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ABSTRACT

Large-scale datasets have been pivotal to the advancements of deep learning mod-
els in recent years, but training on such large datasets invariably incurs substantial
storage and computational overhead. Meanwhile, real-world datasets often con-
tain redundant and noisy data, imposing a negative impact on training efficiency
and model performance. Data selection has shown promise in identifying the most
representative samples from the entire dataset, which aims to minimize the perfor-
mance gap with reduced training costs. Existing works typically rely on single-
modality information to assign importance scores for individual samples, which
may lead to inaccurate assessments, especially when dealing with noisy or cor-
rupted samples. To address this limitation, we propose a novel CLIP-powered data
selection framework that leverages multimodal information for more robust and
generalizable sample selection. Specifically, our framework consists of three key
modules—dataset adaptation, sample scoring, and selection optimization—that
together harness extensive pre-trained multimodal knowledge to comprehensively
assess sample influence and optimize the selection results through multi-objective
optimization. Extensive experiments demonstrate that our approach consistently
outperforms existing state-of-the-art baselines on various benchmark datasets.
Notably, our method effectively removes noisy or damaged samples from the
dataset, enabling it to achieve even higher performance with less data. This in-
dicates that it is not only a way to accelerate training but can also improve overall
data quality. The implementation will be made publicly available soon.

1 INTRODUCTION

Recent advancements in deep learning have been propelled by increasingly large and complex mod-
els that utilize vast datasets to achieve start-of-the-art performance Liu et al. (2024b); Touvron et al.
(2023). However, this success normally comes with considerable costs for data storage and compu-
tational resources, which may even limit the deployment of models to specialized infrastructure and
hinder their scalability across different applications. Moreover, real-world datasets often contain
redundancy and noise, which can degrade the training efficiency and performance.

To alleviate the data redundancy issue and improve the training efficiency, there are typically two
kinds of methods, i.e., dynamic pruning and data selection. Dynamic pruning methods Raju et al.
(2021); Qin et al. (2024) aim to reduce training costs by dynamically selecting only the most influ-
ential samples from the dataset during training. Despite their effectiveness in accelerating training,
they still face the cost of large-scale data storage, and their selected samples often lack the ability
to generalize well across different training processes and architectures. In contrast, data selection
methods Paul et al. (2021); Yang et al. (2023b); Tan et al. (2024); Xia et al. (2023) pre-select a
fixed subset of the essential data points before the training begins, allowing the model to achieve
performance comparable to that obtained with the full dataset. By focusing on the most critical data
points, these methods ensure better generalization ability across various training scenarios.

Existing data selection methods typically employ carefully designed criteria via three perspectives:
importance scores Paul et al. (2021); Tan et al. (2024), image data distribution Zheng et al. (2023);
Xia et al. (2023), and optimization-based functions Killamsetty et al. (2021b); Yang et al. (2023b).
Although achieving promising results, these methods exhibit certain limitations. On one hand, re-
lying solely on single-modality image information can lead to ambiguities, especially when noisy
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Figure 1: Benefit of multimodal selection. Traditional single-modality approaches (upper part) may
struggle with noisy and corrupted data, while our multimodal method (lower part) identifies class-
representative samples with diversity while effectively filtering out noise and corrupted data.

samples are present, which may result in inaccurate assessments of a sample’s effect. For instance,
some methods employ difficulty-based criteria to select data; however, distinguishing between truly
difficult samples and noisy ones based solely on image modalities presents a significant challenge.
On the other hand, existing methods typically select samples with the highest or lowest scores, while
the interaction between high-score and low-score samples within a group can significantly influence
the overall performance, which is known as the ”group effect” Koh et al. (2019); Yang et al. (2023b).
Thus, a more beneficial approach is to leverage the power of multimodal information and evaluate
the collective effect of the sample group.

In this paper, we propose a CLIP-powered data selection framework that employs multimodal infor-
mation for more robust and generalizable data selection, where the category text serves as a strong
complement to the image modality and promotes overall performance. The framework consists of
three modules, namely dataset adaptation, sampling scoring, and selection optimization module.
First, the dataset adaptation module integrates image and text adapters to facilitate the transfer of
pretraining knowledge to the target data. Subsequently, the sample scoring module calculates the Se-
mantic Alignment Score (SAS) and Sample Diversity Score (SDS) based on the adapted multimodal
features, which measure the image-text alignment and the variability of local patterns. Using these
two scores together can select semantically representative samples while maintaining their inherent
diversity. Further, in order to address the group effect, we introduce a selection optimization module
to identify the ideal subsets w.r.t. the expected selection ratio through a multi-objective optimization
strategy. By leveraging the multi-modal information and carefully designed supervision signals, our
framework enables the selection of high-quality samples in a flexible and efficient manner.

Comprehensive evaluation across various benchmark datasets demonstrates that our approach ef-
fectively improves the performance of selected datasets, especially on large-scale datasets such as
ImageNet-1k Deng et al. (2009). Moreover, the selected datasets exhibit superior cross-architecture
generalization across ResNet-18/50 He et al. (2016), ViT Dosovitskiy et al. (2020), VGG-16 Si-
monyan & Zisserman (2014), etc. Notably, since most existing methods are not robust to more com-
plex and realistic scenarios, we further demonstrate the strong robustness of our approach in these
more challenging scenes. For instance, our proposed method can achieve an 8.13% improvement
in accuracy on CIFAR-100 and a 4.41% improvement on Tiny-ImageNet compared to the leading
baselines. Meanwhile, superior performance is achieved with very high efficiency compared to other
baselines.

The contributions of this work can be summarized as follows: 1) We analyze the drawbacks of pre-
vious works that rely solely on image modalities in depth, and propose a new CLIP-powered data
selection framework that leverages multimodal features for robust and generalizable data selection
for the first time. 2) Our framework comprises dataset adaptation and sample scoring modules to
foster multi-modality knowledge transfer and comprehensive sample importance evaluation. This
dual-modality design effectively removes noisy and corrupted samples from the dataset. 3) A se-
lection optimization module is designed to identify the optimal subsets w.r.t. the expected selection
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ratios through multi-objective optimization, which effectively addresses the group effect while main-
taining high efficiency. 4) Experimental results show that our method outperforms previous SOTA
approaches in terms of performance, cross-architecture generalization, and robustness to noisy and
corrupted images. Meanwhile, our approach achieves the best trade-off in performance and selection
efficiency, establishing a strong baseline of data selection for future research.

2 RELATED WORK

Date-efficient deep learning generally incorporates dynamic data pruning Qin et al. (2024); Raju
et al. (2021), data distillation Lei & Tao (2023); Du et al. (2023); Zhang et al. (2023); Cazenavette
et al. (2022), data condensation Liu et al. (2023); Yang et al. (2023a); Zhao & Bilen (2021), and
static data selection Xia et al. (2023); Tan et al. (2024); Yang et al. (2023b). Following the static
data selection, we propose a method capable of identifying representative and diverse samples across
various selection ratios. Data selection, or static dataset pruning, aims to identify and select the
most representative samples from training datasets. Training on these selected samples can achieve
comparable performance to that obtained with the full dataset while reducing training and storage
costs. Current data selection methods can be broadly divided into three categories: importance
criteria Paul et al. (2021); Tan et al. (2024), dataset distribution-based methods Xia et al. (2023);
Zheng et al. (2023), and optimization-based methods Nohyun et al. (2023); Yang et al. (2023c).

Selection with importance criteria is the most popular type. These methods typically involve
calculating importance scores for each sample and selecting samples based on these scores. For in-
stance, EL2N and GraNd score Paul et al. (2021) measure the importance by calculating the expec-
tation of the ℓ2-norm error vector and the expectation of the gradient norm, respectively. MoSo Tan
et al. (2024) calculates the change of the optimal empirical risk when removing a specific sample
from the training set. Forgetting Toneva et al. (2018) tracks the frequency with which a sample is
misclassified after being correctly classified during training. Similarly, Memorization Feldman &
Zhang (2020) assesses the impact of a sample’s presence or absence on the model’s ability to pre-
dict it correctly. While importance criteria-based methods are often computationally efficient, their
performance may be affected by the group effect Yang et al. (2023b;c) and may not generalize well
to complex, real-world scenarios Xia et al. (2023).

Dataset distribution-based methods select samples by analyzing the geometric distribution of
datasets. For instance, Herding Welling (2009) determines the sample importance according to
samples’ distance to their corresponding class centers. The work Ramalingam et al. (2023) applies
greedy k-center to select the coreset with good data coverage. D2 Maharana et al. (2023) calculates
and updates the difficulty scores of each sample by incorporating the difficulty of its neighboring
examples. Moderate-DS Xia et al. (2023) choose samples with closer distances to the median score,
while CCS Zheng et al. (2023) balances the data distribution and the sample importance in selection.

Optimization-based methods have been proposed to select samples through various optimization
techniques, such as temporal dual-depth scoring Zhang et al. (2024), gradient matching Mirza-
soleiman et al. (2020b); Killamsetty et al. (2021a), scalable self-supervised pruning metric Sorscher
et al. (2022), influence function Yang et al. (2023b); Pooladzandi et al. (2022), bi-level optimiza-
tion Killamsetty et al. (2021b), facility location function Mirzasoleiman et al. (2020a); Yang et al.
(2023d), and submodularity Iyer et al. (2021); Nohyun et al. (2023); Kothawade et al. (2022); Wei
et al. (2015). In contrast to these methods that only rely on image information, we leverage multi-
modal messages for data selection, which incorporates the semantic alignment between image data
and corresponding category information. This contributes to comprehensive assessments of sam-
ple effectiveness, particularly in complex scenarios where samples may be corrupted or wrongly
labeled.

3 THE PROPOSED METHOD

Our proposed method is summarized in Figure 2. The approach involves the use of the pretrained
vision-language foundation model CLIP to construct multimodal feature spaces. Nevertheless,
there may exist domain shifts or discrepancies between the pretrained training dataset and the tar-
get dataset Liu et al. (2024a); Alijani et al. (2024). To facilitate dataset adaptation and enhance
the learning of dataset-specific knowledge, we incorporate dimension-preserving adapters for both
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Figure 2: Our proposed method consists of dataset adaptation, sampling scoring, and selection
optimization modules. The dataset adaptation module is used to learn dataset-specific knowledge.
The sample scoring module computes two scores, SA and SD, to assess sample importance, based
on which the selection optimization identifies the optimal subsets w.r.t. the expected selection ratios.

modalities. Following this, two scores are derived to comprehensively assess the sample impor-
tance, i.e., the Semantic Alignment Score (SAS), denoted as SA, and the Sample Diversity Score
(SDS), denoted as SD. Furthermore, rather than solely based on sample scores for selection, we
design a multi-objective optimization to identify the optimal subsets w.r.t. the expected selection
ratios, which effectively mitigates the group effect. We provide the detailed methodology in the
subsequent sections.

3.1 DATASET ADAPTATION

To alleviate the domain shifts and discrepancies between the pretrained and target datasets, we in-
corporate dimension-preserving adapters to perform adaptation on the target dataset. The image and
text adapters are denoted as AI and AT , respectively. Both adapters are fine-tuned for knowledge
transfer while the pretrained CLIP weights are frozen. To maintain high efficiency, both adapters
utilize simple MLP.

Specifically, the fine-tuning process employs the InfoNCE loss Parulekar et al. (2023); Oord et al.
(2018), which maximizes the mutual information between the image and text representations. The
text representation describes the category information using the prompt: “A photo of [CLS]”, where
the token [CLS] represents the corresponding category. The loss ensures that the adapters effectively
align and capture the relevant features from both modalities. Furthermore, it enhances the model’s
ability to distinguish between positive and negative pairs, thereby improving the robustness and
accuracy of the deep representations for the specific dataset.

3.2 SAMPLE SCORING

For classification datasets, the learning process for training samples is intrinsically linked to acquir-
ing knowledge of the corresponding categories. A training sample that more accurately represents
its category is typically more effective in training deep networks. In this way, the Semantic Align-
ment Score (SAS) is designed to assess the semantic similarity between training samples and their
corresponding categories. Specifically, since image and text features reside within the same embed-
ding space Radford et al. (2021), the SAS is derived by calculating the cosine similarity between
the embedded image and corresponding textual deep descriptions. Accordingly, the SAS for the i-th
sample is defined as:

SAi = cos(AI(EI(Ii)), AT (ET (Ti))), (1)

where Ii is the i-th sample, Ti is the textual description of the corresponding category for Ii, EI

and ET are pretrained image and text encoders, respectively.

For selected datasets, the reduced data volume may limit the diversity of the selected data, which is
important for training datasets Yang et al. (2024). To address this, we introduce another diversity
perspective to comprehensively assess the effect of training data. The Sample Diversity Score
(SDS) is defined as the average distance between each sample and its k neighbor samples of the
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Figure 3: Illustration of the effectiveness of SAS and SDS. The circle and cross represent the normal
and noisy samples, respectively. Different colors correspond to the selection results. SDS (b) selects
diverse samples but may include noises. SAS (c) could avoid the noisy samples but potentially
miss broader category information. Using both scores (d) can select category-representative while
maintaining high diversity.

same class:

SDi =
1

k

∑
Ij∈KNN(Ii)

∥AI(EI(Ii))−AI(EI(Ij))∥, (2)

where we use the KNN algorithm to obtain the neighbor samples for each sample, the distance
metric is based on the ℓ2 norm, and k is usually set to 10% of the number of samples per class. In
this way, the SDS can be understood as the local density of training samples in the feature space. If a
sample has a larger number of neighbors with closer distances (i.e., lower SDS), its training efficacy
may be more easily substituted by other neighbor samples. Therefore, selecting samples with higher
SDS is generally more advantageous.

The effects of SAS and SDS are depicted in Figure 3. SDS contributes to the diversity of samples,
but the selected data points may contain noise (Figure 3(b)). On the other hand, SAS can select
samples that are semantically appropriate, as these points are basically around the sample center
(Figure 3(c)). However, these samples may be too concentrated and thus lack diversity. When using
SDS and SAS together (Figure 3(d)), we can cover the entire category space with fewer data and se-
lect samples that are both semantically representative and diverse, thereby boosting the effectiveness
of data selection.

3.3 SELECTION OPTIMIZATION

Instead of relying on combinatorial optimization functions for sample selection Killamsetty et al.
(2021b), our method determines the selection through SGD multi-objective optimization, which im-
proves computational efficiency and accelerates convergence. Specifically, we introduce a sample-
wise parameter d to denote the selection decision, where elements of 1 indicate the selection while
0 indicates otherwise. Although binary parameters are difficult to optimize in neural networks due
to the absence of gradient, we employ the sigmoid(·) function to push the continuous values of d
towards approximate binarization. After optimization, d is strictly binarized to explicitly indicate
the final sample selection. Initially, d is initialized with all 1s.

To guide the optimization process, we introduce three loss items. The first item, Lsa, is designed to
prioritize samples with high SAS since these samples are more representative of their corresponding
categories, which is defined as follows:

Lsa = − 1

N

N∑
i

sigmoid(d) ∗ SAi, (3)

where N is the total number of samples. Lsa punishes samples with low SAS and encourages the
selection of samples with better semantic alignment.

In addition, we introduce another loss term, Lsd, to encourage the selection of more diverse samples
characterized by higher SDS, which is defined as:

Lsd = − 1

N

∑
sigmoid(d) ∗ SDi. (4)

To mitigate the group effect, we optimize the selected datasets w.r.t. specific selection ratios, aim-
ing to identify the optimal subsets. We introduce a selection loss term, Ls, to ensure the selection

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

20 30 40 60 70 80 90 100
Selection Rate (%)

50

55

60

65

70

75

80

Te
st

 A
cc

ur
ac

y 
(%

)
Random
Herding
Forgetting
GraNd
EL2N
Self-sup.-selection
Moderate
Glister
CG-Score
MoSo
Ours

(a) CIFAR-100

20 30 40 60 70 80 90 100
Selection Rate (%)

25

30

35

40

45

50

Te
st

 A
cc

ur
ac

y 
(%

)

Random
Herding
Forgetting
GraNd
EL2N
Self-sup.-selection
Moderate
Glister
CG-Score
MoSo
Ours

(b) Tiny-ImageNet
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(c) ImageNet-1k

Figure 4: Illustrations of comparing our method with various data selection baselines on CIFAR-100
(a), Tiny-ImageNet (b), and ImageNet-1k (c).

process adheres to the target ratio. However, deriving exact selection rates from continuous real-
valued parameter optimization is difficult. While strictly binarized values facilitate explicit sample
selection, they are challenging to optimize through gradient backpropagation. To address this, we
utlize the straight-through estimator (STE) Bengio et al. (2013) to estimate the actual selection rate
and derive gradients. STE allows gradients to pass through the discrete decisions during backprop-
agation, effectively combining the benefits of both continuous and binary parameters for efficient
optimization and accurate sample selection. In this way, Ls is defined as:

Ls =

√√√√[
1

N

∑
i

STE [I (sigmoid(di)i > 0.5)]− sr

]2

, (5)

where I is an indicator function, and sr denotes the expected selection ratio. The loss term guides the
parameter d toward near-binary values, ensuring the count of ones aligns with the expected sample
size. Since the selection is guided by adaptive optimization, the final selection ratio may deviate
slightly from the target. To minimize this deviation, we constrain Ls with a threshold θ, which in
our work is set to 5 × 10−4, ensuring the actual selection ratio differs by less than ±0.05% from
the expected value. We also provide a theoretical analysis of θ on the actual selection ratio gap in
Appendix A. Finally, the overall loss function is formulated as:

L = Lsa + αLsd + βLs, (6)

where α and β are coefficients that adjust for numerical differences among the loss terms and can
be set conveniently. The complete workflow is outlined in Algorithm 1 in Appendix B.

Complexity Analysis The proposed method comprises three main components. 1) The dataset
adaptation involves fine-tuning the image and text adapters. Since the adapters consist of simple lin-
ear layers, the number of parameters is small, and both the forward passes and backward passes are
computationally efficient. 2) In the sample scoring process, the complexity of calculating the SAS
and SDS is O(N) and O(K ∗ fd), respectively, where K is the number of categories and fd is the
feature dimension, typically 512. The complexity of the KNN algorithm is O(Nk ∗fd), where Nk is
the number of samples per class. Given that K and fd are constants and Nk is usually much smaller
than N , the overall complexity of this process is approximately O(N). 3) The selection optimiza-
tion of d does not involve deep models and is a numerical optimization process. The complexity is
proportional to the number of parameters, i.e., O(|w|) = O(N).

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Baselines. We compare our proposed method with ten most representative SOTA baselines, i.e., (1)
Random, (2) MoSo Tan et al. (2024), (3) Glister Killamsetty et al. (2021b), (4) Herding Welling
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Table 1: Test accuracy (%) on Tiny-ImageNet. VGG-16 and DenseNet-121 are exploited.

Method / Selection Ratio VGG-16 Densenet-121
70% 80% 90% 100% 70% 80% 90% 100%

Random 47.39±2.72 49.38±0.23 51.15±0.64 57.23±1.08 59.55±0.20 60.78±0.18 61.03±0.22 62.22±0.23

EL2N 48.30±2.95 48.75±1.65 49.01±1.31 57.23±1.08 59.61±0.00 60.38±0.04 61.16±0.47 62.22±0.23

GraNd 50.79±1.26 46.84±1.38 54.73±0.49 57.23±1.08 59.62±0.02 60.84±0.09 61.10±0.05 62.22±0.23

MoSo 50.47±1.01 50.12±0.83 50.07±0.43 57.23±1.08 59.27±0.33 59.86±0.07 60.00±0.37 62.22±0.23

Herding 48.59±0.07 45.77±0.12 50.77±1.24 57.23±1.08 59.00±0.28 60.03±0.35 61.15±0.12 62.22±0.23

Glister 48.74±2.29 50.05±0.02 49.42±1.81 57.23±1.08 59.98±0.01 60.62±0.34 61.28±0.18 62.22±0.23

CG-Score 48.73±2.70 48.49±1.88 49.62±1.08 57.23±1.08 59.74±0.15 60.55±0.20 61.14±0.11 62.22±0.23

Self-sup. prototypes 48.38±1.38 49.98±1.49 54.71±0.84 57.23±1.08 59.56±0.03 60.22±0.12 60.91±0.29 62.22±0.23

Forgetting 47.50±2.43 48.59±1.77 49.82±0.62 57.23±1.08 58.54±0.15 60.39±0.46 61.12±0.10 62.22±0.23

Moderate-DS 50.78±0.93 49.31±0.41 49.25±0.77 57.23±1.08 59.41±0.18 60.42±0.14 61.44±0.11 62.22±0.23

Ours 53.40±3.20 52.25±0.58 56.34±2.93 57.23±1.08 60.12±0.06 60.93±0.03 61.59±0.03 62.22±0.23

Table 2: Experimental results (accuracy, %, mean ± std) on CIFAR-100 and Tiny-ImageNet with
noisy labels. 20% of labels are disturbed. We also report the numerical analysis of the proportion
(%) of noisy data in the selected CIFAR-100 datasets.

Method / Selection Ratio CIFAR-100 (label noise) Tiny-ImageNet (label noise) Noise ratios
20% 30% 20% 30% 20% 30%

Random 34.47±0.64 43.26±1.21 17.78±0.44 23.88±0.42 20.80 19.83
MoSo 31.01±0.67 43.73±0.14 21.55±0.37 27.80±0.16 7.78 8.82

Moderate-DS 40.25±0.12 48.53±1.60 19.64±0.40 24.96±0.30 0.30 0.31
Glister 28.51±1.46 43.16±1.31 21.61±0.19 25.45±0.23 21.21 21.95

Herding 42.29±1.75 50.52±3.38 18.98±0.44 24.23±0.29 35.00 30.56
Forgetting 36.53±1.11 45.78±1.04 13.20±0.38 21.79±0.43 23.00 21.76

GraNd 31.72±0.67 42.80±0.30 18.28±0.32 23.72±0.18 5.00 5.14
EL2N 29.82±1.19 33.62±2.35 13.93±0.69 18.57±0.31 22.00 21.80

Self-sup. prototypes 31.08±0.78 41.87±0.63 15.10±0.73 21.01±0.36 21.70 20.21
CG-Score 6.82±1.60 20.07±0.45 8.35±0.65 15.31±0.90 45.09 39.69

Ours 46.05±0.21 58.34±0.36 26.09±0.12 33.13±0.25 0.25 0.32

(2009), (5) Forgetting Toneva et al. (2018), (6) GraNd and (7) EL2N Paul et al. (2021), (8) Self-
sup.-selection (SSP) Sorscher et al. (2022), (9) CG-Score Nohyun et al. (2023), and (10) Moderate-
DS Xia et al. (2023).

Parameter settings. The parameters in our proposed method can be easily set. The coefficient α
is proportional to the expected selection rate sr, balancing the importance of dataset diversity, i.e.,
α can be set equivalent to sr. The coefficient β is set to 2 across datasets to adjust the numerical
differences among loss items. For more details, please refer to Appendix C.

4.2 COMPARISON WITH THE STATE-OF-THE-ARTS

Performance Comparisons Consistent with prior works Xia et al. (2023); Sorscher et al. (2022),
we report top-1 accuracy on CIFAR-100 and Tiny-ImageNet, and top-5 accuracy on ImageNet-
1k. Note that the methods Glister and CG-Score are not compared on ImageNet-1k due to the
heavy computation costs. Specifically, Glister obtains iterative solving of the bi-level optimization
problem Killamsetty et al. (2021b), while CG-Score involves the calculation of large Gram matrix
inversions, making them impractical for large-scale datasets.

As illustrated in Figure 4, our method consistently achieves the best accuracy across all datasets.
Particularly, on the more challenging Tiny-ImageNet and ImageNet-1k datasets, our approach out-
performs other methods by a notable margin. While existing approaches yield relatively marginal
accuracy improvements on the small-scale CIFAR-100 dataset, the gains brought by our method are
more substantial. Additionally, with relatively high selection ratios on these datasets, such as 90%,
our selected datasets exhibit nearly lossless or even higher performance compared with the original
full datasets and other baselines. The results indicate that our method can not only reduce training
costs but may also serve as a way for data cleaning.

Generalization Comparisons on Different Architectures In this section, we evaluate the gen-
eralization effectiveness of our selected datasets on deep architectures different from those used in
the selection process. Specifically, we employ the VGG-16 and DenseNet-121 models to train on
the selected datasets from Tiny-ImageNet. As shown in Table 1, the results indicate that our method
surpasses all baseline methods on both architectures, demonstrating its desirable architectural gen-
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Figure 5: Comparison of robustness to corrupted images.

Figure 6: Effectiveness vs. efficiency on C-
100. Results are reported with R-50 under
30% selection ratio on a 4-2080TI GPU.

(a) baseline
DI=3.0× 10−5

(b) 90% dataset
DI=4.3× 10−5

Figure 7: Visualization of the test set distri-
bution. DI: Dunn Index.

eralization ability. This suggests that the selected datasets are broadly applicable, irrespective of the
specific network architecture.

Training Efficiency Comparisons To evaluate the selection efficiency of various methods, we
present an analysis of the balance between effectiveness and efficiency. As shown in Figure 6,
our method presents the best performance with desirable efficiency. Herding, EL2N, and GraNd
obtain the lowest selection costs because they rely on predefined metrics or select samples in very
early training. Our method is slightly slower than theirs but exhibits higher accuracy. Compared
with the optimization-based approaches, like MoSo and Glister, our method enjoys both lower costs
and better performance. The results verify the effectiveness of our method in balancing selection
efficiency and accuracy.

4.3 COMPARISON OF ROBUSTNESS

Robustness on Noisy Labels Real-world datasets often involve label noise, where some sample
labels are incorrectly flipped, resulting in mislabeled data. Unfortunately, creating clean and diverse
datasets is time-consuming and expensive. Therefore, it is necessary to evaluate the performance of
selection methods under such complex scenarios. In this study, we introduce symmetric noises Li
et al. (2022) to generate mislabeled data on both C-100 and T-ImageNet, with a 20% noise rate.

As can be seen in Table 2, our approach exhibits superior robustness to noisy labels, significantly
outperforming other baselines by a large margin. Specifically, our approach yields improvements of
over 10.12% on CIFAR-100 and 4.41% on Tiny-ImageNet compared to previous leading methods.
Additionally, Table 2 shows the distribution of noisy data within the selected datasets, where our
method selects only 0.24% noisy samples, considerably fewer than other baselines. This reduction
in noise underscores the potential of our method to improve overall data quality.
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Table 3: Performance and saved costs
(%) on ImageNet-1k across Swin-T,
ViT-B, and ViT-L on a 4-A100-GPU
serve.

Model 80% 90% Full Data
ViT-B 81.13 81.46 81.46
ViT-L 84.37 84.74 84.59

Swin-T 78.05 78.63 78.31
Saved (%) 20.62% 10.31% -

Table 4: Generalization evaluation on more chal-
lenging ImageNet-1k benchmark datasets.

Dataset Model 80% 90% Full Data

ImageNet-Hard R-18 10.89 11.33 10.85
R-50 14.75 14.98 14.75

ImageNet-A R-18 1.65 2.04 1.12
R-50 3.17 3.31 3.09

ImageNet-R R-18 32.99 33.70 33.03
R-50 36.60 37.11 36.16

We argue that the robustness of our approach can be attributed to SA in Eq. 1, which assesses the
semantic alignment between image content and its labels. In the presence of label noise, this align-
ment is disrupted, resulting in a lower SAS, which in turn reduces the likelihood of such samples
being selected during optimization. In contrast, most baseline methods rely solely on image features
for selection, which may result in performance degradation when faced with noisy labels. In some
cases, the performance of these methods is even worse than that of random selection. While Mod-
erate also selects a relatively low proportion of noisy data, its performance is worse than ours. This
discrepancy highlights the effectiveness of our method in making more strategic selections in noisy
environments, thereby not only minimizing noises but also optimizing the selected datasets.

Robustness on Corrupted Images We further evaluate the performance of our proposed method
on real-world noise corruptions that are frequently encountered Singh et al. (2024). To simulate
such corruptions, we employ the following five types of realistic noises Xia et al. (2023), including
Gaussian noise, random occlusion, resolution, fog, and motion blur. The corruption rate is set to
5%, 10%, and 20%, respectively.

As shown in Figure 5, compared with prior baselines, our approach consistently presents greater
robustness to corrupted images across varying corruption rates, demonstrating strong generalization
in these challenging scenarios. Notably, even at a high corruption rate of 20%, our method maintains
desirable generalization performance. This robustness is primarily attributed to the integration of
text modality into the selection process, alongside the image modality. The SAS defined in Eq. 1
measures the alignment between the image features and their corresponding category features. When
images are corrupted, this alignment is disrupted, thereby reducing the SAS and correspondingly
decreasing the likelihood of selecting those images. In contrast, methods such as Forgetting tend to
prioritize difficult training samples, potentially making corrupted images more likely to be selected,
as these images are typically more difficult to correctly classify. As a result, these methods are less
robust to corrupted images, leading to a deterioration in generalization performance.

4.4 DATASET SELECTION IMPROVES GENERALIZATION

Visualization Analysis To demonstrate the generalization of the selected datasets, we train two
models using the original dataset and the selected dataset (90% selection ratio), respectively, and
obtain their embedding results on the CIFAR-10 test set. To visualize the dataset distribution, we
apply t-SNE to the embeddings generated by both models. The visualization in Figure 7 shows
that the model trained on the selected dataset produces better embedding results: a better inter-
cluster separation and intra-cluster compactness. For a quantitative analysis, we use the Dunn Index
(DI) Ncir et al. (2021) to evaluate the clustering results (the higher, the better). After removing 10%
of the data, the DI increases by 43%, presenting better clustering results.

Generalization to More Advanced Architectures We further employ the selected datasets to
train more advanced ViT-based architectures, including Swin Transformer, ViT-Base, and ViT-
Large. From Table 3, and corroborated by the results from previous sections, our selected datasets
consistently achieve lossless performance across both CNN-based and Transformer-based architec-
tures with reduced training costs. This demonstrates that our approach obtains highly generalizable
datasets applicable to a wide range of network architectures.

Generalization to More Challenging Benchmark Datasets To further evaluate the generaliza-
tion and robustness of models trained on our selected datasets, we conduct experiments using
ResNet-18 and ResNet-50 models, training on both the full datasets and our selected datasets.
These models are then tested on more challenging benchmarks, including ImageNet-Hard Taesiri
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Table 5: Evaluation of our components on CIFAR-100 (C-100) and Tiny-ImageNet (T-IN).

w/o adapter w/o Lsa w/o Lsd w/o Ls w/o adp&Lsa w/o adp&Lsd w/o adp&Ls w/o adp&Lsd&Lsa Ours
C-100 78.20±0.18 78.42±0.46 78.85±0.05 78.48±0.32 78.11±0.16 78.21±0.07 77.10±0.29 77.47±0.31 78.98±0.09
T-IN 46.68±0.12 46.79±0.39 49.14±0.09 46.01±0.38 47.23±0.06 46.70±0.33 45.79±0.11 45.69±0.10 49.30±0.12

et al. (2024), ImageNet-R Hendrycks et al. (2021a), and ImageNet-A Hendrycks et al. (2021b).
The results, shown in Table 4, demonstrate that models trained on our selected data consistently
exhibit superior generalization and robustness on these harder ImageNet benchmarks compared to
those trained on the original datasets. Notably, this improved performance is achieved with reduced
training costs, further highlighting the efficacy of our approach.

4.5 ABLATION STUDY

Effect of Dataset Adaptation To assess the effect of dataset adaptation, instead of using fine-
tuned image and text adapters, we directly utilize the per-trained CLIP model to derive the scores
SA and SD. The experimental results, presented in Table 5 with a 90% selection ratio, show a
significant decline in accuracy, with drops exceeding 2% on Tiny-ImageNet. Thus, dataset adapta-
tion is essential for effectively transferring the model’s generalization ability to target datasets. This
is particularly crucial for datasets that differ substantially from the pre-training datasets, such as
CIFAR, where variations in image sizes and domain are distinct.

Effect of Text Modality Previous works Xia et al. (2023) use the average image features as the
prototype and calculate the Euclidean distance between the embedded image and the corresponding
prototype, which is used to filter noisy labels Wu et al. (2021). To evaluate the effect of our text
modality, we also leverage this distance to assess the noisy samples and replace the text feature in
Eq. 1. With a 20% noisy ratio, the accuracy drops from 46.05% to 16.39% with a 20% selection ratio
and from 58.34% to 38.35% with a 30% selection ratio, validating the effectiveness of introducing
textual modality. Due to the limited space, full results can be seen in Appendix J.

Effect of Loss Terms In Table 5, we evaluate the effect of each loss term and their combination
in Eq. 6. The overall loss function achieves the highest accuracy. When Lsa is omitted, the selec-
tion process tends to prefer more diverse samples, but some class-representative samples may not
be selected, which deteriorates the model performance severely. Without Lsd, the selection empha-
sizes the most category-representative samples. Although the resulting performance drop is slightly
smaller, the diversity of the selected datasets is compromised. Therefore, the incorporation of Lsd

ensures a balanced representation of the selected dataset. Without Ls, since we can not obtain the
binarized selection decisions w.r.t. the expected selection ratios, we directly sort the scores in d and
select the samples with higher scores. However, this degrades our method into a totally score-based
selection and fails to address the group effect, leading to a noticeable drop in performance.

5 DISCUSSION AND CONCLUSION

Limitation and future work. In this section, we discuss some potential limitations and future
work for our method. 1). While the pretrained CLIP model contributes to selecting the most repre-
sentative samples, the potential biases in the CLIP model may propagate to the selected dataset Al-
abdulmohsin et al. (2024). Future work may explore bias mitigation strategies by fine-tuning CLIP
with bias-aware loss functions. 2). Our work primarily focuses on vision-based datasets for data
selection, using textual modalities to guide sample selection, where both modalities are balanced.
However, datasets with high modality imbalance may bring challenges since it is difficult to as-
sess the modality alignment. Thus, future work could consider leveraging dynamic modality weight
allocation mechanisms and augmentation strategies for modality-imbalanced dataset selection.

This paper proposes a novel CLIP-powered data selection framework that leverages multimodal in-
formation for more robust and generalizable sample selection. To achieve this, our proposed frame-
work incorporates three modules: dataset adaptation, sample scoring, and selection optimization
modules. These modules assess the data effectiveness in model training and optimize the selection
results w.r.t. the expected results. As a result, our framework is capable of selecting the most rep-
resentative samples with high diversity. Extensive experiments demonstrate the effectiveness and
efficiency of our approach, especially in terms of generalization performance on large-scale datasets
and robustness in more challenging scenarios, such as noisy and corrupted images.
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A ANALYSIS ON THE THRESHOLD θ

We present the relationship between the value of θ and the actual selection ratio gap. Suppose that

we have Ls =

√[
1
N

∑
i STE [I (sigmoid(di)i > 0.5)]− sr

]2 ≤ θ. Then, we have,

∥d∥1
N
≤ sr ± θ. (7)

In this way, the actual selection ratio can be constrained into the θ gap. We set θ as 5 × 10−4.
For instance, on CIFAR datasets with 50000 samples, if the expected selected number is 40000, the
actual selected number can be between 39975 and 40025.

B THE SPECIFIC ALGORITHM WORKFLOW

To better understand the workflow of our proposed method, we present the detailed algorithm in
Algorithm 1 below.

Algorithm 1 The general workflow.

Input: dataset D, total number of training samples N , total number of epochs T , selection ratio
sr, a threshold θ, the pretrained image and text encoders are EI and ET , the fine-tuned image
and text adapters are AI and AT , respectively.

1: d← 1
2: s← 0
3: for i=0:N-1 do
4: Calculate the SAS SA according to Eq. 1
5: Calculate the K neighbors x′ of xi using the KNN algorithm
6: Calculate the SDS SD according to Eq. 2
7: end for
8: for t=0:T-1 do
9: Calculate the loss Lsa according to Eq. 3

10: Calculate the loss Lsd according to Eq. 4
11: Calculate the pruning loss Ls according to Eq. 5
12: Calculate the overall loss L according to Eq. 6
13: Update d based on the loss L and SGD with momentum
14: if Ls ≤ θ then
15: break
16: end if
17: end for
18: Return d

C IMPLEMENTATION DETAILS

Datasets and network architectures. Consistent with previous works Tan et al. (2024); Xia
et al. (2023); Zheng et al. (2023), we evaluate the effectiveness of our proposed method on vari-
ous popularly used benchmark datasets, including CIFAR-10/100 Krizhevsky et al. (2009), Tiny-
ImageNet Chrabaszcz et al. (2017), and ImageNet-1k Deng et al. (2009). To evaluate the gener-
alization performance of our selected datasets, we study the effectiveness of our proposed method
on a wide range of network architectures, including ResNet-18/50 He et al. (2016), Vision Trans-
former (ViT) Dosovitskiy et al. (2020), Swin-Transformer Liu et al. (2021), VGG-16 Simonyan &
Zisserman (2014), and DenseNet-121 Huang et al. (2017).

Training on The Selected Datasets Closely following previous works Xia et al. (2023); Yang
et al. (2023c); Sorscher et al. (2022), for experiments on CIFAR-10/100, we adopt a batch size of
128, an SGD optimizer with a momentum of 0.9, weight decay of 5e− 4, an initial learning rate of
0.1, and a total training epoch of 200. The learning rate is divided by 5 after the 60th, the 120th,
and the 160th epoch. For experiments on Tiny-ImageNet, we adopt a batch size of 256, an SGD
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optimizer with a momentum of 0.9, a weight decay of 1r-4, an initial learning rate of 0.1, and a total
epoch of 90. The learning rate is divided by 10 after the 30th and the 60th epoch. For experiments
on ImageNet-1k, following Xia et al. (2023); Sorscher et al. (2022), the VISSL library Goyal et al.
(2021) is exploited. We adopt a base learning rate of 0.01, a batch size of 256, an SGD optimizer with
a momentum of 0.9, a weight decay of 1e-3, and a total epoch of 105. All experiments are conducted
by three individual runs with different random seeds, while on ImageNet-1k, due to the huge training
costs, the experiment in each case is performed once. Unless specified, the network architecture used
is the ResNet-50 model. All hyperparameters and experimental settings for training on different
selected datasets are kept the same.

Fine-tuning the Adapters We adopt the initial learning rate of 1 × 10−4, the Adam optimizer
with a step size of 30 epochs, a decay factor of 0.1, and a total epoch of 30. The batch size is set to
256 on CIFAR-10/100, 64 on Tiny-ImageNet, and 512 on ImageNet-1k.

Selection Optimization We adopt an SGD optimizer with a momentum of 0.9, an initial learning
rate of 1 × 10−3, and a total training iteration of 1 × 105. Since this optimization merely involves
numerical optimization on parameter d using vanilla SGD without introducing any deep networks,
the optimization can be very efficiently completed.

D EXPERIMENTAL RESULTS ON CIFAR-10

Table 6: Test accuracy (%) on CIFAR-10 with ResNet-50.

Method / Selection ratio 20% 30% 40% 60% 70% 80% 90% 100%
Random 84.12±1.53 90.34±0.39 92.71±0.38 94.43±0.37 95.02±0.29 95.55±0.14 95.89±0.11 96.12±0.12

EL2N 70.32±0.74 87.48±0.80 89.23±0.61 94.43±0.27 95.17±0.27 95.55±0.18 96.01±0.20 96.12±0.12

MoSo 83.33±0.47 89.17±0.14 92.47±0.14 94.69±0.20 95.50±0.00 95.93±0.01 96.26±0.02 96.12±0.12

GraNd 79.23±0.84 87.88±0.90 92.17±0.73 94.14±0.47 95.19±0.12 95.35±0.38 95.96±0.05 96.12±0.12

Glister 79.23±0.55 87.88±0.49 92.17±0.34 95.03±0.13 95.61±0.05 95.98±0.17 96.34±0.02 96.12±0.12

Herding 78.42±0.78 87.77±0.66 89.40±0.54 89.12±0.35 92.11±0.13 93.92±0.36 95.50±0.13 96.12±0.12

CG-Score 80.50±1.23 89.35±0.87 92.73±0.37 95.19±0.23 95.87±0.17 95.99±0.16 96.16±0.15 96.12±0.12

Forgetting 67.58±1.05 88.12±1.40 93.61±0.87 95.17±0.25 95.85±0.20 95.46±0.27 95.85±0.37 96.12±0.12

Moderate-DS 81.75±0.38 90.94±0.27 92.79±0.31 94.69±0.24 95.26±0.30 95.73±0.19 96.17±0.15 96.12±0.12

Self-sup. prototypes 84.60±1.01 90.07±1.14 92.64±0.93 94.42±0.72 94.98±0.61 95.87±0.53 95.95±0.44 96.12±0.12

Ours 85.70±0.06 91.10±0.26 93.89±0.13 94.85±0.06 95.43±0.21 96.11±0.18 96.53±0.12 96.12±0.12

Due to the space constraint on the main paper, we provide the experimental results on CIFAR-10
in Table 6. It can be seen that our proposed method achieves superior performance across vari-
ous selection ratios on CIFAR-10. Since CIFAR-10 is relatively simple to classify for ResNet-50
models, various methods show only marginal accuracy differences, particularly at higher selection
ratios. However, our method consistently outperforms existing baselines by a relatively larger mar-
gin. This highlights the effectiveness of our multimodal data selection strategy in improving model
performance.

E GENERALIZATION ON VISION TRANSFORMER

To further demonstrate the generalization performance of our method on various architectures, we
employ the Vision Transformer. The implementation is based on the public Github repository 1.
Specifically, we utilize the ViT-small to train on the selected datasets. The experimental results are
presented in Table 7. It can be observed that our method achieves the best performance compared to
other baselines using ViT, validating the superior generalization performance on ViT architectures.
Combined with the results on VGG-16 and DenseNet-121 in Section 4.2, we demonstrate that our
selected datasets obtain a wide range of applications regardless of specific architectures.

1https://github.com/kentaroy47/vision-transformers-cifar10
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Table 7: The test accuracy (%) on CIFAR-10 with ViT-small.

Method/Selection Ratio 60% 70% 80% 90% 100%
Random 78.98±0.28 80.30±0.36 81.33±0.10 82.63±0.18 84.00±0.32

EL2N 79.35±0.09 80.73±0.08 81.62±0.08 82.90±0.09 84.00±0.32

MoSo 79.45±0.11 80.27±0.23 81.82±0.15 82.92±0.34 84.00±0.32

GraNd 79.22±0.06 80.59±0.19 81.53±0.18 82.72±0.08 84.00±0.32

Glister 78.33±0.01 79.84±0.27 81.33±0.05 82.65±0.09 84.00±0.32

Herding 76.08±0.19 78.53±0.45 80.31±0.01 82.08±0.02 84.00±0.32

CG-Score 79.09±0.29 80.96±0.05 82.02±0.23 82.91±0.05 84.00±0.32

Forgetting 77.87±0.32 80.86±0.08 81.90±0.31 82.69±0.20 84.00±0.32

Moderate-DS 79.54±0.19 81.28±0.13 81.98±0.16 82.61±0.27 84.00±0.32

Self-sup. prototypes 79.24±0.16 80.34±0.21 81.66±0.25 82.86±0.19 84.00±0.32

Ours 80.21±0.10 82.13±0.23 82.32±0.29 84.26±0.05 84.00±0.32

F IMPLEMENTATION DETAILS OF TRAINING VIT-BASED MODELS ON
IMAGENET-1K

We train ViT-Base and ViT-Large on the selected ImageNet-1k datasets based on the implementa-
tion of He et al. (2021), and we train Swin Transformer based on the implementation of Liu et al.
(2021). Specifically, we fine-tune the pre-trained ViT-B and ViT-L with a batch size of 32, a base
learning rate of 5e − 4, a layer decay of 0.65, and a weight decay of 0.05. We fine-tune the Swin
Transformer with a weight decay of 1e − 8, a base learning rate of 2e − 5, a warmup learning rate
of 2e− 8, and a batch size of 64.

G COMPARISON OF ACTUAL SELECTION COSTS

Table 8: Comparison of actual selection costs (h) of various methods.

Method Random Herding MoSo Moderate Glister CG-Score Forgetting GraNd EL2N SSP Ours
CIFAR-10 0 0 2.21 0.75 2.55 1.24 1.23 0.12 0.12 2.69 0.40

Tiny-ImageNet 0 0 3.17 1.50 5.75 0.15 2.16 0.21 0.21 5.14 0.76

In Section 4.2, we present the comparison of tradeoffs in effectiveness and efficiency. In this section,
to better understand the actual high efficiency of our method, we further present a direct compar-
ison of the actual selection costs of different selection methods. The devices used are 4 NVIDIA
RTX2080TI GPUs and an Inter(R) CPU E5-2678 @ 2.50GHz. We report the average costs across
five independent runs and various selection ratios in Table 8, consisting of the costs of both fine-
tuning the adapter and selection optimization. Consistent with the complexity analysis in Section 3,
our approach achieves a superior efficiency compared to other baselines.

H TRADEOFF BETWEEN THE SELECTION COSTS AND ACCURACY

Figure 8: Relationship between accu-
racy and actual training costs.

In this section, we present the tradeoff between ac-
curacy and training costs across various selection ra-
tios on CIFAR-100. The devices used are 2 NVIDIA
RTX2080TI GPUs and an Intel(R) CPU E5-2678 @
2.50GHz. The results are presented in Figure 8, where
the baseline model uses the original dataset for training.
It can be seen that with the increase in the selection ratios,
the training costs approximate that of the baseline model.
Notably, when the selection ratios are above 80%, the se-
lected datasets can achieve lossless accuracy with lower
training costs.

It is important to emphasize that the practical gains from
this approach are particularly significant in scenarios re-
quiring the training of numerous models, such as neural architecture search (NAS) Ren et al. (2021);
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Zoph et al. (2018). In such applications, the reduction in training time and computational resources
can result in substantial efficiency improvements, further amplifying the impact of our data selection
framework.

I MORE ANALYSIS ON THE THRESHOLD θ

Table 9: Effect of the threshold θ on Tiny-ImageNet.

θ 60% 70% 80% 90% 100%
5× 10−4 44.29% 46.02% 47.41% 49.30% 49.36%
5× 10−5 44.25% 45.98% 47.86% 49.17% 49.36%

Threshold θ adjusts the gap between the actual and expected selection ratios. Employing a smaller
θ makes weights d closer to the expected selection ratios while may increase the training costs for
convergence. In our main results, we typically set θ as 5 × 10−4. In this section, we employ a
smaller threshold on Tiny-ImageNet, i.e., 5 × 10−5, which indicates that the difference in the final
sample numbers is less than 5. In Table 9, we select 60%-90% of the data from Tiny-ImageNet. It
can be seen that the performance is robust to the change in θ. With a tighter bound, the performance
exhibits minimal differences.

J EFFECTIVENESS OF TEXT MODALITY

Table 10: Comparison of noise reduction performance using text features (Ours) vs. average image
features under varying noise and selection ratios. Noise proportion means the introduced noise ratio
in the selected datasets.

Noise Ratio (%) 20 50 70
Selection Ratio (%) 20 30 20 30 20 30

Avg. Image Feat. Noise Proportion (%) 16.39 25.35 20.00 29.95 20.22 30.16
Accuracy (%) 28.42 38.35 16.56 23.19 11.18 14.61

Ours Noise Proportion (%) 0.24 0.32 0.43 0.68 0.80 4.30
Accuracy (%) 46.05 58.34 52.56 60.72 51.50 56.80

Based on single-modal features, existing methods Xia et al. (2023) use the average image features
as the prototype and calculate the Euclidean distance between the embedded image and the corre-
sponding prototype. This distance is used to filter noisy labels. To further evaluate the effectiveness
of our multi-modal framework, we use the average image feature to replace the text feature in Eq. 1,
which is then used for selection optimization in Eq. 6.

In Table 10, we evaluate the noise robustness across various noise and selection ratios. It can be
seen that using average image features leads to higher noise ratios compared to our method. This
validates the effectiveness of complementary textual information provided by text features, leading
to superior denoising performance.

K NUMERICAL ANALYSIS ON THE SELECTED DATASETS

Table 11: Actual selection ratios on both Tiny-ImageNet and CIFAR-100.

Expected Ratios 20% 30% 40% 60% 70% 80% 90%
Tiny-ImageNet 20.03%↑ 30.03%↑ 39.98%↓ 59.97%↓ 70.01%↑ 80.02%↑ 89.99%↓

CIFAR-100 19.95%↓ 30.02%↑ 40.00%− 60.04%↑ 70.03%↑ 80.04%↑ 90.04%↑

We present the numerical analysis of the actual selection ratios on Tiny-ImageNet in Table 11. It
can be seen that the actual selection ratios may be slightly higher or lower than the expected values,
with minimal deviations. These deviations are within the theoretical gap bounds. Notably, when the
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actual selection ratios are below the expected ones, our method selects fewer samples compared to
other baselines. Despite this reduction in training data volume, our method still achieves the best
performance, highlighting the effectiveness of the selection strategy. Consequently, the performance
improvements achieved are not due to the slight increases (e.g., less than 0.4% on average) in sample
numbers but rather due to the strategic selection of informative samples, demonstrating the efficacy
of our selection algorithm in optimizing the selected samples.
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