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Abstract

Text-to-motion generation has experienced remarkable progress in recent years.
However, current approaches remain limited to synthesizing motion from short
or general text prompts, primarily due to dataset constraints. This limitation un-
dermines fine-grained controllability and generalization to unseen prompts. In
this paper, we introduce SnapMoGen, a new text-motion dataset featuring high-
quality motion capture data paired with accurate, expressive textual annotations.
The dataset comprises 20K motion clips totaling 44 hours, accompanied by 122K
detailed textual descriptions averaging 48 words per description (vs. 12 words of
HumanML3D). Importantly, these motion clips preserve original temporal con-
tinuity as they were in long sequences, facilitating research in long-term motion
generation and blending. We also improve upon previous generative masked model-
ing approaches. Our model, MoMask++, transforms motion into multi-scale token
sequences that better exploit the token capacity, and learns to generate all tokens
using a single generative masked transformer. MoMask++ achieves state-of-the-art
performance on both HumanML3D and SnapMoGen benchmarks. Additionally, we
demonstrate the ability to process casual user prompts by employing an LLM to
reformat inputs to align with the expressivity and narration style of SnapMoGen.

1 Introduction

Generating human motions from text has garnered increasing attention in recent years and has
experienced notable progress. These advances have been made possible by existing large-scale
text-motion datasets [10, 19, 30, 28], and a variety of deep generative models such as VAEs [10, 25],
diffusion models [34, 38, 5, 39, 23], GPTs [11, 37, 16], and generative masking [9, 27]. Nevertheless,
current models encounter critical limitations when processing complex prompts, falling short in
achieving fine-grained control and capturing nuanced variations in human movements. A key
contributing factor is the restricted expressivity of text descriptions in existing motion-text datasets.
Textual annotations in these datasets are typically brief and general (e.g., "a person jumps up and
lands"), lacking specific execution details. For instance, in HumanML3D [10], motion sequences
of approximately 7 seconds are described by texts averaging only 12 words, which is insufficient to
capture motion complexity.

The importance of expressive text annotations has been well-established in other text-conditioned
visual content synthesis fields [2, 22, 13, 6, 7]. Descriptive prompts notably enhance the accuracy and
aesthetic quality of generated images [22, 2] and improve temporal coherence in video generation [1].
These models understand complex visual content compositions by learning from rich text semantics,
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Figure 1: Samples from SnapMoGen dataset. Our dataset features temporally continuous motion segments
paired with highly expressive text annotations. Each motion clip is accompanied by six distinct textual descrip-
tions. We show an LLM-augmented annotation for the first segment, and a human annotation for the second.

enabling fine-grained visual content editing [17, 3], adaptation [29, 32, 33], and understanding [4, 36,
18]. More importantly, when dealing with casual user prompts, rich LLM knowledge can be leveraged
to enhance prompts with specific details and nuances that models have learned from fine-grained
textual training data, effectively improving generalization capability. To foster this research direction
in motion synthesis, we introduce SnapMoGen, which features high-quality motions captioned with
accurate and highly expressive descriptions. SnapMoGen is created by segmenting long motion
sequences into meaningful 4-12 second clips, each accompanied by six text descriptions—two
manually annotated by human experts and four augmented by an LLM that introduces diversity while
preserving semantics and temporal consistency. In total, SnapMoGen comprises 20K motion clips,
amounting to 40 hours of mocap data, accompanied by 122K detailed text descriptions. As shown
in Fig. 1, our text annotations contain extremely rich semantic cues of human movements, with an
average length of 48 words—three times longer than HumanML3D. Furthermore, our continuous
motion segments facilitate research in long-term motion synthesis and motion localization. Tab. 1
presents a statistical comparison between SnapMoGen and related motion-text datasets.

To generate motions from expressive texts, we build an improved model upon the previous state-of-
the-art approach—MoMask [9]. MoMask applies residual quantization to motion latent features,
transforming them into multiple ordered sets of same-length discrete token sequences. Despite
achieving pleasing VQ reconstruction through extensive tokens, many of them are not utilized to
their full capacity. For instance, tokens following the first quantization layer carry only marginal
information. This inefficiency, combined with its layer-specific token vocabulary design, creates
inflexibility in subsequent text-to-token generation—necessitating separate models for different token
sequences: a primary model for the first sequence and a secondary model for remaining tokens. To
overcome these limitations, we adopt a multi-scale approach for motion tokenization and generate
all motion tokens using a single generative masked transformer. In our residual VQ, tokens at each
quantization layer focus on a particular temporal scale, following a coarse-to-fine gradual progression.
Additionally, we share one codebook across all layers to ensure a universal token vocabulary. As
shown in Fig. 3, our multi-scale RVQ continually learns meaningful semantics with more layers,
outperforming conventional RVQ [9] with 45% less tokens. Then, we simply concatenate all tokens
along the temporal dimension and train a generative transformer to produce tokens from text by
predicting randomly masked tokens. Our new framework, dubbed MoMask++, outperforms MoMask
on text-to-motion generation with only a quarter of their token count, as in Tab. 3.

In summary, our key contributions are threefold. First, we introduce SnapMoGen, a large-scale dataset
comprising 20K temporally continuous motion capture clips described by 122K highly expressive
text prompts. We also establish comprehensive benchmarks and evaluation protocols for this new
dataset. Second, we advance beyond the existing state-of-the-art approach by proposing MoMask++,
which optimizes motion token capacity through multi-scale quantization and models text-conditioned
token generation using a single generative masked transformer. Third, we demonstrate effective
handling of casual user prompts through LLM-based prompt rewriting, enabled by the descriptive
captions in our SnapMoGen.
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Datasets Year # Clips Duration # Texts Avg. words
per text

Avg. length
per clip Mocap? Continuous?

KIT-ML [28] 2016 3,911 10.3 h 6,278 8 9.5s ✓ ✗
BABEL† [30] 2021 52,937 33.2h 52,937 2 2.3s ✓ ✓
HumanML3D [10] 2022 14,616 28.6h 44,970 12 7.1s ✓ ✗
Motion-X [19] 2023 81,084 144.2h 81,084 9 6.4s ✗ ✗

SnapMoGen 2025 20,450 43.7h 122,565∗ 48 7.8s ✓ ✓

Table 1: Comparisons with public datasets. SnapMoGen highlights its accurate and expressive text descrip-
tions, high-quality motion capture data, and continuous motion segmentation. † indicates values calculated only
from the publicly available BABEL subset. ∗ denotes a combination of 40,859 manual text annotations and
81,706 LLM-augmented annotations, both with an average text length of 48 words.

2 Related Work

Human Motion-Text Dataset. KIT Motion-Language Dataset [28] pioneered this domain with
3.9K motions and 6.3K human-annotated descriptions but was limited in scale and text diversity.
BABEL [30] introduced temporally precise frame-level labels across 33 hours of motion capture
data; however, its annotations primarily consist of short phrases (e.g., ’lift something’) for approxi-
mately 2-second atomic actions rather than descriptions of extended sequences. HumanML3D [10]
expanded the field with 14.6K motions and 44.9K texts by aggregating data from AMASS [21] and
HumanAct12 [12]. Despite its size, the text descriptions remain brief and general (e.g., "a person
was pushed but did not fall"), failing to capture nuanced movement details. Motion-X [19] increased
diversity by extracting motions from monocular videos and generating descriptions using video
captioning models [36]. However, these motions often contain estimation artifacts such as jitter and
foot-sliding, while their descriptions still lack expressivity. Recently, HuMMan-MoGen introduced
fine-grained descriptions for specific body parts in motions. In contrast, our SnapMoGen introduces
highly expressive text descriptions for holistic 4-12 second motion segments.

Human Motion Generation. Recent advances in human motion generation, particularly in text-
conditioned synthesis, have significantly improved the realism and text controllability of generated
motions. Early methods explored continuous motion representations using generative models such as
VAEs [10, 25]. The introduction of diffusion models [34, 38, 5, 39, 23] has significantly advanced the
field. By iteratively refining motion through denoising steps, these models generate realistic sequences
that align closely with textual prompts. A parallel line of research models motion as sequences of
discrete tokens using quantization techniques such as VQ-VAEs [35]. These approaches represent
motion as compact, structured token sequences, typically generated autoregressively [20, 15, 11, 37,
16] or through generative masking schemes [9, 27]. To reduce quantization error, MoMask [9] applies
multiple quantization layers to iteratively approximate the residuals. Nevertheless, as all quantization
is applied at the same (and full) temporal scale, the information captured at each successive layer
decreases drastically, leading to an overproduction of tokens with notably uneven information content.
This inefficiency also makes text-to-token generation rather inflexible. These limitations directly
inspire the multi-scale residual quantization process in our framework.

3 SnapMoGen Dataset

SnapMoGen encompasses 43.7 hours of high-quality motion data captured at 30 frames per sec-
ond. The dataset comprises a total of 4.7M motion frames, featuring a diverse range of actions
including daily activities, fitness routines, social interactions, dances, and more. We deliberately
incorporate various stylized performances (e.g., princess, elderly person, zombie) to enhance diversity.
SnapMoGen captures performances from 10 participants, resulting in 20,450 motion clips ranging
from 4 to 12 seconds in length. Each motion clip is accompanied by 6 detailed textual descriptions (2
manually annotated, 4 LLM-augmented), totaling 122,565 textual descriptions with an average length
of 48 words. A comparison between SnapMoGen and existing motion-text datasets is presented in
Table 1. We further augment the dataset by mirroring motion data [10] throughout our experiments.
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Motion Coverage. We aim to cover a wide range of actions while ensuring high-quality 3D motion
capture. All motions are recorded using Xsens1 and Rokoko2 motion capture suits. To determine
motion content, we combine two resources: (i) LLM-generated action scenarios covering diverse
topics, and (ii) a curated collection of videos and images from the internet featuring content of
interest, such as stylized movements. These text instructions and video demonstrations are presented
to performers prior to recording sessions as reference material. Performers are then encouraged to
execute these or related actions in their own interpretive style. Following data collection, motions
with notable artifacts (e.g., jittering, foot sliding) are filtered out to maintain data quality.

Segmentation. We deliberately capture long motion sequences containing multiple actions for
broader applications. Subsequently, we develop an automated pipeline to segment these sequences
into shorter clips of appropriate lengths. The key principle is to prioritize segmentation at motionless
moments. Specifically, we first calculate the average positional velocities of hip and end-effector joint
at each frame, smoothed by a Gaussian filter. We then detect velocity troughs and normalize their
values within each sequence, yielding ρ1:n ∈ [0, 1], where n indicating the number of troughs. Each
trough i is selected as a segmentation point with probability 0.5ρi, which typically results in clips
averaging 8 seconds. Hard constraints of minimum (4s) and maximum duration (12s) are enforced
during segmentation. Segmentation examples are provided in supplementary files.

Text Annotation. Each motion clip is rendered as video using a 3D character for annotation.
We collect descriptions from two distinct annotators for each motion clip. The entire annotation
process involves 55 professional native English-speaking annotators who are instructed to address
the following aspects in their textual descriptions: action, context, style, moving direction,
speed, trajectory shape, body parts, spatial relation/location, posture (if applica-
ble), and timing (if applicable). All annotations undergo a second-round review to ensure descriptive
accuracy. Typographical errors in the collected textual descriptions are corrected using an LLM. To
enhance textual diversity, we further employ the LLM to re-describe each manual description twice,
maintaining precise action semantics while varying expression. This results in a total of six distinct
descriptions per motion clip.

4 Method

Our goal is to generate a 3D human pose sequence m1:N of length N guided by a textual description
c, where mi ∈ RD and D denotes the dimension of pose features.

4.1 Preliminary: Motion Tokenization via Residual Quantization

In traditional motion VQ-VAEs [27, 11, 37], a motion encoder E(·) encodes the motion sequence
m ∈ RN×D to a latent feature sequence f ∈ Rn×d, which is further mapped to a discrete token
sequence q ∈ [K]n through vector quantization:

f = E(m), q = Q(f),

where Q(·) denotes a quantizer. The quantizer typically consists of a learnable codebook C ∈ RK×d

of K codes. During quantization, each feature vector fi is mapped to the code index qi of its nearest
code entry in the codebook:

qi =
(
argmink∈[K]∥lookup(C, k)− fi∥2

)
∈ [K] (1)

where lookup(C, k) means taking the k-th vector in codebook C. The quantized feature vector
sequence is finally fed into a decoder D to reconstruct the input motion:

f̂ = lookup(C, q), m̂ = D(f̂). (2)

To effectively reduce quantization errors, MoMask [9] introduces additional V quantization layers
Q1,..,V (·). Specifically, starting from the initial residual r0 = f , each Qv(·) calculates token indices

1
https://www.movella.com/products/motion-capture/xsens-mvn-animate

2
https://www.rokoko.com/products/smartsuit-pro
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Figure 2: Approach overview. (a) A multi-scale VQVAE encodes a motion sequence into V + 1 discrete
token sequences (q0, ..., qV ), where each sequence qv operates at a specific temporal resolution hv . Their
corresponding quantized features are upsampled to full resolution {f̂v

↑ }Vv=0 and summed before being fed into
the decoder. (b) A single masked transformer operates on tokens from all scales. Token sequences from a motion
are concatenated along the temporal dimension and randomly masked with a variable rate. The transformer is
trained to predict the masked tokens conditioned on text and the partially masked sequence. (c) We implement
two methods for text conditioning: in-context learning and cross-attention.

qv and their corresponding codes f̂v as an approximation of residual rv , and then computes the next
residual rv+1 as:

qv = Qv(rv), f̂v = lookup(Cv, qv), rv+1 = rv − f̂v (3)

Each quantization layer Qv(·) contains a separate codebook Cv ∈ RK×d. This approach yields
V + 1 discrete token sequences [qv]V0 ∈ [K](V+1)×n of length n for a motion sequence. The final
approximation of the latent sequence f is the sum of all quantized features f̂ =

∑V
v=0 f̂

v .

Overall, this quantized auto-encoder model is trained using a compound loss function that combines
motion reconstruction and per-layer latent embedding losses:

Lrvq = SmoothL1(m− m̂) + β

V∑
v=0

∥rv − sg[f̂v]∥2, (4)

where sg[·] denotes the stop-gradient operation, and β a weighting factor for embedding alignment.
The codebook entries are updated using exponential moving average [37].

Discussion. Although high-fidelity VQ reconstruction can be achieved through an extensive set
((V + 1)× n) of motion tokens, this approach introduces inflexibility in learning the text-to-token
mapping, primarily due to two factors: i) information is disproportionately distributed across quanti-
zation layers—first-layer tokens typically contain the predominant features, while subsequent layers
capture only incremental refinements; and ii) tokens at different layers are indexed by independent
codebooks. To address this heterogeneity, MoMask [9] applies an expressive generative masked
transformer for the principal first-layer tokens, while modeling all other-layer tokens with a secondary
transformer conditioned on first-layer results. This hierarchical approach further diminishes the
representational capacity of tokens in non-first layers.

4.2 Our Approach: MoMask++

In our approach, tokens at different quantization layers are designed to capture information at specific
temporal resolutions, with a common codebook shared across all layers. This design allows us to
model the generation of all tokens using a single generative masked transformer.
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Figure 3: Illustration of token capacity in a pretrained traditional 6-layer, 480-token full-scale RVQ [9] compared
to a 10-layer, 266-token multi-scale RVQ3. Starting from a zero-sequence, we incrementally add one quantized
feature sequence for motion decoding and measure the reconstruction performance. The multi-scale VQ learns
tokens more efficiently with meaningful semantics at each quantization layer.

4.2.1 Multi-scale Motion Quantization

As depicted in Fig. 2 (a), for a motion latent feature sequence f ∈ Rn×d, our quantizer employs a
series of residual quantization operations at progressively increasing temporal resolutions {hv}Vv=0,
where h0 < · · · < hV = n. We denote all quantization operations uniformly as Q(·) as they share a
common codebook C. Quantized features at coarse level f̂v ∈ Rhv×d are bilinearly interpolated to
full resolution f̂v

↑ = I(f̂v, hV ), where residuals are calculated and then downsampled to next scale
(hv+1) to be quantized by the succeeding layer. Mathematically, Eq. (3) is reformulated as:

qv = Q(I(rv, hv)), rv+1 = rv − I(f̂v, hV ), r0 = f, (5)

where f̂v = lookup(C, qv). Then, the final approximation of latent sequence f is the sum of all
up-interpolated quantized sequences, which is then fed into decoder D for motion reconstruction:

f̂ =

V∑
v=0

I(f̂v, hV ), m̂ = D(f̂).

We further add self-attention layers after each res-block in existing motion VQVAE architectures [9,
37] for higher-fidelity motion reconstruction. During training, we introduce additional emphasis on
reconstructing essential rotational features Less on the top of Lrvq in Eq. (4), weighed by λess. The
final learning objective becomes:

Lms_rvq = Lrvq + λessLess (6)

After all, a motion sequence is represented as V +1 ordered discrete token sequences with a hierarchy
of temporal scales q = (q0, q1, ..., qV ), where each qv has a length of hv . Since a shared codebook is
utilized across all scales, tokens from each qv belong to the same vocabulary [K].

As shown in Fig. 3, compared to previous all full-scale residual VQ [9], our multi-scale VQ effectively
exploits token capacity and continually learns meaningful semantic features at each quantization
layer. It achieves superior reconstruction quality significantly with fewer tokens (266 vs. 480).

4.2.2 Learning Text-to-token Mapping

We employ a single bidirectional transformer for token generation from text descriptions. Our
framework is illustrated in Figure 2 (b-c). We utilize T5-base [31] to extract word-level features from
complex textual descriptions c. Motion tokens from all scales are concatenated along the temporal
axis, yielding an extended token sequence q, which is then embedded through an MLP. We investigate
two primary architectures for text conditioning: (i) In-context learning, where embeddings of
motion tokens and text tokens are concatenated and processed uniformly as transformer input, and (ii)
Cross-attention, which incorporates additional multi-head cross-attention layers that enable motion
features to query relevant text features.

3
Token counts are based on encoding a 320-pose sequence. For multi-scale VQ, we use [2, 5, 7, 10, 15, 20, 26, 40, 60, 80] tokens from the 1st to 10th scale.
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Methods R Precision↑ FID↓ MM Dist↓ MModality↑Top 1 Top 2 Top 3

Real motions 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 -

TM2T [11] 0.424±.003 0.618±.003 0.729±.002 1.501±.017 3.467±.011 2.424±.093

T2M [10] 0.455±.003 0.636±.003 0.736±.002 1.087±.021 3.347±.008 2.219±.074

MDM [34] - - 0.611±.007 0.544±.044 5.566±.027 2.799±.072

MLD [5] 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 2.413±.079

MotionDiffuse [38] 0.491±.001 0.681±.001 0.782±.001 0.630±.001 3.113±.001 1.553±.042

T2M-GPT [37] 0.492±.003 0.679±.002 0.775±.002 0.141±.005 3.121±.009 1.831±.048

MMM [27] 0.515±.002 0.708±.002 0.804±.002 0.089±.005 2.926±.007 1.226±.040

MoMask [9] 0.521±.002 0.713±.002 0.807±.002 0.045±.002 2.958±.008 1.241±.040

MoMask++in 0.528±.003 0.718±.003 0.811±.002 0.072±.003 2.912±.008 1.227±.046

MoMask++cra 0.517±.002 0.709±.002 0.803±.002 0.069±.003 2.948±.007 1.192±.053

Table 2: Quantitative evaluation on HumanML3D test set. ± indicates a 95% confidence interval. Bold
indicates the best result, while underscore refers to the second best. "in": in-context. "cra": cross-attention.

In training, a varying fraction γ(τ) = cos(πτ2 ) ∈ [0, 1], where τ ∼ U(0, 1), of sequence elements
is uniformly selected, masked out, and replaced with a special [MASK] token. The transformer is
trained to predict these masked tokens given text input c and the partially masked token sequence q̇,
by maximizing the likelihood:

Lmask =
∑

q̇k=[MASK]

−log pθ (qk|q̇, c) . (7)

We adopt the replacing and remasking strategy [9, 8] to enhance contextual reasoning ability. Ad-
ditionally, the model is trained without text condition c = ∅ with a probability of 10% to enable
classifier-free guidance (CFG).

During inference, a complete sequence of q can be generated in a constant number (L) of iterations.
This process begins with an empty sequence [[MASK]]N where all tokens are masked, with N =∑V

v=0 h
v denoting the total number of tokens in q. At each iteration (l), the model predicts categorical

token distributions at masked locations, samples tokens, and re-masks the ⌈γ( l
L · N)⌉ lowest-

confidence tokens. This process repeats until l reaches L. We also adopt classifier-free guidance as in
[9] with guidance scale s. Finally, all generated tokens are decoded and projected back to motion
sequence through the VQ-VAE decoder.

5 Experiments

Besides SnapMoGen, we also conduct experiments on HumanML3D [10], a popular motion-text
dataset comprising 14,616 motions with 44,970 textual descriptions.

Dataset Setup. We process motions in SnapMoGen following procedures established in Hu-
manML3D, including motion mirroring and standardization. To prevent data leakage, we deliberately
hold out a test (%10) set and a validation (%5) set where the motion scenarios (e.g., fashion) differ
from the training motions. We primarily adopt the feature representation from HumanML3D, consist-
ing of root angular velocity along Y-axis ṙa ∈ R, root linear velocity on XZ-plane ṙxz ∈ R2, root
height ṙy ∈ R, 6D local joint rotations jr ∈ R6j , local joint positions jp ∈ R3j , and local joint veloc-
ities jv ∈ R3j , where j denotes the number of joints. We empirically find that this comprehensive
set of pose features leads to slightly better performance (Tab. 4). Our SnapMoGen follows a skeletal
topology comprising 24 joints, resulting in 296-dimensional pose features. Unlike HumanML3D, our
pose features are directly convertible to standard motion capture file formats (e.g., BVH).

Evaluation Setup. We adopt established metrics including FID, R-Precision, MultiModal Distance,
and Multimodality following previous works [9, 14, 34]. The evaluator from prior research [10] was
exclusively trained to align motion and text embeddings. However, the resulting motion embeddings
may be biased toward text alignment while overlooking motion fidelity. Additionally, its redundant
motion feature design lacks flexibility for broader evaluation scenarios [23]. Therefore, we adopt
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Methods R Precision↑ FID↓ CLIP Score↑ MModality↑Top 1 Top 2 Top 3

Real motions 0.940±.001 0.976±.001 0.985±.001 0.001±.000 0.837±.000 -

MDM [34] 0.503±.002 0.653±.002 0.727±.002 57.783±.092 0.481±.001 13.412±.231

T2M-GPT [37] 0.618±.002 0.773±.002 0.812±.002 32.629±.087 0.573±.001 9.172±.181

StableMoFusion [14] 0.679±.002 0.823±.002 0.888±.002 27.801±.063 0.605±.001 9.064±.138

MARDM [23] 0.659±.002 0.812±.002 0.860±.002 26.878±.131 0.602±.001 9.812±.287

MoMask [9] 0.777±.002 0.888±.002 0.927±.002 17.404±.051 0.664±.001 8.183±.184

MoMask++in 0.805±.002 0.904±.002 0.938±.001 15.56±.071 0.684±.001 6.556±.178

MoMask++cra 0.802±.001 0.905±.002 0.938±.001 15.06±.065 0.685±.001 7.259±.180

Table 3: Quantitative evaluation on SnapMoGen test set.

the TMR [26] approach for our evaluation model, utilizing only essential 148-dimensional motion
features. This method extracts separate latent vectors from motion and text, requiring the motion
vector to both align well with corresponding text features and accurately reconstruct the source motion
(ensuring fidelity). We use the T5-base model to extract word-level text features. For R-Precision
calculations, we employ a candidate pool size of 100. We also use the CLIP score [23] to evaluate
text-motion alignment, which measures the cosine similarity between text and motion features.

Comparison Models. On SnapMoGen, We reproduce baseline methods across three mainstream
generative paradigms: diffusion models (MDM [34], StableMoFusion [14], and MARDM [23]),
autoregressive models (T2M-GPT [37]), and generative masking approaches (MoMask [9]). We
utilize their official codebases. Each experiment is repeated 20 times, with final results reported as
means with 95% confidence intervals. For all baselines, we replace the original text encoder with
T5-Base. For MoMask, we implement a 6-layer RVQ. Please refer to supplementary materials for
baseline implementations.

Implementation Details. Our VQVAE encoder and decoder consists of three dilated res-blocks,
with a down(up)-scale factor of 4 [37, 9]. The temporal quantization scales follows the progression
[n/2V , ..., n/20] with n denoting the full-scale length. We employ 4 (i.e., V = 3) quantization
layers for HumanML3D and 2 for SnapMoGen, with codebook sizes of 512× 512 and 2048× 512,
respectively. The hyper-parameters β and λess are set to 0.02 and 2.0. Our transformer architecture
comprise 8 layers with feedforward size of 1024, latent dimension of 384, 6 attention heads, and
a dropout ratio of 0.2, totaling 13.5M parameters for in-context model, and 18.3M parameters for
cross-attention model. During inference, we use classifier-free guidance scales of 5 and 4, and
iteration counts (L) of 10 and 18 for SnapMoGen and HumanML3D, respectively. All models are
trained on a single Tesla V100 GPU, with batch size of 256 for VQVAEs and 64 for transformers.

5.1 Comparison to State-of-the-art Approaches

The quantitative results on HumanML3D and SnapMoGen are reported in Tables 2 and 3, respectively.
Overall, MoMask++ attains state-of-the-art performance on both datasets, demonstrating consistent
improvements in motion-text alignment and motion quality. These advantages are particularly
pronounced in our SnapMoGen dataset, partially due to the more expressive evaluation model. We
observe that previous works struggle with the complex, lengthy text inputs in SnapMoGen, and fall
short in maintaining multimodal semantic coherence, as evidenced by the relatively low CLIP scores
and R-precision values. Notably, our method outperforms MoMask with only two VQ layers (a
quarter of MoMask’s token count) with similar model size. Between the two variants of MoMask++,
we find that the in-context model generally performs better on HumanML3D. It however tends
to overfit on long text prompts in SnapMoGen (Fig. 6) and underperforms compared to the cross-
attention model. Nevertheless, a significant gap to real motions still exists, suggesting substantial
room for future improvements.

Figure 4 displays pose sequences generated by MoMask++, demonstrating its ability to produce
precise motions following fine-grained text prompts. We further showcase the capability to handle
out-of-domain user prompts by employing an LLM to rephrase the inputs. For additional generation
results and comprehensive visual comparisons, please refer to the supplementary materials.
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“The person imitates a zombie. They put their arms forward, tilt their body slightly downward, 
and walk wobbly forward, then wobbly step backward and level off while standing still.” “The person stands neutrally, then lean forwards, spreading their legs wide. They 

simulate basketball dribbling with hand gestures, moving their hips side by side. The 

left hand performs dribbling actions. They pause, turn left, put the right leg forward, 

and squat slightly before simulating a basketball shot with a small jump.”

:“The person takes a boxer’s stance, bouncing lightly on their toes. They 
throw a few jabs and hooks into the air with intensity, ducking and weaving 
to dodge counterpunches. Their focus is sharp, and each move is fast and 
intentional”

:“Boxing with an invisible opponent”

Figure 4: MoMask++ generated samples for SnapMoGen test prompts (#1,2) and a casual user prompt (#3).

Pose Dim. VQ Config. VQ Reconstruction T2M Generation
#Codes #Quant. F/M w/ Att. FID ↓ Joint Pos. Err. ↓ FID↓ CLIP Score ↑

base 296 2048 4 M ✓ 2.80 8.13 15.94 0.673

(A) Only essential pose feat. 148 1024 4.71 7.12 15.95 0.667

(B) Smaller codebook 1024 3.30 8.43 15.61 0.668
512 3.77 8.95 16.96 0.665

(C) Varying #quant

5 2.31 7.65 16.38 0.663
3 3.13 8.40 16.21 0.652
2 4.57 8.89 15.56 0.684
1 8.81 10.48 16.25 0.677

(D) Full-scale v.s. multi-scale F 2.64 6.53 18.02 0.667

(E) W/o attention ✗ 3.39 8.57 16.18 0.662

Table 4: Ablation analysis of VQ configuration on SnapMoGen test set. "F/M" denotes full-scale versus
multi-scale residual quantization. For text2motion, this experiment use 284 latent dimension, 1024 forward size,
and 8 attention layers, with T5-base text encoder and in-context conditioning.

5.2 Component Analysis

We perform comprehensive ablation experiments to evaluate the effects of various hyper-parameters
and technical designs, as shown in Tab. 4 and Tab. 5. In Tab. 4 (A), we observe that compact
pose representation leads to a smaller VQ reconstruction error, while it slightly underperforms for
text-to-motion synthesis.

In terms of VQ configuration, we observe from Tab. 4 (B) that while increasing codebook size
consistently enhances VQ reconstruction and text-motion alignment (CLIP score), motion quality
does not necessarily follow this trend (best FID at |C| = 1024). Tab. 4 (C) show that additional VQ
layers effectively improve reconstruction, but more token hierarchies also introduce complexity for
text-to-motion synthesis, with optimal results at 2 layers. In Tab. 4 (D), we apply full-scale for all
layers, yet despite achieving better VQ performance, inefficient token utilization leads to suboptimal
generation quality. Finally, incorporating self-attention layers in the encoder and decoder (Tab. 4 (E))
improves both VQ learning and motion synthesis performance.

We then examine the effects of text augmentation and text-to-motion transformer design in Tab. 5.
In Tab. 5 (A), caption augmentation clearly improves model performance across all evaluation metrics.
In Tab. 5 (B), we observe that the CLIP text encoder is inadequate for handling the long and complex
textual descriptions in SnapMoGen. From Tab. 5 and Fig. 6, we further find that cross-attention
conditioning is less prone to overfitting and leads to higher motion quality and better text–motion
alignment. Meanwhile, Tab. 5 (D) show that transformers with higher latent dimensions or more
attention layers counterintuitively degrade motion generation quality. Figure 6 provides additional
insight, indicating that larger transformer models (Base: 18.3M, Medium: 36.6M, Large: 53.4M)
tend to overfit the dataset more severely.

How are tokens at different scales modeled? To investigate this question, we analyze which
tokens are “favored” by MoMask++. During iterative inference, MoMask++ generates a complete
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Text Aug. T2M Config. T2M Generation
Text Enc. Conditioning Architecture FID↓ CLIP Score ↑

base ✓ T5-base In-context (B) 384, 1024, 8 15.56 0.684

(A) W/o text aug. ✗ 17.98 0.656

(B) CLIP text enc. CLIP 19.96 0.478

(C) Cross-att cond. Cross-att. 15.06 0.685

(D) Larger model
Cross-att. (M) 512, 2048, 8 15.58 0.679
Cross-att. (L) 512, 2048, 12 16.02 0.670

Table 5: Ablation analysis of T2M model configuration on SnapMoGen test set. "Architecture" refers
to transformer hyperparameters including latent dimension, feedforward size, and number of layers. This
experiment use 2 quantization layers for VQ, with 2048 codebook size and 296 pose features.

Figure 5: Decoding progress over iterations for
different token scales.

Figure 6: Validation loss curves of different
model sizes on SnapMoGen.

motion sequence by selectively retaining and re-masking tokens at each step, allowing us to track
which tokens the model prioritizes over time. We conduct an experiment using four token scales (from
coarse to fine, with 10, 20, 40, and 80 tokens, totaling 150 tokens per sequence) and a 10-iteration
inference process over 32 text prompts, recording the token completion ratio at each scale. The results,
shown in Fig. 5, reveal that the model naturally prioritizes coarse-scale tokens (Scale 1) in the early
stages of generation and progressively shifts its focus toward finer scales. This behavior demonstrates
a “global-to-local” generation strategy, indicating that the attention mechanism effectively captures
and prioritizes information based on semantic importance (coarse-to-fine).

6 Conclusion

In this paper, we introduced SnapMoGen, a high-quality text-motion dataset featuring temporally
continuous motion segments with expressive textual annotations. Comprising 20K motion clips
and 122K detailed descriptions averaging 48 words each, SnapMoGen provides significantly richer
semantic information than existing datasets. We also proposed MoMask++, a novel text-to-motion
generation framework that employs multi-scale residual vector quantization and a single genera-
tive masked transformer for token prediction. Extensive experiments on both HumanML3D and
SnapMoGen demonstrate the state-of-the-art performance of MoMask++.
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Figure 7: Text annotation UI for SnapMoGen.

A Annotation Details

Our text annotation interface is presented in Fig. 7. We first visualize all motions using a 3D character
to help annotators better understand the motion content. However, since the character may walk
out of the camera view and inter-penetration artifacts sometimes occur, we also display the motions
using stick-figure representations that remain centered in the camera view. These two visualizations
are synchronized and presented simultaneously to annotators. Annotators can also flag low-quality
motions during the annotation process.

B Evaluation Details

B.1 Baseline Implementation.

All baseline models on SnapMoGen dataset leverage the T5-base model for extracting word-level
features from text descriptions and are trained using a single NVIDIA RTX A6000 GPU.

For MDM [34], we use an 8-layer transformer decoder where the text encoding is injected via
cross-attention layers. The model is trained for 600K steps with a batch size of 1024 using a diffusion
process with T = 1000 steps. For T2M-GPT [37], we first learn a codebook size of 1024 × 512
with a downsampling rate of 4. Then, we model a sequence of codebook indices via an 18-layer
transformer. During training, text embeddings and motions are concatenated and processed as input,
and a random portion of the ground-truth code indices is replaced with random ones to improve
robustness. The model is trained for 600K steps with a batch size of 128. For StableMoFusion [14],
we use a Conv1D-based U-Net incorporating residual cross-attention to align motion features with
word-level semantics, along with group normalization. The model is trained for 500K iterations with
T = 1000 denoising steps and a batch size of 1024. For MARDM [23], we first encode motion into
a latent representation using a 3-layer ResNet-based auto-encoder. These motion latents are then
modeled using a masked autoregressive transformer with a dimension of 1024 and 16 attention heads,
where text encodings are injected via cross-attention layers. The model is trained for 600K steps with
a batch size of 128.

B.2 Evaluation Model

Our evaluation model accounts for both motion fidelity and text-motion alignment. We adopt the
TMR framework, as shown in Figure 8. This framework comprises three network components: a
motion encoder that encodes motion sequences into global vectors, a text encoder that encodes text
sequences into global vectors, and a motion decoder that reconstructs motions from either motion or
text vectors. All three networks are 6-layer transformers with a latent dimension of 256, 4 attention
heads, and a feedforward hidden size of 1024. The T5-base model first extracts word-level features
from texts. For motions, we use only the essential 148-dimensional root motion and local rotational
features. All encoders output Gaussian distribution parameters (mean and log-variance), from which
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Figure 8: Architecture of the evaluation model [26]. Three network components are trained
with two main goals: multimodal alignment and reconstruction. The cosine similarity between
motion embeddings and text embeddings from positive pairs (green) is maximized, while similarity
for negative pairs is minimized. Meanwhile, both embeddings are required to reconstruct the
corresponding motion sequence through the motion decoder. Image adapted from TMR [26].

vectors are sampled. We append two temporal timesteps at the end of the sequence input for outputing
these vectors.

This evaluation model is trained with a compound loss:

Ltmr = Lrec + λKLLKL + λELE + λNCELNCE,

where Lrec measures the motion reconstruction given text or motion input (via a smooth L1 loss). A
KL-divergence loss LKL regularizes each embedding distribution to be close to a unitary Gaussian
distribution N (0, I), and also encourage these two distributions to be close to each other. LE enforces
both mean vectors to be similar to each other. Finally, a InfoNCE [24] loss is used for constrastive
learning of motion-text batches with batch size of 64. We set λE, λKL, and λNCE to 1e− 5, 1e− 5,
and 0.1. For more model details, we recommend to read the original TMR work [26].

In inference, we employ the evaluation metrics designed in [10]. We increase the pool size for
R-precision to 100 and directly use the mean vectors of the latent distributions as embedding vectors

C LLM-based Prompt Augmentation

Dataset Augmentation. During training, we enhance data diversity by employing an LLM to
rewrite human-provided annotations, generating paraphrased versions with varied linguistic structures
while preserving core semantics. This approach ensures each motion sequence is associated with
multiple textual descriptions, improving model robustness. The prompt instructions for ChatGPT are
provided in Tab. 6.

Inference-time Prompt Augmentation. During inference, the LLM rewrites each input prompt
into a richly detailed description, incorporating explicit motion cues such as body posture, timing,
and stylistic elements. This expanded form more effectively guides motion generation models. The
instructions for ChatGPT are provided in Tab. 7.

D Limitation

We present several representative failure motions in the static webpage. Here we discuss limitations
from both data and model perspectives.

Dataset. Despite extensive calibration and post-processing of the collected motions, quality issues
rooted in the inertial-based mocap suit persist. For example, global positions may lack precision,
and jitters can occur during fast or complex motions. Additionally, we are unable to capture highly
skilled motions such as cartwheels, backflips, or outdoor activities (e.g., climbing).
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Task Description The goal is to rewrite textual descriptions from a text-to-motion dataset to correct typos
and grammar while rephrasing them for better readability and fluency. The key requirement is that the
semantics of the described human motion must be preserved exactly, with no loss or modification of
motion detail. You may vary the sentence structure, use synonyms, merge or split phrases, or improve flow,
but the described body movements and temporal order must remain unchanged.

Instructions
1. Correct all spelling, grammar, and stylistic issues in the input text.

2. Rephrase the input to make it clearer, more fluent, and more readable.

3. You must not remove, simplify, or alter the described body movements.

4. Keep all motions, ordering, and temporal logic intact.

5. Add mild clarifications only if they help with motion clarity.

Examples
Original: The person takes two steps forward, starting with his left foot, bends down and reaches down
with his right hand to the floor, rises with his arms out to the sides and steps back, and abruptly takes a step
forward with his right foot with his arms bent at the elbows, and shaking both arms slowly steps forward
standing in a fighting stance and provoking a fight.

Augmented: The person steps forward twice, beginning with the left foot. They bend down, reaching the
floor with their right hand. Rising, they extend arms sideways and step back. Suddenly, they step forward
with the right foot, elbows bent, arms shaking. They stand in a fighting stance, slowly advancing, as if
provoking a fight.

Original: The person stands with their legs wide apart. Then they take two steps back and slightly to
the left, lowering their head down and raising their left hand to their head. Then they lower their left
hand and take two steps to the right, stopping. Then walks forward, turning to the left and waving their arms.

Augmented: The person stands with legs spread wide apart. They move two steps backward and slightly to
the left while lowering their head and raising their left hand to touch it. Afterward, they lower their left
hand, take two steps to the right, and pause. Then they walk forward, turning towards the left while waving
their arms in a fluid motion.

Table 6: Prompt instruction for grammar-correcting and semantically-preserving text augmentation.

Model. Opportunities for improving text-to-motion models also remain. As MoMask++ relies on
VQ, quantization errors inevitably degrade motion quality. We observe that MoMask++ struggles
with rare motion patterns or uncommon text prompts. Furthermore, it does not yet maintain physical
plausibility, such as proper foot contacts.
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Task Description: Your task is to rewrite text prompts of user inputs for a text-to-motion generation model
inference. This model generates 3D human motion data from text, you need to understand the intent of the
user input and describe how the human body should move in detail, and give me the proper duration of the
motion clip, usually from 4 to 12 seconds.

Instructions:
1. Make sure the rewritten prompts describe the human motion without major information loss.

2. Be related to human body movements—the tool is not able to generate anything else.

3. The rewritten prompt should be around 60 words, no more than 100.

4. Use a clear, descriptive, and precise tone.

5. Be creative and make the motion interesting and expressive.

6. Feel free to add physical movement details.

Examples:
Input: Shooting a basketball.
Rewrite: The person stands neutrally, then leans forward, spreading their legs wide. They simulate
basketball dribbling with hand gestures, moving their hips side to side. The left hand performs dribbling
actions. They pause, turn left, put the right leg forward, and squat slightly before simulating a basketball
shot with a small jump.
Length: 8 seconds

Input: Zombie walk.
Rewrite: The person shuffles forward with a stiff, dragging motion, one foot scraping the ground as it
moves. His arms hang loosely by its sides, occasionally jerking forward as it staggers with uneven steps.
Length: 6 seconds

Table 7: Instructions for re-writing casual user prompts.

NeurIPS Paper Checklist
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