
Published in Transactions on Machine Learning Research (05/2025)

Studying Exploration in RL: An Optimal Transport Analysis
of Occupancy Measure Trajectories

Reabetswe M. Nkhumise rmnkhumise1@sheffield.ac.uk
Department of Computer Science, The University of Sheffield, UK

Debabrota Basu debabrota.basu@inria.fr
Eq́uipe Scool, Univ. Lille, Inria, CNRS, France

Tony J. Prescott t.j.prescott@sheffield.ac.uk
Department of Computer Science, The University of Sheffield, UK

Aditya Gilra aditya.gilra@cwi.nl
Centrum Wiskunde & Informatica, Netherlands
Department of Computer Science, The University of Sheffield, UK

Reviewed on OpenReview: https: // openreview. net/ forum? id= pdC092Nn8N

Abstract

The rising successes of RL are propelled by combining smart algorithmic strategies and deep
architectures to optimize the distribution of returns and visitations over the state-action
space. A quantitative framework to compare the learning processes of these eclectic RL
algorithms is currently absent but desired in practice. We address this gap by representing
the learning process of an RL algorithm as a sequence of policies generated during training,
and then studying the policy trajectory induced in the manifold of state-action occupancy
measures. Using an optimal transport-based metric, we measure the length of the paths
induced by the policy sequence yielded by an RL algorithm between an initial policy and
a final optimal policy. Hence, we first define the Effort of Sequential Learning (ESL). ESL
quantifies the relative distance that an RL algorithm travels compared to the shortest path
from the initial to the optimal policy. Furthermore, we connect the dynamics of policies in
the occupancy measure space and regret (another metric to understand the suboptimality
of an RL algorithm), by defining the Optimal Movement Ratio (OMR). OMR assesses the
fraction of movements in the occupancy measure space that effectively reduce an analogue of
regret. Finally, we derive approximation guarantees to estimate ESL and OMR with a finite
number of samples and without access to an optimal policy. Through empirical analyses
across various environments and algorithms, we demonstrate that ESL and OMR provide
insights into the exploration processes of RL algorithms and the hardness of different tasks
in discrete and continuous MDPs.

1 Introduction

In recent years, significant advancements in Reinforcement Learning (RL) have been achieved in developing
exploration techniques that improve learning (Bellemare et al., 2016; Burda et al., 2019; Eysenbach et al.,
2019) along with new learning methods (Lazaridis et al., 2020; Müller et al., 2021; Li, 2023). With growing
computational resources, these techniques have led to various successful applications of RL, such as playing
games up to human proficiency (Silver et al., 2017; Jaderberg et al., 2019), controlling robots (Ibarz et al.,
2021; Kaufmann et al., 2023), tuning databases and computer systems (Wang et al., 2021; Basu et al., 2019),
etc. However, there remains a lack of consensus over approaches that can quantitatively compare these
exploratory processes across RL algorithms and tasks (Seijen et al., 2020; Amin et al., 2021; Ladosz et al.,

1

https://openreview.net/forum?id=pdC092Nn8N

Published in Transactions on Machine Learning Research (05/2025)

2022). This is attributed to some methods being algorithm-specific (Tang et al., 2017), while others provide
theoretical guarantees for very specific settings (Lattimore & Szepesvári, 2020; Agarwal et al., 2022). Thus,
comparing the exploratory processes of these eclectic algorithms across the multi-directional space of RL
algorithm design emerges as a natural question. However, the present literature lacks a metric to compare
them except regret, which is often hard to estimate (Ramos et al., 2017; 2018).

This paper aims to address this gap based on two key observations. First, we observe from the linear
programming formulation of RL that solving the value maximisation problem is equivalent to finding an
optimal occupancy measure (Syed et al., 2008; Neu & Pike-Burke, 2020; Kalagarla et al., 2021). Occupancy
measure is the distribution of state-action pair visits induced by a policy (Altman, 1999; Laroche & des
Combes, 2023). Under mild assumptions, a policy maps uniquely to an occupancy measure. Second, we
observe that any RL algorithm learns by sequentially updating policies starting from an initial policy to reach
an optimal policy. The search for an optimal policy is influenced by the exploration-exploitation strategy
and functional approximators, both of which impact the overall performance of the agent by determining
the quality of experiences from which it learns (Zhang et al., 2019; Ladosz et al., 2022). Hereby, we term
collectively the learning strategy and the exploration-exploitation interplay as the exploratory process.

Contributions. 1. A Framework. Motivated by our observations, we abstract any RL algorithm as a
trajectory of occupancy measures induced by a sequence of policies between an initial and a final (optimal)
policy. The occupancy measure of a policy given an environment corresponds to the data-generating dis-
tribution of state-actions. Thus, we can quantify the effort of each policy update, i.e. the effort to shift
the state-action data distributions, as the transportation distance between their occupancy measures. The
total effort of learning by the algorithm can be measured as the total distance covered by its occupancy
measure trajectory. We provide a mathematical basis for this quantification by proving that the space of
occupancy measures is a differentiable manifold for smoothly parameterized policies (Section 3). Hence, we
can compute the length of the occupancy measure trajectory on this manifold using Wasserestein distance
as the metric (Villani, 2009).

2. Effort of Sequential Learning. In contrast to RL, if we knew the optimal policy we could update our
initial policy directly via supervised or imitation learning. Effort of this learning is represented by a direct,
shortest (geodesic) path from initial to optimal policy on the occupancy measure manifold. To quantify the
cost of the exploratory process to learn the environment, we define the Effort of Sequential Learning (ESL)
as the ratio of the (indirect) path traversed by an RL algorithm in the occupancy measure space to the direct
distance between the initial and optimal policy (Section 3.1). Lower ESL implies more efficient exploratory
process.

3. Efforts to learn that lead to Regret-analogue minimisation. Regret is a widely used optimality measure for
reward-maximizing RL algorithms (Jaksch et al., 2010). It measures the total deviation in the value functions
achieved by a sequence of policies learned by an RL algorithm with respect to the optimal algorithm that
always uses the optimal policy (Sinclair et al., 2023). We show that regret is related to the sum of distances
between the optimal policy and each policy in the sequence learned by the RL algorithm, in the occupancy
measure space. We can define an analogue of instantaneous regret (at any one step during learning rather
than cumulative), in the occupancy measure space, as the geodesic distance between the occupancy measure
of the policy at this step in the learning sequence, and the optimal one. We find that not all policy updates
lead to a reduction in this analogue of immediate regret, and thus define another index Optimal Movement
Ratio (OMR) that measures the fraction that do (Section 3.2).

4. Computational and Numerical Insights. We prove sample complexity guarantees to approximate ESL and
OMR in practice as we do not have access to the occupancy measures but collection of rollouts from the
corresponding policies (Section 4). We show the relation of empirical OMR and ESL to the true ones if the
optimal policy is never reached by an algorithm. We conduct experiments on multiple environments, both
discrete and continuous, with sparse and dense rewards, comparing state-of-the-art algorithms. We observe
that by visualizing aspects of the path traversed (and by comparing ESL and OMR), we are able to compare
and provide insights into their exploratory processes and the impact of task hardness on them (Section 5).

2

Published in Transactions on Machine Learning Research (05/2025)

2 Preliminaries

Markov Decision Processes. Consider an agent interacting with an environment in discrete timesteps.
At each timestep t ∈ N, the agent observes a state st, executes an action at, and receives a scalar re-
ward R(st, at). The behaviour of the agent is defined by a policy π(at|st), which maps the observed
states to actions. The environment is modelled as a Markov Decision Process (MDP) M with a state
space S, action space A, transition dynamics T : S × A → S, and reward function R : S × A → R. Dur-
ing task execution, the agent issues actions in response to visited states, and hence a sequence of states
and actions ht = (s0, a0, s1, a1, ..., st−1, at−1, st), here called a rollout, is observed. In infinite-horizon set-
tings, the state value function for a given policy π is the expected discounted cumulative reward over time
Vπ(s) ≜ Eπ [

∑∞
t=0 γtR(st, at) | s0 = s], where γ ∈ [0, 1) is the discount rate. The goal is to learn a policy

that maximises the objective Jπ
µ ≜ Es∼µ[Vπ(s)], where µ(s) is the initial state distribution.

Occupancy Measure. The state-action occupancy measure is a distribution over the S × A space that
represents the discounted frequency of visits to each state-action pair when executing a policy π in the
environment (Syed et al., 2008). Formally, the occupancy measure of π is vπ(s, a) ≜ ρ

∑∞
t=0 γtP(st = s, at =

a | π, µ), where ρ = 1 − γ is the normalizing factor.

Stationary Markovian policies allow a bijective correspondence with their state-action occupancy measures
(Givchi, 2021). We express the objective Jπ

µ in terms of the occupancy measure as

Jπ
µ = 1

ρ
E(s,a)∼vπ

[
R̄(s, a)

]
, (1)

where R̄(s, a) is the expected immediate reward for the state-action pair (s, a).

Wasserstein Distance. Let µ, ν ∈ P(X) be probability measures on a complete and separable metric
(Polish) space (X , dX). The p-Wasserstein distance between µ and ν is (Villani, 2009)

Wp(µ, ν) ≜
(

min
π∈Π(µ,ν)

∫
X ×X

c(x, x′) dπ(x, x′)
)1/p

, (2)

where the cost function is given by the metric as c(x, x′) = (dX (x, x′))p for some p ≥ 1. Π(µ, ν) is a set of
all admissible transport plans between µ and ν, i.e. probability measures on X × X space with marginals
µ and ν. Wasserstein distances induce geodesic in well-behaved spaces of probability measures. For more
discussion, we refer to Appendix A.9. For this work, we consider 1-Wasserstein distance, i.e. p = 1, though
the results are generalisable to p > 1.

MDPs with Lipschitz Rewards. Following Pirotta et al. (2015) and Kallel et al. (2024), we assume an
MDP with LR-Lipschitz rewards (ref. Appendix A.1 for elaboration) that satisfies |R̄(s, a) − R̄(s′, a′)| ≤
LRdSA((s, a), (s′, a′)) for all s, s′ ∈ S and a, a′ ∈ A. Here, dSA((s, a), (s′, a′)) = dS((s, s′))+dA((a, a′)) is the
metric defined on the joint state-action space S × A. This is a weaker condition than assuming a completely
Lipschitz MDP. Pirotta et al. (2015) showed that for any pair of stationary policies π and π′, the absolute
difference between their corresponding objectives is∣∣∣Jπ

µ − Jπ′

µ

∣∣∣ ≤ LR

ρ
W1(vπ, vπ′) , (3)

where W1(vπ, vπ′) is the 1-Wasserstein distance between the occupancy measures of the policies (ref. Ap-
pendix A.2 for details).

3 RL Algorithms as Trajectories of Occupancy Measures

The exploration process (i.e. the exploration-exploitation interplay and learning strategy) of an RL algorithm
influences how the policy model updates its policies (Kaelbling et al., 1996; Sutton & Barto, 2018). During
training, a policy trajectory, i.e. sequence of policies (π0, π1, . . . , πN), is generated over policy updates due to
the exploratory process. We assume these policies belong to a set of stationary Markov policies parameterized

3

Published in Transactions on Machine Learning Research (05/2025)

by θ ∈ Θ. For policies in this set πθ ∈ ΓΘ, we define the space of occupancy measures corresponding to ΓΘ
as M = {vπθ

(s, a) | πθ ∈ ΓΘ, θ ∈ Θ}.
Proposition 1 (Properties of M). If the policy π has a smooth parameterization θ, then the space of
occupancy measures M is a differentiable manifold. (Proof in Appendix A.3)

We can endow the manifold M with a 1-Wasserstein metric W1 to the compute the length of any path on
M since (M, W1) is a geodesic space (ref. Appendix A.9 for details). The path distance between occupancy
measures corresponding to policies parameterised by θ, θ + dθ ∈ M is ds = W1(vπθ

, vπθ+dθ
). Additionally,

in imitation learning, the 1-Wasserstein distance between the occupancy measures of the learner and expert
can be used as a minimisable loss function to learn the expert’s policy (Zhang et al., 2020). Hence, the
1-Wasserstein distance reflects the effort required to achieve this imitation learning. Similarly, we propose
the following quantification of the effort to update from one policy to another.
Definition 1 (Effort of Learning). We define the 1-Wasserstein metric between occupancy measures of two
policies π and π′, i.e. W1(vπ, vπ′), as the effort required to learn or update from one policy to the other.

When a learning process causes an update between occupancy measures in M, we attribute the resulting
update effort to the learning process and refer to it as the effort of learning. In a learning process, first the
initial policy π0 is obtained typically by randomly sampling the model parameters, then these parameters
θ undergo updates until a predefined convergence criterion is satisfied, yielding the final optimal policy
πN = π∗. Since each policy has a corresponding occupancy measure, this process yields a sequence of points
on M, which can be connected by geodesics between successive points, producing a curve. The length of
the curve is computed by the summation of the finite geodesic distances between consecutive policies along
it (Lott, 2008),

C ≜
N−1∑
k=0

W1(vπθk
, vπθk+1

) , (4)

where θ0 and θN are respectively the initial and final parameter values before and after learning.

3.1 Effort of Sequential Learning (ESL)

As we saw above, RL generates a trajectory in the occupancy measure manifold M, whose length is given
by Equation (4). Compared to the long trajectory of sequential policies generated by the exploratory
process, the geodesic L is the ideal shortest path to the optimal policy πN = π∗ from π0, whose length is
L = W1(vπ0 , vπN

). This path would be taken by an imitation-learning oracle algorithm that knows π∗. Both
these paths are schematically depicted in Figure 1.
Definition 2 (Effort of Sequential Learning (ESL)). We define the effort of sequential learning incurred by
a trajectory of the exploratory process of an RL algorithm, relative to the oracle that knows π∗(= πN) as,

η ≜

∑N−1
k=0 W1(vπk

, vπk+1)
W1(vπ0 , vπN

) (5)

Due to the stochasticity of the exploratory process, we introduce an expectation to obtain η̄ = Eπ0,µ [η]. We
refer to η̄ as the effort of sequential learning (ESL).

η̄ ≥ 1 and a larger η̄ corresponds to a less efficient exploratory process of the RL algorithm. Hence, an RL
algorithm with η̄ ≈ 1 closely mimics the oracle and has an efficient exploratory process.

3.2 Optimal Movement Ratio (OMR)

Regret measures the total deviation in value functions incurred by a sequence of policies learned by an RL
algorithm with respect to the optimal algorithm that always uses the optimal policy (Sinclair et al., 2023).
We show that regret is connected to the sum of distances from each policy (in the sequence learned by an
RL algorithm) to the optimal policy in the occupancy measure space.
Proposition 2 (Regret and Occupancy Measures). Given an MDP with LR-Lipschitz rewards, we obtain
Regret ≜

∑N
k=1

(
Jπ∗

µ − Jπk
µ

)
≤ LR

ρ

∑N
k=1 W1(vπk

, vπ∗). (Proof in Appendix A.4)

4

Published in Transactions on Machine Learning Research (05/2025)

We refer to W1(vπk
, vπ∗) as the distance-to-optimal, and analogously use it as the expected immediate regret

in the occupancy measure space. Furthermore, we refer to W1(vπk
, vπk+1) as stepwise-distance. Interestingly,

during training, the distance-to-optimal and stepwise-distance share a relationship illustrated in Figure 2.
From Figure 2, we observe that if the change in distance-to-optimal, δk ≜ W1(vπk

, vπ∗)−W1(vπk+1 , vπ∗) > 0,
it indicates that the agent got closer to the optimal. We define the set K+ as containing indices k for which
δk > 0, while K− contains the rest.

Figure 1: Schematic of the policy trajectory C
in the space of occupancy measures M during RL
training (solid line) vs the geodesic L (shortest path,
dashed line) between the initial and final points (i.e.
π0 and πN = π∗).

Figure 2: Schematic of how distance-to-optimal (de-
noted by xk) and stepwise-distance (denoted by yk)
on the occupancy measure space describe exploratory
process of an RL algorithm during training.

Definition 3 (Optimal Movement Ratio (OMR)). We define the proportion of policy transitions that effec-
tively reduce the distance-to-optimal, in a learning trajectory, as

κ ≜

∑
k∈K+ W1(vπk

, vπk+1)∑N−1
k=0 W1(vπk

, vπk+1)
. (6)

Due to the stochasticity of the exploratory process, we introduce an expectation to obtain κ̄ = Eπ0,µ [κ]. We
refer to κ̄ as the optimal movement ratio (OMR).

Note that κ̄ ∈ [0, 1], and κ̄ → 1 indicates that nearly all the policy updates reduce the distance-to-optimal,
thus showing high efficiency. κ̄ → 0 implies low efficiency, since only a small fraction of the policy updates
contribute towards the reduction of the distance-to-optimal.

The definitions of ESL and OMR assume that the policy at the end of learning is optimal. In Section 4.2,
we define a version of ESL that is useful for the cases where an optimal policy is not reached. While this
is not an empirical proxy, we show in Section 5.3 and Appendix B.5 that it is useful when the final policy
is closer to optimal than the initial one. While regret also depends on an optimal policy, it is related to
cumulative rewards, whereas our metrics do not explicitly depend on rewards. Still, we show a bound with
regret in Proposition 2, and further discuss the possibility of extending our metrics to be reward-aware in
Section 6. We show empirically that our metrics are complementary to regret in Section 5.2, and discuss
other connections with regret in Section 7.

3.3 Extension to Finite-Horizon Episodic Setting

In the episodic finite-horizon MDP formulation of RL, in short Episodic RL (Osband et al., 2013; Azar et al.,
2017; Ouhamma et al., 2023), the agent interacts with the environment in multiple episodes of H steps. An
episode starts by observing state s1, then for t = 1, . . . , H, the agent draws action at from a (possibly time-
dependent) policy πt(· | st), observes the reward r(st, at), and transits to a state st+1 ∼ T (· | st, at). Here,
the value function and the state-action value functions at step h ∈ [H] are respectively defined as V π

h (s) ≜

Eπ

[∑H
t=h r(st, at) | sh = s

]
and Qπ

h(s, a) ≜ Eπ

[∑H
t=h r(st, at) | sh = s, ah = a

]
. Following (Altman, 1999),

5

Published in Transactions on Machine Learning Research (05/2025)

we can define a finite-horizon version of occupancy measures as

vH
π (s, a) ≜ 1

H

H∑
t=1

P(st = s, at = a | π, µ). (7)

Following Syed et al. (2008), work by Kalagarla et al. (2021) shows that vH
π can be used in the linear

programming formulation for solving MDPs and satisfies the Bellman Flow Constraints (in Equation 19
from Appendix A.3). We prove that under some assumptions, the finite-horizon occupancy measures also
construct a manifold, referred to as MH .
Proposition 3 (Properties of MH). If the policy π has a smooth parametrization θ, then the space of
finite-horizon occupancy measures MH is a differentiable manifold. (Proof in Appendix A.5)

This allows us to similarly define a Wasserstein metric on this manifold, which in turn, allows us to compute
ESL and OMR for evaluating different RL algorithms.

4 Computational Challenges and Solutions

Similar to regret, our method requires knowing the optimal policy. This is because the efficiency and
effectiveness of exploratory processes of RL algorithms are highly coupled with their ability to reach optimal
policy. ESL and OMR depend on the policies being stationary and Markovian.

4.1 Policy datasets for computing occupancy measures

We consider approximations of occupancy measures using datasets assumed to be drawn from these mea-
sures. We estimate the Wasserstein distance between the occupancy measures using a method introduced by
Alvarez-Melis & Fusi (2020) known as the optimal transport dataset distance (OTDD). OTDD uses datasets
to estimate the Wasserstein distance between the underlying distributions. See Appendix A.6 for a detailed
account of OTDD.

Definition 4 (Policy dataset). A dataset of a policy Dπ is a set of state-action pairs drawn from the policy’s
occupancy measure, i.e. Dπ = {(s(i), a(i))}m

i=1 ∼ vπ. These can be constituted from the rollouts generated by
the policy during task execution.

We know from imitation learning that if we are given Dπ, generated by an expert policy, we can train a
policy model on it in a supervised manner via behaviour cloning (Hussein et al., 2017). Thus, knowing Dπ

can allow converting an RL task into a Supervised Learning (SL) task. Consider a scenario when we have
access to a sequence of datasets (Dπ0 , . . . , DπN

), each corresponding to policy πt for t ≥ 0. If we train (in a
supervised manner) a policy model sequentially on these datasets, the model will undergo a similar policy
evolution as the RL algorithm that generated the policy trajectory (πt)t≥0. This allows us to conceptualise
learning in RL as a sequence of SL tasks with sequential transfer learning across the datasets (Dπ0 , . . . , DπN

).
We employ OTDD to estimate W1(vπk

, vπk+1) using these datasets, i.e. dOT (Dπk
, Dπk+1) ≈ W1(vπk

, vπk+1),
based on Proposition 4.
Proposition 4 (Upper Bound on Estimation Error). Let an RL algorithm yield a sequence of policies
π0, . . . , πN while training. Now, we construct N datasets Dπ0 , . . . , DπN

, each consisting of M rollouts of
the corresponding policies. Then, we can use these datasets to approximate

∑N−1
k=0 W1(vππk

, vππk+1
) by∑N−1

k=0 dOT (Dπk
, Dπk+1) with an expected error upper bound 2NE2√

M
+ NγT +1diam(SA). Here, T is the total

number of steps per episode, diam(SA) is the diameter of the state-action space, and E2 is a positive-valued
and polylogarithmic function of S and A. For finite horizon case, we can further reduce the error bound to
2NE2√

M
.

Proof of Proposition 4 is in Appendix A.7. The results support that ESL and OMR can be estimated as

η̄ = Eπ0,µ

[∑N−1
k=0 dOT (Dπk

, Dπk+1)
dOT (Dπ0 , DπN

)

]
, and κ̄ = Eπ0,µ

[∑
k∈K+ dOT (Dπk

, Dπk+1)∑N−1
k=0 dOT (Dπk

, Dπk+1)

]
. (8)

6

Published in Transactions on Machine Learning Research (05/2025)

4.2 When an optimal policy is not reached

So far we have assumed that the algorithms converge at the optimal policy, i.e. πN = π∗. However, this is
not always true. We consider a scenario when πN ̸= π∗, and define

ηsub =
∑N−1

k=0 W1(vππk
, vππk+1

)
W1(vπ0 , vπN

) , πN ̸= π∗ . (9)

Proposition 5. Given N ≥ 2 and π0 ̸= πN ̸= π∗, we obtain

η − ηsub

η
≤ 2W1(vπN

, vπ∗)
W1(vπ0 , vπN

) . (10)

This is true due to the triangle inequalities: W1(vπ0 , vπ∗) + W1(vπN
, vπ∗) ≥ W1(vπ0 , vπN

) and
W1(vπN−1 , vπN

) + W1(vπN
, vπ∗) ≥ W1(vπN−1 , vπ∗). The proof is provided in Appendix A.8. Note that

Equation (10) shows that when πN is close to π∗, then ηsub is a good approximation of η, and thus a good
quantifier to determine the efficiency of the algorithm’s exploratory process. However, W1(vπN

, vπ∗) is de-
pendent on the RL algorithm and hence a bound cannot be provided here. Still, ηsub might be useful when
πN is closer to π∗ than π0. A fallible proxy for this could be when the performance of πN is better than
that of π0, i.e. JπN

µ > Jπ0
µ . We show the usefulness of ηsub in our experimental results in Section 5.3 and

Appendix B.5 for simple environments. It remains to be seen how useful ηsub is in complex environments.

5 Experimental Evaluation

In this section, we evaluate the proposed methods in the 2D-Gridworld and Mountain Car (Moore, 1990;
Brockman et al., 2016) environments, to analyze our methods in discrete and continuous state-action spaces
respectively. The 2D-Gridworld environment is of size 5×5 with actions: {up, right, down, left}. In the
gridworld, we perform experiments on 3 settings namely:- A) deterministic with dense rewards, B) deter-
ministic with sparse rewards, and C) stochastic with dense rewards. Further details about these settings
are provided in Appendix B.1. The Mountain Car environment, in our experimentation, is a deterministic
MDP with dense rewards that consists of both continuous states and actions - described in detail in (Brock-
man et al., 2016). Note that we used L1 distance and L2 distance as metrics (dX) for the state spaces
of the 2D-Gridworld and Mountain Car, respectively, which underpin the W1. Our code is available at:
https://github.com/nkhumise-rea/analysis_of_occupancy_measure_trajectory.

Our experiments aim to address the following questions:
1. What information can the visualization of the policy evolution during RL training provide about the
exploratory process of the algorithm?
2. How do ESL and OMR allow us to analyze the exploratory processes of RL algorithms?
3. Does ESL scale proportionally with task difficulty?

Summary of Results. In Section 5.1, we demonstrate that visualizing the evolution of distance-to-optimal
and stepwise-distance of different RL algorithms during training reveals: 1) whether the agent is stuck in
suboptimal policies, 2) the coverage area of the exploration processes, and 3) their varied characteristics
over time. We further compare ESL and OMR of different algorithms on a few environments in Section 5.2.
Finally, we show in Section 5.4 that ESL scales proportionally with task difficulty, and thus, reflects the
effects of task difficulty on exploration and learning.

5.1 Exploration Trajectories of RL Algorithms

(I) Discrete MDP. To understand the utility of visualizing exploratory processes, we use the following RL
algorithms: 1) Tabular Q-learning with a) ϵ-greedy (ϵ = 0) and b) ϵ-greedy (ϵ = 1) strategies; 2) UCRL2
(Jaksch et al., 2010); 3) PSRL (Osband et al., 2013); 4) SAC (Haarnoja et al., 2018; Christodoulou, 2019);
and 5) DQN (Mnih et al., 2013) with ϵ-decay. The algorithms solve a simple 5×5 gridworld with dense
rewards, starting from top-left (0,0) to reach bottom-right (4,4). Figure 3 presents exploratory behaviours
of the algorithms in both the occupancy measure space and state space.

7

https://github.com/nkhumise-rea/analysis_of_occupancy_measure_trajectory

Published in Transactions on Machine Learning Research (05/2025)

Figure 3: Top row: 3D plots of distance-to-optimal (x-axis) and stepwise-distance (y-axis) across number of
updates (z-axis), illustrating policy evolution in the occupancy measure space for algorithms: ϵ(=0)-greedy
and ϵ(=1)-greedy Q-learning, UCRL2, PSRL, SAC, and DQN (left to right). Bottom row: Corresponding
state visitation frequencies over the full training. The problem setting is deterministic with dense rewards and
15 maximum number of steps per episode. (NB. Larger versions of these plots are presented in Appendix D.1,
while their 2D projections are in Figure 15 at Appendix D.3, and corresponding performance plots are in
Figure 12 at Appendix D.2.)

Q-learning: ϵ = 0 vs ϵ = 1. Note that ϵ = 0 updates the Q-table by only exploiting, while ϵ = 1 by
exploring. From the state visitations, we observe expected characteristics, like a preferred visit path for
ϵ = 0, versus ϵ = 1 with visitation frequencies that are similar at states equidistant from the start-state
and gradually decreasing as the distance from the start-state increases. From the policy evolution, we see
how scattered and erratic the policy transitions are for ϵ = 0. Whereas ϵ = 1 is dominated by unchanging
or little-changing policies seen by straight vertical line segments (indicating being stuck in suboptimality).
In this setting, ϵ = 0 is characterised by transitioning between diverse policies (i.e. being aggressive with
larger coverage area) while ϵ = 1 is likely to be stuck in suboptimality. The stuckness is due to high action
randomness in ϵ = 1 that causes the agent to select suboptimal actions, slowing the convergence of the
Q-table and not changing the learning policy until the best actions are discovered.

UCRL2 vs PSRL. UCRL2 has nearly uniform state visits (with the exception of the start-state because
the initial state distribution is 1 at state (0,0)), thus being consistent with literature since the algorithm
selects exploratory state-action pairs more uniformly (Jaksch et al., 2010). In contrast, PSRL has high visit
frequencies along the diagonal states, because it selects actions according to the probability that they are
optimal (Osband et al., 2013). We observe from the policy evolution plots that PSRL has smoother policy
transitions that are orientated towards optimality, while UCRL2 behaves more aggressively with policy
transitions that do not taper as it approaches optimality. Osband et al. (2013) highlighted that exploration
in PSRL is guided by the variance of sampled policies as opposed to optimism in UCRL2. We observe in
Figure 3 that the guiding variance in PSRL reduces after every policy update until optimality is reached,
while UCRL2 maintains high variance.

SAC vs DQN. The state visits of both the algorithms appear to be similar. SAC has higher visitation
frequencies at the corners than DQN. Surprisingly from the policy evolution plots, we learn that both
algorithms have a reluctance to transition between policies - hence the stuck in suboptimality vertical line
segments, especially initially. This reluctance is due to the slow ‘soft updates’ of target networks (Lillicrap
et al., 2016) in the algorithms. We also observe that SAC approaches optimality more gradually than DQN.

All algorithms. Figure 3 shows that UCRL2 was more meandering (with larger coverage area) towards
optimality than the rest. SAC and DQN approached optimality more directly and smoothly (with smaller
coverage area) than the rest. These characteristics are intuitively revealed by policy visualisation plots, and
are aligned with literature, hence enhancing our understanding of the exploratory processes.

(II) Continuous MDP. We use DDPG (Lillicrap et al., 2016) and SAC to solve the Mountain Car. The
policy evolutions of these algorithms are presented in Figure 4.

8

Published in Transactions on Machine Learning Research (05/2025)

DDPG vs SAC. Both exhibit short-distances (< 1) between policy updates (i.e. small coverage area). They
depict no sign of being stuck or settling early on any particular policy, which shows their continuously ex-
ploratory nature. While they begin with almost constant mean distances-to-optimal and stepwise-distances,
SAC drops its mean distance-to-optimal earlier than DDPG.

Figure 4 illustrates how OMR changes with update number k. OMR(k) represents OMR starting with
the kth policy as the initial policy, while OMR starts from the 0th policy (details of computing OMR(k)
are in Appendix B.2). For both algorithms, OMR(k) remains near chance level (∼ 0.5) initially, then
sharply increases near the final updates. This suggests that early policy updates are purely exploratory and
oblivious to policy improvement but align with the optimal policy just before convergence. The efficiency of
the algorithm depends on how early this transition occurs, e.g. starts earlier for SAC than DDPG, rendering
SAC more efficient.

0 5000 10000 15000 20000
#updates

0.40

0.45

0.50

0.55

0.60

O
M

R(
k)

0 5000 10000 15000 20000
#updates

0.40

0.45

0.50

0.55

0.60

O
M

R(
k)

Figure 4: Top row: 3D plots of distance-to-optimal and stepwise-distance vs. number of updates for DDPG
and SAC. Bottom row: OMR(k) vs. #update, k, for the corresponding algorithms. Note that corresponding
performance plots are in Figure 13 in Appendix D.2.

5.2 Comparison of ESL and OMR across RL Algorithms and Environments, and their
complementarity to number of updates and regret

Tables 1-3 showcase how ESL and OMR are summary indices of the policy trajectories during learning by
evaluating the algorithms in various settings.

Dense Rewards. We observe, in Table 1, that PSRL took the lowest number of updates (UC) to reach
the optimal policy in contrast with SAC. Yet, PSRL was meandering more than SAC (see Figure 3). The
relative directness of SAC is captured by lower ESL and higher OMR compared to PSRL. Even though
SAC has larger UC than PSRL, it took a shorter path to optimality than PRSL. This shows that UC does
not necessary correlate with ESL and OMR, and it provides incomplete information about the exploratory
processes. Indeed, two algorithms may have the same UC, but different ESL and/or OMR due to different
step-wise distances and varied movement towards optimality.

Sparse Rewards. In the sparse rewards setting (Table 2), low performance of DQN is observed in both
our indices and UC. However, SAC is more efficient with lowest ESL and highest OMR, yet UCRL2 has the
lowest number of updates (UC). Note that UCRL2 is provably regret-optimal, while SAC does not have such
rigorous theoretical guarantees but is known to be practically efficient, and this is well captured by ESL and

9

Published in Transactions on Machine Learning Research (05/2025)

Algo. ESL OMR UC SR%
SAC 9.26±5.54 0.58±0.14 980±670 100
UCRL2 47.2±8.20⋆ 0.49±0.04 60.7±11 100
PSRL 23.2±11.5 0.52±0.06 34.1±9.34 100
DQN 12.4±7.13 0.54±0.11 161±93 98
ϵ(=1)-greedy 6.27±2.22 0.61±0.09 672±385 100
ϵ(=0.9)-decay 8.10±3.43 0.61±0.10 389±138 100
ϵ(=0)-greedy 15.5±5.28 0.53±0.06 176±37.9 84

Table 1: Evaluation of RL algorithms (over 40 runs)
in the deterministic, dense-rewards setting for
5×5 gridworld, including Effort of Sequential Learn-
ing (ESL), Optimal Movement Ratio (OMR), num-
ber of updates to convergence (UC), and success rate
(SR). Lowest ESL, lowest UC, and highest OMR val-
ues are in bold. The highest ESL value is starred
(⋆).

Algo. ESL OMR UC SR%
Deterministic, sparse

SAC 27.8±21.9 0.57±0.13 4385±3274 100
UCRL2 73.3±0.0 0.45±0.0 93.0±0.0 100
PSRL 73.2±54.1 0.52±0.076 100±67.3 100
DQN 137±154⋆ 0.49±0.08 12638±4431 80

Stochastic, dense
SAC 445±245 0.501±0.004 2463±2043 92
UCRL2 198±121 0.502±0.027 268±155 32
PSRL 55.4±33.6 0.52±0.04 76.1±50.6 92
DQN 458±311⋆ 0.502±0.01 1586±1077 24

Table 2: Evaluation of RL algorithms (over 40 runs)
in the deterministic, sparse-rewards and stochas-
tic, dense-rewards settings for 5×5 gridworld. Low-
est ESL, highest OMR and lowest UC values are in
bold. The highest ESLs are starred.

OMR. So far, Tables 1 and 2 demonstrate how our indices provide a clearer picture of exploratory processes
than the number of updates.

Stochastic Transitions. In the stochastic setting (Table 2), by observing only successful cases, we notice
that the meandering characteristic of PSRL and UCRL2 is more suitable for this setting than SAC and
DQN (based on better ESL and OMR values). PSRL and UCRL2 have similar regret bounds (Osband et al.,
2013); yet in Tables 1 and 2, PSRL has better ESL and OMR (along with a higher success rate). This aligns
with the regret analysis presented in (Osband et al., 2013).

Table 3 corroborates with the policy evolution plots in Figure 4, in that due to SAC dropping its mean
distance-to-optimal earlier than DDPG it exhibits a lower ESL. Additionally, we notice a trend of increasing
ESL and decreasing OMR across algorithms when shifting from dense-rewards to sparse-rewards settings,
from deterministic to stochastic transitions, from discrete to continuous environments, indicating an increase
in the effort of the exploratory processes. We have shown that ESL and OMR enhance the understanding of
exploratory processes by effectively summarizing the policy trajectories of algorithms during learning. They
offer more insight than the number of updates, and align with regret when algorithms reach an optimal
policy. In the next Section, we demonstrate the utility of ESL when an optimal policy is not reached.

Algo. ESL OMR UC SR%
DDPG 1881±500 0.501 23500±5268 100
SAC 1619±189 0.5 22700±2971 100

Table 3: Evaluation of RL algorithms in the Mountain Car continuous MDP (over 5 runs). The variances
for OMR are negligible.

5.3 Usefulness of ESL when optimal policy is not reached

When an optimal policy is not reached at the end of learning, ESL cannot be computed exactly. At this
point, we propose to use an approximation of ESL, i.e. ηsub (Equation 9). A natural question arises: When
the optimal policy is not reached, does the ηsub still yield insights about the exploratory process of RL? In
Table 4, we compare ESL when the optimal policy was reached, i.e. η, versus when it was not, i.e. ηsub.

We observe that ηsub values are always greater than η values. However, they both yield the same efficiency
ranking (e.g. PSRL, UCRL2, SAC and DQN). This indicates that ηsub reliably predicts results provided by
η for relative comparison of algorithms.

10

Published in Transactions on Machine Learning Research (05/2025)

Algo. η ηsub d c
SAC 445±246 853±127 5.63±1.23 7.26±1.45
UCRL2 198±121 510±274 5.36±0.84 4.58±1.90
PSRL 55.4±33.6 361±43.6 4.97±1.34 3.91±0.48
DQN 458±311 1971±250 4.88±1.06 6.52±0.31

Table 4: Evaluation of algorithms in the stochastic, dense-rewards setting for 5×5 gridworld. When
the algorithm converged to optimality, η is the Effort of Sequential Learning, and d = W1(vπ0 , vπ∗) is the
distance between the initial and optimal policies. When the algorithm did not converge to the optimal policy
but some πN , we used ηsub and c = W1(vπ0 , vπN

) to denote the aforementioned quantities. 40 training trials
were used.

5.4 ESL Increases with Task Difficulty

Figure 5 depicts the ESL values for Q-learning with ϵ-decay strategy (for ϵ = 0.9) across tasks with varying
hardness. These tasks are deterministic 2D-Gridworld of sizes 5×5 and 15×15 matched with either dense or
sparse rewards (as specified in Appendix B.1). We chose to assess the ϵ-decay Q-learning algorithm because
it is simple and yet completes all these tasks. We observe that the ESL is lowest for [5×5] dense (5×5
grid, dense rewards) and highest for [15×15] sparse (15×15 grid, sparse rewards) as anticipated. The results
demonstrate that ESL scales proportionally with task difficulty, matching expectations that more difficult
tasks demand greater effort of the exploratory process.

E
SL

Figure 5: Q-learning with ϵ-greedy (ϵ = 0.9 decaying, averaged over 40 runs) across deterministic 2D-
Gridworld (5×5 and 15×15) tasks. The 1st and 4th (from left to right) have dense rewards, while the rest
have sparse rewards (details in Appendix B.1).

Remarks. When the optimal policy is reached, we can use the visualisation of policy trajectories, as well
as ESL (η) and OMR to study exploratory processes of an RL algorithm. When the optimal policy is not
reached, we can still use the visualisation of policy trajectories and ESL-sub (ηsub) to study exploratory
processes because they still capture characteristics of exploratory processes (e.g. high coverage, smooth
exploration). Additionally, ESL (η or ηsub) captures the hardness of the task that we are solving. Thus,
studying the occupancy measure trajectories and their corresponding indices can aid in making a knowledge-
able choice of an RL algorithm that exhibits desired characteristics.

11

Published in Transactions on Machine Learning Research (05/2025)

6 Related Works

Several prior works have utilized various components leveraged in our work, namely Wasserstein distance,
occupancy measures, and the trajectory of RL on a manifold, but for different purposes. Here, we summarise
them and elucidate the connections.

In supervised learning, Alvarez-Melis & Fusi (2020) proposed an optimal transport approach, namely Optimal
Transport Dataset Distance (OTDD), to quantify the transferability between two supervised learning tasks
by computing the similarity (i.e. distance) between the task datasets. Here, we conceptualise and define the
effort of learning for RL, as a sequence of such supervised learning tasks. We observe that the total effort of
sequential learning can be computed as the sum of OTDD distances between consecutive occupancy measures.
Recently, Zhu et al. (2024) have developed generalized occupancy models by defining cumulative features
that are transferable across tasks. In future, one can generalize our indices for the cumulative features
constructed from some invertible functions of the step-wise occupancy measures.

Optimal transport-based approaches are also explored in RL literature. These works broadly belong to two
families. First line of works uses Wasserstein distance over a posterior distribution of Q-values (Metelli
et al., 2019; Likmeta et al., 2023) or return distributions (Sun et al., 2022) to quantify uncertainty, and
then to use this Wasserstein distance as a loss to learn better models of the posterior distribution of Q-
values or return distributions, respectively. The second line of works uses Wasserstein distance between a
feasible family of MDPs as an additional robustness constraint to design robust RL algorithms (Abdullah
et al., 2019; Derman & Mannor, 2020; Hou et al., 2020). Here, we introduce a concept of using Wasserstein
distance between occupancy measures to understand the exploratory dynamics. Incorporating this insight into
better algorithm design would be an interesting future work. Recently, Calo et al. (2024) related Wasserstein
distance between reward-labelled Markov chains to bisimulation metrics which abstract state spaces. In the
same spirit, we could use reward as the cost-function in computing our nested Wasserstein distance (OTDD)
to obtain a reward- or value-aware OTDD to define broader bisimulation metrics with abstract state-action
spaces, instead of just state spaces.

As a parallel approach to optimal transport, the information geometries of the trajectory of an RL algo-
rithm under different settings are studied. These approaches use mutual information as a metric instead of
Wasserstein distance. Basu et al. (2020) studied the information geometry of Bayesian multi-armed bandit
algorithms. They considered a bandit algorithm as a trajectory on a belief-reward manifold, and proposed
a geometric approach to design a near-optimal Bayesian bandit algorithm. Eysenbach et al. (2021); Laskin
et al. (2022) studied information geometry of unsupervised RL and proposed mutual information maximi-
sation schemes over a set of tasks and their marginal state distributions. Yang et al. (2024) extended this
approach with Wasserstein distance and demonstrated benefits of using Wasserstein distance than mutual
information. We use Wasserstein distance as a natural metric in occupancy manifold which aligns with the
hardness of different tasks. It would be interesting to extend our framework to understand the dynamics of
unsupervised RL algorithms.

7 Discussion

Our work introduces methods to theoretically and quantitatively understand and compare the exploratory
strategies of different RL algorithms. Since learning in a typical RL algorithm happens through a sequence
of policy updates, we propose to understand the exploratory process by visualizing and analyzing the path
traversed by an RL algorithm in the space of occupancy measures. We show the usefulness of this approach
by conducting experiments on various environments and RL algorithms.

Our results show that ESL and OMR provide insight into the evolution of the agent’s policy, revealing
whether it is approaching the optimal policy in a steady or meandering manner. Additionally, they allow us
to understand how the learning process of the same algorithm changes with different rewards and transitions
structures, and task hardness. We emphasize that ESL and OMR complement the number of updates to
converge and regret (see Appendix B.7) rather than replace them.

We now discuss various practical aspects and future possibilities.

12

Published in Transactions on Machine Learning Research (05/2025)

Computational complexity. While efficiency is an important aspect, the primary focus of this work
is to introduce a framework for analyzing exploration in RL using occupancy measures. It is of interest
to utilize our approach to benchmark and compare the learning dynamics of various RL algorithms in
more environments, especially large-scale or high-dimensional ones. Computing Wasserstein distances in
such environments would incur high computational costs, however in recent years several methods such as
greedy computation (Carlier et al., 2010), hierarchical methods (Lee et al., 2019), and inexact proximal
point methods (Xie et al., 2020) have been introduced to handle large-scale OT problems. For example,
(Gao & Chaudhari, 2021) leverages a block-diagonal approximation method to deal with high-dimensional
probability distributions similar to ours, while anchor space OT (Huang et al., 2024) specifically addresses
multiple OT problems with multiple distributions.

Use of 1-Wasserstein metric W1. The W1 satisfies the Kantorovich-Rubinstein duality, making Equation
(3) applicable and providing a basis for bounding regret in Proposition 2. In contrast, Wp>1 does not have
such duality. Since W1(P, Q) ≤ Wp>1(P, Q) (Villani, 2009), W1 yields tighter regret bounds. Moreover,
W1 is less sensitive to outliers and sampling discrepancies than Wp>1 (Raghvendra et al., 2024), making
it well-suited for our setting. Nevertheless, our approach extends to Wp>1. Compared to KL-divergence,
W1 is a metric that satisfies symmetry and triangle inequality, which have been instrumental in our proofs
and guarantees, while KL-divergence is not a metric. Additionally, Wp≥1 leverages the geometry of the
underlying support space (Peyré, 2019). This allows it to capture distances between distributions with
disjoint support (Peyré, 2019), which KL-divergence cannot capture. Hence, we use W1 in our approach.

Choice of distance metric dX . The choice of the distance metric impacts the geometry of the support
space (Lee, 2009), consequently the Wasserstein distances, and thus ESL and OMR. In our case, the support
space (i.e. state-action space) is reduced to the state space, as the action space maps back to the state
space via OTDD. Thus, the choice of distance metric should reflect the effort of moving in the state space.
For example, in the Gridworld, we used L1 distance because only vertical and horizontal displacements are
allowed, and L2 distance in the Mountain Car, as applicable to real-world spaces.

Regret and Sum-of-distances-to-optimal (
∑N

k=1 W1(vπk
, vπ∗)). Comparing regret across policies mea-

sures the similarity of returns (with respect to optimal), disregarding behavioural differences, like variations
in actions at the same states. This makes regret advantageous in settings without critical safety and physi-
cal constraints, e.g. games, due to its computational efficiency. In contrast, the sum-of-distance-to-optimal
focuses on behavioural differences between policies, is reward-agnostic, and is well-suited for environments
where safety and physical constraints are critical, e.g. robotics. While minimizing regret prioritizes match-
ing the performance of the optimal policy, minimizing the sum-of-distance-to-optimal focuses on mimicking
its behaviour. Thus, the sum-of-distance-to-optimal can be used similarly to regret, especially where the
behaviour of achieving good performance is essential.

Algorithm Selection and Design. Depending on the environment, we can select an algorithm with
promising characteristics and spend more time optimising it to improve performance. For example, rather
than tuning the hyper-parameters of multiple competing algorithms to find the best one, it may be more
effective to first identify an algorithm best suited to an environment based on ESL and OMR, and then
fine-tune it. The chosen algorithm might remain suitable across similar environments as well.

Furthermore, we could incorporate an online adaptation of the exploratory process of the RL algorithm
itself, based on recent estimates of the ESL and OMR. For example, if the current policy gives a better
return than the initial policy, then we could adapt the exploratory parameters (at a slow rate) to optimise a
running estimate of ηsub and a suitable approximation of OMR, thus enabling better exploration. However,
the feasibility and convergence of such a scheme remain open.

Acknowledgments

R. Nkhumise expresses his gratitude to Pawel Pukowski and Mohamed S. Talamali for their insightful discus-
sions and valuable feedback on the ideas explored in this study. R. Nkhumise was supported by the EPSRC
Doctoral Training Partnership (DTP) - Early Career Researcher funding awarded to A. Gilra. A. Gilra
acknowledges the CHIST-ERA grant for the Causal Explanations in Reinforcement Learning (CausalXRL)
project (CHIST-ERA-19-XAI-002), by the Engineering and Physical Sciences Research Council, United

13

Published in Transactions on Machine Learning Research (05/2025)

Kingdom (grant reference EP/V055720/1) for supporting the work. D. Basu acknowledges the CHIST-ERA
grant for the CausalXRL project (CHIST-ERA-19-XAI-002) by L’Agence Nationale de la Recherche, France
(grant reference ANR-21-CHR4-0007), the ANR JCJC for the REPUBLIC project (ANR-22-CE23-0003-01),
and the PEPR project FOUNDRY (ANR23-PEIA-0003) for supporting the work. We thank Eleni Vasilaki
and Philippe Preux for their support.

References

M. A. Abdullah, H. Ren, H. B. Ammar, V. Milenkovic, R. Luo, M. Zhang, and J. Wang. Wasserstein robust
reinforcement learning. arXiv preprint arXiv:1907.13196, 2019.

A. Agarwal, N. Jiang, S. M. Kakade, and W. Sun. Reinforcement learning: Theory and algorithms, 2022.
URL https://rltheorybook.github.io/.

M. Aleksandrowicz and J. Jaworek-Korjakowska. Metrics for assessing generalization of deep reinforcement
learning in parameterized environments. JAISCR, 14(1):45–61, 2023.

E. Altman. Constrained Markov Decision Processes. Routledge, 1999.

D. Alvarez-Melis and N. Fusi. Geometric dataset distances via optimal transport. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 2020. Curran
Associates Inc. ISBN 9781713829546.

S. Amin, M. Gomrokchi, H. Satija, H. van Hoof, and D. Precup. A survey of exploration methods in
reinforcement learning, 2021.

M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement learning. In International
conference on machine learning, pp. 263–272. PMLR, 2017.

D. Basu, X. Wang, Y. Hong, H. Chen, and S. Bressan. Learn-as-you-go with megh: Efficient live migration
of virtual machines. IEEE Transactions on Parallel and Distributed Systems, 30(8):1786–1801, 2019.

D. Basu, P. Senellart, and S. Bressan. Belman: An information-geometric approach to stochastic bandits.
In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2019,
Würzburg, Germany, September 16–20, 2019, Proceedings, Part III, pp. 167–183. Springer, 2020.

M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and R. Munos. Unifying count-based
exploration and intrinsic motivation. In Advances in Neural Information Processing Systems, pp. 1471–
1479. Curran Associates, Inc., 2016.

H. Bojun. Steady state analysis of episodic reinforcement learning. In H. Larochelle, M. Ranzato, R. Had-
sell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 9335–9345. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/69bfa2aa2b7b139ff581a806abf0a886-Paper.pdf.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba. Openai gym,
2016. URL https://www.gymlibrary.dev/environments/classic_control/mountain_car/.

Y. Burda, H. Edwards, A. Storkey, and O. Klimov. Exploration by random network distillation. In In-
ternational Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
H1lJJnR5Ym.

S. Calo, A. Jonsson, G. Neu, L. Schwartz, and J. Segovia-Aguas. Bisimulation metrics are optimal transport
distances and can be computed efficiently, 2024. URL http://arxiv.org/abs/2406.04056.

G. Carlier, A. Galichon, and F. Santambrogio. From knothe’s transport to brenier’s map and a continuation
method for optimal transport. SIAM Journal on Mathematical Analysis, 41(6):2554–2576, 2010.

14

https://rltheorybook.github.io/
https://proceedings.neurips.cc/paper_files/paper/2020/file/69bfa2aa2b7b139ff581a806abf0a886-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/69bfa2aa2b7b139ff581a806abf0a886-Paper.pdf
https://www.gymlibrary.dev/environments/classic_control/mountain_car/
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
http://arxiv.org/abs/2406.04056

Published in Transactions on Machine Learning Research (05/2025)

P. Christodoulou. Soft actor-critic for discrete action settings, 2019.

E. Derman and S. Mannor. Distributional robustness and regularization in reinforcement learning. arXiv
preprint arXiv:2003.02894, 2020.

M. P. Drazin. Pseudo-inverses in associative rings and semigroups. The American mathematical monthly, 65
(7):506–514, 1958.

B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. Diversity is all you need: Learning skills without a reward
function. In International Conference on Learning Representations, 2019.

B. Eysenbach, R. Salakhutdinov, and S. Levine. The information geometry of unsupervised reinforcement
learning. arXiv preprint arXiv:2110.02719, 2021.

R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel, A. Corenflos,
K. Fatras, N. Fournier, L. Gautheron, N. T.H. Gayraud, H. Janati, A. Rakotomamonjy, I. Redko, A. Rolet,
A. Schutz, V.Seguy, D. J. Sutherland, R.Tavenard, A. Tong, and T. Vayer. Pot: Python optimal transport.
Journal of Machine Learning Research, 22(78):1–8, 2021. URL http://jmlr.org/papers/v22/20-451.
html.

Y. Gao and P. Chaudhari. An information-geometric distance on the space of tasks. In Proceedings of the
38th International conference on machine learning, pp. 3553–3563. PMLR, 2021.

C. Gelada, S. Kumar, J. Buckman, O. Nachum, and M. G. Bellemare. Deepmdp: Learning continuous latent
space models for representation learning. In Proceedings of the 36th International Conference on Machine
Learning, pp. 2170–2179. PMLR, 2019.

A. Gibbs and F. E. Su. On choosing and bounding probability metrics. International Statistical Review /
Revue Internationale de Statistique, 70(3):419–435, 2002.

A. Givchi. Optimal Transport in Reinforcement Learning. PhD thesis, Graduate School-Newark Rutgers, The
State University of New Jersey, 2021. URL https://rucore.libraries.rutgers.edu/rutgers-lib/
66700/PDF/1/.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In
International Conference on Artificial Intelligence and Statistics, 2010.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In Proceedings of the 35th International Conference on
Machine Learning, 2018.

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel,
and S. Levine. Soft actor-critic algorithms and applications, 2019.

L. Hou, L. Pang, X. Hong, Y. Lan, Z. Ma, and D. Yin. Robust reinforcement learning with wasserstein
constraint. arXiv preprint arXiv:2006.00945, 2020.

J. Huang, X. Su, Z. Fang, and H. Kasai. Anchor space optimal transport as a fast solution to multiple
optimal transport problems. IEEE Transactions on Neural Networks and Learning Systems, 2024.

A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning methods. ACM
Computing Surveys, 50:1–35, 2017.

J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine. How to train your robot with deep
reinforcement learning: lessons we have learned. The International Journal of Robotics Research, 40(4-5):
698–721, 2021.

M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G. Castaneda, C. Beattie, N. C.
Rabinowitz, A. S. Morcos, A. Ruderman, N. Sonnerat, T. Green, L. Deason, J. Z. Leibo, D. Silver,
D. Hassabis, K. Kavukcuoglu, and T. Graepel. Human-level performance in 3d multiplayer games with
population-based reinforcement learning. Science, 364(6443):859–865, 2019.

15

http://jmlr.org/papers/v22/20-451.html
http://jmlr.org/papers/v22/20-451.html
https://rucore.libraries.rutgers.edu/rutgers-lib/66700/PDF/1/
https://rucore.libraries.rutgers.edu/rutgers-lib/66700/PDF/1/

Published in Transactions on Machine Learning Research (05/2025)

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning. Journal of
Machine Learning Research, 11(51):1563–1600, 2010. URL http://jmlr.org/papers/v11/jaksch10a.
html.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Journal of artificial intelligence research. Reinforcement
Learning: A Survey, 4:237—-285, 1996.

K. Kalagarla, R. Jain, and P. Nuzzo. A sample-efficient algorithm for episodic finite-horizon mdp with
constraints. In The 35th AAAI Conference on Artificial Intelligence, pp. 8030–8037, 2021.

M. Kallel, D. Basu, R. Akrour, and C. D’Eramo. Augmented bayesian policy search. In The 12th International
Conference of Learning Representations, volume 139, 2024.

E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and D. Scaramuzza. Champion-level drone
racing using deep reinforcement learning. Nature, 620(7976):982–987, 2023.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.

S. Kolouri, S. R. Park, M. Thorpe, D. Slepcev, and G. K. Rohde. Optimal mass transport: Signal processing
and machine-learning applications. IEEE Signal Processing Magazine, 34:43–59, 2017.

P. Ladosz, L. Weng, M. Kim, and H. Oh. Exploration in deep reinforcement learning: A survey. Information
Fusion, 85:1–22, 2022.

R. Laroche and R. T. des Combes. On the occupancy measure of non-markovian policies in continuous mdps.
In Proceedings of the 40th International Conference on Machine Learning, volume 202, 2023.

M. Laskin, H. Liu, X. Bin Peng, D. Yarats, A. Rajeswaran, and P. Abbeel. CIC: contrastive intrinsic control
for unsupervised skill discovery. CoRR, abs/2202.00161, 2022. URL https://arxiv.org/abs/2202.
00161.

T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

A. Lazaridis, A. Fachantidis, and I. Vlahavas. Deep reinforcement learning: A state-of-the-art walkthrough.
Journal of Artificial Intelligence Research, 69:1421–1471, 2020.

J. Lee, M. Dabagia, E. Dyer, and C. Rozell. Hierarchical optimal transport for multimodal distribution
alignment. Advances in Neural Information Processing Systems, 32, 2019.

J. M. Lee. Manifolds and differential geometry, volume 107. American Mathematical Society, 2009.

S. E. Li. Deep reinforcement learning. In Reinforcement learning for sequential decision and optimal control,
pp. 365–402. Springer, 2023.

A. Likmeta, M. Sacco, A. M. Metelli, and M. Restelli. Wasserstein actor-critic: directed exploration via
optimism for continuous-actions control. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 8782–8790, 2023.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. In International Conference on Learning Representations, 2016.
URL https://arxiv.org/pdf/1509.02971v6.

S. Liu. An evaluation of ddpg, td3, sac, and ppo: Deep reinforcement learning algorithms for controlling
continuous system. In International Conference on Data Science, Advanced Algorithm and Intelligent
Computing, 2023.

J. Lott. Some geometric calculations on wasserstein space. Communications in Mathematical Physics, 277:
423—-437, 2008.

M. Memmel, P. Liu, D. Tateo, and J. Peters. Dimensionality reduction and prioritized exploration for polic
search. In 25th International Conference on Artificial Intelligence and Statistics, 2022.

16

http://jmlr.org/papers/v11/jaksch10a.html
http://jmlr.org/papers/v11/jaksch10a.html
https://arxiv.org/abs/2202.00161
https://arxiv.org/abs/2202.00161
https://arxiv.org/pdf/1509.02971v6

Published in Transactions on Machine Learning Research (05/2025)

A. M. Metelli, A. Likmeta, and M. Restelli. Propagating uncertainty in reinforcement learning via wasserstein
barycenters. Advances in Neural Information Processing Systems, 32, 2019.

C. D. Meyer. The role of the group generalized inverse in the theory of finite markov chains. SIAM Review,
17(3):443–464, 1975.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing
atari with deep reinforcement learning, 2013.

A. W. Moore. Efficient Memory-based Learning for Robot Control. PhD thesis, University of Cambridge,
1990.

S. Müller, A. von Rohr, and S. Trimpe. Local policy search with bayesian optimization. Advances in Neural
Information Processing Systems, 34:20708–20720, 2021.

G. Neu and C. Pike-Burke. A unifying view of optimism in episodic reinforcement learning. Advances in
Neural Information Processing Systems, 33:1392–1403, 2020.

I. Osband, B. V. Roy, and D. Russo. (more) efficient reinforcement learning via posterior sampling. In
Advances in Neural Information Processing Systems, pp. 3003—-3011, 2013.

R. Ouhamma, D. Basu, and O. Maillard. Bilinear exponential family of mdps: frequentist regret bound
with tractable exploration & planning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 9336–9344, 2023.

V. M. Panaretos and Y. Zemel. Statistical aspects of wasserstein distances. Annual Review of Statistics and its
Applications, 6:405–431, 2019. URL https://doi.org/10.1146/annurev-statistics-030718-104938.

G. Peyré. Computational optimal transport. Foundations and Trends in Machine Learning, 11(5-6):355–607,
2019.

M. Pirotta, M. Restelli, and L. Bascetta. Policy gradient in lipschitz markov decision processes. Machine
Learning, 100(2-3):255––283, 2015.

M. L. Puterman. Markov decision processes: Discrete stochastic dynamic programming. John Wiley and
Sons, 1994.

S. Raghvendra, P. Shirzadian, and K. Zhang. A new robust partial p-wasserstein-based metric for comparing
distributions, 2024.

G. O. Ramos, B. C. da Silva, and A. L. C. Bazzan. Learning to minimise regret in route choice. In Proceedings
of the 16th Conference on Autonomous Agents and MultiAgent Systems, pp. 846–855, 2017.

G. O. Ramos, A. L. C. Bazzan, and B. C. da Silva. Analysing the impact of travel information for minimising
the regret of route choice. Transportation Research Part C: Emerging Technologies, 88:257–271, 2018.

F. Santambrogio. Optimal Transport for Applied Mathematicians. Bikhauser Cham, 2015. ISBN 978-3-319-
20828-2.

H. Van Seijen, H. Nekoei, E. Racah, and S. Chandar. The loca regret: a consistent metric to evaluate
model-based behavior in reinforcement learning. Advances in Neural Information Processing Systems, 33:
6562–6572, 2020.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,
A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis.
Mastering the game of go without human knowledge. nature, 550(7676):354–359, 2017.

S. R. Sinclair, S. Banerjee, and C. L. Yu. Adaptive discretization in online reinforcement learning. Operations
Research, 71(5):1636–1652, 2023.

17

https://doi.org/10.1146/annurev-statistics-030718-104938

Published in Transactions on Machine Learning Research (05/2025)

M. Sommerfeld, J. Schrieber, Y. Zemel, and A. Munk. Optimal transport: Fast probabilistic approximation
with exact solvers. Journal of Machine Learning Research, 20:1–23, 2019.

K. Sun, Y. Zhao, Y. Liu, B. Jiang, and L. Kong. Distributional reinforcement learning via sinkhorn iterations.
arXiv preprint arXiv:2202.00769, 2022.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction, 2nd Edition. MIT press, 2018.

U. Syed, M. Bowling, and R. E. Schapire. Apprenticeship learning using linear programming. In Proceedings
of the 25th International Conference on Machine Learning, pp. 1032–1039. PMLR, 2008. URL https:
//doi.org/10.1145/1390156.1390286.

H. Tang, R. Houthooft, D. Foote, X. Chen A. Stooke, Y. Duan, J. Schulman, F. De Turck, and P. Abbeel.
#exploration: A study of count-based exploration for deep reinforcement learning. In Advances in Neural
Information Processing Systems, pp. 2753–2762. Curran Associates, Inc., 2017.

C. Villani. Optimal Transport Old and New. Springer Berlin, Heidelberg, 2009. ISBN 978-3-662-50180-1.

J. Wang, I. Trummer, and D. Basu. Udo: universal database optimization using reinforcement learning.
Proceedings of the VLDB Endowment, 14(13):3402–3414, 2021.

P. N. Ward. Linear programming in reinforcement learning, 2021. URL https://escholarship.mcgill.
ca/downloads/xs55mh725. MSc thesis.

Y. Xie, X. Wang, R. Wang, and H. Zha. A fast proximal point method for computing exact wasserstein
distance. In Uncertainty in artificial intelligence, pp. 433–453. PMLR, 2020.

Y. Yang, T. Zhou, Q. He, L. Han, M. Pechenizkiy, and M. Fang. Task adaptation from skills: Information
geometry, disentanglement, and new objectives for unsupervised reinforcement learning. In The Twelfth
International Conference on Learning Representations, 2024.

L. Zhang, K. Tang, and X. Yao. Explicit planning for efficient exploration in reinforcement learning. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, volume 32, pp. 7488–7497. Curran Associates, Inc., 2019.

M. Zhang, Y. Wang, X. Ma, L. Xia, J. Yang, Z. Li, and X. Li. Wasserstein distance guided adversarial
imitation learning with reward shape exploration. In IEEE 9th Data Driven Control and Learning Systems
Conference, pp. 1165–1170, 2020.

C. Zhu, X. Wang, T. Han, S. S. Du, and A. Gupta. Transferable reinforcement learning via generalized
occupancy models, 2024.

18

https://doi.org/10.1145/1390156.1390286
https://doi.org/10.1145/1390156.1390286
https://escholarship.mcgill.ca/downloads/xs55mh725
https://escholarship.mcgill.ca/downloads/xs55mh725

Published in Transactions on Machine Learning Research (05/2025)

A Theoretical Analysis

A.1 MDP with Lipschitz Rewards

Given two metric spaces (X , dX) and (Y, dY), a function f : X → Y is called 1-Lipschitz continuous if
(Villani, 2009):

dY (f(x), f(x′)) ≤ dX(x, x′), ∀(x, x′) ∈ X (11)

This implies that the Lipschitz semi-norm over the function space F(X, Y), defined as

∥f∥L = sup
x ̸=x′

{
dY (f(x), f(x′))

dX(x, x′) | ∀(x, x′) ∈ X
}

, (12)

is ≤ 1. When (X , dX) is a Polish space and µ, ν ∈ P(X), the Kantorovich-Rubinstein formula states
that (Villani, 2009):

W1(µ, ν) = sup
∥f∥L≤1

{∫
X

f dµ −
∫

X
f dν

}
= sup

∥f∥L≤1
{Eµ [f(X)] − Eν [f(X)]} ,

(13)

where W1(µ, ν) is the 1-Wasserstein distance between µ and ν with f as the cost function.

Note that when ∥f∥L ≤ LR for any LR > 0, then the function f is called LR-Lipschitz continuous, and
Equation 13 becomes (Gelada et al., 2019),

W1(µ, ν) = 1
LR

sup
∥f∥L≤LR

{Eµ [f(X)] − Eν [f(X)]} . (14)

Now, we consider X = S × A, i.e. the state-action space, Y = R, i.e. the real line, and the function f to be
the reward function R̄. Then, we can call the reward function R̄ to be LR-Lipschitz if

|R̄(s, a) − R̄(s′, a′)| ≤ LRdSA((s, a), (s′, a′))

for all s, s′ ∈ S, and a, a′ ∈ A, and dSA((s, a), (s′, a′)) = dS((s, s′)) + dA((a, a′)) being the metric on the
state-action space S × A. If the reward function R̄ of an MDP is LR-Lipschitz, we refer it as an MDP with
Lipschitz rewards.

A.2 Performance Difference and Occupancy Measures

We know that
Jπ

µ = 1
ρ
E(s,a)∼vπ

[
R̄(s, a)

]
. (15)

Using Equation 15, we write for two policies π and π′, with µ(s) as the initial state distribution,∣∣∣Jπ
µ − Jπ′

µ

∣∣∣ = 1
ρ

∣∣E(s,a)∼vπ

[
R̄(s, a)

]
− E(s,a)∼vπ′

[
R̄(s, a)

]∣∣ (16)

Given an MDP with LR-Lipschitz rewards, the Kantorovich-Rubinstein formula dictates that (Gelada
et al., 2019):

sup
∥R̄∥L≤LR

∣∣E(s,a)∼vπ

[
R̄(s, a)

]
− E(s,a)∼vπ′

[
R̄(s, a)

]∣∣ = LRW1(vπ, vπ′) (17)

By dividing both sides of Equation 17 by ρ, and due to an upper bound by the supremum, this inequality
follows: ∣∣∣Jπ

µ − Jπ′

µ

∣∣∣ ≤ LR

ρ
W1(vπ, vπ′) (18)

19

Published in Transactions on Machine Learning Research (05/2025)

A.3 Proof of proposition 1

The Linear Programming formulation for solving MDPs, assuming discrete state and action spaces, is (Put-
erman, 1994):

max
vπ

∑
s,a

r(s, a)vπ(s, a)

subject to
∑

a

vπ(s, a) = p0(s) + γ
∑
s′,a

T (s | s′, a)vπ(s′, a)

vπ(s, a) ≥ 0 ∀(s, a) ∈ S × A ,

(19)

where p0(s) is the initial state distribution and T (s | s′, a) is the transition probability. The constraints of
this optimization problem are often referred to as Bellman Flow Constraint.

A stationary policy π has a corresponding occupancy measure vπ(s, a) that satisfies the Bellman flow con-
straint (Syed et al., 2008), and hence π and vπ(s, a) share a bijective relationship (Syed et al., 2008; Givchi,
2021),

π(a | s) = vπ(s, a)
uπ(s) (20)

with
uπ(s) =

∑
a′

vπ(s, a′) = p0(s) + γ
∑
s′,a′

T (s | s′, a′)vπ(s′, a′) (21)

By rearranging Equation 20 to
vπ(s, a) = π(a | s)uπ(s) (22)

and substituting Equation 22 into Equation 21, we can rewrite Equation 21 as (defining Pπ ≜
∑

a T (s |
s′, a)π(a | s′)),

p0(s) = uπ(s) − γ
∑
s′,a

T (s | s′, a)π(a | s′)uπ(s′)

≜ uπ(s) − γ
∑

s′

Pπ(s | s′)uπ(s′)
(23)

which in matrix form is
p0 = uπ − γPπuπ

= (I − γPπ) uπ ,
(24)

where p0, uπ ∈ R|S| are column vectors and Pπ ∈ R|S|×|S| are matrices. Solving for uπ, we get

uπ = (I − γPπ)−1 p0 (25)

The inverse matrix (I − γPπ)−1 exists because for γ < 1, (I − γPπ) is a strictly diagonally dominant ma-
trix (Syed et al., 2008). Thus, (I − γPπ)−1 =

∑∞
t=0(γPπ)t, where

∑∞
t=0(γPπ)t forms a valid Neumann

series (Ward, 2021). We let Aπ =
∑∞

t=0(γPπ)t, so Equation 25 can be written as uπ = Aπp0. We can
therefore express Equation 22 in matrix form as:

vπ = Π ⊙
(
uT

π ⊗ 1
)T

= Π ⊙
(
pT

0 (Aπ)T ⊗ 1
)T

,
(26)

where Π, vπ ∈ R|S|×|A|, 1 ∈ R|A| is a column vector of ones, ⊗ presents the Kronecker product, and ⊙
denotes the Hadamard product.

If we consider the case of a parameterized policy Π(θ), then the derivative of vπ with respect to θ is

∇θvπ =∇θ

[
Π ⊙

(
pT

0 (Aπ)T ⊗ 1
)T
]

=∇θΠ ⊙
(
pT

0 (Aπ)T ⊗ 1
)T + Π ⊙ ∇θ

(
pT

0 (Aπ)T ⊗ 1
)T

=∇θΠ ⊙
(
pT

0 (Aπ)T ⊗ 1
)T + Π ⊙

(
pT

0 (∇θAπ)T ⊗ 1
)T

(27)

20

Published in Transactions on Machine Learning Research (05/2025)

The first term in Equation 27 is differentiable since the policy is parameterized by θ. We expand ∇θAπ as
follows:

∇θAπ = ∇θ

(∞∑
t=0

(γPπ)t

)
= ∇θ

(
I + (γPπ) + (γPπ)2 + · · · + (γPπ)t + . . .

)
= 0 + ∇θ(γPπ) + 2(γPπ)∇θ(γPπ) + 3(γPπ)2∇θ(γPπ) + · · · + t(γPπ)t−1∇θ(γPπ) + . . .

=
(
I + 2(γPπ) + 3(γPπ)2 + · · · + t(γPπ)t−1 + . . .

)
∇θ(γPπ)

=
(∞∑

t=0
(t + 1)(γPπ)t

)
∇θ(γPπ)

=
∞∑

t=0
(t + 1)(γPπ)tγ∇θPπ

≡
∞∑

t=0
(t + 1)(γPπ)tγ∇θ

∑
s′,a

T (s|s′, a)π(a|s′)


=

∞∑
t=0

(t + 1)(γPπ)tγ

∑
s′,a

T (s|s′, a)∇θπ(a|s′)

 .

(28)

Since Equation 28 shows that ∇θAπ is differentiable, ∇θvπ is also differentiable based on Equation 27.
Proceeding similarly, given the same conditions, we see that all higher derivatives of vπ also exist with
respect to θ. Thus, the space of parametrized occupancy measures vπ forms a differentiable manifold.

A.4 Proof of proposition 2

Regret is a common metric for evaluating agents, that measures the total loss an agent incurs over policy
updates by using its policy in lieu of the optimal one, defined as (Osband et al., 2013),

Regret = Es∼µ

[∑
k

(V ∗(s) − Vπk
(s))

]
(29)

where V ∗ = Vπ∗ is the value function of the optimal policy π∗ while Vπk
(s) is the value function of policy

πk, and µ is the initial state distribution.

Since Jπ
µ = Es∼µ[Vπ(s)], we can conclude from Equation 29 that

Regret = Es∼µ

[∑
k

(V ∗(s) − Vπk
(s))

]
=
∑

k

[Es∼µ(V ∗(s) − Vπk
(s))]

=
∑

k

(
Jπ∗

µ − Jπk
µ

)
=
∑

k

∣∣∣Jπ∗

µ − Jπk
µ

∣∣∣
≤
∑

k

LR

ρ
W1(vπ∗ , vπk

)

(30)

The last inequality is due to Equation 18.

21

Published in Transactions on Machine Learning Research (05/2025)

A.5 Proof of proposition 3

Let us begin the proof by defining the visitation probability at any step h ∈ [H] in an episode, following
policy π(a|s). Specifically,

qh
π(s, a) ≜ P(sh = s, ah = a) ∀h ∈ [H] and qh

π(s, a) ≜ 0 ∀h ∈ N ∧ h > H . (31)

Thus, we rewrite Equation 7 as vH
π (s, a) = 1

H

∑H
h=1 qh

π(s, a).

Then, following (Kalagarla et al., 2021), we can write the Linear Programming formulation for solving
episodic MDP MH as

max
{qh

π}H
h=1

∑
h,s,a

r(s, a)qh
π(s, a)

subject to
∑

a

qh
π(s, a) =

∑
s′,a

T (s | s′, a)qh−1
π (s′, a) ∀h ∈ [H] ∧ h > 1 ,

q1
π(s, a) = π(a|s)µ(s) ,

qh
π(s, a) ≥ 0 ∀h ∈ [H], (s, a) ∈ S × A ,

(32)

where µ(s) is the initial state distribution and T (s | s′, a) is the transition probability. The constraints of
this optimization problem are often referred to as Bellman Flow Constraints.

This implies that
H+1∑
h=2

∑
a

qh
π(s, a) =

H+1∑
h=2

∑
s′,a

T (s | s′, a)qh−1
π (s′, a)

=⇒
∑

a

q1
π(s, a) +

H+1∑
h=2

∑
a

qh
π(s, a) =

H+1∑
h=2

∑
s′,a

T (s | s′, a)qh−1
π (s′, a) +

∑
a

q1
π(s, a)

=⇒
∑

a

H+1∑
h=1

qh
π(s, a) =

H+1∑
h=2

∑
s′,a

T (s | s′, a)qh−1
π (s′, a) +

∑
a

q1
π(s, a)

=⇒ H
∑

a

vH
π (s, a) =

∑
s′,a

T (s | s′, a)(
H+1∑
h=2

qh−1
π (s′, a)) + µ(s)

=⇒ H
∑

a

vH
π (s, a) = H

∑
s′,a

T (s | s′, a)vH
π (s′, a) + µ(s)

=⇒
∑

a

vH
π (s, a) =

∑
s′,a

T (s | s′, a)vH
π (s′, a) + 1

H
µ(s)

=⇒ uH
π (s) ≜

∑
a

vH
π (s, a) =

∑
s′,a

T (s | s′, a)π(a|s′)uH
π (s′) + 1

H
µ(s) . (33)

Now, we denote uH
π and µ̄ as corresponding column vectors and the transition matrix Pπ ≜[∑

s′,a T (s | s′, a)π(a|s′)
]
. Thus, we obtain

(I − Pπ)uH
π = 1

H
µ̄. (34)

We can therefore express the finite horizon occupancy measure in matrix form as

vH
π = Π ⊙

(
(uH

π)T ⊗ 1
)T (35)

where Π, vπ ∈ R|S|×|A|, 1 ∈ R|A| is a column vector of ones, ⊗ presents the Kronecker product, ⊙ denotes
the Hadamard product.

22

Published in Transactions on Machine Learning Research (05/2025)

If we consider the case of a parameterized policy Π(θ), the derivative of vH
π with respect to θ is

∇θvH
π =∇θ

[
Π ⊙

(
(uH

π)T ⊗ 1
)T
]

=∇θΠ ⊙
(
(uH

π)T ⊗ 1
)T + Π ⊙ ∇θ

(
(uH

π)T ⊗ 1
)T

=∇θΠ ⊙
(
(uH

π)T ⊗ 1
)T + Π ⊙

(
(∇θuH

π)T ⊗ 1
)T

(36)

The first term in Equation 36 is differentiable since the policy is parameterized by θ. We show that ∇θuH
π

exists using Equation 34 as follows:

∇θ

[
(I − Pπ)uH

π

]
= 1

H
∇θµ̄

∇θ(I − Pπ)uH
π + (I − Pπ)∇θuH

π = 0
−∇θPπuH

π + (I − Pπ)∇θuH
π = 0

(I − Pπ)∇θuH
π = ∇θPπuH

π

(37)

In Equation 37, we observe that (I − Pπ)−1 may or may not exist. To address this, we use the group
inverse, a generalized matrix inverse that extends the concept of inversion to both singular and invertible
matrices (Drazin, 1958). For a square matrix C ∈ Rn×n, its group inverse C# satisfies the conditions
CC#C = C, C#CC# = C# and CC# = C#C.

The group inverse is useful in analysing Markov chains (Meyer, 1975) and coincides with the standard inverse
when C is invertible. Using group inverse (I − Pπ)#, Equation 37 can be expressed as,

∇θuH
π = (I − Pπ)#∇θPπuH

π + w (38)

where w is a vector in the null space of (I− Pπ). Note that w = 0 for ergodic Markov chains (Meyer, 1975).
An episodic MDP induces an ergodic Markov chain that admits a unique stationary distribution (Bojun,
2020) (see also Appendix B.3). Thus, Equation 38 simplifies to

∇θuH
π = (I − Pπ)#∇θPπuH

π (39)

= (I − Pπ)#

∑
s′,a

T (s|s′, a)∇θπ(a|s′)

uH
π (40)

which shows that ∇θuH
π is differentiable and so is ∇θvH

π . Proceeding similarly, given the same conditions,
we see that all higher derivatives of vH

π also exist with respect to θ. Thus, the space of parametrized
finite-horizon occupancy measures vH

π forms a differentiable manifold MH .

A.6 Optimal Transport Dataset Distance (OTDD)

Suppose we have two datasets, each consisting of feature-label pairs, DA = {(ti
A, ui

A)}m
i=1 ∼ PA(t, u) and

DB = {(ti
B , ui

B)}n
i=1 ∼ PB(t, u) with tA, tB ∈ T and uA, uB ∈ UA, UB. These datasets can be used to create

empirical distributions P̂A(t, u) and P̂B(t, u). OTDD is the p-Wasserstein distance between the datasets DA

and DB - which is essentially the distance between their empirical distributions P̂A and P̂B - with the cost
function defined as the metric of the joint space T × U (Alvarez-Melis & Fusi, 2020).

Naturally, the metric on this joint space can be defined as dT U ((t, u), (t′, u′)) = (dT (t, t′)p + dU (u, u′)p)1/p,
for p ≥ 1. However, in most applications dT is readily available, while dU might be scarce, especially in
supervised learning (SL) between labels from unrelated label sets (Alvarez-Melis & Fusi, 2020). Further, we
want dT and dU to have the same units to be addable. To overcome these issues, dU is expressed in terms of
dT by mapping labels u to distributions over the feature space P(T) as u → αu(T) ≜ P (T | U = u) ∈ P(T).
Therefore, the distance between the labels u and u′ is defined as the p-Wasserstein distance between αu(T)

23

Published in Transactions on Machine Learning Research (05/2025)

and αu′(T),
dU (u, u′) = Wp(αu(T), αu′(T))

=
(

min
π∈Π(αu,αu′)

∫
T ×T

(dT (t, t′))p dπ(t, t′)
)1/p (41)

The metric on the joint space becomes,

dT U ((t, u), (t′, u′)) =
(
dT (t, t′)p + Wp

p (αu(T), αu′(T))
)1/p (42)

Let Z = T × U , then the p-Wasserstein distance between P̂A(t, u) and P̂B(t, u) is a "nested" Wasserstein
distance:

Wp
p (P̂A, P̂B) = min

π∈Π(PA,PB)

∫
Z×Z

(dZ(z, z′))p dπ

= min
π∈Π(PA,PB)

∫
T U×T U

(
dT (t, t′)p + Wp

p (αu, αu′)
)

dπ

(43)

W p
p (P̂A, P̂B) is the OTDD between datasets DA and DB , often expressed as dOT (DA, DB). This is used

in transfer learning to determine the distance (or similarity) between datasets. Figure 6 illustrates OTDD
when applied to RL using datasets of state-action pairs.

Figure 6: Illustration of OTDD when applied to RL.

A.7 Proof of Proposition 4

We compute the error in occupancy measure for both the infinite and finite horizon cases. In infinite horizon
MDPs, the occupancy measure is defined as the expected discounted number of visits of a state-action pair
(s, a) in a trajectory (Laroche & des Combes, 2023): µ = (1−γ)

∑∞
t=0 γtµt, where µt = P (st, at | π, η) is the

state-action probability distribution at time step t with the initial state distribution η following the policy
π. In finite horizon MDPs, the occupancy measure is the expected number of visits of a state-action pair
(s, a) in an episode of length H (Altman, 1999): µ = 1

H

∑H
t=1 µt.

24

Published in Transactions on Machine Learning Research (05/2025)

First, we derive error bounds for the infinite horizon MDP in which γ < 1 and the occupancy measure is
approximated using a finite number of samples collected up to a finite number of time steps T . Later, we
derive error bounds for the finite horizon MDP.

A.7.1 Infinite Horizon MDPs

Estimated Occupancy Measure. For convenience, we express the occupancy measure as µ = (1 −
γ)
∑∞

t=0 γtµt, where µt = P (st, at | π, η) is the state-action probability distribution at time step t with the
initial state distribution η following the policy π. To compute µ, we roll out N episodes (each of multiple
time steps) using π, and take N number of samples at t to approximate µt. Thus, the empirical occupancy
measure µ̂ is given by µ̂ = ρ

∑T
t=0 γtµ̂N

t , where ρ = 1∑T

t=0
γt

. Note that the total number of samples in the

policy dataset Dπ is |Dπ| = N(T + 1).

Occupancy Measure Estimation Error. Consider two occupancy measures µ = (1 − γ)
∑∞

t=0 γtµt and
ν = (1 − γ)

∑∞
t=0 γtνt (with estimates µ̂ = ρ

∑T
t=0 γtµ̂

Nµ

t and ν̂ = ρ
∑T

t=0 γtν̂Nν
t). For independent sets

{µt}t≥0 and {νt}t≥0, the Wasserstein distance has the following additive property (Panaretos & Zemel,
2019),

Wp(
∑

t

µt,
∑

t

νt) ≤
∑

t

Wp(µt, νt) (44)

While for a ∈ R (Panaretos & Zemel, 2019),

Wp(aµ, av) = |a|Wp(µ, v) (45)

Therefore, for our scenario where p = 1, the Wasserstein distance between µ and ν is given by:

W1(µ, ν) = W1((1 − γ)
∞∑

t=0
γtµt, (1 − γ)

∞∑
t=0

γtνt)

≤ (1 − γ)
∞∑

t=0
γtW1(µt, νt)

(46)

while for µ̂ and ν̂,

W1(µ̂, ν̂) ≤ ρ

T∑
t=0

γtW1(µ̂Nµ

t , ν̂Nν
t) (47)

In the RL problems we consider, the state-action space Z = S × A is commonly defined as the subset of the
Euclidean space Z ∈ RB , where usually B ≥ 2. Theorems 1 and 3 in (Sommerfeld et al., 2019) establish the
following error bounds between the true and empirical probability distributions,

E[W1(µ̂Nµ

t , µt)] ≤ E2N
− 1

2
µ

E[W1(ν̂Nν
t , νt)] ≤ E2N

− 1
2

ν

(48)

where

E2 ≤ 4B1/2diam(Z) ·

{
2 + (1/2)log2|Z| if B = 2
|Z|1/2−1/B

[
2 + 1/(2B/2−1 − 1)

]
if B > 2

Note that |Z| and diam(Z) denote the cardinality and diameter of Z, respectively.

Suppose a = W1(µ̂, ν̂), b = W1(µ̂, µ), c = W1(ν̂, µ), d = W1(µ, ν), and e = W1(ν̂, ν). Then by performing
two reverse triangle inequalities,

|a − c| ≤ b and |c − d| ≤ e

=⇒ |a − d| ≤ b + e
(49)

25

Published in Transactions on Machine Learning Research (05/2025)

Equation 49 implies that,

E[|W1(µ̂, ν̂) − W1(µ, ν)|] ≤ E[W1(µ̂, µ) + W1(ν̂, ν)]

= E[W1(ρ
T∑

t=0
γtµ̂

Nµ

t , µ) + W1(ρ
T∑

t=0
γtν̂Nν

t , ν)]

= E[W1(ρ
T∑

t=0
γtµ̂

Nµ

t , µ)] + E[W1(ρ
T∑

t=0
γtν̂Nν

t , ν)]

+ E[W1((1 − γ)
∞∑

t=0
γtµ̂

Nµ

t , µ) − W1((1 − γ)
∞∑

t=0
γtµ̂

Nµ

t , µ)]

+ E[W1((1 − γ)
∞∑

t=0
γtν̂Nν

t , ν) − W1((1 − γ)
∞∑

t=0
γtν̂Nν

t , ν)]

(50)

By virtue of triangle inequalities, we get

W1(ρ
T∑

t=0
γtµ̂

Nµ

t , (1 − γ)
∞∑

t=0
γtµ̂

Nµ

t) ≥ W1(ρ
T∑

t=0
γtµ̂

Nµ

t , µ) − W1((1 − γ)
∞∑

t=0
γtµ̂

Nµ

t , µ)

W1(ρ
T∑

t=0
γtν̂Nν

t , (1 − γ)
∞∑

t=0
γtν̂Nν

t) ≥ W1(ρ
T∑

t=0
γtν̂Nν

t , ν) − W1((1 − γ)
∞∑

t=0
γtν̂Nν

t , ν)

(51)

Therefore, the right-hand-side (R.H.S) of Equation 50 can be further simplified as

R.H.S ≤ E[W1(ρ
T∑

t=0
γtµ̂

Nµ

t , (1 − γ)
∞∑

t=0
γtµ̂

Nµ

t)] + E[W1(ρ
T∑

t=0
γtν̂Nν

t , (1 − γ)
∞∑

t=0
γtν̂Nν

t)]

+ E[W1((1 − γ)
∞∑

t=0
γtµ̂

Nµ

t , µ)] + E[W1((1 − γ)
∞∑

t=0
γtν̂Nν

t , ν)]
(52)

For simplicity, we denote µ̂∞ = (1 − γ)
∑∞

t=0 γtµ̂
Nµ

t (similarly ν̂∞) and µ̂T = ρ
∑T

t=0 γtµ̂
Nµ

t (similarly ν̂T),
where ρ = 1∑T

t=0
γt

= 1−γ
1−γT +1 . Using Theorem 4 in (Gibbs & Su, 2002), the 1-Wasserstein metric W1 and

the total variation distance dT V satisfy the following,

W1(µ̂∞, µ̂T) ≤ diam(Z) · dT V (µ̂∞, µ̂T)

= diam(Z) · 1
2
∑
z∈Z

|µ̂∞(z) − µ̂T (z)| (53)

26

Published in Transactions on Machine Learning Research (05/2025)

However,

µ̂∞ − µ̂T = (1 − γ)
∞∑

t=0
γtµ̂

Nµ

t − 1 − γ

1 − γT +1

T∑
t=0

γtµ̂
Nµ

t

= (1 − γ)
∞∑

t=0
γtµ̂

Nµ

t − 1 − γ

1 − γT +1

T∑
t=0

γtµ̂
Nµ

t

+ (1 − γ)
T∑

t=0
γtµ̂

Nµ

t − (1 − γ)
T∑

t=0
γtµ̂

Nµ

t

= (1 − γ)
(∞∑

t=0
γtµ̂

Nµ

t −
T∑

t=0
γtµ̂

Nµ

t

)
+
(

(1 − γ) − 1 − γ

1 − γT +1

) T∑
t=0

γtµ̂
Nµ

t

= (1 − γ)
∞∑

t=T +1
γtµ̂

Nµ

t − γT +1 1 − γ

1 − γT +1

T∑
t=0

γtµ̂
Nµ

t

≤ (1 − γ)
∞∑

t=T +1
γtµ̂

Nµ

t

= γT +1 1 − γ

γT +1

∞∑
t=T +1

γtµ̂
Nµ

t

= γT +1µ̂T +1,∞

(54)

where 1−γ
γT +1 normalizes

∑∞
t=T +1 γtµ̂

Nµ

t . We utilize Equation 54 in Equation 53 as,

W1(µ̂∞, µ̂T) ≤ diam(Z) · 1
2
∑
z∈Z

|µ̂∞(z) − µ̂T (z)|

≤ diam(Z) · 1
2
∑
z∈Z

|γT +1µ̂T +1,∞(z)|

= γT +1

2 diam(Z)

(55)

Equation 55 also applies for W1(ν̂∞, ν̂T), therefore by substituting these into Equation 52,

R.H.S ≤ E[W1((1 − γ)
∞∑

t=0
γtµ̂

Nµ

t , µ)] + E[W1((1 − γ)
∞∑

t=0
γtν̂Nν

t , ν)] + γT +1diam(Z)

= E[W1((1 − γ)
∞∑

t=0
γtµ̂

Nµ

t , (1 − γ)
∞∑

t=0
γtµt)]

+ E[W1((1 − γ)
∞∑

t=0
γtν̂Nν

t , (1 − γ)
∞∑

t=0
γtνt)] + γT +1diam(Z)

≤ (1 − γ)
∞∑

t=0
γt
(
E[W1(µ̂Nµ

t , µt)] + E[W1(ν̂Nµ

t , νt)]
)

+ γT +1diam(Z) .

(56)

By substituting Equation 48 into Equation 56

R.H.S ≤ (1 − γ)
∞∑

t=0
γt
(

E2N
− 1

2
µ + E2N

− 1
2

ν

)
+ γT +1diam(Z)

= E2

(
N

− 1
2

µ + N
− 1

2
ν

)
+ γT +1diam(Z)

(57)

27

Published in Transactions on Machine Learning Research (05/2025)

Therefore, Equation 50 becomes:

E[|W1(µ̂, ν̂) − W1(µ, ν)|] ≤ E2

(
N

− 1
2

µ + N
− 1

2
ν

)
+ γT +1diam(Z) (58)

Over the full trajectory in the occupancy measure space. The true distance between consecutive
policies πi and πi+1 after an update is W1(vπi

, vπi+1), which is induced by the ith policy update. We estimate
this distance using datasets of the policies, i.e. approximated distributions, using W1(v̂πi

, v̂πi+1).

For M roll out episodes of each πi, we use Equation 58, with Nµ = Nν = M , to derive the following error
bounds,

E
[∣∣W1(vπi

, vπi+1) − W1(v̂πi
, v̂πi+1)

∣∣] ≤ 2E2M− 1
2 + γT +1diam(Z) (59)

which is consistent with learning from Dπi and then Dπi+1 . By summing sequentially through policies
encountered during RL training, we compute the total distance over a path of N segments obtained via
policy updates:

N−1∑
i=0

E
[∣∣W1(vπi

, vπi+1) − W1(v̂πi
, v̂πi+1)

∣∣] ≤ 2NE2M− 1
2 + NγT +1diam(Z) (60)

Since |
∑

t xt| ≤
∑

t |xt| then,

E

[∣∣∣∣∣
N−1∑
i=0

W1(vπi , vπi+1) −
N−1∑
i=0

W1(v̂πi , v̂πi+1)
∣∣∣∣∣
]

≤ 2NE2√
M

+ NγT +1diam(Z) (61)

A.7.2 Finite Horizon MDPs

Occupancy Measure Estimated Error. Consider two occupancy measures µ = 1
H

∑H
t=1 µt and ν =

1
H

∑H
t=1 νt with estimates µ̂ = 1

H

∑H
t=1 µ̂

Nµ

t and ν̂ = 1
H

∑H
t=1 ν̂Nν

t . From Equation 49, we have

E[|W1(µ̂, ν̂) − W1(µ, ν)|]
≤ E[W1(µ̂, µ) + W1(ν̂, ν)]

= E[W1(1
H

H∑
t=1

µ̂
Nµ

t ,
1
H

H∑
t=1

µt) + W1(1
H

H∑
t=1

ν̂Nν
t ,

1
H

H∑
t=1

νt)]

≤ 1
H

H∑
t=1

E[W1(µ̂Nµ

t , µt)] + 1
H

H∑
t=1

E[W1(ν̂Nν
t , νt)]

≤ E2

(
N

− 1
2

µ + N
− 1

2
ν

)
(62)

Therefore for the total path in the occupancy measure space with M roll out episodes of each πi, the
error bound is

E

[∣∣∣∣∣
N−1∑
i=0

W1(vπi
, vπi+1) −

N−1∑
i=0

W1(v̂πi
, v̂πi+1)

∣∣∣∣∣
]

≤ 2NE2√
M

(63)

by assigning Nµ = Nν = M in Equation 62, which concludes the proof.

28

Published in Transactions on Machine Learning Research (05/2025)

A.8 Proof of Proposition 5

By definition of ηsub, we get

ηsub =
∑N−2

i=0 W1(vπi
, vπi+1) + W1(vπN−1 , vπN

)
W1(vπ0 , vπN

)

=
∑N−2

i=0 W1(vπi , vπi+1) + W1(vπN−1 , vπN
)

W1(vπ0 , vπ∗) × W1(vπ0 , vπ∗)
W1(vπ0 , vπN

)

≥
∑N−2

i=0 W1(vπi
, vπi+1) + W1(vπN−1 , vπ∗) − W1(vπN

, vπ∗)
W1(vπ0 , vπ∗) × W1(vπ0 , vπ∗)

W1(vπ0 , vπN
)

=
(

η − W1(vπN
, vπ∗)

W1(vπ0 , vπN
)

)
W1(vπ0 , vπ∗)
W1(vπ0 , vπN

) . (64)

The inequality above is true due to the triangle inequality W1(vπN−1 , vπN
)+W1(vπN

, vπ∗) ≥ W1(vπN−1 , vπ∗).

By applying triangle inequality, we also get

W1(vπ0 , vπ∗) + W1(vπN
, vπ∗) ≥ W1(vπ0 , vπN

) .

This implies that

W1(vπ0 , vπ∗)
W1(vπ0 , vπN

) ≥ 1 − W1(vπN
, vπ∗)

W1(vπ0 , vπN
) . (65)

Equation 64 and Equation 65 together yield

ηsub ≥
(

η − W1(vπN
, vπ∗)

W1(vπ0 , vπN
)

)(
1 − W1(vπN

, vπ∗)
W1(vπ0 , vπN

)

)
= η − W1(vπN

, vπ∗)
W1(vπ0 , vπN

) − η
W1(vπN

, vπ∗)
W1(vπ0 , vπN

) +
(

W1(vπN
, vπ∗)

W1(vπ0 , vπN
)

)2

≥ η

(
1 − W1(vπN

, vπ∗)
W1(vπ0 , vπN

)

)
− W1(vπN

, vπ∗)
W1(vπ0 , vπN

)

≥ η

(
1 − 2W1(vπN

, vπ∗)
W1(vπ0 , vπN

)

)
.

The second last inequality is due to non-negativity of
(

W1(vπN
,vπ∗)

W1(vπ0 ,vπN
)

)2
. The last inequality is due to the fact

that η ≥ 1.

Thus, we conclude that

η − ηsub

η
≤ 2W1(vπN

, vπ∗)
W1(vπ0 , vπN

) .

A.9 Wasserstein Spaces as Geodesic Spaces

Given probability measures µ, ν ∈ P(X) on a metric space X ⊂ RB with metric dX (x, x′), the Wasserstein
distance Wp(µ, ν) is the minimal transport cost for c(x, x′) = (dX (x, x′))p with p ≥ 1 (Villani, 2009). The
Wasserstein distance Wp(µ, ν) takes a distance on X and creates out of it a distance on P(X)(Peyré, 2019).
Proposition 5.1 in (Santambrogio, 2015) asserts that Wp is a distance over P(X).

Definition A.9 (Wasserstein Space). (Santambrogio, 2015) Given a Polish space X , for each p ∈ [1, ∞),
the space P(X) endowed with the distance Wp is a Wasserstein space Wp of order p.

Theorem 5.27 in (Santambrogio, 2015) states that if X is a convex space, then the space Wp is a geodesic
space (length space). Thus, the geodesic (shortest path distance) between µ, ν ∈ P(X) is given by Wp(µ, ν)

29

Published in Transactions on Machine Learning Research (05/2025)

(Kolouri et al., 2017). It was mentioned in Appendix A.7.1 that the RL problems we consider consist of the
state-action space Z = S × A ∈ RB : B ≥ 2 (subsets of the Euclidean space). Given that Euclidean spaces
are convex spaces (Boyd & Vandenberghe, 2004), our space of occupancy measures M is a Wasserstein space
W1 = (M, W1) and thus a geodesic space. Therefore, W1(µ, ν) measures the shortest path on the surface of
the manifold M between probability distributions µ and ν.

30

Published in Transactions on Machine Learning Research (05/2025)

B Additional Experimental Analysis and Results

B.1 Environment Description

2D-Gridworld environment of size 5x5 with actions: {up, right, down, left}. The start and goal states
are always located at top-left and bottom-right, respectively. In the gridworld, we perform experiments on
three settings namely:- A) Deterministic, dense rewards setting: State transitions are deterministic. The
reward function is given by ∥st − sg∥1, where st is the agent state at timestep t and sg is the goal state.
B) Deterministic, sparse rewards setting: State transitions are deterministic and all states issue a reward of
-0.04 except the goal state with reward of 1. C) Stochastic, dense rewards setting: Actions have a probability
of 0.8 in the instructed direction and 0.1 in each adjacent direction. Reward function is as defined in setting
A.

2D-Gridworlds (Task Difficulty). Figure 7 depicts the configurations of the 5 tasks that were used to
assess ESL with respect to task hardness. They are all deterministic with actions: {up, right, down, left},
and mostly have the start-state at the top-left and the goal-state at the bottom-right - with only one task
that has the goal-state at the center. In the order of appearance: a) [5x5] dense: has size 5x5 and dense
rewards, b) [5x5] sparse (hard): has size 5x5 and sparse rewards, c) [5x5] sparse (easy): has size 5x5, sparse
rewards, and goal-state at the center, d) [15x15] dense: has size 15x15 and dense rewards, and e) [15x15]
sparse: has size 15x15 and sparse rewards. The reward functions for both dense and sparse rewards are as
previously described above for 2D-Gridworld.

Figure 7: Five gridworld tasks with the same action space, but different rewards, state space and location
of the goal state.

B.2 OMR(k): OMR over number of updates

OMR is defined for the entire policy trajectory by Equation 6 as,

κ ≜

∑
k∈K+ W1(vπk

, vπk+1)∑N−1
k=0 W1(vπk

, vπk+1)
.

To observe how it changes with respect to updates, we compute OMR from update i onwards till the end of
the learning trajectory, i.e. over subsequences with a decreasing number of policy updates with increasing i,
using:

κ(i) ≜
∑

k∈K+,k≥i W1(vπk
, vπk+1)∑N−1

k=i W1(vπk
, vπk+1)

, such that i ∈ [0, N − T] (66)

31

Published in Transactions on Machine Learning Research (05/2025)

where T ≈ 0.9N to ensure that the last subsequence of policy updates have at least 10% of the total updates
in the trajectory.

B.3 Computation of Occupancy Measures

The finite-horizon occupancy measure is defined as (Altman, 1999),

vH
π (s, a) = 1

H

H∑
t=1

P(st = s, at = a | π, µ)

for which the probability of the state-action pair selected is time-dependent. If we restrict our analysis
to stationary policies where π(at|st) = π(a|s), then the probability of the state-action pair becomes time-
independent and thus,

vH
π (s, a) = P(s, a | π, µ)

This implies that the use of stationary policies in finite-horizon MDPs, as observed in practice with many
episodic MDPs (Memmel et al., 2022; Aleksandrowicz & Jaworek-Korjakowska, 2023; Liu, 2023), induces
stationary occupancy measures - where the expected number of state-action pair visits are independent of the
time-step. Work by (Bojun, 2020) provides extensive details about the existence of stationarity in episodic
MDPs and shows (in Theorem 4) that,

E(s,a)∼vH
π

[
R̄(s, a)

]
=

Eζ∼Mπ

[∑H(ζ)
t=1 R(st, at)

]
Eζ∼Mπ

[H(ζ)]
(67)

where ζ is the episodic state-action pair trajectory, H(ζ) is the episode length corresponding to ζ, and Mπ

is the markov chain induced by policy π. We verified the correctness of our vH
π computation by calculating

the relative error derived from Equation 67 to check its validity. The relative error is given as

Rel. Error % = 100 ∗
E(s,a)∼vH

π

[
R̄(s, a)

]
Eζ∼Mπ

[H(ζ)] − Eζ∼Mπ

[∑H(ζ)
t=1 R(st, at)

]
Eζ∼Mπ

[∑H(ζ)
t=1 R(st, at)

] (68)

Figure 8 depicts Rel. Error% vs number of updates in the stochastic 2D-Gridworld environment with dense
rewards. We observe that increasing the number of rollouts M reduces the estimation error of vH

π . For
M = 10, the absolute relative error can be as high as 50% with the mean less than 10%. While for M = 500,
the maximum absolute relative error is 4%.

0 200 400 600 800
#updates

40

35

30

25

20

15

10

5

0

Re
l.

Er
ro

r
%

0 200 400 600 800
#updates

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Re
l.

Er
ro

r
%

Figure 8: Rel. Error% vs number of updates plots in the 2D-Gridworld environment where vH
π is estimated

using M = 10 rollouts (left) and M = 500 rollouts (right).

32

Published in Transactions on Machine Learning Research (05/2025)

B.4 Effects of the number of rollouts - SAC

The policy dataset Dπi
in a deterministic environment is made up of (s,a) pairs generated from a single

episode of the policy πi. In a deterministic environment, this sequence remains the same across repeats
of episodes, for each policy πi (deterministic) at update step i. Therefore, a single rollout is sufficient to
estimate the occupancy measure vπi

. In a stochastic environment, rollouts are impacted by the environment’s
stochasticity. Thus, multiple rollouts are needed to estimate the occupancy measure accurately. As the
number of rollouts increases, the occupancy measure should converge and become less noisy.

Table 5 shows that, in a stochastic setting, the ESL values converge as the number of rollouts increases.
OMR appears to be invariant across various the number of rollouts, and the mean number of updates appear
to be consistent around 2900 (with exception for #rollouts = 1). The results indicate that from about 6
rollouts, the estimated occupancy measures become less noisy. This aligns with Equation 61, which shows
that increasing the number of rollouts reduces estimation error.

#rollouts ESL OMR UC
1 849.1±468.5 0.500±0.004 1849±742.2
3 618.6±257.3 0.501±0.005 2413±1397
6 445.4±245.8 0.501±0.042 2462±2043
9 428.1±234.4 0.503±0.004 2281±1743

Table 5: Evaluation of SAC algorithm in the stochastic, dense-rewards setting for 5x5 gridworld with
40 maximum steps per episode across various number of rollouts. The effects of #rollouts on the Effort
of Sequential Learning (ESL), Optimal Movement Ratio (OMR), and number of updates to convergence
(UC) are observed.

B.5 ηsub can be a reasonable proxy for η, when optimal policy is not fully reached

We compare ESL when the optimal policy was reached, denoted η, versus when it was not, denoted ηsub, in
Tables 6 and 7. First, we observe that the number of rollouts impacts the metric values. Second, ηsub values
are always greater than η values. Note that UCRL2 and PSRL update their policies only at the end of each
episode, whereas SAC and DQN update theirs after each time step. Hence, UCsub = 499 for both UCRL2
and PSRL.

The ESL values (both η and ηsub) in Table 7 are lower than those in Table 6, as expected since more data
samples reduce estimation error. The distance from the initial policies to the final polices are not so different.
Using both Tables 6 and 7, we notice that comparing algorithms with ηsub yields the same efficiency ranking
(e.g. PSRL, UCRL, SAC and DQN) as η. This indicates that ηsub reliably predicts results provided by η
for comparing algorithms.

The results presented in Table 2 for stochastic dense-rewards setting are consistent with those in Table 7
because the number of rollouts used was Nr = 6.

B.6 Effects of Hyperparameters - UCRL2

Table 8 illustrates the effects of hyperparameter values in the UCRL2 algorithm. The environment is
deterministic dense-rewards setting with 200 training episodes. We observe that high exploration rates
(δ → 0) appear to align with high ESL and UC, while high exploitation rates (δ → 1) appear to align with
low ESL and UC. OMR appears to be invariant across various δ values.

33

Published in Transactions on Machine Learning Research (05/2025)

Algo. η ηsub d c UC UCsub

SAC
849±
468

3623±
4166

5.63±
1.50

5.26±
2.10

1850±
742

7451±
3535

UCRL2
230±
155

613±
999

5.65±
0.93

5.45±
2.15

284±
180

499±
0.0

PSRL
86.2±
44.4

389±
102

4.96±
1.26

5.29±
1.49

97.2±
52.5

499±
0.0

DQN
564±
478

3911±
1710

5.52±
1.39

6.54±
2.05

1213±
1061

9097±
1904

Table 6: Evaluation of algorithms in the stochastic, dense-rewards setting for 5x5 gridworld with 40
maximum steps per episode with the number of rollouts Nr = 1. The total number of training episodes
is 500. When the algorithm converged at optimality, η is the Effort of Sequential Learning, d = W1(π0, π∗)
is distance from initial policy to the optimal policy, and UC is the number of updates to convergence. When
the algorithm did not converge at the optimal policy, rather a non-optimal πN , we use ηsub, c = W1(π0, πN),
and UCsub to denote the aforementioned quantities. 40 training trials were used.

Algo. η ηsub d c UC UCsub

SAC
445±
246

853±
127

5.63±
1.23

7.26±
1.45

2463±
2043

6293±
441

UCRL2
198±
121

510±
274

5.36±
0.84

4.58±
1.90

268±
155

499±
0.0

PSRL
55.4±
33.6

361±
43.6

4.97±
1.34

3.91±
0.48

76.1±
50.6

499±
0.0

DQN
458±
311

1971±
250

4.88±
1.06

6.52±
0.31

1586±
1077

13713±
6907

Table 7: Evaluation of algorithms in the stochastic, dense-rewards setting for 5x5 gridworld with 40
maximum steps per episode with the number of rollouts Nr = 6. The total number of training episode
is 500. When the algorithm converged at optimality, η is the Effort of Sequential Learning, d = W1(π0, π∗)
is distance from initial policy to the optimal policy, and UC is the number of updates to convergence. When
the algorithm did not converge at the optimal policy however some πN , we use ηsub, c = W1(π0, πN), and
UCsub to denote the aforementioned quantities. 40 training trials were used.

δ ESL OMR UC SR%
0.1 47.76±7.768 0.512±0.033 62.26±9.977 100
0.3 39.29±5.860 0.515±0.034 58.08±7.746 100
0.5 38.26±6.747 0.511±0.036 56.92±9.111 100
0.7 37.48±5.094 0.507±0.029 56.68±7.460 100
0.9 36.40±5.301 0.510±0.036 54.86±7.326 100

Table 8: Evaluation of UCRL2 algorithm in the deterministic, dense-rewards setting for 5x5 gridworld
with 15 maximum steps per episode. Different confidence parameter δ ∈ (0, 1) were evaluated to see
their effects on Effort of Sequential Learning (ESL), Optimal Movement Ratio (OMR), number of updates
to convergence (UC), and success rate (SR). Note that as δ → 0, the agent approaches absolute exploration,
and with δ → 1 absolute exploitation.
B.7 Extended Discussion of Usefulness of ESL and OMR

The quantities like regret and number of updates (UC) are outcomes of the exploratory processes, and
thus reflect only a partial view of the underlying exploration mechanisms. We propose ESL and OMR to
complement regret and number of updates as metrics but not to replace them.

1. Complementarity of ESL and OMR with respect to UC:

a. Case 1. Let us consider two RL algorithms that reach optimality with the same number of updates, i.e.
they have the same UC. How would one be able to distinguish the exploratory processes of these algorithms?

34

Published in Transactions on Machine Learning Research (05/2025)

ESL and OMR are the summary metrics of the policy trajectory during learning. These can reveal which
algorithm’s exploratory process is more direct versus meandering, smooth versus noisy, or has large versus
small coverage area in the policy space (Figures 3 and 4, top rows). Therefore, ESL and OMR quantify with
granularity the characteristics of the exploratory process of an RL algorithm for any given environment.

b. Case 2. Let us consider the case when optimality is not reached but the maximum number of up-
dates is attained by two RL algorithms. How would one be able to evaluate the exploratory processes of
these algorithms and systematically uncover which exploratory process demonstrates desired characteristics?
Looking into the training trajectories of RL algorithms in an environment and corresponding higher/lower
ESLs (ηsub, Section 4.2), we can make a knowledgeable choice of an RL algorithm exhibiting desired charac-
teristics (e.g. high coverage, smooth exploration). We have shown in Section 4.2 and results in Section 5.3
(also Appendix B.5) that ranking based on suboptimal ESL is aligned with true ESL, and additionally, the
visualization of the training trajectories (Figures 3 and 4) can indicate the characteristics of corresponding
RL algorithms even when optimal policy is not reached.

c. Experimental Evidence. UCRL2 is known to be provably regret-optimal and is designed to continuously
explore. SAC does not have such rigorous theoretical guarantees but is known to be practically efficient. In
Table 1, by UC, we observe that SAC is significantly suboptimal than UCRL2. But SAC has lower ESL
than UCRL2 as its exploration is smoother. Additionally, OMR for SAC is higher than that of UCRL2.
They together indicate that SAC takes smoother but larger number of policy transitions aligned to optimal
direction for exploration, while UCRL2 exhibits bigger policy changes and in diverse manner trying to cover
the environment faster.

2. Complementarity of ESL and OMR with respect to Regret:

UCRL2 and PSRL have the same order of regret bound (Osband et al., 2013). But PSRL leads to smoother
policy transitions that are much more orientated towards optimality (as shown in Figure 3), while UCRL2
leads to less smooth policy transitions that do not taper as it approaches optimality. This information is not
evident from regret but from corresponding ESLs and OMRs (Table 1).

3. Insights for Algorithm Design:

Knowing ESL (or suboptimal ESL) and OMR can assist with developing algorithms that emphasize certain
exploratory characteristics. We can develop algorithms with grades of coverage or directness, while also
being able to visualize this. Ultimately, depending on the environment, we can choose which characteristics
of exploratory process are well suited. In contrast, looking only at the final outcomes of RL algorithms like
regret and number of updates does not include these nuances.

35

Published in Transactions on Machine Learning Research (05/2025)

C Specifications of the RL Algorithms under Study

C.1 Methods for simulation results (Discrete MDP)

Model parameter initialisation. We initialised model parameters for deep learning RL algorithms like
DQN and SAC by uniformly sampling weight values between −3 · 10−4 and 3 · 10−4 and the biases at 0. For
tabular Q-learning algorithms, we randomly initialized the Q-values between −1.0 and 1.0. For UCRL and
PSRL, the policy model was randomly initialized. Note that all Wasserstein distances were computed using
a python package POT (Flamary et al., 2021). Additionally, L1 norm was used in our Wasserstein metric
cost function as the ground metric for the 2D gridworld environment.

Results in Figure 3. The problem setting was deterministic with dense-rewards and 15 maximum number
of steps per episode. The total number of episodes was 200. The convergence criterion was satisfied when
maximum returns were produced by an algorithm over 5 consecutive updates. The results showcase a single
representative run of each algorithm. The confidence parameter δ = 0.1 was utilized for UCRL2. The α
parameter for SAC was autotuned using the approach in (Haarnoja et al., 2019) along with hyperparameters
described in Table 9. While DQN began with ϵ = 1.0 and the value decayed as ϵ[t + 1] = max{0.9999 ×
ϵ[t], 0.0001}. Table 10 shows hyperparameters for DQN. Note that the ADAM (Kingma & Ba, 2017) optimizer
was used in all the neural network models.

Table 9: SAC Hyperparameters.
Parameter Value
learning rate 5 · 10−4

discount(γ) 0.99
replay buffer size 104

number of hidden layers (all networks) 1
number of hidden units per layer 32
number of samples per minibatch 64
nonlinearity ReLU
entropy target -4
target smoothing coefficient (τ) 0.01
target update interval 1
gradient steps 1
initial exploration steps
before model starts updating 500

Table 10: DQN Hyperparameters.
Parameter Value
learning rate 5 · 10−2

discount(γ) 0.99
replay buffer size 104

number of hidden layers (all networks) 1
number of hidden units per layer 32
number of samples per minibatch 64
nonlinearity ReLU
target smoothing coefficient (τ) 0.001
target update interval 1
gradient steps 1
initial exploration steps
before ϵ decays 500

Results in Tables 1 and 2. The problem settings had 40 maximum number of steps per episode, and the
convergence criterion was satisfied when maximum returns were produced by an algorithm over 5 consecutive

36

Published in Transactions on Machine Learning Research (05/2025)

updates. The means and standard deviations for each algorithm were computed over 50 runs. The total
number of episodes was 200 for results in Table 1, and 500 in Table 2. For results in Figure 5, the Q-learning
with decaying ϵ-greedy where ϵ = 0.9 was employed in the gridworld tasks described in Appendix B.1. A
convergence criterion of 50 consecutive model updates with maximum returns was utilized. We aggregated
the result over 40 training trials and the maximum number of steps per episode was 60.

C.2 Methods for simulation results (Continuous MDP)

Model parameter initialisation. We initialised model parameters for the deep learning SAC algorithm
by uniformly sampling weight values between −3 · 10−4 and 3 · 10−4 and the biases at 0. For the DDPG
algorithm, the output layer weight values were initialised using Xavier Initialization (Glorot & Bengio, 2010),
while the rest were uniformly sampled between −3 · 10−3 and 3 · 10−3. This was done on both the actor
and critic networks. The ADAM (Kingma & Ba, 2017) optimizer was used in all the neural network models.
In both algorithms, 1) a discount factor γ = 0.99 was used, 2) 500 initial steps were taken before updating
model weights, and 3) replay buffer size was 106. Tables 11 and 12 display hyperparameters for DDPG and
SAC, respectively.

Results in Figure 4. The problem setting was Mountain Car continuous (Moore, 1990) with 999 maximum
number of steps per episode (Brockman et al., 2016). The total number of training episodes was 100. The
convergence criterion was satisfied when maximum returns were produced by an algorithm over 10 consecutive
updates. The results showcase a single representative run of each algorithm. For results in Table 3, the mean
and standard deviations for each algorithm were computed over 5 runs. While RL training was conducted in
a continuous state-action space, we discretized it for Wasserstein distance calculations between occupancy
measures, using 4 bins for actions and 10 bins for states. Note that all Wasserstein distances were computed
using a python package POT (Flamary et al., 2021). Additionally, L2 norm was used in our Wasserstein
metric cost function as the ground metric for the Mountain Car environment.

Table 11: DDPG Hyperparameters.
Parameter Value
number of samples per minibatch 128
nonlinearity ReLU
target smoothing coefficients (τ) 0.001
target update interval 1
gradient steps 1
number of hidden layers (all networks) 2
number of hidden units per layer 64
Actor learning rate 5 · 10−4

Critic learning rate 5 · 10−3

Table 12: SAC Hyperparameters.
Parameter Value
learning rate 3 · 10−3

number of hidden layers (all networks) 2
number of hidden units per layer 64
number of samples per minibatch 128
nonlinearity ReLU
target smoothing coefficient (τ) 0.001
target update interval 1
gradient steps 1

37

Published in Transactions on Machine Learning Research (05/2025)

D Supplementary Results

In this section we present enlarged versions of results in Figure 3 (see Section D.1) and additional plots that
support the results in the main paper (see Section D.3).

D.1 Enlarged Visualisation of the Occupancy Measure Trajectories

Figures 9 - 11 are enlarged versions of enlarged versions of Figure 3. For each algorithm, there is a visuali-
sation of the policy trajectory and visualisation of the state visitation below it.

Figure 9: Top row: Scatter plots of distance-to-optimal and stepwise-distance over updates for ϵ(=0)-greedy
and ϵ(=1)-greedy Q-learning. Bottom row: State visitations.

38

Published in Transactions on Machine Learning Research (05/2025)

Figure 10: Top row: Scatter plots of distance-to-optimal and stepwise-distance over updates for UCRL2 and
PSRL. Bottom row: State visitations.

Figure 11: Top row: Scatter plots of distance-to-optimal and stepwise-distance over updates for SAC and
DQN. Bottom row: State visitations.

39

Published in Transactions on Machine Learning Research (05/2025)

D.2 Performance Plots

This section contains Return plots of the algorithms. This allows us to assess the learning of algorithms
from the performance perspective. Figures 12 and 13 depict performance evolution that corresponds to
settings in Figures 3 and 4, respectively. Note that while all algorithms find the optimal policy, UCRL2
and ϵ(=1)-greedy Q-learning fail to remain there if training continues without truncation. As a result, their
performance does not improve over time compared to those that stabilize at the optimal policy.

0 50 100 150 200 250
Episodes

140

120

100

80

60

40

20

Re
tu

rn

(=0)-greedy (=1)-greedy UCRL2 PSRL SAC DQN

Figure 12: Return plots of algorithms: ϵ(=0)-greedy and ϵ(=1)-greedy Q-learning, UCRL2, PSRL, SAC,
and DQN averaged over 5 runs in the deterministic 5×5 Gridworld with dense rewards.

0 20 40 60 80 100
Episodes

60

40

20

0

20

40

60

80

100

Re
tu

rn

ddpg sac

Figure 13: Return plots of algorithms: DDPG and SAC averaged over 5 runs in the continuous Mountain
Car problem.

40

Published in Transactions on Machine Learning Research (05/2025)

D.3 Evolution of stepwise-distance, distance-to-optimal, and OMR(k)

In this section we present 2 dimensional versions of the policy trajectories in Figures 3 and 4, along with cor-
responding OMR evolution plots. These are stepwise-distance vs. updates, distance-to-optimal vs. updates,
and OMR(k) plots for the algorithms. Figure 14 presents plots for the continuous environment Mountain
Car, while Figure 15) presents plots for the discrete environment 2D Gridworld.

DDPG

0 5000 10000 15000 20000
#updates

0.0

0.1

0.2

0.3

0.4

0.5

st
ep

w
is

e_
di

st
an

ce

0 5000 10000 15000 20000
#updates

0.0

0.2

0.4

0.6

0.8

di
st

an
ce

_t
o_

op
ti

m
al

0 5000 10000 15000 20000
#updates

0.40

0.45

0.50

0.55

0.60

O
M

R(
k)

SAC

0 5000 10000 15000 20000
#updates

0.0

0.1

0.2

0.3

0.4

0.5

st
ep

w
is

e_
di

st
an

ce

0 5000 10000 15000 20000
#updates

0.0

0.2

0.4

0.6

0.8

di
st

an
ce

_t
o_

op
ti

m
al

0 5000 10000 15000 20000
#updates

0.40

0.45

0.50

0.55

0.60

O
M

R(
k)

Figure 14: Plots in the first column are stepwise-distance vs. number of updates, second column distance-to-
optimal vs. number of updates, and third OMR(k) vs. number of updates. Top row plots belong to DDPG
algorithm, while bottom row plots belong to SAC.

41

Published in Transactions on Machine Learning Research (05/2025)

ϵ(=0)-greedy

0 25 50 75 100 125 150 175
#updates

0

2

4

6

8

st
ep

w
is

e_
di

st
an

ce

0 25 50 75 100 125 150 175
#updates

0

2

4

6

di
st

an
ce

_t
o_

op
ti

m
al

0 25 50 75 100 125 150 175
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

ϵ(=1)-greedy

0 500 1000 1500 2000 2500
#updates

0
1
2
3
4
5
6

st
ep

w
is

e_
di

st
an

ce

0 500 1000 1500 2000 2500
#updates

0

2

4

6

8

di
st

an
ce

_t
o_

op
ti

m
al

0 500 1000 1500 2000 2500
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

UCRL2

0 10 20 30 40 50 60 70 80
#updates

0.0
2.5
5.0
7.5

10.0
12.5

st
ep

w
is

e_
di

st
an

ce

0 10 20 30 40 50 60 70 80
#updates

0

2

4

6

di
st

an
ce

_t
o_

op
ti

m
al

0 10 20 30 40 50 60 70
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

PSRL

0 5 10 15 20 25
#updates

0

2

4

6

8

st
ep

w
is

e_
di

st
an

ce

0 5 10 15 20 25
#updates

0

2

4

6

di
st

an
ce

_t
o_

op
ti

m
al

0 2 4 6 8 10 12 14
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

SAC

0 10 20 30 40
#updates

0
1
2
3
4
5
6

st
ep

w
is

e_
di

st
an

ce

0 10 20 30 40
#updates

0

2

4

6

di
st

an
ce

_t
o_

op
ti

m
al

0 5 10 15 20 25 30 35
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

DQN

0 10 20 30 40 50 60
#updates

0

1

2

3

st
ep

w
is

e_
di

st
an

ce

0 10 20 30 40 50 60
#updates

0

2

4

6

8

di
st

an
ce

_t
o_

op
ti

m
al

0 10 20 30 40 50
#updates

0.4
0.5
0.6
0.7
0.8
0.9
1.0

O
M

R(
k)

Figure 15: Plots in the first column are stepwise-distance vs. number of updates, second column distance-
to-optimal vs. number of updates, and third OMR(k) vs. number of updates. The plots in the row belong
to algorithms in the following order from top to bottom: ϵ(=0)-greedy, ϵ(=1)-greedy, UCRL2, PSRL, SAC,
and DQN.

42

	Introduction
	Preliminaries
	RL Algorithms as Trajectories of Occupancy Measures
	Effort of Sequential Learning (ESL)
	Optimal Movement Ratio (OMR)
	Extension to Finite-Horizon Episodic Setting

	Computational Challenges and Solutions
	Policy datasets for computing occupancy measures
	When an optimal policy is not reached

	Experimental Evaluation
	Exploration Trajectories of RL Algorithms
	Comparison of ESL and OMR across RL Algorithms and Environments, and their complementarity to number of updates and regret
	Usefulness of ESL when optimal policy is not reached
	ESL Increases with Task Difficulty

	Related Works
	Discussion
	Theoretical Analysis
	MDP with Lipschitz Rewards
	Performance Difference and Occupancy Measures
	Proof of proposition 1
	Proof of proposition 2
	Proof of proposition 3
	Optimal Transport Dataset Distance (OTDD)
	Proof of Proposition 4
	Infinite Horizon MDPs
	Finite Horizon MDPs

	Proof of Proposition 5
	Wasserstein Spaces as Geodesic Spaces

	Additional Experimental Analysis and Results
	Environment Description
	OMR(k): OMR over number of updates
	Computation of Occupancy Measures
	Effects of the number of rollouts - SAC
	eta_sub can be a reasonable proxy for eta, when optimal policy is not fully reached
	Effects of Hyperparameters - UCRL2
	Extended Discussion of Usefulness of ESL and OMR

	Specifications of the RL Algorithms under Study
	Methods for simulation results (Discrete MDP)
	Methods for simulation results (Continuous MDP)

	Supplementary Results
	Enlarged Visualisation of the Occupancy Measure Trajectories
	Performance Plots
	Evolution of stepwise-distance, distance-to-optimal, and OMR(k)

