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ABSTRACT

Existing crowd-counting methods rely on the manual localization of each per-
son in the image. While recent efforts have attempted to circumvent the anno-
tation burden through vision-language models or crowd image generation, these
approaches rely on pseudo-labels to perform crowd-counting. Simulated datasets
provide an alternative to the annotation cost associated with real datasets. How-
ever, the use of large-scale simulated data often results in a distribution gap be-
tween real and simulated domains. To address the latter, we introduce knowledge
retrieval inspired by knowledge-enhanced models in natural language processing.
With knowledge retrieval, we extract simulated crowd images and their text de-
scriptions to augment the image embeddings of real crowd images to improve
generalized crowd-counting. Knowledge retrieval allows one to use a vast amount
of non-parameterized knowledge during testing, enhancing a model’s inference
capability. Our work is the first to actively incorporate text information to regress
the crowd count in any supervised manner. Moreover, to address the domain gap,
we propose a pre-training and retrieval mechanism that uses unlabeled real crowd
images along with simulated data. We report state-of-the-art results for zero-shot
counting on five public datasets, surpassing existing multi-model crowd-counting
methods. The code will be made publicly available after the review process.

1 INTRODUCTION

Crowd-counting has garnered significant interest owing to its extensive applications in safety and
population management (Sindagi & Patel, 2018; Kang et al., 2018). Accurately estimating counts
becomes particularly challenging, especially in densely populated areas.

Most prominent crowd-counting methods either estimate a density map (Sindagi & Patel, 2017,
Ranasinghe et al., 2024; Han et al., 2023) or localize head positions (Song et al., 2021; Liang et al.,
2022b) to estimate the count. However, these methods require point-level annotations for human
heads, which is an expensive and laborious process. Recently, to relieve the cost of annotation, the
field has been moving towards using vision-language models and synthetic images. An illustrative
example of this trend is observed in the introduction of the CrowdCLIP (Liang et al., 2023) model,
which integrates the CLIP (Radford et al., 202 1) architecture for crowd-counting showcasing a con-
temporary approach in merging vision and language models for this specific task. While CrowdCLIP
is positioned as an unsupervised model requiring no explicit count labels, evaluating the test set in-
volves determining the optimal count label structure for performance assessment. In contrast, the
AFreeCA (D’ Alessandro et al., 2024) model proposes a fully supervised crowd-counting strategy by
synthesizing crowd images using stable diffusion and multi-modal supervision. However, a notable
challenge arises in AFreeCA, where the actual crowd count in the synthesized images diverges from
the count provided as the text condition to the model, introducing inherent noise into the pipeline.

However, CrowdCLIP and AFreeCA demonstrate the transferability and generalizability of incor-
porating text knowledge and a vast amount of data to annotator-free crowd-counting. Consequently,
we can address the annotation cost involved in crowd-counting by training a model with simulated
data to perform zero-shot crowd-counting on real images. The benefits of using simulated data are
two-fold: 1. we can create point annotations without any human labor. 2. We can create a huge
amount of data for the model to train. Naturally, models need more capacity to parameterize a large
corpus of data, as evidenced by large language models. However, recently developed retrieval aug-
mented generation (Lewis et al., 2020) for natural language processing demonstrated the advantage
of using non-parametric knowledge (external information) for more updated, reliable response gen-
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eration. Following this, RA-CLIP (Xie et al., 2023) illustrated the advantage of using a reference
database for zero-shot performance with vision-language models for classification. However, the
benefits of retrieval-based models have not been studied for regression-based downstream tasks, let
alone for crowd-counting.

In this paper, we propose ReGe-Count,
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Figure 1: (a) The fully parameterized supervised dings to learn the mapping between crowd
methods require point annotations for real crowd im- semantics and crowd count under weak
ages, which need heavy manual labor to label a large- supervision. Furthermore, unlike Crowd-
scale dataset. (b) Vision-language contrastive train- CLIP, we don’t need a progressive refine-
ing to learn counting labels. (c) The proposed vision- ment strategy to remove ambiguous crowd
language enhanced training for generalized counting patches, which jettison the necessity to pass
without labeled real crowd data. the image crops through the image encoder
multiple times. Besides that, CrowdCLIP
does not utilize language understanding to produce the crowd count; instead, the CrowdCLIP
pipeline classifies the image patches into different classes at different stages without the need to
understand the class label information.

Comprehensive experiments carried out across five datasets in diverse scenarios underscore the effi-
cacy of our ReGe-Count. Notably, our approach outperforms the current state-of-the-art annotator-
free methods on public crowd-counting datasets, as measured by the MAE metric. Our major con-
tributions in this paper can be summarized as follows: 1) We propose knowledge retrieval for crowd
estimation with regression. To the best of our knowledge, this is the first work to utilize external
sources at testing to enhance crowd-counting. 2) We introduce combining vision-language infor-
mation for weakly-supervised crowd-counting. This is one of the first works to utilize and infuse
language understanding into crowd-counting. 3) We successfully demonstrate using simulated la-
beled crowd images for generalized crowd-counting of real crowd images, surpassing the zero-shot
performance of other vision-language crowd-counting methods.

2 RELATED WORKS

Annotator-free crowd-counting. Existing crowd-counting methods use real-world images with
manually annotated ground truth, a labor-intensive and costly process. To mitigate the depen-
dence on these human annotations, recent research has explored annotator-free approaches to crowd-
counting. For example, CSS-CCNN utilizes self-supervised learning by pretraining the image en-
coder with a rotation prediction task before fine-tuning the encoder and a density decoder using
Sinkhorn matching, completely bypassing ground truth annotations. Similarly, CrowdCLIP lever-
ages the CLIP architecture to train an image encoder for crowd interval prediction by contrasting
image features with count interval labels. In contrast to these methods, AFreeCA performs fully
supervised crowd-counting by training its network on synthetic images generated using stable dif-
fusion, enabling the model to learn crowd counts directly from artificially generated data.
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Figure 2: Overall pipeline of ReGe-Count. First, the image encoder (V) is pre-trained using both real
and simulated images using the ranking loss. Next, the Knowledge Augmentation Module (KAM)
and the count decoder are trained during the fine-tuning stage. During the fine-tuning stage ¥ and
the pre-trained text encoder (®) are frozen.

Real and simulated crowd images. Text descriptions about images establish the multi-modal re-
lationship among image-text pairs. However, these text descriptions generally include information
about objects present in the image and the context of the image. But specific information like the
actual crowd count is required for crowd-counting. Hence, one must manually annotate the images
to get the crowd count, which is a tedious and time-consuming task (D’ Alessandro et al., 2024). In
contrast, using simulated data (Wang et al., 2019) eliminates the necessity of labor for annotation
and caption generation. This is because the context, conditions, and crowd locations are readily
available when preparing the simulated images, unlike real crowd images.

Non-parametric knowledge retrieval. Recently, knowledge-enhanced models have been gaining
traction in the vision domain after its success with large-language models (Lewis et al., 2020). First,
Hu et al. (2023) improves the performance of visual question answering by storing image-text pairs
in an external database and training a network to extract relevant knowledge to enhance model re-
sponses. Then, Xie et al. (2023) improves the zero and few-shot performance of the CLIP model by
augmenting the input image embeddings with image-text pair information from an external database.
In addition, Chen et al. (2024) and Liu et al. (2023) utilize the knowledge-enhanced models to im-
prove classification performance with diffusion models and customized visual models. However,
the above methods cater to classification for a given image. In our work, we use external knowledge
retrieval to improve the performance of crowd-counting in a weakly supervised learning manner.

3 PROPOSED METHOD

The overall idea of our proposed framework is to retrieve image-text information from an external
database for a given query image to enhance the inference performance for crowd counting as shown
in figure 2. We first discuss constructing the external database and the image-text data in section 3.1.
Next, we discuss the retrieval process in section 3.2, and the knowledge augmentation in section 3.3.

3.1 REFERENCE SET CONSTRUCTION

Text descriptions for simulated images. We utilize the crowd locations, weather conditions, and
time conditions available for each crowd image in the GCC dataset. For each crowd image, we
construct a text description like,

“The image has a [weather condition] weather with
[crowd count] people in the [time of day].”
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Figure 3: (a) In the retrieval and augmentation pipeline, we first do maximum inner product search
(MIPS) between query image embeddings (e;) and real image embeddings (¥(r)). For the most
similar ¥(r), find the closest simulated embeddings (¥(s)) using MIPS. These retrieved image-text
embeddings (¥ (s ) and ®(sy)) and e; are passed through the augmentation module to get the count.
(b) The network flow of the augmentation module to extract non-parameterized knowledge.

For the weather conditions, we use {clear, cloudy, rainy, foggy} as the labels, and for
the time of day, we use {morning, evening, night} as the prompts. These text descriptions
are only constructed for the images that will be included in the reference database. We use 80% of
images from the GCC training set for the reference database. However, including only simulated
data in the reference set introduces a domain gap between simulated and real-world test images.
Hence, to align the distribution of simulated and real data, we embed the simulated images in the
latent space of real images.

Real crowd image set construction. For the real crowd image set, we combine the existing publicly
available crowd counting datasets except for the dataset of which the performance is evaluated. e.g.,
suppose we evaluate the performance on ShanghaiTech Part-A, then the real crowd images in the
reference set will contain crowd images from ShanghaiTech Part-B, JHU-Crowd++, UCF-QNREF,
and NWPU-Crowd. This ensures that the image encoder has not seen any images from the test
distribution, unlike CrowdCLIP and AFreeCA.

Image encoder pre-training. We pre-train the image encoder using both real and simulated crowd
images with the ranking loss (Liu et al., 2018), which does not require any labels. Ranking loss
has been used to pre-train the image encoder in recent multi-modal crowd counting works like
CrowdCLIP and AFreeCA. To construct the ranking crops for the pre-training of the image encoder,
we follow the sampling procedure provided in Liu et al. (2018) and moderate it for the simulated
and real images separately. We pass the image embeddings of each crop through a linear layer to
map it to a count value. To enforce the ranking, we apply the pairwise ranking hinge loss, which for
a single pair is defined as:

L, = max (0,¢é(1;) — ¢é(In)), (1)
to penalize incorrect ranking pairs, where ¢(1;) is lower than é(1y,), and I; and I, represent two
ranking patches from the image. It should be noted that the L, loss is proportional to the difference
between the estimates when the two estimates don’t obey the correct ranking order and help embed
the real and simulated images into an ordinal space (Li et al., 2022). The image encoder is trained
using the gradient updates given as:

VL, = {0 if &) — (1) < 0

Vé(l) — VE(Iy)  otherwise @
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with respect to the image encoder parameters. For a given image, we combine the losses of each
pair before taking the gradients. There will be (];{ ) pairs, where M is the crops per image.

Reference vector database. After training the image encoder, we construct image crops of size
224 x 224 from simulated and real crowd images. Next, we collect the image embeddings of these
crops to create a vector database to perform knowledge retrieval under the maximum inner product.

3.2 IMAGE-TEXT RETRIEVAL

In knowledge retrieval, we extract K image-text pairs for an input image I;. First, we get the image
embeddings e; of I; using the pre-trained image encoder. Then, we perform the maximum inner
product search (Yu et al., 2017) with the image embeddings of the real crowd image crops in the
reference database. From the search, we find the & /2 most similar real image crops. Next, for each
real crowd crop, we will find the 2 most similar simulated crowd crops without any repetitions. i.e.,
if any two real crops share a simulated crowd crop, we assign the simulated crop to the real crop that
has the highest inner product with I; and assign the next most similar simulated crop to the remain-
ing real crop. Once we find K most similar simulated crop vectors, we extract their corresponding
image crops {r,‘;’i S | and the text descriptions {ré’i }E_ | from our reference set. In the retrieval
process, the reason to extract real crops first is to align the simulated crops retrieved for real crowd
images during testing. Since we train the knowledge augmentation module (see section 3.3) and the
count decoder with simulated data, if we directly extract the K most similar simulated crops from
the reference set, the strong relationship of being from the same domain will not exist during testing
with the real images. However, by using real crops as an intermediary, we can alleviate this issue as
the connection between the retrieved simulated crops and input image will be stronger during testing
since the test image and intermediary reference crops are from the same domain. This intermedi-
ary process can be considered as a projection of the input image features onto the real image features.

3.3 KNOWLEDGE AUGMENTATION MODULE (KAM)

The overall architecture of the KAM is illustrated in figure 3b. In the KAM, we first extract the image
embeddings and the text embeddings for the retrieved image-text pairs ({rkvi}fz1 and {rﬁi}le)
using the pre-trained image encoder (V) and a pre-trained text encoder () as follows,

By = v (rf') and b = @ (xf), 3)

where h,‘j’ and hé ' represent the image embeddings and text embeddings of the k™ image-text pair.
Since ¥ and ® are pre-trained encoders, the embeddings in equation 3 can be pre-computed as these
models are frozen during training of the KAM and the count decoder.

Once the reference image embeddings {hx £ | and the corresponding text embeddings {hé K
are extracted, we infuse this external knowledge to the input image embeddings (e;) using Multi-
head Attention (MHA) (Vaswani et al., 2017) in the KAM. First, we take e;, {hkv"}le, and
{hﬁ "}, as the query, key, and value, respectively to produce text-knowledge-infused embeddings
(vE) given by,

Vit =MHA(e;, {h" iy, {by 1) “)

Here, input image embeddings will learn the weight aggregation of {hé"},f:l depending on the
relationship between e; and {h,‘f}szl. Similarly, we also produce image-knowledge-infused em-
beddings from the KAM. However, unlike v, here we can use both {h;*}X_ and {hZ'}/  as key
while e; and {hx } 15:1 are kept as query and value, respectively. Hence, we produce two different
image-knowledge-infused embeddings denoted as v and v}V with {h}"}/< | and {hX‘}/ as
key, respectively. The KAM outputs vV and v}V as follows,

Vz’LV = MHA(ei> {hfi}szlv {thi}i(:l)ﬂ

)
vV = MHA(e;, {hy* iy, {7 1)
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Then, the outputs of the KAM will be combined with the input image embeddings to produce the
augmented image embeddings (e;) as follows,

e;:ei+viL+viLV—|—szV, (6)

as shown in figure 3b. Then e; is passed through the count decoder to produce the crowd count ¢;.

3.4 LOSS FUNCTION

At the pre-training stage of the image encoder, we use the pairwise ranking hinge loss (L) as
described in equation 1. Then, to train the KAM and the count decoder, we utilize both £ and Lo
norm between the estimated and the ground truth count as follows,

1 . ~
[= B D (La(éire) + A La(éi, i)
I,eB (7)
]_ . N
- & ST (e —eills + Alle - cill3)

I,eB

where A is a hyperparameter that is set equal to 0.01. In equation 7 ¢; and ¢; are the ground truth
and estimated count of the I; input image in the batch 5.

4 EXPERIMENTAL DETAILS
4.1 IMPLEMENTATION DETAILS

We use the Vision Transform (ViT-B/16) (Dosovitskiy et al., 2021) as the image encoder with pre-
trained weights on ImageNet-21K (Deng et al., 2009) with the hidden dimension size set to 768.
The input image size to the image encoder is 224 x 224. For the text encoder we use the Sentence
Transformer (SentenceT) (Reimers & Gurevych, 2019). The SentenceT architecture has 6 Trans-
former block layers and outputs a 384 dimensional vector for each sentence. To reconcile the image
embeddings with the text embeddings, we project the output of the image encoder from a 768 di-
mensional vector to a 384 dimensional vector. Moreover, we use an MLP for the count decoder to
map the augmented image embeddings to the crowd count following Liang et al. (2022a).

We implement our framework with PyTorch (Paszke et al., 2019). All experiments are conducted
on 4 NVIDIA RTX A6000 GPUs, and we use a batch size of 32 for pre-training the image encoder
and training the KAM. First, the image encoder is trained for 200 epochs with unlabeled real crowd
images and simulated crowd images. To pre-train the image encoder with the ranking loss, we use
the AdamW optimizer (Loshchilov & Hutter, 2018) with a learning rate of 1e-3 and a weight decay
of 0.01 factor and a linear warm-up over ten epochs. We use five ranked crops witha 1 : 0.75 scaling
ratio between consecutive crops on real crowd images following Liu et al. (2018), whereas we use
four ranked crops with a 2 : 1 scaling ratio for the simulated crowd images. During pre-training of
the image encoder, we perform RandAugment (Cubuk et al., 2020), random horizontal flip, random
Gaussian blur, and random color distortions. To train the KAM and the count decoder for generalized
crowd-counting, we adopt the same optimizer with a learning rate of le-5 and perform training for
150 epochs using simulated data. To assess few-shot performance, we fine-tune the image encoder,
KAM, and count decoder on real labeled crowd images.

4.2 DATASETS AND METRICS

For the proposed method, we use the GCC dataset (Wang et al., 2019) to construct the reference
dataset and to train the KAM and the count decoder. We evaluate the proposed method on five
publicly available crowd datasets: JHU-Crowd-++ (Sindagi et al., 2020), ShanghaiTech Part A and B
(Zhang et al., 2016), UCF-QNREF (Idrees et al., 2018), and NWPU-Crowd (Wang et al., 2020). The
performance is evaluated with the mean absolute error (MAE) and mean squared error (MSE).
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Table 1: Crowd counting performance on JHU-Crowd++, UCF-QNREF, and ShanghaiTech-Part A
and B datasets. We compare with other annotator-free methods and missing results are due to un-
available metrics in the corresponding paper. We provide the type of training data used by each
method. The data domains are either Real or Simulated. Each method uses as Labeled, Unlabeled,
and Pseudo labeled data.

Method Venue Tra‘in'ing SHB JHU SHA QNRF
data MAE MSE MAE MSE MAE MSE MAE MSE
MCNN (Zhang et al., 2016) CVPR’16 ReLa 264 413 1889 4834 1102 1732 2770 4260
P2PNet (Song et al., 2021) ICCV’'2l  Rela 6.3 9.9 - - 527 851 853 1545
CLTR (Liang et al., 2022b) ECCV’22 Rela 6.5 106 595 2406 569 952 858 1413
STEERER (Han et al., 2023) ICCV’'23  Rela 5.8 85 543 2383 545 569 743 1283
GCC-SFCN (Wang et al., 2019) CVPR’19 ]§é [LJ?; 199 283 - - 1234 1934 2304 3845
CSS-CCNN (Babu Sam et al., 2022)  ECCV’22  Re Un - - 217.6  651.3 197.3 2959 437.0 7223
CrowdCLIP (Liang et al., 2023) CVPR’23 RePs 693 858 2137 576.1 146.1 2363 2833 488.7

SYRAC (D’ Alessandro et al., 2023) arxiv Re Ps 49.0 60.3 1940 5839 196.0 2952 390.0 697.5
AFreeCA (D’ Alessandro et al,, 2024)  ECCV’24  RePs 350 507 173.8 5194 1527 219.0 283.1 4532

Ours l§i La 930 307 1423 4436 1184 1861 2149 3634
e Un

Table 2: Performance on the NWPU-Crowd test dataset. We used the publicly available code bases
to evaluate the performance of the annotator-free methods. We provide the type of training data used

by each method. The data domains are either Real or Simulated. Each method uses as Labeled,
Unlabeled, and Pseudo labeled data.

Method Venue Training Overall Scene Level (MAE)
data MAE MSE  Ave. SO Sl 2 s3 S4

MCNN (Zhang et al., 2016) CVPR’16 Rela 2325 7146 11719 3560 72.1 103.5 509.5 48182
P2PNet (Song et al., 2021) ICCV'21  Rela 726 3316 5100 347 113 315 1610 23116
CLIR (Liang et al., 2022b) ECCV'22 Rela 744 3338 5324 42 73 303 1855 243438
STEERER (Han et al., 2023) ICCV'23  Rela 637 3098 4106 483 60 259 1583 18145
CSS-CCNN (Babu Sam etal,, 2022) ECCV’22  ReUn 4330 8683 19653 3683 2337 289.6 689.6 82453
CrowdCLIP (Liang et al., 2023) CVPR'23  RePs 3749 8994 16462 3057 1905 2373 6772 6820.6
SYRAC (D' Alessandroetal, 2023)  arxiv ~ RePs 3445 9585 15406 268.5 1829 2154 6108 642538
Ours o ILﬁ 340.1 863.8 13580 2489 1533 2264 6721 5489.7

5 RESULTS AND ANALYSIS
5.1 ANNOTATOR-FREE PERFORMANCE

As reported in tables 1 and 2, the proposed ReGe-Count surpasses state-of-the-art methods: GCC-
SFCN, CrowdCLIP, AFreeCA by considerable margins across all evaluated datasets. Moreover,
ReGe-Count surpasses state-of-the-art annotator-free methods by considerable margins in terms of
MAE for the NWPU-Crowd test dataset. The performance against CSS-CCNN comes from per-
forming zero-shot on the target distribution under weak supervision, which has been better than
self-supervision. Then, actively using language information has aided in surpassing CrowdCLIP,
which does not use text information for estimation. The performance across different datasets indi-
cates that the proposed method performs well under different conditions, as these datasets specifi-
cally represent congested and sparse scenes. Furthermore, we have provided some qualitative results
in figure 5 with the individual patch counts to better illustrate the performance of our method. Fur-
thermore, ReGe-Count method demonstrates highly competitive performance against some widely
adopted fully supervised methods like MCNN (Zhang et al., 2016).

5.2 ABLATION STUDY

Effectiveness of knowledge retrieval. In figure 4, we provide the top-4 retrieved simu-
lated samples and the corresponding text information for two query images. The first query
image is an indoor photo where the individuals are placed in an ordered manner. The
first image retrieved by the query resembles the ordered structure in the image, even though
the retrieved patch is an outdoor image (the GCC dataset contains only outdoor images.)
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GT: 159 Foggy Clear Clear Cloudy

Pred: 148 147 157 163 142
Morning Evening Morning Evening

GT: 28 Foggy Clear Clear

. 26 26 29
Pred: 27 Morning Night Night Night

Figure 4: Top-4 retrieved simulated samples and text descriptions for a real query patch. The first
query is an indoor image with an ordered placement of people. The retrieved patches resemble the
ordered structure of the query, though retrieved images are outdoor. The second query is an outdoor
night image. The retrieved samples match the image conditions and the orientation of the location.

Though the rest of the
samples do not contain
the ordered structure,

those images mimic
other aspects like the
orientation of how indi-
viduals are placed and
size constancy. To quan-
tify the spatial similarity,
we considered the density
maps. We measured the
SSIM of each retrieved image with the query image, where the SSIM values varied between (.88
and 0.82, which indicates a high spatial similarity of object placement. The second query image is a
dark and outdoor sample with random placement. The retrieved samples for the second query either
have a darker background or belong to the night conditions. Specifically, the first extracted sample
also simulates the background of the query image. Like in the first query image, the orientation of
human placement is also present in the extracted simulated patches. Also, the SSIM values for the
density maps for the second example range from 0.90-0.92, indicating a strong spatial similarity for
object placement. However, this high SSIM number could also be driven by the fact that there are
fewer people in the second case, and most of the density map is empty. Regardless, figure 4 gives
insight as to how retrieving from an external dataset can facilitate the generalized capabilities of the
network as the crowd count of the extracted patches provides closer estimates.

& I |
GT: 130 Pred: 133 GT: 363 Pred: 339

Figure 5: Qualltatlve results from ReGe-Count.

To validate the effectiveness of our pro-

posed method for annotator-free crowd count-  Taple 3: Generalized cross-dataset performance

ing on the target distribution, we compare comparison with simulated GCC dataset training.
ReGe-Count with CrowdCLIP, CSS-CCNN,

and DGCC (Du et al,, 2023). Note that Method JHU SHA QNRF SHB
CrowdCLIP is a vision-language-based count- pgcC 544.4 3512 454.8 112.1
ing method, CSS-CCNN is a self-supervised (SS.CCNN 2343 2588 3155 77.0
counting method, and DGCC is a domain (CrowdCLIP 2267 1627 3254 82.9

generalization-based counting method. Here, (ypg* 1702 143.1 223.6 286
we only consider labeled simulated data and  (Qyrg 1423 1184 2149 230
unlabeled real data and follow the training . . .

pipeline provided in publlc Codebases. FOI' ](é)lsgsi:dd:;slzgil;?jje retrieval module and count decoder is fine-tuned with
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DGCC, we train the pipeline with only simulated data, as DGCC requires labeled data. However,
for CrowdCLIP and CSS-CCNN, we pre-train the image encoders using both simulated and real
crowd datasets, as the pre-training stage only requires unlabeled images. Also, in the real crowd
dataset for pre-training, we don’t include the training images of the test distribution in comparison
with ReGe-Count training scheme. The results of this ablation are provided in table 3. As observed
from table 3, DGCC fails to generalize to real crowd images when purely trained on simulated
crowd images. Furthermore, CrowdCLIP and CSS-CCNN performed worse than ReGe-Count by
a significant margin. This is because CrowdCLIP operates in the classification scenario instead
of our regression-based method. Also, in contrast to our ReGe-Count, CrowdCLIP does not use
language understanding to produce the crowd count. Note that CSS-CCNN assumes the crowd
counts distribution of patches to follow the power law for simulated images, which might also be
invalid. Furthermore, we consider the performance without the KAM in Ours*, which performs
worse than the proposed method. We provide an analogy for this observation. In the training stage
of Ours*, the network learns multi-modal (vision-language) concepts with the training distribution.
Then, given a query image during testing, Ours* attempts to perform a closed-book inference and
may return a false prediction if it cannot relate the query (real image) with the learned concepts.

Qualitative analysis. To un-
derstand the most influential as-
pects of the pipeline, especially
in the Knowledge Augmentation
Module, we consider the atten-
tion weights by different aug-
mentations. First, we consider
the attention maps (see figure 6)
in the KAM module for a test
image and the closest retrieved
image for different keywords in
the text description. In both
cases, the maps corresponding to

) ) ) ) the ‘count’ keyword have high
Figure 6: Attention maps corresponding to different keywords  gcores compared to the maps of

"count" "time of day"

2 |- .|
Test image Retrieved image "count" "weather"

the other keywords. This indi-
cates that the ‘count’ text features will highly influence the augmented embeddings passed to the
decoder. Further, the attention maps highlight the areas of crowds that exist in the scene for the
retrieved image, demonstrating the visual understanding of people with the count. In addition, the
‘time of day’ keyword has provided some background context in the retrieved scene in the first
example, whereas the ‘weather’ keyword features will have a minimal effect on the augmented em-
beddings compared to the other two. Also, we consider the attention between the test image’s image
embeddings and the retrieved description’s text embeddings. By averaging and normalizing the at-
tention weights, we could compute attention scores assigned to each word token. For instance, we
considered an image crop of an indoor scene with low illumination. For this example, the attention
scores produced for each word token were: The (0.000) image (0.002) has (0.000) a (0.000) clear
(0.030) weather (0.000) with (0.000) 52 (0.905) people (0.003) in (0.000) the (0.000) night (0.060).
The attention scores are high for the crowd count, time of day, and weather, as these three keywords
carry information among different images because the remaining text words are common across all
text descriptions. Since both test image and retrieval embeddings are generated from the same en-
coder, these attention scores highlight which feature maps are more influential due to the way the
attention mechanism is developed.
Effective use of text modality. We compare the change in performance with different text prompts
to demonstrate the effective use of text modality for crowd-counting in ReGe-Count compared to
CrowdCLIP. While CrowdCLIP has explored text modality for crowd counting first, the setting pro-
posed in CrowdCLIP uses text embeddings as reference vectors to train the image encoder rather
than using text information to produce the count. For example, when we change the text prompt
from “The photo contains [count] people” to “There are [count] people
in the photo”, the performance of CrowdCLIP changed significantly (283.3—488.1) as op-
posed to ours (214.9—216.4). Hence, CrowdCLIP has underutilized the potential of text informa-
tion compared to our work.
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Table 4: Different augmentations

Fusion type K MAE Table 5: Ablation of keywords
L 2 A JHU SHA QNRF Method JHU SHA QNRF
X X X - 1702 143.1 2236 baseline 1423 1184 2149
X X 32 1486 123.6 2244 count 1475 117.6 2158
v Vs Vs 32 1423 1184 2149 + time of day 143.5 118.1 215.1
v/ Vs Vs 16 1459 1214 2204 + weather 147.8 1183 216.1
v v v 64 1439 1197 2173

Different augmentation architectures. We conducted additional experiments to assess various
design options within the KAM architecture, as outlined in table 4 since the KAM is the sole
addition to the baseline architecture. For the baseline, the count decoder is trained with the
simulated data without any image-text retrieval and knowledge enhancement. Initially, we consider
ViL as the ultimate augmented representation. In this scenario, the KAM assimilates relevant
information from the reference texts, generating the final embedding. Including textual cues leads
to a notable performance improvement compared to the baseline. After that, we augment vV and
vV, separately. Providing visual cues based on the image-text relation has not seemed effective.
Still, it has improved the performance when combined with the remaining augmentations. More
details are provided in the supplementary.

Different K -value in retrieval. We experiment with different retrieval quantities and their effect
on performance. We vary between K = {16, 32,64} for image and text pairs from the external
simulated dataset. The results are tabulated from rows 4-6 in table 4. Our module exhibits consistent
performance across different K values, with the model achieving slightly superior results when K
is set to 32 compared to other configurations. The performance decrease with a higher K value
could arise when the count information provided by the least similar retrieved crops is significantly
different from the true count.

Effect of the text description. The text description adds context to retrieved scenes, but its impact
on performance varies. Ablation studies in table 5 show that using all three keywords produces
similar results for SHA and QNRF datasets, indicating that additional context keywords do not
significantly influence performance. However, for the JHU dataset, the time of day keyword
improves performance, unlike the weather keyword, which can be omitted without affecting results.
The difference arises because JHU, a larger dataset, includes diverse scene illuminations, while
SHA and QNREF primarily feature bright scenes. Thus, the time of day keyword enhances context
for JHU by differentiating illumination levels, whereas it has little effect on the other datasets.
Few-shot performance. We analyze the few-shot performance of crowd counting with knowledge
retrieval. Here, we fine-tune the pre-trained image encoder for a fair comparison with weakly-
supervised TransCrowd (Liang et al., 2022a). The few shot performance (MAE) of ReGe-Count
is tabulated in table 6 for the JHU-Crowd++, ShanghaiTech, and UCF-QNRF datasets. Values
reported in table 6 are the average of five realizations for each training data percentage. ReGe-Count
delivers state-of-the-art counting results for weakly supervised methods surpassing TransCrowd
while operating at 90% of the train data.

6 CONCLUSION

ReGe-Count introduces a novel framework for transferring language
knowledge to enhance generalized crowd counting. It is the first to
apply knowledge retrieval to improve annotator-

free crowd-counting accuracy. Notably, ReGe- Table 6: Few-shot and full training performance
Count achieves state-of-the-art performance in  ith knowledge retrieval.

annotator-free crowd counting and addresses the
high annotation costs associated with labeling Method JHU SHA QNRF SHB
real crowd images. By effectively leveraging 1(g-Real 95.0 1583 2123 223
large-scale, annotation-free simulated data, our 50, Real 827 1382 1832 203
approach underscores the potential of knowledge-  509,_Real 67.7 107.1 1529 149
enhanced models for crowd counting, paving the  9(g,_Real 552  64.8 05.9 92

way for future research at the intersection of vi-  TransCrowd 56.8 66.1 97.2 93

sion and language models.
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APPENDIX

This appendix is organized as follows.

* In section A, we illustrate the simulated image embedding retrieval process, including the inter-
mediate processes.

* In section B, we provide results and explanations for additional ablation studies.

* In section C, examples of the retrieved simulated samples in the case of negative samples and
congested scenes.

* In section D, we compare the inference performance of the proposed method with other annotator-
free crowd counting methods.

* In section E, we provide details of the datasets and metrics we used.
* In section F, the computational efficiency of the image retrieval process is analyzed.

* In section G, the computational cost and inference performance against counting performance are
discussed.

* In section H, we provide a theoretical explanation for the improvement from the knowledge aug-
mentation.

A IMAGE RETRIEVAL PROCESS

(a) (b)
.Image embedding . Real image embedding .Simulated image embedding
Figure 7: Knowledge retrieval process

In this section, we elaborate on the knowledge retrieval process described in section 3.2 using il-
lustrations. In knowledge retrieval, we extract K image-text pairs for an input image ;. First, we
get the image embeddings e; of I; using the pre-trained image encoder (V). Since e; is produced
from ¥ and W is trained using real images and simulated images, we assume e; lies on the same
embeddings space as the image embeddings of the real and simulated images. This is demonstrated
in figure 7a where the gray color image embedding is in the same manifold as the red color real im-
age embeddings and blue color simulated image embeddings. Next, we perform the maximum inner
product search (MIPS) with the image embeddings of the real crowd image crops in the reference
database.

In figure 7b, we demonstrate the retrieval of the closest embedding. In MIPS, first, we compute the
distance between e; and real image embeddings under the vector inner product. Then, we find the
real image embedding closest to or the most similar to e;. Then, we perform MIPS between the
selected real image embedding and the simulated image embeddings. In figure 7c, we demonstrate
the retrieval of the closest simulated embedding.



B ADDITIONAL ABLATION STUDIES

Detailed ablation on augmentations The crucial module of the pipeline is the Knowledge Augmen-
tation Module (KAM). In the KAM, we use three different embedding augmentations, as depicted
by the first three columns of table 4.

The performance gain by each augmentation type is provided for only vZ in table 4. Therefore,
to understand which augmentation types improve the performance, we provide the counting per-
formance for each augmentation type and their combinations compared against the baseline per-
formance in the table 7. The most performance gain has come from the components vZ and v}V
compared to the baseline method. The two augmentations deliver text information and visual infor-
mation, respectively, but the cross-attention is taken between the image embeddings and retrieved
patch embeddings. However, the performance gain from vV is marginal compared to the other two

augmentations where the cross-attention is taken between the image and retrieved text embeddings.

Table 7: Detailed ablation of different augmentations

Fusion type K MAE

ViV Vv JHU SHA QNRF

- 1702 143.1 223.6
32 148.6 123.6 2154
32 1528 1283 219.8
32 1453 125.8 2165
32 1493 1223 2217
32 1428 118.8 215.7
32 1423 1184 2149

<
N
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Different retrieval processes. We consider the effect of not using real crowd images in the re-
trieval process and directly retrieving from the simulated dataset. However, the image encoder is
pre-trained with real crowd images in the mix. When directly retrieving from the simulated dataset,
we observed an MAE of 243.8 for JHU-Crowd++, which is poorer than the CrowdCLIP and CSS-
CCNN performances. This is because, even though the image encoder is trained to embed real and
simulated images in the same space, the training of the KAM and the decoder disregards the domain
gap between real and simulated images.

Different amount of reference data. We evaluate the effect of the reference set size on the perfor-
mance for five cardinalities by randomly sampling 10%, 25%, 50%, 75%, and 80% image-text pairs
from GCC dataset. The ablation study recorded an average MAE of 224.2, 210.6, 174.0, 144.7, and
142.8, respectively, on JHU-Crowd++ for five trials. The performance was higher for larger refer-
ence set sizes. This is because in larger reference databases, for a given test image crop, a positive
simulated crop is closer than in smaller databases, providing more accurate information retrieval.

C QUALITATIVE RESULTS

We provide qualitative results to demonstrate the performance of the retrieval process in the proposed
method in figure 8. In the first row, we have a negative test image. Most of the retrieved test images
for the negative sample had zero crowd counts and had similar backgrounds. Nonetheless, some
retrieved patches had smaller counts (< 4) where the background was similar to the test image. In
the second row, we have a congested test image. The retrieved patches for the congested scene are of
similar crowd density patterns, even though most of the images do not fill up the entire image. This
validates the idea that the retriever searches for simulated images that resemble the crowd density
pattern of the test image, as first mentioned in section 5.2 with figure 4.

D INFERENCE SPEED

We present a comparison of inference speeds, as outlined in table 8. The runtime of our proposed
annotator-free method is significantly higher than other annotator-free methods, such as CrowdCLIP
and CSS-CCNN. CrowdCLIP gives an interval of FPS values as it uses progressive filtering for



Figure 8: Retrieved synthetic crops for a negative sample (top row) and congested sample (bottom
IowW).

crowd patches with people, whereas the proposed work only has one forward pass through the
image encoder. Then, CSS-CCNN utilizes a larger decoder to estimate the density map to predict
the count, whereas we only use a linear layer to estimate the count directly. Additionally, the use
of a vector database to retrieve samples improves inference time as the retrieval operation is simply
the vector inner product. Notably, fully supervised methods necessitate maintaining high-resolution
features to produce quality density maps. For instance, in CSRNet Li et al. (2018), features are
1/8 the size of the input, while in BL. Ma et al. (2019), they are 1/16 the size, resulting in slower
inference speeds.

Table 8: The comparisons of Frames Per Second (FPS) between our method and other methods. The
results are conducted on an NVIDIA A6000 GPU

Method Annotated data Label Resolution FPS
CSRNetLi et al. (2018) Real density 1024 x 768 18.4
BL Ma et al. (2019) Real density 1024 x 768 21.3
CSS-CCNN Babu Sam et al. (2022) X X 1024 x 768 37.4
CrowdCLIP Liang et al. (2023) Real count text 1024 x 768 [24.0, 50.8]
Ours Synthetic count 1024 x 768 42.8

E DATASETS

JHU-Crowd++Sindagi et al. (2020) contains 2, 722 training images, 500 validation images, and
1,600 testing images, collected from diverse scenarios. The total number of people in each image
ranges from 0 to 25, 791.

ShanghaiTechZhang et al. (2016) contains 1,198 crowd images with 330, 165 annotations. The
images of the dataset are divided into two parts: Part A and Part B. In particular, Part A contains 300
training images and 182 testing images, and Part B consists of 400 training images and 316 testing
images.

UCF-QNRFIdrees et al. (2018) contains 1, 535 images captured from unconstrained crowd scenes
with about one million annotations. It has a count range of 49 to 12, 865, with an average count
of 815.4. Specifically, the training set consists of 1,201 images and the testing set consists of 334
images.

NWPU-Crowd Wang et al. (2020), a large-scale and challenging dataset, consists of 5, 109 images,
2,133, 375 instances annotated elaborately. To be specific, the images are randomly split into three
parts, including training, validation, and testing sets, which contain 3, 109, 500, and 1, 500 images,
respectively.



GCCWang et al. (2019) dataset consists of 15, 212 images, with a resolution of 1080 x 1920, contain-
ing 7,625, 843 persons. Compared with the existing datasets, GCC is a larger-scale crowd counting
dataset in terms of both the number of images and the number of persons.

Metrics we used for evaluate the counting performance were MAE and MSE as defined below:

MAE =) | - len — el and MSE = \| 3 7 - |en — a2, ®)
n=1

n=1

where ¢,, and ¢, are the groundtruth and predicted crowd count of the n™ image out the the N
images tested.

F EFFICIENCY ANALYSIS

For the retrieval process, we use the naive maximum inner product search. This involves computing
the similarity between image embeddings and crop embeddings in the reference database and sorting
the similarity scores to find the closest neighbors.

Suppose the reference database is of size IV, the embedding dimensionality is of size d, and we
need to find the nearest k neighbors. Then, the computational efficacy of the whole process is
O(N -d + N -logk). Accordingly, as the retrieval space scales, the time it takes for the retrieval
process will increase. However, for larger reference databases, using approximation methods such
as the k-d tree, the computational complexity can be reduced to O(log N) for smaller dimensional
sizes, but still, the time consumed will increase with the size of the reference database.

G COMPUTATIONAL COST AND COMPLEXITY

We provide a comparison for the inference speed in table 8 in supplementary material. However, we
will itemize the inference time and the computational complexity for the model with and without
the KAM, along with the accuracy. For the proposed method, the inference time and computational
complexity are influenced by three components: Image encoder and count decoder, knowledge re-
trieval process, and KAM. We tabulate the computational complexity in the following table.

Table 9: Computational efficiency of the architecture
GFLOPS Time (ms) MAE

Baseline 70.564 8.55 170.2
MIPS - 3.51 -
KAM 151.196 18.32 142.3

The MAE performance for the JHU public dataset is given in the above table. The baseline
corresponds to the network without the KAM and the minimum model latency without the proposed
improvements. The MIPS corresponds to the retrieval process with the inner product search to find
the 16 nearest neighbors for a given image embedding.

H THEORETICAL ANALYSIS

To explain the contribution of knowledge augmentation to improving zero-shot crowd-counting, we
use a probabilistic approach.

The goal is to predict the crowd-count ¢; for the target embedding e;. Using a probabilistic frame-
work, the prediction can be expressed as:

Psource (ci|ei) = Psource (ci|ei)7
where the augmented embedding is:

’
ei:ei—kvf—&—viLV—l—v}/V.



Using Bayes’ rule, we can rewrite the probability as follows:
Poource (Ci |e;) X P(e; | Ci)quurce (Ci ) y

where P(e;|c;) and P(c;) denote the likelihood of the augmented embedding given the count and
the prior probability of the count derived from the source distribution.

Then, the likelihood can be decomposed as
P(ej]ei) o Plesles) [ P(vi']e:)

where v’ is each individual augmentation type from the KAM. However, each individual augmen-
tation is computed from the KAM using the retrieved embeddings from the reference database.
Therefore, the likelihood can be updated as:

K
Pejle;) oc Plesle:) [T [T P(rixle:)

n k=1

where 1]} denotes the retrieved embedding augmented with multi-head attention (MHA), and % is the
index of the retrieved embedding. Each v}' thus encodes the aggregated likelihood information from
its corresponding patches, ensuring that e, effectively aligns with the count ¢; as MHA behaves as
a projection of the query embedding to the key embedding. Consequently, the retrieved embeddings
v encode domain-specific patterns, improving the likelihood estimation.

Without the retrieved embeddings, the likelihood distribution will only depend on e;, and as augmen-
tations are introduced, the likelihood distribution is influenced by the source domain information.
The influence of the source likelihood increases with the number of retrieved embeddings. In return,
the posterior distribution Psomce(cﬂe;) becomes a sharper posterior distribution. As the posterior
distribution becomes sharper, the uncertainty involved with the prediction reduces, improving the
prediction accuracy.
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