynamics and kernel structure. We aim to extend the theory to study the temporal corre-
lations in the non-lazy regime. In the lazy regime, analyzing these correlations at equilibrium has
shed light on brain phenomena such as representational drift [1, 26]. Understanding how different
regularization schemes affect such phenomena remains an open question.

5

SPECIFY RUNNING TITLE

References

[1] Yehonatan Avidan, Qianyi Li, and Haim Sompolinsky. Unified theoretical framework for wide
neural network learning dynamics. Physical Review E, 111(4):045310, 2025.

[2] Juhan Bae, Paul Vicol, Jeff Z HaoChen, and Roger B Grosse. Amortized proximal optimiza-
tion. Advances in Neural Information Processing Systems, 35:8982–8997, 2022.

[3] Yasaman Bahri, Jonathan Kadmon, Jeffrey Pennington, Sam S Schoenholz, Jascha Sohl-
Dickstein, and Surya Ganguli. Statistical mechanics of deep learning. Annual Review of
Condensed Matter Physics, 11:501–528, 2020.

[4] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization. Operations Research Letters, 31(3):167–175, 2003.

[5] Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolu-
tion in wide neural networks. arXiv preprint arXiv:2205.09653, 2022.

[6] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali Tishby,
Leslie Vogt-Maranto, and Lenka Zdeborová. Machine learning and the physical sciences.
Reviews of Modern Physics, 91(4):045002, 2019.

[7] Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. Advances in neural
information processing systems, 22, 2009.

[8] William Coffey and Yu P Kalmykov. The Langevin equation: with applications to stochastic
problems in physics, chemistry and electrical engineering, volume 27. World Scientific, 2012.

[9] Dmitriy Drusvyatskiy and Adrian S Lewis. Error bounds, quadratic growth, and linear con-
vergence of proximal methods. Mathematics of Operations Research, 43(3):919–948, 2018.

[10] Kirsten Fischer, Javed Lindner, David Dahmen, Zohar Ringel, Michael Krämer, and Moritz
Helias. Critical feature learning in deep neural networks. arXiv preprint arXiv:2405.10761,
2024.

[11] Silvio Franz and Giorgio Parisi. Effective potential in glassy systems: theory and simulations.
Physica A: Statistical Mechanics and its Applications, 261(3-4):317–339, 1998.

[12] Silvio Franz, Giorgio Parisi, and Miguel Angel Virasoro. The replica method on and off
equilibrium. Journal de Physique I, 2(10):1869–1880, 1992.

[13] Marylou Gabrié, Andre Manoel, Clément Luneau, Nicolas Macris, Florent Krzakala, Lenka
Zdeborová, et al. Entropy and mutual information in models of deep neural networks. Ad-
vances in Neural Information Processing Systems, 31, 2018.

[14] Elizabeth Gardner. The space of interactions in neural network models. Journal of physics A:
Mathematical and general, 21(1):257, 1988.

[15] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31,
2018.

6

SPECIFY RUNNING TITLE

[16] Jaehoon Lee, Jascha Sohl-dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz, and
Yasaman Bahri. Deep neural networks as gaussian processes. In International Conference on
Learning Representations, 2018.

[17] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

[18] Qianyi Li and Haim Sompolinsky. Statistical mechanics of deep linear neural networks: The
backpropagating kernel renormalization. Physical Review X, 11(3):031059, 2021.

[19] Qianyi Li and Haim Sompolinsky. Globally gated deep linear networks. arXiv preprint
arXiv:2210.17449, 2022.

[20] Marc Mézard, Giorgio Parisi, and Miguel Angel Virasoro. Spin glass theory and beyond: An
Introduction to the Replica Method and Its Applications, volume 9. World Scientific Publish-
ing Company, 1987.

[21] Gadi Naveh, Oded Ben David, Haim Sompolinsky, and Zohar Ringel. Predicting the outputs
of finite deep neural networks trained with noisy gradients. Physical Review E, 104(6):064301,
2021.

[22] Radford M Neal. Priors for infinite networks (tech. rep. no. crg-tr-94-1). University of Toronto,
415, 1994.

[23] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and trends® in Opti-
mization, 1(3):127–239, 2014.

[24] Nicholas G. Polson, James G. Scott, and Brandon T. Willard. Proximal algorithms in statistics
and machine learning. arXiv preprint arXiv:1502.07944, 2015.

[25] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of math-
ematical statistics, pages 400–407, 1951.

[26] Michael E Rule, Timothy O’Leary, and Christopher D Harvey. Causes and consequences of
representational drift. Current opinion in neurobiology, 58:141–147, 2019.

[27] Luca Saglietti and Lenka Zdeborová. Solvable model for inheriting the regularization through
knowledge distillation. In Mathematical and Scientific Machine Learning, pages 809–846.
PMLR, 2022.

[28] Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.
URL https://arxiv.org/abs/1312.6120.

[29] Haozhe Shan, Qianyi Li, and Haim Sompolinsky. Order parameters and phase transitions of
continual learning in deep neural networks. arXiv preprint arXiv:2407.10315, 2024.

[30] Marc Teboulle. Convergence of proximal-like algorithms. SIAM Journal on Optimization, 7
(4):1069–1083, 1997.

7

https://arxiv.org/abs/1312.6120

SPECIFY RUNNING TITLE

[31] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688, 2011.

[32] Christopher Williams. Computing with infinite networks. Advances in neural information
processing systems, 9, 1996.

[33] Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay
Golan, Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized mod-
els. In Conference on Learning Theory, pages 3635–3673. PMLR, 2020.

[34] Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural
networks. In International Conference on Machine Learning, pages 11727–11737. PMLR,
2021.

8

SPECIFY RUNNING TITLE

Supplemental Information

Appendix A. Langevin Dynamics in Linear Networks

In this section, we derive the ODEs for a general data covariance matrix, which the results in Sec.4
are a special case. In linear networks with one hidden layer, the predictor is given by

fµ
t =

1

Nγ

(
Wxµ√
N0

)⊤
at (1)

Taking the gradient of the cost function (Eq.3) w.r.t. a,W, we get

d

dt
at =

(√
P

N1−γ
Wtq1 −

1

N
WtΣW

⊤
t at

)
− Tσ−2at + ξa(t) (2)

d

dt
Wt =

(√
P

N1−γ
atq

⊤
1 − 1

N
ata

⊤
t WtΣ

)
− Tσ−2Wt + ξW (t) (3)

The dynamics of a and wn

Where

Σ =
1

N0

P∑
µ=1

xµx
⊤
µ , q1 =

1√
N0P

P∑
µ=1

yµxµ (4)

Σ is a real symmetric matrix and thus can be diagonalized with real eigenvalues and orthonormal
eigenvectors. We denote its eigenvectors σ1...N0 , and eigenvalues λ1...P , and the rest are zero. We a
scalar overlap qn = σn · q1

We can span the N0 dimension of W on the eigenvectors

Wt =

N0∑
n=1

wn (t)σ
⊤
n (5)

The dynamics of a, wn are

d

dt
wn (t) =

1

N

(√
PNγqn − λn (at ·wn (t))

)
at − Tσ−2wn(t) + ξwn(t) (6)

d

dt
at =

1

N

(
√
PNγ

P∑
n=1

qnwn(t)−
P∑

n=1

λn (at ·wn(t))wn(t)

)
− Tσ−2at + ξa(t) (7)

where ξwn(t) = σn · ξW (t), and because σn are orthonormal, follow white noise statistics
(Eq.4).

We define new scalar variables, u(t) = 1
N ⟨a2(t)⟩, rnm(t) = 1

N ⟨wn(t) · wm(t)⟩, vn(t) =
1

Nγ
√
P
⟨wn(t) · at⟩, The equations for these variables are

d

dt
u (t) = 2αN2γ−1

P∑
n=1

vn (t) (qn − λnvn (t)) + 2T
(
1− σ−2u(t)

)
(8)

1

SPECIFY RUNNING TITLE

d

dt
rnm (t) = αN2γ−1 (vm (t) (qn − λnvn (t)) + vn (t) (qm − λmvm (t)))+2T

(
δnm − σ−2rnm(t)

)
(9)

d

dt
vn (t) =

(
P∑

m=1

(rnm (t) + δnmu (t)) (qm − λmvm (t)

)
− 2Tσ−2vn (t) (10)

Where we averages over the noise, and use the fact that the noise is only correlated with its own
variable with amplitude 2T .

We consider the initial condition in the infinite width limit

rnm (0) = δnmσ2
0, u (0) = σ2

0 vn (0) = 0 (11)

We look specifically on the case of orthogonal data, like the one described in Sec.4. For this sce-
nario, qn = δn,1,λn = 1. We can see that any vn(t) with qn = 0 won’t participate in the dynamics,
as there is a trivial solution of vn(t) = 0 for all times. Thus, in the case of orthogonal data, the vn(t)
that has any dynamics is v1(t). For the same reasons, only r11(t) has dynamics, the other diagonal
rnn(t) are static at σ2

0 and the off diagonal are zero.
We get the equations:

d

dt
v1 (t) = (u (t) + r11 (t)) (1− v1 (t))− 2Tσ−2v1 (t) (12)

d

dt
r11 (t) = 2αN2γ−1v1 (t) (1− v1 (t)) + 2T

(
1− σ−2r11 (t)

)
(13)

d

dt
u (t) = 2αN2γ−1v1 (t) (1− v1 (t)) + 2T

(
1− σ−2u (t)

)
(14)

But since the equations for r11(t) and u(t) are the same with the same initial condition, we can
infer that u(t) = r11(t), and get Eqs. 10, 11 from the main text.

Appendix B. Markov Proximal Learning

We introduce a Markov Proximal Learning (MPL) framework for learning dynamics in fully con-
nected Deep Neural Networks (DNNs). This method allows us to construct a dynamical mean field
theory for Langevin dynamics in the infinite width limit, and is a novel way to discritize Langevin
dynamics and formulate out-of-equilibrium statistical mechanics. We formally write down the
moment-generating function (MGF) of the predictor. We then use the well-known replica method in
statistical physics [12, 20], which has also been shown to be a powerful tool for deriving analytical
results for learning in NNs [3, 6, 13, 14, 27]. We analytically calculate the MGF after averaging
over the posterior distribution of the network weights in the infinite width limit, which enables us to
compute statistics of the predictor.

B.1. Definition of Markov Proximal Learning

We consider the network learning dynamics as a Markov proximal process, which is a generalized
version of the deterministic proximal algorithm ([23, 24]). Deterministic proximal algorithm with

2

SPECIFY RUNNING TITLE

L2 regularization is a sequential update rule defined as

Θt (Θt−1,D) = argmin
Θ

(
E (Θ|D) +

λ

2
|Θ−Θt−1|2

)
(15)

where λ is a parameter determining the strength of the proximity constraint. This algorithm has
been proven to converge to the global minimum for convex cost functions [9, 30], and many opti-
mization algorithms widely used in machine learning can be seen as its approximations [2, 4, 25].
We define a stochastic extension of proximal learning, the Markov proximal learning. This method
was also inspired by continual learning methods [29] and Franz-Parisi potential [11]. The process
is characterized by the following transition matrix

T (Θt|Θt−1) =
1

Z (Θt−1)
exp

(
−1

2
β

(
E (Θt) +

λ

2
|Θt −Θt−1|2

))
(16)

where Z (Θt−1) is the single-time partition function, which imposes normalization throughout the
Markov process, Z (Θt−1) =

∫
dΘ′ exp

(
−1

2β
(
E (Θ′) + λ

2 |Θ
′ −Θt−1|2

))
β is an inverse tem-

perature parameter characterizing the level of ’uncertainty’ and β → ∞ limit recovers the deter-
ministic proximal algorithm. We note that in the large λ limit, the difference between Θt and Θt−1

is infinitesimal, and Θt becomes a smooth function of continuous time, where the time variable is
the discrete time divided by λ.

The joint probability of the parameters is given by (Θ0,Θ1, ...,Θt).

P (Θ0,Θ1, ...,Θt) =

[
t∏

τ=1

T (Θτ |Θτ−1)

]
P (Θ0) (17)

where P (Θ0) is the distribution of the initial condition of the parameters.

B.2. Large λ Limit and Langevin dynamics:

We prove that in the limit of large λ and differentiable cost function this algorithm is equivalent
to Langevin dynamics. We define δΘt = Θt − Θt−1 . In the limit of large λ, we can expand the
transition matrix around δΘt = 0:

T (δΘt|Θt−1) ≈
(
λβ

4π

) d
2

exp

[
−λβ

4

∣∣∣∣δΘt +
1

λ
∇E (Θt−1)

∣∣∣∣2
]

(18)

δΘt|Θt−1 is a Gaussian random variable with the statistics:

⟨δΘt|Θt−1⟩ = − 1

λ
∇ΘE (Θt−1) (19)

var
(
δΘtδΘ

⊤
t′ |Θt−1

)
=

2

λβ
δt,t′I (20)

which is equivalent to Langevin dynamics in Itô discretization:

δΘt = (−∇ΘE (Θt−1) + ηt−1) dt (21)

with 〈
ηtη

⊤
t′

〉
=

2T

dt
δt,t′I, ⟨ηt⟩ = 0 (22)

where 1
λ = dt,β = 1

T .

3

SPECIFY RUNNING TITLE

Appendix C. The Statistics of the Predictor

C.1. Replica Calculation of the Moment-Generating Function of the Predictor

The transition density can be written using the replica method, where Z−1 (Θt−1) = limn→0 Z
n−1 (Θt−1),:

T (Θt|Θt−1) = lim
n→0

Zn−1 (Θt−1) exp

(
−1

2
β

(
E (Θt) +

λ

2
|Θt −Θt−1|2

))
(23)

= lim
n→0

n−1∏
α=1

∫
dΘα

t exp

(
−β

2

(
n∑

α=1

E (Θα
t) +

λ

2

n∑
α=1

∣∣Θα
t −Θn

t−1

∣∣2))

Here α = 1, · · · , n − 1 are the ’replicated copies’ of the physical variable {Θn
τ }τ=1,··· ,t. To

calculate the statistics of the dynamical process, we consider the MGF for arbitrary functions of the
trajectory g({Θn

τ }τ=0,···t)

M [ℓ] =

〈
exp

(∞∑
t=1

ℓtg
(
{Θn

τ }τ=0,...,t

))〉
Θ

(24)

=

∞∏
τ=0

∫
dΘτ

[∞∏
τ=1

T (Θτ |Θτ−1)

]
P (Θ0) exp

(∞∑
t=1

ℓtg
(
{Θn

τ }τ=0,...t

))

= lim
n→0

n∏
α=1

∞∏
τ=1

∫
dΘα

t

∫
dΘn

0P (Θn
0)

exp

(
−β

2

∞∑
τ=1

(
n∑

α=1

E (Θα
τ) +

λ

2

n∑
α=1

∣∣Θα
τ −Θn

τ−1

∣∣2)+

∞∑
t=1

ℓtg
(
{Θn

τ }τ=0,···t

))

We apply this formalism to the supervised learning cost function introduced in Eq.3 in the main
text.

E (Θt|D) =
1

2

P∑
µ=1

(f (xµ,Θt)− yµ)2 +
T

2σ2
|Θt|2 (25)

and the predictor statistics at time t, g({Θn
τ }τ=0,···t) = f (x,Θn

t) ,yielding

M [ℓ] = lim
n→0

n∏
α=1

∞∏
τ=1

∫
dΘα

τ

∫
dΘ0 exp

(
−β

4

∞∑
τ=1

n∑
α=1

(ftrain (Θ
α
τ)− Y)2 +

∞∑
t=1

∑
x

ℓt,xf (x,Θn
t)− S0 [Θ]

)
(26)

S0 [Θ] =
1

4

∞∑
τ=1

n∑
α=1

(
σ−2 |Θα

τ |
2 + λβ

∣∣Θα
τ −Θn

τ−1

∣∣2)+ 1

2
σ−2
0 |Θn

0 |
2 (27)

Where we define ftrain (Θ
α
τ) ≡

[
f
(
x1,Θα

τ

)
, · · · , f

(
xP ,Θα

τ

)]T ∈ RP a vector contains the
predictor on the training dataset, and Y ∈ RP such that Y µ = yµ. S0 [Θ] denote the Gaussian prior
on the parameters including the hidden layer weights and the readout weights.

4

SPECIFY RUNNING TITLE

To perform the integration over aατ , we use Hubbard-Stratonovich (H.S.) transformation and
introduce a new vector field vατ ∈ RP

M [ℓ] = lim
n→0

n∏
α=1

∞∏
τ=1

∫
dΘα

τ

∫
dvατ

∫
dΘ0 (28)

exp

(
− iβ

2

∞∑
τ=1

n∑
α=1

(
1√
NL

ftrain (Θ
α
τ)− Y

)⊤
vατ −β

4

∞∑
τ=1

n∑
α=1

|vατ |
2 +

∞∑
t=1

∑
x

ℓt,xf (x,Θn
t)− S0 [Θ]

)

Averaging over the readout weights:
We integrate over aατ . For convenience, we denote the set of all hidden layer weights collectively

as Wt =
{
Wℓ=1

t , . . . ,WL
t

}
, similar to the main text.

M [ℓ] = lim
n→0

∞∏
τ=1

n∏
α=1

∫
dvατ

∫
dWα

τ exp (−S [v,W]−Q [ℓ, v,W]− S0 [W]) (29)

S [v,W] =
β

4

 n∑
α,β=1

∞∑
τ=1

β

2
vα⊤τ mαβ

τ,τ ′K
L,αβ
τ,τ ′ (Wα

τ) v
β
τ ′ +

n∑
α=1

∞∑
τ=1

(vατ − 2iY)⊤ vατ

 (30)

and the source term action

Q [ℓ, v,W] =i
β

2

n∑
α=1

∞∑
t,τ=1

∑
x

vα⊤τ mαn
t,τ k

L,αn
t,τ (Wα

τ ,x) ℓt,x − 1

2

∞∑
t,t′=1

∑
x,x′

mnn
t,t′K

L,nn
t,t′ (Wn

τ ,x,x) ℓt,xℓt′,x′

(31)

Where mαβ
τ,τ ′ is a scalar function independent of the data, and represents the averaging w.r.t. to

the replica dependent prior S0 [Θ], such that
〈
(Θα

τ)i

(
Θβ

τ ′

)
j

〉
S0

= δijm
αβ
τ,τ ′

mαβ
τ,τ ′ =

m1
τ,τ ′ = σ̃2

(
λ̃|τ−τ ′| + γλ̃τ+τ ′

)
{α = β, τ = τ ′} ∪ {α = n, τ < τ ′} ∪ {β = n, τ > τ ′}

m0
τ,τ ′ = σ̃2

(
λ̃2λ̃|τ−τ ′| + γλ̃τ+τ ′

)
otherwise

(32)
Where we have defined new functions of the parameters for convenience,

λ̃ =
λ

λ+ Tσ−2
, σ̃2 = σ2 λ+ Tσ−2

λ+ 1
2Tσ

−2
, γ =

σ2
0

σ̃2
− 1 (33)

The time-dependent and replica-dependent kernels KL,αβ
τ,τ ′ ∈ RP×P , kL,αβτ,τ ′ (x) ∈ RP ,KL,αβ

τ,τ ′ (x,x)
defined as:

KL,αβ
τ,τ ′

(
x,x′) = 1

NL

(
xL
τ (x,Wα

τ) · xL
τ ′

(
x′,Wβ

τ ′

))
(34)

And KL,αβ
τ,τ ′ ∈ RP×P , kL,αβτ,τ ′ (x) ∈ RP are given by applying the kernel function on the training

data and test data, respectively.

5

SPECIFY RUNNING TITLE

Averaging over the hidden layer weights:
In the infinite width limit, the statistics of Wα

τ is dominated by its Gaussian prior (Eq.27) with
zero mean and covariance ⟨Wα

τW
β⊤
τ ′ ⟩ = mαβ

τ,τ ′I .Thus the averaged kernel function Kαβ
τ,τ ′ (Eq.34)

over the prior yields two kinds of statistics for a given pair of times {τ, τ ′}, which we denote as
K1,L

τ,τ ′ (x,x
′), and K0,L

τ,τ ′ (x,x
′) :

Kαβ
τ,τ ′ =

{
K1

τ,τ ′ {α = β, τ = τ ′} ∪ {α = n, τ < τ ′} ∪ {β = n, τ > τ ′}
K0

τ,τ ′ otherwise
(35)

And they obey the iterative relations:

K1,L
τ,τ ′
(
x,x′) = F

(
m1

τ,τK1,L−1
τ,τ (x,x) ,m1

τ ′,τ ′K
1,L−1
τ ′,τ ′

(
x′,x′) ,m1

τ,τ ′K
1,L−1
τ,τ ′

(
x,x′)) (36)

K0,L
τ,τ ′
(
x,x′) = F

(
m1

τ,τK1,L−1
τ,τ (x,x) ,m1

τ ′,τ ′K
1,L−1
τ ′,τ ′

(
x′,x′) ,m0

τ,τ ′K
0,L−1
τ,τ ′

(
x,x′)) (37)

K1,L=0
(
x,x′) = K0,L=0

(
x,x′) = Kin

(
x,x′) (38)

Kin

(
x,x′) = 1

N0

N0∑
i=1

xix
′
i (39)

where F
(〈
z2
〉
,
〈
z′2
〉
, ⟨zz′⟩

)
is a nonlinear function of the variances of two Gaussian variables

z and z′ and their covariance, whose form depends on the nonlinearity of the network [7]. As we see
in Eqs.36,37 these variances and covariances depend on the kernel functions of the previous layer
and on the replica-dependent prior statistics represented by m1,0

τ,τ ′ .
The MGF can be written as a function of the statistics of one of these kernels, and their dif-

ference, which we will denote as ∆L
τ,τ ′ (x,x

′) = λβ
2

(
K1,L

τ,τ ′ (x,x
′)−K0,L

τ,τ ′ (x,x
′)
)

. It is useful to

define a new kernel, the discrete neural dynamical kernel Kd,L
τ,τ ′ = limn→0

λβ
2

∑n
α=1m

nβ
τ,τ ′K

nβ,L
τ,τ ′ ,

which controls the dynamics of the mean predictor. It has a simple expression in terms of the kernel
K0,L

τ,τ ′(x,x
′) and the kernel difference ∆L

τ,τ ′ .

Kd,L
τ,τ ′
(
x,x′) = {0 τ ≤ τ ′

m1
τ,τ ′∆

L
τ,τ ′ (x,x

′) + λ̃|τ−τ ′|+1K0,L
τ,τ ′ (x,x

′) τ > τ ′
(40)

We integrate over the replicated hidden layers variables Wα
τ , which replaces the Wα

τ dependent
kernels with the averaged kernels. We thus get an MGF that depends only of the vατ variables

M [ℓ] = lim
n→0

n∏
α=1

∞∏
τ=1

∫
dvατ exp (−S [v]−Q [ℓ, v]) (41)

S [v] =
β

4

∞∑
τ=1

β

2

n∑
α,β=1

∞∑
τ ′=1

vα⊤τ m0
τ,τ ′K

0
τ,τ ′v

β
τ ′ +

2

λ

n∑
α=1

t−1∑
τ ′=1

vα⊤τ Kd
τ,τ ′v

n
τ ′ (42)

+
1

λ

n∑
α=1

vα⊤τ Kd
τ,τv

α
τ +

n∑
α=1

vα⊤τ (vατ − 2iY)

)

6

SPECIFY RUNNING TITLE

Q [ℓ, v] =
iβ

2

n∑
β=1

∞∑
t,τ ′=1

∑
x

ℓt,xm
0
t,τ ′k

0⊤
t,τ ′ (x) v

β
τ ′ +

i

λ

t∑
t,τ ′=1

∑
x

ℓt,xk
d⊤
t,τ ′ (x) v

n
τ ′ (43)

+
i

λ

n∑
β=1

∞∑
t=1

∞∑
τ ′=t+1

∑
x

ℓt,xk
d⊤
t,τ ′ (x) v

β
τ ′ −

∞∑
t=1

∑
x,x′

1

2
m1

t,t′ℓt,xℓt′,x′K1
t,t′
(
x,x′)

C.2. Integrate Out Replicated Variables vατ
We define a new variable uτ = λβ

2

∑n
α=1 v

α
τ , and integrate out vα ̸=n

τ . We obtain a simpler expres-
sion of the MGF which is no longer replica dependent (after taking the limit n → 0).

M [ℓ] =

∞∏
τ=1

∫
dvτ

∫
duτ exp (−S [v, u]−Q [ℓ, v, u]) (44)

S [v, u] =
1

2λ2

∞∑
τ,τ ′=1

u⊤τ

(
m0

τ,τ ′K
0
τ,τ ′ −

2

β
δτ,τ ′

(
I +

1

λ
Kd

τ,τ

))
uτ ′ (45)

+
1

λ

∞∑
τ=1

(
1

λ

τ−1∑
τ ′=1

Kd
τ,τ ′vτ ′ +

(
I +

1

λ
Kd

τ,τ

)
vτ − iY

)⊤

uτ

Q [ℓ, v, u] =
i

λ

∞∑
t=1

∑
x

ℓt,x

(∞∑
τ ′=1

m0
t,τ ′k

0⊤
t,τ ′uτ ′ +

t∑
τ ′=1

kd⊤t,τ ′vτ ′ +
2

λβ

∞∑
τ ′=t+1

kd⊤t,τ ′uτ ′

)
(46)

−
∞∑

t,t′=1

∑
x,x′

1

2
ℓt,xℓt′,x′m1

t,t′k
1
t,t′ (x,x)

C.3. Detailed Calculation of the Mean Predictor

To derive the mean predictor we take the derivative of the MGF w.r.t. ℓt,x:

⟨f (t,x)⟩ = ∂M [ℓ]

∂ℓt,x

∣∣∣∣
ℓt,x=0

(47)

which yields

⟨f (t,x)⟩ = 1

λ

t∑
t′=1

kd,L⊤t,t′ (x) ⟨−ivt′⟩ (48)

Furthermore, from the H.S. transformation in Eq.28, we can relate ⟨vτ ⟩ to the mean predictor on the
training data ftrain (t)

ivt = ftrain (t)− Y (49)

For all moments of ftrain (t). On the other hand we can get the statistics of ivt from the MGF in
Eq.44.

⟨ftrain(t)⟩ =
(
Iλ+Kd,L

t,t

)−1
t−1∑
t′=1

Kd,L
t,t′
(
Y −

〈
ftrain(t

′)
〉)

(50)

7

SPECIFY RUNNING TITLE

⟨f (t,x)⟩ = 1

λ

t∑
t′=1

kd,L⊤t,t′ (x) (Y − ⟨(ftrain)t′⟩) (51)

where Kd,L
t,t′ is a P × P dimensional kernel matrix defined as Kd,L

µν,t,t′ = Kd,L
t,t′ (x

µ,xν). Now
we can compute ⟨f (x,Θt)⟩ iteratively by combining Eqs.50,51.

C.4. Large λ Limit

All the results so far hold for any T and λ. Now, we consider the limit where the Markov proximal
learning algorithm is equivalent to Langevin dynamics in order to get expressions that are relevant
to a continuous time gradient descent. We consider λ → ∞ and tdiscrete ∼ O (λ), and thus define a
new continues time t = tdiscrete/λ ∼ O (1) . In this limit, the parameters defined in Eq.33 becomes

λ̃tdiscrete = e−Tσ−2t, σ̃2 = σ2, γ =
σ2
0

σ2
− 1 (52)

Taking the limit of large λ limit of Eq.44 is straightforward, and yields

M [ℓ] =

∫
Dv

∫
Du exp (−S [v, u]−Q [ℓ, v, u]) (53)

Where

S [v, u] =
1

2

∞∫
0

dt

∞∫
0

dt′m
(
t, t′
)
u⊤ (t)KL

(
t, t′
)
u
(
t′
)

(54)

+

∞∫
0

dt

 t∫
0

dt′KL
d

(
t, t′
)
v
(
t′
)
+ v (t)− iY

⊤

u (t)

and the source term action is

Q [ℓ, v, u] =i

∞∫
0

dt

t∫
0

dt′
(
KL

d

(
t, t′
))⊤

v
(
t′
)
ℓ (t) (55)

+ i

∞∫
0

dt

∞∫
0

dt′m
(
t, t′
) (

kL
(
t, t′
))⊤

u
(
t′
)
ℓ (t)

− 1

2

∞∫
0

dt

∞∫
0

dt′m
(
t, t′
)
kL
(
t, t′,x,x

)
ℓ (t) ℓ

(
t′
)

Where in the infinite width limit, we can identify v(t) with ftraim(t) by ivt = ftrain (t) − Y ,
which holds for all moments of ftrain(t).

For convenience, in the continuous time limit, we denote the NDK with a lower index d. The
NDK in Eq.40 can be rewritten as

KL
d

(
t, t′,x,x′) = m

(
t, t′
)
∆L
(
t, t′,x,x′)+ e−Tσ−2|t−t′|KL

(
t, t′,x,x′) (56)

8

SPECIFY RUNNING TITLE

with

∆L
(
t, t′,x,x′) = λ

2T

(
KL,1

(
t, t′,x,x′)−KL,0

(
t, t′,x,x′)) (57)

= Kd,L−1
(
t, t′,x,x′) K̇L

(
t, t′,x,x′)

m
(
t, t′
)
= σ2e−Tσ−2|t−t′| +

(
σ2
0 − σ2

)
e−Tσ−2(t+t′) (58)

Here the quantity m (t, t′) is the continuous time limit of m1
t,t′ . As defined in Eq.32, it represents

the covariance of the prior 〈
Θi

tΘ
j
t′

〉
0
= δijm

(
t, t′
)
,
〈
Θi

t

〉
0
= 0 (59)

.
The above calculation leads to the recursion relation:

KL
d

(
t, t′,x,x′) =m

(
t, t′
)
KL−1

d

(
t, t′,x,x′) K̇L

(
t, t′,x,x′) (60)

+ e−Tσ−2|t−t′|KL
(
t, t′,x,x′)

with initial condition

KL=0
d

(
t, t′,x,x′) = e−Tσ−2|t−t′|Kin

(
x,x′) (61)

Where Kin (x,x
′) was defined in Eq.39. We refer to this continuous time KL

d (t, t′,x,x′) as the
Neural Dynamical Kernel (NDK). Note that it follows directly from Eq.60 that

KL
d

(
0, 0,x,x′) = KL

NTK

(
x,x′) . (62)

For the mean predictor we use the results from the previous section Eqs.49,50,51, take the large
λ limit and turn the sums into integrals, we obtain

⟨ftrain (t)⟩ =
t∫

0

dt′KL
d

(
t, t′
) (

Y −
〈
ftrain

(
t′
)〉)

(63)

⟨f (t,x)⟩ =
t∫

0

dt′
(
kLd
(
t, t′,x

))⊤ (
Y −

〈
ftrain

(
t′
)〉)

(64)

as given in Eqs.5, 6 in the main text.

Appendix D. Second Moment

Our formalism allows for the derivation of higher moments of the predictor. In particular, we are
interested in the covariance ⟨δf (t,x) δf (t′,x′)⟩ ≡ ⟨f (t,x) f (t′,x′)⟩ − ⟨f (t,x)⟩ ⟨f (t′,x′)⟩. We
focus on the continuous time λ → ∞ limit described in Sec.C.4, which is equivalent to Langevin
dynamics. In order to calculate the second moment, we need to invert one time-dependent operator,
which we denote as B(t, t′) ∈ RP×P :

B
(
t, t′
)
= Iδ

(
t− t′

)
+KL

d

(
t, t′
)
, (65)

9

SPECIFY RUNNING TITLE

t∫
0

dτB (t, τ)B−1
(
τ, t′
)
= Iδ

(
t− t′

)
(66)

The full statistics of the Gaussian field v(t), u(t) can be written in terms of B−1(t, t′)

⟨v (t)⟩ = i

∫ t

0
dt′B−1

(
t, t′
)
Y (67)

〈
δv (t) δv⊤

(
t′
)〉

= −
∫ ∞

0
dτ ′
∫ ∞

0
dτB−1 (t, τ)m

(
τ, τ ′

)
KL

(
τ, τ ′

)
B−1

(
t′, τ ′

)
(68)〈

v (t)u⊤
(
t′
)〉

= B−1
(
t, t′
)

(69)

It is useful to separate the smooth part from the delta function in the inverse operator B−1(t, t′).
We denote the smooth function as J(t, t′) ∈ RP×P , which satisfies the following integral equation:

J
(
t, t′
)
=

{
KL

d (t, t′)−
∫ t
t′ dτK

L
d (t, τ) J (τ, t′) t ≥ t′

0 t < t′
(70)

B−1
(
t, t′
)
= Iδ

(
t− t′

)
− J

(
t, t′
)

(71)

We take the second derivative of the MGF (Eq.53):

〈
δf (x, t) δf

(
x′, t′

)〉
=

∂2M [ℓ]

∂ℓ (t,x) ∂ℓ (t′,x′)

∣∣∣∣
ℓ(t,x)=ℓ(t′,x′)=0

− ⟨f (x, t)⟩
〈
f
(
x′, t′

)〉
(72)

Which we can express in terms of J(t, t′) using the derived statistics of v(t),u(t)

〈
δftrain (t) δf

⊤
train
(
t′
)〉

= m
(
t, t′
)
KL

(
t, t′
)
−

t∫
0

dτ
[
J (t, τ)m

(
t′, τ

)
KL

(
t′, τ

)]
(73)

−
t′∫

0

dτ
[
J
(
t′, τ

)
m (t, τ)KL (t, τ)

]
+

t∫
0

dτ

t′∫
0

dτ ′
[
J (t, τ)m

(
τ, τ ′

)
KL

(
τ, τ ′

)
J
(
t′, τ ′

)]

10

SPECIFY RUNNING TITLE

〈
δf (t,x) δf

(
t′,x′)〉 = t∫

0

dτ

t′∫
0

dτ ′[kLd (t, τ,x)⊤
〈
δftrain (τ) δf

⊤
train

(
τ ′
)〉

kLd
(
t′, τ ′,x′)] (74)

+

t∫
0

dτ

τ∫
0

dτ ′[kLd (t, τ,x)⊤ J
(
τ, τ ′

)
m
(
t′, τ ′

)
kL
(
t′, τ ′,x′)]

+

t′∫
0

dτ

τ∫
0

dτ ′[m (t, τ) kL (t, τ,x)⊤ J
(
τ, τ ′

)
kLd
(
t′, τ ′,x′)]

−
t∫

0

dτ [kLd (t, τ,x)⊤m
(
t′, τ

)
kL
(
t′, τ,x′)]

−
t′∫

0

dτ [m (t, τ) kL (t, τ,x)⊤ kLd
(
t′, τ,x′)] +m

(
t, t′
)
KL
(
t, t′,x,x′)

The equation becomes simpler for the correlation with initial condition, achieved by plugging
t′ = 0 in Eq.74

〈
δf (t,x) δf

(
t′ = 0,x′)〉 = m (t, 0)KL

(
t, 0,x,x′)− t∫

0

dτ [kLd (t, τ,x)⊤m (τ, 0) kL
(
τ, 0,x′)]

(75)

+

t∫
0

dτ

τ∫
0

dτ ′[kLd (t, τ,x)⊤ J
(
τ, τ ′

)
m
(
τ ′, 0

)
kL
(
τ ′, 0,x′)]

We note that the mean predictor can also be written using the J(t, t′) operator:

⟨ftrain (t)⟩ =
t∫

0

dt′J
(
t, t′
)
Y (76)

⟨f (t,x)⟩ =
t∫

0

dt′

kLd (t, t′,x)⊤
I −

t′∫
0

dt′′J
(
t′, t′′

)Y (77)

Solving the integral equation for J(t, t′) for a general nonlinearity is complex. However, the
equations are tractable in two cases: Linear networks and the NTK limit (T → 0, t ∼ O(1)), which
are presented below.

D.1. The NTK Limit

The time dependence of all kernels arises from m(t, t′), and thus at the NTK limit, defined by
T → 0, t ∼ O(1), we can substitute all the kernels and temporal correlations with their values at

11

SPECIFY RUNNING TITLE

initialization, specifically KL
d (t, t

′) ≈ KL
NTK ,K(t, t′) = KGP0 ,m(t, t′) = σ2

0 . Solving J(t, t′)
with a constant NDK yields

J
(
t, t′
)
=

{
KNTK exp

(
−KL

NTK (t− t′)
)

t ≥ t′

0 t < t′
(78)

The only time dependence in the covariance equation (Eq.74) comes from J(t, t′), as the kernels
and m(t, t′) are constant. Performing the integral over the exponential J(t, t′) results in

lim
T→0

σ−2
0

〈
δf (t,x) δf

(
t′,x′)〉 = KL

GP0

(
x,x′)− kLGP0

(x) (KL
GP0

)−1kLGP0

(
x′) (79)

+
[(
I − exp

(
−KL

NTKt
))

(KL
NTK)−1kLNTK (x)− (KL

GP0
)−1kLGP0

(x)
]⊤

KL
GP0

·
[(
I − exp

(
−KL

NTKt′
))

(KL
NTK)−1kLNTK

(
x′)− (KL

GP0
)−1kLGP0

(
x′)]

D.2. Linear Network

For a linear network, the NDK can be written in terms of the sum of exponents (see Sec.E), and the
integral equations for the first and second moments are tractable. We can represent both of them in
terms of the function J(t, t′) (Eq.70)

J
(
t, t′
)
= KL

d

(
t′, t′

)
(80)

exp

(
− (L+ 1)

((
KL

GP + ITσ−2
) (

t− t′
)
+

1

2Tσ−2
KL

GP

L∑
n=1

L!

n! (L− n)!

γn

n

(
e−2Tσ−2nt′ − e−2Tσ−2nt

)))
Where KL

GP = σ2LKin, Kin is defined in Eq.39 and KL
d (t, t

′) is given in linear network in
Eq.86.

The mean predictor and the covariance can be calculated by substituting the expression for
J(t, t′) into Eqs.74, 77, leading to integrals that can be evaluated numerically, rather than integral
equations like in the nonlinear case.

Low T Limit:
We can further simplify the expressions by taking the limit of T → 0. In this limit, J(t, t′) is

singular around t = t′ and is given by

J
(
t, t′
)
= Tσ−2

(
Iδ
(
t− t′

)
+ Tσ−2

(
KL

d (t, t)
)−1 (

δ′
(
t− t′

)
+ (L+ 1) δ

(
t− t′

)))
(81)

Where δ(t − t′) and δ′(t − t′) are the Dirac delta function and its derivative, respectively. The
leading order in T of the mean predictor is

f (t,x) = kin (x)
⊤K−1

in

(
I − exp

(
− (L+ 1)σ2L

0 Kint
))

Y (82)

It is important to note that in a linear network, the NTK equilibrium identifies with the NNGP
equilibrium, and thus, the mean predictor dynamics are identical to the NTK dynamics, and reaches
equilibrium at t ∼ O(1).

The covariance equation in the low T limit take the following simple form〈
δf (t,x) δf

(
t′,x′)〉 = mL+1

(
t, t′
) [

Kin

(
x,x′)− kin (x)

⊤ (Kin)
−1 kin

(
x′)]

12

SPECIFY RUNNING TITLE

Appendix E. The Neural Dynamical Kernel

We focus on the continuous time limit derived above, and present several examples where the NDK
has explicit expressions, and provide proofs of properties of the NDK presented in the main text.
We have derived

KL
d

(
t, t′,x,x′) =m

(
t, t′
)
KL−1

d

(
t, t′,x,x′) K̇L

(
t, t′,x,x′) (83)

+ e−Tσ−2|t−t′|KL
(
t, t′,x,x′)

In order to complete the calculation of the NDK, we would provide explicit analytical expressions
for K(t, t′,x,x′) and K̇(t, t′,x,x′) in cases where they are available, namely linear activation, and
ReLU and error function nonlinearities.

E.1. Linear Activation:

For linear activation:
KL
(
t, t′,x,x′) = (m (t, t′))LKin

(
x,x′) (84)

K̇L
(
t, t′,x,x′) = I (85)

The recursion relation for the NDK can be solved explicitly, yielding

KL
d

(
t, t′,x,x′) = (m (t, t′))L (L+ 1) e−Tσ−2|t−t′|Kin

(
x,x′) (86)

The NDK of linear activation is proportional to the input kernel Kin (x,x
′) regardless of the

data. The effect of network depth only changes the magnitude but not the shape of the NDK. As a
result, the NNGP and NTK kernels also only differ by their magnitude, and thus the mean predictor
at the NNGP and NTK equilibria only differ by O (T). This suggests that the diffusive phase has
very little effect on the mean predictor in the low T regime, in linear network, as discussed in
Sec.D.2.

E.2. ReLU Activation:

For ReLU activation, we define the function J (θ) [7]:

J
(
θL
(
t, t′,x,x′)) = (π − θL

(
t, t′,x,x′)) cos (θL (t, t′,x,x′))+ sin

(
θL
(
t, t′,x,x′)) (87)

where the angle between x and x′ is given by :

θL
(
t, t′,x,x′) = cos−1

(
m (t, t′)√

m (t, t)m (t′, t′)

1

π
J
(
θL−1

(
t, t′,x,x′))) (88)

θL (t, t′,x,x′) is defined through a recursion equation, and

θL=0
(
t, t′,x,x′) = cos−1

(
m (t, t′)√

m (t, t)m (t′, t′)

Kin (x,x
′)√

Kin(x,x)Kin(x′,x′)

)
(89)

the kernel functions are then given by

13

SPECIFY RUNNING TITLE

K̇L
(
t, t′,x,x′) = 1

2π

(
π − θL

(
t, t′,x,x′)) (90)

KL
(
t, t′,x,x′) = √

Kin (x,x)Kin (x′,x′)

π2L
(
m (t, t)m

(
t′, t′

))L/2
J
(
θL−1

(
t, t′,x,x′)) (91)

We obtain an explicit expression for the NDK by plugging these kernels into Eqs.60,61.

E.3. Error Function Activation

For error function activation [32]:

KL
(
t, t′,x,x′) = 2

π
sin−1

(
2m (t, t′)KL−1 (t, t′,x,x′)√

(1 + 2m (t, t)KL−1 (t, t,x,x)) (1 + 2m (t′, t′)KL−1 (t′, t′,x′,x′))

)
(92)

K̇L
µν

(
t, t′,x,x′) =4

π

((
1 + 2m (t, t)KL−1 (t, t,x,x)

) (
1 + 2m

(
t′, t′

)
KL−1

(
t′, t′,x′,x′))

−4
(
m
(
t, t′
)
KL−1

(
t, t′,x,x′))2)−1/2

(93)

Again we can obtain an explicit expression for the NDK by plugging these kernels into Eqs.60,61.

E.4. NDK as a Generalized Time-Dependent NTK

In Eq.7 in the main text, we claimed that the NDK has the following interpretation as a generalized
two-time NTK

KL
d

(
t, t′,x,x′) = e−Tσ−2|t−t′| 〈∇Θtf (x,Θt) · ∇Θt′f

(
x′,Θt′

)〉
0
t ≥ t′ (94)

where ⟨·⟩0 denotes averaging w.r.t. the prior distribution of the parameters Θ, with the statistics
defined in Eq.59.

Now we provide a formal proof.
We separate ∇Θtf (x,Θt) into two parts including the derivative w.r.t. the readout weights at

and the hidden layer weights Wt

Derivative w.r.t. the readout weights:〈
∂atf (x,Θt) · ∂at′f (x,Θt′)

〉
0
= KL

(
t, t′,x,x′) (95)

Derivative w.r.t. the hidden layer weights:
We have

∂Wl
t
xL
t (x,Wt) =

1√
NL−1 · · ·Nl−1

ΠL
k=l+1

[
ϕ′
(
zkt

)
Wk

t

]
ϕ′
(
zlt

)
xl−1
t (96)

and〈
∂Wl

t
f (x,Θt) · ∂Wl

t′
f (x,Θt′)

〉
0

=
〈
N−1

L at · at′
〉 (

ΠL
k=l+1

〈
N−1

k N−1
k−1W

k
t ·Wk

t′

〉)(
ΠL

k=lK̇k
(
t, t′,x,x′))Kl−1

(
t, t′,x,x′)

= m
(
t, t′
)L−l+1

(
ΠL

k=lK̇k
(
t, t′,x,x′))Kl−1

(
t, t′,x,x′) (97)

14

SPECIFY RUNNING TITLE

To leading order in Nl the averages over a and W can be performed separately for each layer, and
are dominated by their prior, where each element of the weights is an independent Gaussian given
by Eq.27. The term m (t, t′) comes from the covariance of the priors in W and a, since there are a
total of L − l layers of W and one layer of a, we have m (t, t′)L−l+1. The kernel K̇k (t, t′,x,x′)
comes from the inner product between ϕ′ (zkt) and ϕ′ (zkt′), and the kernel Kl−1 (t, t′,x,x′) comes
from the inner product between xl−1

t and xl−1
t′ .

Using proof by induction as for the NTK [15], we obtain〈
∂Wtf (x,Θt) · ∂Wt′f (x,Θt′)

〉
0
= eTσ−2|t−t′|m

(
t, t′
)
K̇L
(
t, t′,x,x′)Kd,L−1

(
t, t′,x,x′)

(98)
Combine Eq.98 with Eq.95 and with the definition of KL

d (t, t′,x,x′) in Eq.60, we have

e−Tσ−2|t−t′| 〈∇Θtf (x,Θt) · ∇Θt′f
(
x′,Θt′

)〉
0
= KL

d

(
t, t′,x,x′) (99)

15

	Introduction
	Notations and Setup for the Dynamical Theory
	Lazy Learning in Nonlinear Deep Network
	Langevin Dynamics in Linear Networks
	The Predictor and Representations
	Lazy Learning
	Non-Lazy Learning

	Summary
	Langevin Dynamics in Linear Networks
	Markov Proximal Learning
	Definition of Markov Proximal Learning
	Large Limit and Langevin dynamics:

	The Statistics of the Predictor
	Replica Calculation of the Moment-Generating Function of the Predictor
	Integrate Out Replicated Variables v
	Detailed Calculation of the Mean Predictor
	Large Limit

	Second Moment
	The NTK Limit
	Linear Network

	The Neural Dynamical Kernel
	Linear Activation:
	ReLU Activation:
	Error Function Activation
	NDK as a Generalized Time-Dependent NTK

