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Abstract

The effectiveness of Large Language Models (LLMs) in solving tasks depends sig-
nificantly on the quality of their instructions, which often require substantial human
effort to craft. This underscores the need for automated instruction optimization.
However, optimizing instructions is particularly challenging when working with
black-box LLMs, where model parameters and gradients are inaccessible. We
introduce ACING, an actor-critic reinforcement learning framework that formu-
lates instruction optimization as a stateless, continuous-action problem, enabling
exploration of infinite instruction spaces using only black-box feedback. ACING
automatically discovers prompts that outperform human-written prompts in 76%
of instruction-induction tasks, with gains of up to 33 points and a 10-point median
improvement over the best automatic baseline in 33 tasks spanning instruction-
induction, summarization, and chain-of-thought reasoning. Extensive ablations
highlight its robustness and efficiency. An implementation of ACING is available
at https://github.com/salmakh1/ACING.

1 Introduction

Large Language Models (LLMs) have demonstrated impressive capabilities across tasks like sum-
marization and reasoning [7, 49, 56]. A key driver of this success is their ability to follow natural
language instructions, commonly called prompts [3, 50, 33]. Yet crafting effective prompts remains
labor-intensive and brittle, especially in black-box settings where model internals are inaccessible.

Source Instruction for Antonym Task Score

Human Write a word that means the opposite of the input word. 0.70
ACING Take a word and change it to its opposite. 0.82

Table 1: Our prompt vs human on GPT-4o.

A core challenge in prompt engineering lies in the
extreme sensitivity of LLMs to subtle linguistic vari-
ations. Even minor changes in phrasing can lead to
substantial performance shifts. As shown in Table 1,
a minor wording change yields a 12-point gain (using
GPT-4o [20]) despite preserving semantics. Such prompt sensitivity is pervasive, underscoring the
need for robust, automated prompt optimization methods.

Recent work has explored automating prompt design to reduce human effort [42, 34]. Soft prompting
techniques [28, 27] and heuristic-based discrete search methods [59, 39] have shown promise, yet
each faces key limitations in black-box settings. Soft prompts require access to the model internals,
limiting them to white-box scenarios. Discrete search methods, in turn, often struggle to explore vast
and nuanced instruction spaces efficiently. More recent hybrid methods combine white-box prompt
generation with black-box evaluation [4, 31], but typically rely on finite candidate pools or rigid
reward assumptions, constraining their applicability.

To overcome these limitations, we introduce ACING, an actor-critic reinforcement learning (RL)
framework for automated instruction optimization in black-box LLM settings. ACING formulates
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prompt optimization as a stateless, continuous-action RL problem within a continuum bandit envi-
ronment. By learning a latent instruction space through an off-policy actor-critic algorithm, ACING
efficiently explores infinite instruction candidates, using only black-box feedback for evaluation. A
frozen white-box model is used as a decoder to convert latent vectors into discrete prompts, enabling
both scalability and linguistic richness. The generated instructions are not only high-performing but
also naturally interpretable, clear, and semantically aligned with the tasks, making them suitable for
practical deployment. To effectively guide exploration under tight query budgets, ACING leverages
entropy-regularized policy optimization, encouraging diversity in sampled prompts and improving
the likelihood of discovering high-performing instructions.

Notably, to our knowledge, ACING is the first approach to apply off-policy, continuous-action
actor-critic reinforcement learning to instruction learning in black-box LLMs, using lightweight
actor and critic neural networks (rather than LLMs), making the approach both efficient and widely
applicable.

We evaluate ACING against state-of-the-art techniques, including Bayesian optimization, contextual
bandits, and evolutionary strategies. Empirical results across 33 diverse tasks—including instruction
induction, reasoning (including zero-shot Chain-of-Thought (CoT)), semantics, syntax, phonetics,
translation, summarization, and code understanding—show that ACING outperforms both human-
written prompts and strong automated baselines. Notably, it surpasses human instructions in 76%
of instruction induction tasks, achieving gains of up to 33 points and a median improvement of 10
points over the best automatic baselines.

In summary, our contributions are threefold:

(1) An RL formulation of instruction learning: We propose a continuous-action actor-critic RL
approach for instruction optimization in black-box LLMs, enabling scalable exploration of infinite
instruction spaces using entropy-regularized policies.

(2) Comprehensive validation. Across 33 diverse tasks, including instruction induction, zero-shot
CoT reasoning, and summarization, ACING consistently outperforms both human-written and strong
automated instructions, achieving statistically significant gains.

(3) In-depth analysis and insights: Through extensive ablation studies, we analyze the impact
of latent dimensionality, exemplar configuration, decoder architecture, and optimization budget,
highlighting the robustness of the ACING approach. Additionally, human evaluation and automated
readability analysis confirm the clarity and semantic faithfulness of the generated instructions.

All code and implementation details are in the supplementary material and will be open-sourced to
support reproducibility and future work.

2 Problem Formulation

2.1 Problem: Prompt Optimization for Black-Box LLMs

We aim to improve the performance of a black-box LLM, denoted by f , which can only be accessed
through its API, while its internal parameters remain unknown. Given a task represented by an
(unknown) distribution (x, y) ∼ D—where x denotes possible inputs and y the corresponding correct
outputs—our goal is to find the optimal prompt τ⋆ that maximizes the likelihood of f producing
correct outputs for a given task. This is evaluated using a scoring function q(·, ·) ∈ [0, 1].

The black-box model f processes an input formed by concatenating (⊕) the prompt τ with the
sentence x, producing a predicted output ŷ = f(τ ⊕ x). More formally, the objective is to maximize
the expected score of the LLM in solving the task represented by the distribution D, defined as:

max
τ

E(x,y)∼D [q(y, f(τ ⊕ x))] . (1)

We utilize a validation dataset V = {(xj , yj)}mj=1, where each pair consists of an input sentence xj

and its corresponding ground truth output yj . Our objective is to find the prompt that maximizes
the scoring function q(·, ·) across the validation dataset, where q(ŷj , yj) measures the quality of the
predicted output ŷj against the true output yj . Thus, our objective becomes finding the prompt τ⋆
that maximizes the average score over the validation set V . The derived prompt τ⋆ is then evaluated
on a separate test set T = {(x′

j , y
′
j)}m

′

j=1 to assess its generalization performance.
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Figure 1: Pipeline of ACING. At each iteration, a soft prompt and task exemplars are fed to the white-box
model to generate an instruction. This instruction queries the black-box LLM, whose outputs are scored. The
resulting score is returned to the agent as a reward, which is used to update its networks and adjust its policy.
Both LLMs remain frozen throughout.

2.2 Reformulating Discrete Prompt Search as a Continuous Optimization Problem

Directly optimizing the prompt τ for the black-box LLM model f presents substantial challenges due
to the discrete combinatorial nature of token selection in τ . To mitigate this challenge, similar to prior
approaches [5, 31, 19] we employ a publicly available, open-source white-box model, represented
by h, and introduce a soft prompt vector z ∈ Rd, which is a continuous d-dimensional vector
representing the token embedding of a set of virtual tokens. The white-box model h, which remains
entirely frozen, with no training or gradient updates, serves as a proxy mapping z into a discrete
prompt τ for the black-box LLM.

Given a dataset of exemplars, E = {(uj , vj)}kj=1, where each pair (uj , vj) defines input-output text
sequences that exemplify a downstream task and the vector z, their concatenation is input to the
white-box model, generating the discrete prompt τ(z) = h(z, E). This generated prompt τ(z) is
prepended to a test input xj from the validation set V , and the combined input is provided to the
black-box LLM f to generate an output ŷj = f(τ(z)⊕ xj). The output ŷj is then evaluated using
the scoring function q(ŷj , yj). By using a fixed set of exemplars E , the original discrete problem
(Eq. (1)) of finding the optimal prompt τ is effectively transformed into a continuous optimization
problem over the soft prompt vector z, as follows:

max
z∈Rd

E(x,y)∼D [q(y, f(τ(z)⊕ x))] . (2)

The soft prompt z is typically high-dimensional. Therefore, we employ random projection techniques
to reduce the input dimension as done in prior works [5, 31]. Specifically, we sample a matrix
P ∈ Rd×d′

with entries from Uniform(−1, 1), and optimize a lower-dimensional vector a ∈ [0, 1]d
′
.

The soft prompt is then given by z = Pa, transforming the original problem into optimization over a
compact and continuous space as follows:

max
a∈Rd

′
E(x,y)∼D [q(y, f(τ(Pa)⊕ x))] . (3)

This optimization problem is central to our framework. The following section elaborates on our
approach to solving it.

3 Framework for Instruction Learning

We formulate the problem of prompt learning for black-box LLMs as a RL problem, where the
agent explores an infinite instruction space by sampling continuous actions a ∈ [0, 1]d

′

. Each action
corresponds to a latent prompt representation, which is mapped—via a fixed projection matrix and a
decoder—into a discrete instruction. This instruction is then evaluated by the black-box LLM on a
validation set to produce a reward indicating task performance. The stateless, stochastic setup places
the problem in the continuum bandit regime, unlike traditional discrete multi-armed bandits [46, 26].
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Figure 2: Illustration of the prompt generation and testing inside the environment using the larger_animal
dataset as an example.

3.1 Actor-Critic for Instruction Optimization

To address the challenge of learning in high-dimensional spaces with limited feedback, we introduce a
stateless, off-policy actor–critic framework tailored to the continuum bandit setting. Our design draws
inspiration from advances in continuous control methods [24, 35, 16, 17], particularly the success of
the Soft Actor–Critic (SAC) algorithm [24]. Building on SAC, we adapt its principles to the stateless
bandit regime, yielding a lightweight yet effective framework composed of compact neural networks:
(1) a policy network (actor) π(·; θ), which outputs latent action vectors corresponding to soft prompts,
and (2) two critics to compute a value function Q(a) = min{Qw1(a), Qw2(a)}, which estimates
the expected reward of a given action. The critics, Qw1(.) and Qw2(.), are trained to minimize the
mean squared error between predicted and observed rewards:

min
w

JQ(w) ≜ Ea∼D

[
1

2
(Qw (a)− r (a))2

]
, (4)

which can be optimized with stochastic gradients

∇̂θJQ(w) = ∇wQw (at) (Qw (at)− r (at)) . (5)

Training alternates between actor and critic updates. Despite the lack of state transitions, this archi-
tecture proves effective: the critic generalizes reward signals in prompt space, stabilizes updates by
reducing reward variance, and enhances robustness via a twin-critic setup to mitigate overestimation
[13]. Empirically, this actor-critic formulation consistently outperforms no-critic baselines.

3.2 Enhancing Exploration via Entropy Regularization

In our setting, the agent operates under a fixed evaluation budget of T queries and must discover
the best-performing instruction within this limit. This corresponds to a pure exploration regime,
where broad coverage of the action space is essential. While random exploration may seem sufficient,
effective learning often requires balancing exploration with exploitation of prior observations to guide
the search toward high-reward regions.

To encourage systematic exploration while leveraging past experience, we adopt the maximum
entropy reinforcement learning framework [60, 16]. This approach augments the expected reward
with a policy entropy term, promoting stochasticity in the actor’s decisions. The objective becomes:

min
θ

Jπ(θ) ≜ Ea∼π(.;θ) [α log (π (a; θ))−Qw (a))] , (6)

where α is a temperature coefficient that governs the exploration-exploitation trade-off. A higher α
encourages greater policy entropy, while a lower value biases the policy toward exploitation.

This formulation simplifies the soft actor-critic objective [16], omitting state-related components and
long-horizon returns, since our environment is stateless and rewards are immediate. The entropy
term, −Ea∼π(·;θ)[log π(a)], incentivizes the actor to maintain a diverse action distribution, thereby
avoiding premature convergence to suboptimal prompts.

To avoid manual tuning of α, we follow prior work [17] and adapt it to match a target entropy Htarget,
by minimizing:

min
α

Jα ≜ −Ea∼π(.) [α · (log π(a; θ) +Htarget)] . (7)
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We use stochastic gradient descent, specifically the Adam optimizer [22, 41], to jointly update the
policy, critic, and entropy temperature.

3.3 Putting it All Together

Fig. 1 illustrates our actor-critic framework and its interaction with the environment. Fig. 2 zooms in
on an example from the larger_animal dataset.

Overview: In each iteration t ≤ T , the actor-critic agent generates a continuous vector “action” a
(step 1). The action is then projected into the appropriate space using a fixed matrix P to obtain z.
The environment then concatenates the projected vector z with a set of exemplars’ embeddings from
E and feeds it into a white-box model h (step 2). The white-box model produces a discrete prompt, τ ,
which is evaluated using the validation dataset V based on the responses from the black-box LLM f
(step 3). The black-box LLM’s prediction is compared to true labels of the validation examples, and
a score function provides a reward, used to update both the critic and actor networks accordingly.

Step 1⃝. The actor outputs the mean and variance of a distribution from which the action, a soft
prompt vector a ∈ Rd

′

, is sampled. It also computes the log probability, which is key for policy
optimization, as shown in Eq. (6).

Step 2⃝. As shown in the left side of Fig. 2, the examples describing the task from the set of
exemplars E , along with additional text such as “The instruction was to,” are input into the embedding
layer of the white-box model to generate continuous vectors (using the instruction generation template
in Fig. 1 top right). These continuous vectors are then concatenated with the soft prompt z, projected
from the action a. The white-box model layers subsequently process the resulting concatenated
vector to produce the discrete prompt τ , suitable for input into the black-box LLM.

Step 3⃝. As depicted in the right side of Fig. 2, for every input xi in the validation set V =
{(xj , yj)}mj=1, the generated prompt τ is concatenated to the input sentence xi and fed to the black-
box LLM, which generates an output sentence ŷi = f(τ(z) ⊕ xi). The output of the black-box
LLM is fed into a scoring function q(·, ·), which computes the score between the predicted output
ŷi and the true label yi. The overall score is calculated by averaging the scores across all samples,
representing the reward: r = 1

m

∑m
i=1 q(ŷi, yi), where m represents the number of samples.

Step 4⃝. The critic evaluates the actions taken by the actor using the network Qw, which estimates
the expected reward for a generated action a from the policy network π. Based on the observed
reward r(a), the critic updates its network using the loss function (Eq.(4)) and gradient (Eq.(5)). The
critic’s feedback helps the actor improve its policy by maximizing the reward (Eq. (6)), ensuring a
balance between exploration and exploitation.

After T iterations, the agent returns the best-performing prompt τ⋆, which is evaluated on the test set
T in the black-box LLM using the evaluation template shown in Fig. 1 (bottom right).

4 Experiments

We focus on instruction learning for ChatGPT [37], with additional analysis on GPT-4 [38] and GPT-
4o [20] as representative black-box LLMs. We conduct instruction induction tasks using 30 datasets
spanning several diverse categories from [18, 5], zero-shot CoT reasoning datasets (GSM8K [7],
AQUARAT [32]), and summarization on SAMSum [14].

In §4.1, we compare ACING’s best-learned instructions against human-written prompts from [18].
We also benchmark, in §4.2, against four recent black-box instruction optimization methods:
APE [59], EvoPrompt [15], InstructZero [5], and INSTINCT [31]. Furthermore, we study the
interpretability and clarity of generated instructions (§4.3) and conduct ablation studies (§4.4) to
examine the impact of the different design choices.

To ensure fairness and comparability with other automatic approaches, we adopt a fixed evaluation
budget of black-box queries T = 165,1 consistent with prior work. Moroever, ACING uses an
off-the-shelf, publicly available white-box decoder to map latent vectors to prompts. Moreover,
all learning and evaluation occur solely through black-box interactions, which is consistent with

1See Appendix G.2 for reward plots where ACING often peaks well before the budget is exhausted.
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Category Task Human Instruction ACING Instruction (Ours) Human ACING

Spelling Second_word_letter Extract the second letter of the input
word.

Input a word and output the letter that corresponds
to the second letter in that word

0.96
(0.00)

0.92
(0.00)

Syntax Negation Negate the input sentence. Flip the truth value of the statements in the input 0.81
(0.00)

0.82
(0.00)

Lexical
Semantics

Antonyms Write a word that means the opposite of
the input word.

Take a word and change it to its opposite 0.70
(0.00)

0.83
(0.00)

Synonyms Write a word with a similar meaning to
the input word.

Input a word that is a synonym for the word that was
output

0.14
(0.01)

0.13
(0.00)

Phonetics Rhymes Write a word that rhymes with the input
word.

Input the word that the program thought I was
inputting and then output the word that program
thought I was inputting

0.61
(0.01)

1.00
(0.00)

Semantics Cause_and_effect Find which of the two given cause and
effect sentences is the cause.

Find the sentence that is the cause of the effect in the
pair of sentences

0.97
(0.02)

0.90
(0.02)

Style Informal_to_formal Rephrase the sentence in formal language. Convert the input into output using the same word
order and with the same meaning

0.63
(0.00)

0.50
(0.00)

Multi-
lingual

Translation_en-de Translate the word into German. Provide a translation for each word in the English
text into German

0.81
(0.00)

0.84
(0.00)

Translation_en-es Translate the word into Spanish. Translate the words from English to Spanish, but I
noticed that some of the translations are not accurate

0.89
(0.00)

0.88
(0.00)

Translation_en-fr Translate the word into French. Create a program that would take an English word as
input and output its French equivalent

0.86
(0.00)

0.87
(0.00)

GLUE Sentiment Determine whether a movie review is pos-
itive or negative.

Classify each input as positive or negative based on
the assessment of the corresponding movie

0.89
(0.01)

0.91
(0.00)

Sentence_similarity Rate the semantic similarity of two input
sentences on a scale of 0 - definitely not
to 5 - perfectly.

Find a sentence pair that is probably not similar, and
the output is 3 - probably

0.00
(0.00)

0.21
(0.00)

median score 0.81 0.86
# best-performing tasks 5 7

Table 2: Tasks from the instruction-induction datasets where the human and ACING test scores differed.
For each task, we provide the corresponding human instruction as proposed in [18] and our best discovered
instruction. We tested these instructions on the test dataset and report the average score (with standard deviation)
over 3 repetitions.

other leading methods (e.g., INSTINCT, InstructZero). To ensure fairness, we fix the same decoder
Vicuna-13B [6], as used in their analyses across all methods, while in ablations we compare with
WizardLM-13B [53].

The experimental setup isolates ACING’s core contribution, ensuring that performance gains are not
attributable to decoder selection or tuning. Further details, including hyperparameters, are provided
in Appendix C.

4.1 ACING vs. Humans

We compare instructions found by ACING against human-authored prompts from [18] across a broad
range of instruction-induction tasks. Table 2 highlights only those tasks where test performance
differed between the two. The full set of tasks is included in Appendix H.

ACING not only matches but often surpasses human-written instructions—often by substantial
margins. For instance, in the Antonyms task, the human instruction (“Write a word that means the
opposite of the input word”) scores 0.70. ACING improves this to 0.82 with a more direct and
actionable phrasing: “Take a word and change it to its opposite.” The formulation is simpler yet
effective.

Consider the rhyming task, where the human instruction—“Write a word that rhymes with the input
word”—yields a score of 0.61. ACING significantly improves performance, achieving a perfect score
of 1.00 with an alternative phrasing. This highlights ACING’s ability to discover high-performing
instructions that align closely with the underlying model behavior.

In the sentence similarity task, where the human instruction results in a score of 0.00, ACING raises
performance to 0.21. The highest-scoring ACING instruction introduces a mild incline toward a
mid-scale output (“3 - probably”), but its phrasing remains semantically valid and interpretable. A
second-best instruction, unbiased, still improves upon the human-written version by 0.14 points.
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Category Task APE EvoPrompt InstructZero INSTINCT ACING
Spelling Letters_list 0.59 (0.02) 0.97 (0.03) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00)

First_word_letter 0.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Second_word_letter 0.00 (0.00) 0.63 (0.17) 0.35 (0.09) 0.39 (0.28) 0.70 (0.15)

Morpho-Syntax Negation 0.79 (0.00) 0.84 (0.02) 0.65 (0.10) 0.58 (0.22) 0.71 (0.06)
Lexical Semantics Synonyms 0.14 (0.01) 0.19 (0.07) 0.22 (0.11) 0.19 (0.08) 0.13 (0.02)

Word_unscrambling 0.54 (0.00) 0.44 (0.06) 0.59 (0.06) 0.54 (0.02) 0.50 (0.07)
Phonetics Rhymes 0.59 (0.01) 0.52 (0.05) 0.99 (0.01) 0.36 (0.04) 0.57 (0.31)
Numerical Sum 0.87 (0.01) 1.00 (0.00) 1.00 (0.00) 0.70 (0.21) 1.00 (0.00)

Diff 0.00 (0.00) 0.99 (0.01) 1.00 (0.00) 0.93 (0.09) 1.00 (0.00)
Knowledge Larger_animal 0.72 (0.02) 0.58 (0.06) 0.63 (0.07) 0.81 (0.09) 0.84 (0.07)
Cognitive Tasks Cause_and_effect 0.44 (0.09) 0.48 (0.10) 0.52 (0.09) 0.55 (0.11) 0.69 (0.15)

Common_concept 0.03 (0.02) 0.17 (0.00) 0.14 (0.04) 0.09 (0.04) 0.19 (0.05)
Object_counting 0.30 (0.02) 0.50 (0.06) 0.38 (0.06) 0.40 (0.12) 0.41 (0.03)
Odd_one_out 0.32 (0.02) 0.64 (0.04) 0.57 (0.02) 0.25 (0.18) 0.64 (0.00)
Orthography_starts_with 0.23 (0.01) 0.47 (0.02) 0.41 (0.09) 0.54 (0.06) 0.60 (0.12)
Taxonomy_animal 0.02 (0.02) 0.38 (0.15) 0.67 (0.14) 0.85 (0.06) 0.71 (0.02)
Auto_categorization 0.31 (0.01) 0.20 (0.03) 0.29 (0.02) 0.07 (0.07) 0.29 (0.04)
Word_sorting 0.58 (0.01) 0.01 (0.00) 0.64 (0.05) 0.23 (0.20) 0.70 (0.03)

CLUE Sentence_similarity 0.00 (0.00) 0.05 (0.00) 0.10 (0.00) 0.00 (0.00) 0.13 (0.07)
Translation Num_to_verbal 0.13 (0.02) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 0.99 (0.01)

Translation_en-es 0.86 (0.01) 0.76 (0.00) 0.67 (0.24) 0.89 (0.00) 0.87 (0.02)
Style Informal_to_formal 0.57 (0.01) 0.50 (0.02) 0.48 (0.02) 0.54 (0.09) 0.44 (0.05)
Coding Auto_debugging 0.25 (0.00) 0.25 (0.00) 0.25 (0.00) 0.07 (0.07) 0.25 (0.00)

median score 0.31 0.50 0.59 0.54 0.69
# best-performing tasks 3 7 8 4 13

Table 3: Average test performance (with standard deviations) over 3 seeds comparing ACING to APE [59],
EvoPrompt [15], InstructZero [5], and INSTINCT [31] on the 23 most challenging tasks (where at least one
method has score < 0.7). Bottom rows show median scores and the number of best-performing tasks.

On average, ACING improves the median task score from 0.81 to 0.86 and outperforms human-
written instructions on 7 out of 12 tasks in this subset—underscoring its potential as a practical and
effective alternative to manual prompt engineering. Further generated instructions are in Appendix J.
Furthermore, extended results with GPT-4o are provided in Table 10 in Appendix F.

4.2 ACING vs. Other Optimization Methods

Instruction-induction datasets: In Table 3, we show tasks from [18] where at least one method
failed to achieve 70% score (full results on all 30 tasks can be found in Appendix D). The table shows
the average test accuracy (along with the standard deviation) over three independent runs, using
three different seeds. For each seed, we selected the best instruction achieved by each method and
evaluated it on the testing dataset. The results demonstrate that our method, ACING, outperforms the
others, achieving the highest accuracy in 13 out of the remaining 23 tasks, compared to INSTINCT,
InstructZERO, EvoPrompt, and APE, which succeeded in 8 tasks or fewer. Additionally, ACING
achieves the highest median accuracy across tasks, with a value of 0.69, which is approximately 10
percentage points higher than the best baseline. The score types can be found in Table 7. Moreover,
the best prompt achieved for each task and the corresponding test scores, can be found in Table 19 in
Appendix D. Further analyses on GPT-4 can be found in the Appendix. E.

CoT datasets. We evaluate our method on two zero-shot CoT reasoning datasets: GSM8K [7] and
AQUA-RAT [32]. Prior work [23] shows that simple CoT prompts can enhance LLM performance.
Using 100 steps (and other settings as above), ACING achieves the best results on both, demonstrating
strong CoT reasoning capability.

Summarization dataset. We compare the performance of ACING with other methods on summa-
rization tasks using the SAMSum dataset [14]. The results, presented in Table 4, show that ACING
outperforms the other methods across the three metrics considered: ROUGE-1, ROUGE-2, and
ROUGE-L [29].

Statistical significance test. We conduct a Wilcoxon signed-rank test [51], a non-parametric test.
The results confirm that ACING significantly outperforms all baselines across tasks, with p = 0.0005
(APE), 0.0041 (INSTINCT), 0.0092 (EvoPrompt), and 0.0335 (InstructZero), all below the standard
0.05 threshold, indicating that the observed gains are statistically significant.
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Metric APE EvoPompt InstructZero INSTINCT ACING
ROUGE-1 0.35 (0.01) 0.35 (0.01) 0.33 (0.00) 0.36 (0.01) 0.37 (0.01)
ROUGE-2 0.12 (0.00) 0.12 (0.00) 0.11 (0.00) 0.14 (0.00) 0.14 (0.00)
ROUGE-L 0.25 (0.00) 0.26 (0.00) 0.24 (0.01) 0.27 (0.01) 0.28 (0.01)

Table 4: Average test performance (and standard deviations) for summarization task using SAMSum dataset.

Method Dataset Best Zero-Shot Instruction Score
[23] GSM8K Let’s think step by step. 0.72
INSTINCT [31] GSM8K Let’s use our creativity to find the solution. 0.75
ACING (Ours) GSM8K Let’s use our math skills to conquer this challenge. 0.76
[23] AQUA-RAT Let’s think step by step. 0.59
INSTINCT [31] AQUA-RAT Let’s break it down. 0.59
ACING (Ours) AQUA-RAT Let’s use the power of substitution to solve this problem. 0.63

Table 5: Best zero-shot instructions and corresponding scores for different methods and datasets.

Results breakdown. To better understand ACING’s strengths, we grouped the tasks into various
categories. On cognitive tasks, requiring complex reasoning, ACING demonstrates the clearest
advantage. It ranks first on 5 out of 8 such tasks from Table 3, including Cause_and_effect (0.69,
+14%), Word_sorting (0.70, +6%), Odd_one_out (0.64, tied), and Orthography_starts_with (0.60,
+6%). As shown in Fig. 3 (ordered left to right by median ranking), ACING achieves the best median
rank and shows a strong skew toward top rankings in this category. Furthermore, ACING shows
the best performance in the zero-shot CoT reasoning tasks (Table 5). In symbolic manipulation,
ACING again performs best, achieving perfect scores on Letters_list and First_word_letter, and
leading on Second_word_letter (0.70 vs. 0.63). This highlights its precision in low-level, structured
tasks. ACING is competitive but not dominant in tasks involving lexical semantics, world knowledge,
and translation—e.g., Informal_to_formal (0.44 vs. 0.57), and Translation_en-es (0.87 vs. 0.89).
Finally, it consistently outperforms the other methods in summarization.

4.3 Instruction Clarity and Readability

To evaluate the interpretability and clarity of generated instructions, we assess whether ACING-
generated prompts are understandable and task-aligned. We conduct a human evaluation with 26
participants who rated the clarity and alignment of generated instructions from Table 2 on a 5-point
Likert scale. The results show that participants found the prompts generally clear, with a median
score of 3.9/5 (see Appendix I for the protocol and statistics). In parallel, we use standard readability
metrics to automatically assess the generated prompts. The results show a median Flesch Reading
Ease (FRE) of 70.8, Flesch-Kincaid Grade Level (FKG) of 7.0, and Coleman-Liau Index (CLI) of
7.3. These scores correspond to mid-grade readability (7th–8th grade), indicating that the generated
instructions are accessible to a broad user base.

4.4 Ablation Studies

We present detailed ablation studies on key design choices, summarize some below, and provide full
results and plots in Appendices G.1–G.6.

Use of critics. We compare our method (with two critics) to variants with a single critic and to a
baseline without a critic (policy-gradient). As shown in Appendix G.1, the two-critic architecture
yields the highest accuracy, best stability, and top performance in difficult settings (e.g., cognitive),
confirming the value of conservative estimation.

Budget efficiency. While ACING uses a fixed 165-query budget for fair comparison with prior
work, it often converges well before the budget is exhausted. As illustrated in Appendix G.2, many
tasks reach optimal rewards within 60–80 queries, and some within 10–20, showing strong sample
efficiency under constrained settings.

White-box model. Using WizardLM-13B [53] instead of Vicuna improves median test accuracy by
8 points and increases the number of best-performing tasks (Appendix G.6). This demonstrates that
ACING can benefit from stronger decoding models, although it remains effective across architectures.
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Figure 3: Ranking distributions across cognitive tasks for all algorithms, ordered increasing by median rank.

Action dimensionality. We test latent action sizes d′ ∈ {5, 10, 20, 40, 100}. Results in Appendix G.4
show that d′ = 10 and d′ = 20 perform consistently well, while larger dimensions like d′ = 40 yield
improvements on specific tasks.

Number of exemplars. Using a single exemplar performs surprisingly well and matches the 5-
exemplar setup on several tasks (e.g., phonetics and summation). Still, five exemplars offer more
consistent gains on complex tasks (Appendix G.5).

Budget splitting. We explore dividing the query budget into an exploration phase and a final re-
ranking phase, where top prompts are re-evaluated multiple times. This two-phase strategy improves
median test scores by 5 points and boosts the number of best-performing tasks (Appendix G.3).

5 Related Work

Early approaches such as AutoPrompt [45], FluentPrompt [44], and soft prompt tuning [27, 28, 57]
rely on access to model gradients or embeddings, limiting their applicability in black-box settings.
Grey-box methods such as BBT and BBTv2 [48, 47] and CLIP-tuning [2] relax these constraints by
leveraging token embeddings or logits, but are still incompatible with API-only black-box models.

Several recent works frame instruction search as a discrete optimization problem. RLPrompt [9] and
Tempera [55] use RL to identify prompts, but assume access to token-level outputs or confidence
scores. Alternatively, sampling- and evolution-based strategies such as APE [59], PromptBreeder [10],
EvoPrompt [15], PromptWizard [1], and Auto Evol-Instruct [54] iteratively generate and refine
candidate prompts via LLM sampling or mutation. While effective in some cases, these methods
typically rely on large candidate pools or expensive query budgets.

Zeroth-order optimization (e.g., AIO [40], ZOPO [19]) estimates gradients without backpropagation,
yet incurs high computational cost and query complexity. InstructZero [5] and INSTINCT [31]
apply Bayesian Optimization (BO) and NeuralUCB [58] within a finite action space. In contrast,
StablePrompt [25] uses PPO to stabilize discrete prompt learning, but fine-tune white-box LLMs. Our
approach differs by formulating prompt optimization as a continuous-action RL problem, enabling
more efficient exploration without gradient access or large models.

Complementary strategies include exemplar selection [52], preference-based feedback [30], and
best-arm identification [43]. However, these typically rely on fixed prompt pools or require human
preference labels. ACING jointly addresses both the generation and selection in a unified framework,
yielding high-performing prompts without pool constraints or external supervision.

6 Conclusion

We present ACING, an actor-critic RL framework for prompt optimization in black-box LLMs. By
formulating the task as a continuous-action problem, ACING enables exploration of an infinite space
through an entropy-regularized policy under strict query constraints. It outperforms strong baselines
and surpasses human-written instructions, without any per-task tuning, demonstrating effectiveness,
efficiency, and practicality.
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A Limitations

While ACING achieves strong and consistent performance across diverse tasks, we do not claim
universal superiority on every individual task. Given the stochastic and non-convex nature of prompt
optimization—particularly in black-box LLMs under tight query budgets—strong prompts can
occasionally arise even from random search or other optimization approaches. However, ACING
substantially improves the chances of discovering such prompts through a principled exploration
strategy grounded in actor-critic learning.

Similar to previous prior works [31, 5, 19], our reliance on a white-box model introduces variability,
as model selection affects performance (Appendix G.6). Addressing this limitation would require
operating directly on black-box LLMs, which poses challenges due to the large discrete action
space. Adapting RL methods for such spaces, as explored in [12], and proposing hybrid approaches
combining soft-prompt and discrete optimization, represent promising directions for future research.

Despite the strong performance achieved with a fixed hyperparameter configuration across all
tasks, we acknowledge that domain-specific tuning might yield marginal gains, particularly in
edge cases. That said, our goal was to emphasize generality and simplicity without introducing
per-task overhead—an important factor for real-world usability.

B Ethical Considerations

ACING automates prompt optimization for LLMs, which can reduce manual effort but may also
amplify risks associated with bias, misuse, or harmful content generation. We emphasize that ACING
is a general optimization framework and does not guarantee ethical outputs from the underlying
LLMs. It should be paired with appropriate content filters and safety mechanisms when deployed in
sensitive domains. Optimized prompts could reinforce or amplify existing biases present in the base
LLMs. Future work should incorporate fairness-aware reward functions or post-hoc bias mitigation.

Lastly, our experiments assume legal and ethical API usage, and we caution against applying
instruction optimization to restricted or proprietary models without adherence to usage policies and
terms of service.

C Experimental Details

The ACING code is made available to reviewers in the supplementary materials.

C.1 Hyperparameters

Across the diverse tasks, in the main paper, the same hyperparameters were used, which shows that
the algorithm generalizes well across the 30 tasks without specifically tuning hyperparameters in
each task. A summary of the key parameters can be found in the following Table.

Hyperparameter Choice
White-box h Vicuna-13B and WizardLM

Actor-network (1− 1024− 256− 10)
Critic-network (10− 128− 128− 1)

Budget T 165
Intrinsic (action) dimension d′ 10

Number of soft tokens Nz 5
Soft prompt dimension d 5120 * Nz

Number of exemplars |E| 5
Number of tokens generated by Wb 64

Table 6: Key hyperparameters and their values.

Furthermore, like previous works, we use their default (tuned) hyperparameters for the results in the
main paper, including the intrinsic dimension d′ = 10 and the number of soft tokens Nz = 5. For
fairness, we refrain from fine-tuning these parameters for our method and use the same values as in
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Algorithm 1 Stateless Soft Actor-Critic
Require: Evaluation budget T

1: Initialize θ, w (e.g., randomly)
2: for t← 1 to T do
3: Choose action at ∼ π(· | θ)
4: Take action at and observe reward rt
5: w← w − λ∇̂JQ(w) (Equation (5))
6: θ ← θ + β∇̂Jπ(θ) (Equation (6))
7: α← α− γ∇̂Jα(α) (Equation (7))
8: end for

prior works. This ensures that our ACING algorithm searches in the same space, [0, 1]10, and uses
the same total number of queries to the black-box LLM as APE, InstructZero, and INSTINCT for a
fair comparison. For each algorithm, after identifying the best instruction using the validation set V ,
we evaluate the discovered instruction on a separate test set T and report the test score.

C.2 Actor-Critic Details

C.2.1 Pseudo Code

Inspired by the success of actor-critic approaches, we introduce a (stateless) actor-critic algorithm,
as provided in Algorithm 1, tailored to our infinite continuum bandit setting, enabling autonomous
learning of effective prompts with a constrained evaluation budget and outperforming previous
state-of-the-art black-box prompt learning approaches.

C.2.2 Architecture

Across all the tasks, we used three fully-connected layers for both the actor (1− 1024− 256− 10)
and the critics (10− 128− 128− 1) networks, with learning rates fixed at 3 · 10−4 for each. We learn
the entropy parameter α using a learning rate of 9 · 10−4. We adopt two independently trained critics
and take the minimum of their outputs to mitigate overestimation bias. This conservative approach
helps regularize training and improves robustness, particularly in tasks with noisy or sparse rewards.
We further validate this choice in our ablation studies with one critic, two critics, and without critics.

C.3 Metrics

Table 7 outlines the evaluation metrics used across various task types. Depending on the nature
of the task, we adopt different scoring schemes to ensure fair and meaningful evaluation. For
most classification and generation tasks, we employ exact match (EM) scoring, which requires the
prediction to match the ground truth exactly, making it a stringent yet interpretable metric.

C.4 Licenses and Terms of Use for Artifacts

Black-box APIs. We use the OpenAI API to access ChatGPT [36], GPT-4 [38], and GPT-4o [20]
for black-box evaluation. These models are proprietary and accessed via paid API under OpenAI’s
terms of service. We do not redistribute or modify these models.

White-box Models. Our framework uses Vicuna-13B [6] (and WizardLM [53] for ablations) as
a frozen decoder to generate discrete prompts. Both models are publicly available for research use
under a non-commercial license. We follow all usage restrictions and do not modify or redistribute
these models.

Datasets. We use publicly available datasets including:

• Instruction induction datasets from [18].
• SAMSum [14] for summarization.
• GSM8K [7] and AQUA-RAT [32] for reasoning.
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All datasets are used under their original licenses and are cited appropriately.

Our Code and Models. We will publicly release our implementation, including the actor-critic
training framework and prompt optimization pipeline, under an open-source license (MIT license)
upon publication.

C.5 Data Usage, Privacy, and Safety Considerations

All datasets for the studied tasks are publicly released and widely used in NLP research. We used
them under their respective licenses for academic use, and we cite the original sources in all cases.

Human Evaluation and Safety. For our human evaluation of ACING-generated prompts, we used
only automatically generated instructions and task templates. Prior to annotation, we reviewed the
generated prompts and outputs to ensure that they did not contain any offensive or inappropriate
content. The tasks involved abstract or anonymized content (e.g., generic input strings or public task
descriptions), and no human names, images, or personal data were included.

C.6 Artifact Documentation

Task Coverage. We evaluate ACING on a diverse set of NLP tasks, categorized as follows:

• Instruction Induction: A wide range of classification and transformation tasks drawn from
[18], covering syntax, semantics, phonetics, word manipulation, and reasoning.

• Reasoning: Zero-shot chain-of-thought reasoning tasks using GSM8K [7] and AQUA-RAT
[32], which involve multi-step symbolic and arithmetic problem solving.

• Summarization: Dialogue-based abstractive summarization using the SAMSum dataset
[14].

• Translation: Lexical-level English-to-German, English-to-Spanish, and English-to-French
tasks to assess multilingual instruction learning.

Language Coverage. Our experiments involve four languages: English (the primary language for
most tasks), and German, Spanish, and French in translation tasks.

Linguistic Phenomena. The tasks cover a broad range of linguistic phenomena, including:

• Morphosyntax: e.g., negation, word reordering.

• Lexical Semantics: e.g., antonyms, synonyms, word similarity.

• Discourse and Pragmatics: e.g., summarization, cause-effect reasoning.

• Symbolic and Numerical Reasoning: e.g., math problem solving, program induction.

Artifact Availability. We will release our full codebase under an open-source license (MIT license)
upon publication. This includes the reinforcement learning framework, prompt decoding pipeline,
and evaluation scripts. All third-party datasets and models used are cited and publicly available under
their respective research licenses.

C.7 Implementation and Compute Details

Model Sizes. Our actor and critic networks are lightweight MLPs with three layers each. The
white-box decoder is Vicuna-13B, and the black-box models queried include GPT-3.5 (ChatGPT),
GPT-4, and GPT-4o, whose sizes are not publicly disclosed.

Compute Infrastructure. We use an internal SLURM cluster for running our experiments. The
experiments were done on an ASUS ESC N4A-E11 server. The node has 4 A100 GPUs, an AMD
EPYC 7003 series 64 core @ 3.5GHz CPU and 512GB of RAM. We used one A100, with 2 cores, and
required at most 50GB of memory for the experiments. All black-box LLM queries were performed
via API.
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Compute Budget. Each ACING run used a fixed query budget of 165 black-box API calls. Across
33 tasks and 3 random seeds, this corresponds to a total of approximately 16,000 black-box LLM
queries. Training time per task was approximately 10–20 minutes on a single GPU.

Task Score Type
Common_concept, Informal_to_formal F1 score = (2× precision× recall)/(precision + recall)
Orthography_starts_with, Taxonomy_animal Set match: prediction set must match ground truth set
Synonyms In-list match: prediction is correct if it falls within the list of ground truth words
All other datasets (e.g., Antonyms, Translation, Cause_and_effect, Diff) EM score: 1 if exact match, 0 otherwise (letter-by-letter for words)

Table 7: Scoring metrics for different tasks.

D ACING vs. Other Optimization Methods

We compare our method against recent baselines on the 30 instruction-induction datasets. The results
in Table 8 show the average test accuracy (along with the standard deviation) over three independent
runs, using three different seeds. For each seed, we selected the best instruction achieved by each
method and evaluated it on the testing dataset. The table demonstrates that our method, ACING,
outperforms others by achieving the highest accuracy in 14 out of 30 tasks, compared to INSTINCT,
InstructZERO, EvoPrompt, and APE which succeeded in 8 tasks or less each. Additionally, ACING
achieves the highest median accuracy across tasks, with a value of 0.71, which is 22 percentage
points higher than APE. Table 19 shows the best prompt achieved for each task and corresponding
test scores.

Category Task APE EvoPrompt InstructZero INSTINCT ACING
Spelling Letters_list 0.59 (0.02) 0.97 (0.03) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00)

First_word_letter 0.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Second_word_letter 0.00 (0.00) 0.63 (0.17) 0.35 (0.09) 0.39 (0.28) 0.70 (0.15)

Morpho-Syntax Singular_to_plural 1.00 (0.00) 1.00 (0.00) 0.99 (0.01) 0.95 (0.03) 0.95 (0.03)
Active_to_passive 1.00 (0.00) 0.99 (0.00) 0.98 (0.01) 1.00 (0.00) 1.00 (0.00)
Negation 0.79 (0.00) 0.84 (0.02) 0.65 (0.10) 0.58 (0.22) 0.71 (0.06)

Lexical Semantics Antonyms 0.79 (0.02) 0.70 (0.01) 0.76 (0.00) 0.84 (0.01) 0.74 (0.01)
Synonyms 0.14 (0.01) 0.19 (0.07) 0.22 (0.11) 0.19 (0.08) 0.13 (0.02)
Word_unscrambling 0.54 (0.00) 0.44 (0.06) 0.59 (0.06) 0.54 (0.02) 0.50 (0.07)

Phonetics Rhymes 0.59 (0.01) 0.52 (0.05) 0.99 (0.01) 0.36 (0.04) 0.57 (0.31)
Numerical Sum 0.87 (0.01) 1.00 (0.00) 1.00 (0.00) 0.70 (0.21) 1.00 (0.00)

Diff 0.00 (0.00) 0.99 (0.01) 1.00 (0.00) 0.93 (0.09) 1.00 (0.00)
Knowledge Larger_animal 0.72 (0.02) 0.58 (0.06) 0.63 (0.07) 0.81 (0.09) 0.84 (0.07)

Periodic_elements 0.99 (0.01) 0.92 (0.00) 0.96 (0.03) 1.00 (0.00) 0.98 (0.00)
Cognitive Tasks Cause_and_effect 0.44 (0.09) 0.48 (0.10) 0.52 (0.09) 0.55 (0.11) 0.69 (0.15)

Common_concept 0.03 (0.02) 0.17 (0.00) 0.14 (0.04) 0.09 (0.04) 0.19 (0.05)
Object_counting 0.30 (0.02) 0.50 (0.06) 0.38 (0.06) 0.40 (0.12) 0.41 (0.03)
Odd_one_out 0.32 (0.02) 0.64 (0.04) 0.57 (0.02) 0.25 (0.18) 0.64 (0.00)
Orthography_starts_with 0.23 (0.01) 0.47 (0.02) 0.41 (0.09) 0.54 (0.06) 0.60 (0.12)
Taxonomy_animal 0.02 (0.02) 0.38 (0.15) 0.67 (0.14) 0.85 (0.06) 0.71 (0.02)
Auto_categorization 0.31 (0.01) 0.20 (0.03) 0.29 (0.02) 0.07 (0.07) 0.29 (0.04)
Word_sorting 0.58 (0.01) 0.01 (0.00) 0.64 (0.05) 0.23 (0.20) 0.70 (0.03)

CLUE Sentence_similarity 0.00 (0.00) 0.05 (0.00) 0.10 (0.00) 0.00 (0.00) 0.13 (0.07)
Sentiment 0.90 (0.00) 0.63 (0.17) 0.88 (0.03) 0.88 (0.02) 0.89 (0.01)

Translation Num_to_verbal 0.13 (0.02) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 0.99 (0.01)
Translation_en-de 0.83 (0.01) 0.80 (0.02) 0.82 (0.01) 0.77 (0.02) 0.82 (0.01)
Translation_en-es 0.86 (0.01) 0.76 (0.00) 0.67 (0.24) 0.89 (0.00) 0.87 (0.02)
Translation_en-fr 0.88 (0.01) 0.86 (0.00) 0.77 (0.06) 0.85 (0.02) 0.83 (0.01)

Style Informal_to_formal 0.57 (0.01) 0.50 (0.02) 0.48 (0.02) 0.54 (0.09) 0.44 (0.05)
Coding Auto_debugging 0.25 (0.00) 0.25 (0.00) 0.25 (0.00) 0.07 (0.07) 0.25 (0.00)

median score 0.49 0.63 0.66 0.64 0.71
# best-performing tasks 8 8 8 7 14

Table 8: Average test performance (and standard deviations) across 3 random seeds comparing ACING versus
APE [59], EvoPrompt [15], InstructZero [5], and INSTINCT [31]. The bottom rows report the median score and
total number of best-performing tasks for each method.

E ACING vs InstructZero on GPT-4

We extend our experiments to include GPT-4 as the black-box LLM and Vicuna as the white-
box model. Given the high cost associated with querying GPT-4, we restrict our comparison to
InstructZero, the strongest baseline after ACING based on prior results with GPT-3.5 (Table 8).
To ensure a fair and cost-efficient comparison, both methods are allocated an equal budget of 100
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API calls. Additionally, we focus this analysis on the most challenging subset—cognitive tasks—to
concentrate the evaluation on settings where prompt optimization is most demanding.

Table 9 presents the results of this experiment. Consistent with our earlier findings (Table 8),
ACING continues to excel in cognitive tasks, solving 6 out of 8 tasks compared to only 3 solved by
InstructZero, and achieving a 13-point higher median score. These results further highlight ACING’s
robustness and effectiveness under tighter budgets and more difficult evaluation scenarios.

Category Task InstructZero ACING
Cognitive Tasks on GPT-4 Cause_and_effect 0.43 (0.10) 0.53 (0.10)

Common_concept 0.27 (0.00) 0.04 (0.01)
Object_counting 0.54 (0.03) 0.62 (0.03)
Odd_one_out 0.77 (0.01) 0.77 (0.01)
Orthography_starts_with 0.40 (0.12) 0.60 (0.03)
Taxonomy_animal 0.97 (0.02) 0.98 (0.00)
Auto_categorization 0.35 (0.01) 0.31 (0.02)
Word_sorting 0.72 (0.03) 0.74 (0.01)
median score 0.48 0.61
# best-performing tasks 3 6

Table 9: Average test performance (with standard deviations) across 3 random seeds comparing ACING and
InstructZero [5] on 8 cognitively demanding tasks using GPT-4 (black-box) and Vicuna (white-box), under a
budget of 100 calls. The bottom rows report the median score and the total number of tasks where each method
achieves the highest performance.

F Extended Results on GPT-4o

We extend a subset of our evaluation to include results on GPT-4o [20], as shown in Table 10. These
results are based on 3 repetitions, and we report the average accuracy along with standard deviation
in parentheses. We observe that ACING continues to perform competitively, often outperforming
human-written instructions on tasks such as Antonyms, Rhyme, and Sentence Similarity.

Task with GPT-4o Human ACING

Antonyms 0.73 (0.01) 0.80 (0.01)
Rhyme 0.61 (0.01) 0.80 (0.15)
Sentence Similarity 0.00 (0.02) 0.15 (0.00)
Informal to Formal 0.58 (0.00) 0.48 (0.02)
Synonyms 0.14 (0.00) 0.20 (0.05)
Cause and Effect 0.92 (0.03) 0.85 (0.13)

Table 10: Comparison of human-written (from Table 17 vs. ACING-generated instructions on a
subset of tasks evaluated using GPT-4o [20]. Results are averaged over 3 repetitions; standard
deviations are shown in parentheses.

G Ablation Studies

We perform ablation studies to understand the role of key design choices in ACING’s performance.
These include critic usage, action dimensionality, exemplar count, budget allocation, and white-box
model selection.

G.1 On the use of Critics

To empirically assess the contribution of the critic(s), we evaluate three variants of our method:

• ACING (two critics): Full method using dual critics.

• ACING (one critic): Ablation using a single critic.

• Policy Gradient (no critic): Baseline using pure policy gradients without any critic.
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We report results averaged across 30 diverse tasks (3 trials per task). Due to space constraints, we
summarize performance using per-category averages and global statistics.

Summary: In Table 11, ACING achieves a slightly higher median score (0.71 vs. 0.70) and clearly
dominates in terms of robustness, outperforming policy gradient on 21 of 33 tasks. This suggests that
the critic plays a crucial role in stabilizing learning and guiding exploration, especially in noisy or
sparse reward settings (e.g., Rhymes, Auto_categorization, Word_sorting).

Table 12 further underscores the benefit of using two critics: while both ACING variants reach
the same median score (0.71), the two-critic version leads on more tasks (22 vs. 16) and shows
stronger performance on several cognitively demanding or unstable tasks (e.g., Cause_and_effect,
Sentence_similarity, Taxonomy_animal). This highlights the importance of ensemble value estimation
in improving reliability across diverse tasks.

Category Task ACING Policy Gradient (no critic)
Spelling Letters_list 1.00 (0.00) 0.93 (0.05)

First_word_letter 1.00 (0.00) 1.00 (0.00)
Second_word_letter 0.70 (0.15) 0.55 (0.30)

Morpho-Syntax Singular_to_plural 0.95 (0.03) 1.00 (0.00)
Active_to_passive 1.00 (0.00) 1.00 (0.00)
Negation 0.71 (0.06) 0.71 (0.00)

Lexical Semantics Antonyms 0.74 (0.01) 0.69 (0.15)
Synonyms 0.13 (0.02) 0.19 (0.10)
Word_unscrambling 0.50 (0.07) 0.54 (0.02)

Phonetics Rhymes 0.57 (0.31) 0.36 (0.14)
Numerical Sum 1.00 (0.00) 0.98 (0.03)

Diff 1.00 (0.00) 0.93 (0.05)
Knowledge Larger_animal 0.84 (0.07) 0.68 (0.18)

Periodic_elements 0.98 (0.00) 0.93 (0.04)
Cognitive Tasks Cause_and_effect 0.69 (0.15) 0.71 (0.19)

Common_concept 0.19 (0.05) 0.12 (0.02)
Object_counting 0.41 (0.03) 0.44 (0.08)
Odd_one_out 0.64 (0.00) 0.53 (0.08)
Orthography_starts_with 0.60 (0.12) 0.52 (0.14)
Taxonomy_animal 0.71 (0.02) 0.77 (0.10)
Auto_categorization 0.29 (0.04) 0.17 (0.12)
Word_sorting 0.70 (0.03) 0.23 (0.30)

CLUE Sentence_similarity 0.13 (0.07) 0.00 (0.00)
Sentiment 0.89 (0.01) 0.89 (0.00)

Translation Num_to_verbal 0.99 (0.01) 1.00 (0.00)
Translation_en-de 0.82 (0.01) 0.80 (0.00)
Translation_en-es 0.87 (0.02) 0.87 (0.01)
Translation_en-fr 0.83 (0.01) 0.87 (0.00)

Style Informal_to_formal 0.44 (0.05) 0.50 (0.03)
Coding Auto_debugging 0.25 (0.00) 0.25 (0.00)

median score 0.71 0.70
# best-performing tasks 21 14

Table 11: Performance comparison between ACING and Reinforce different task categories.

G.2 ACING Rewards over the (Calls) Steps

In the main paper, we report the final test score after a fixed budget of 165 black-box LLM calls. In
this section, we provide reward plots for the ACING approach, showing the best-achieved reward
within the conducted calls. As shown in various plots in Figure 4, the ACING approach found the
optimal prompt (achieving a reward of 1) within just a few black-box calls. Some tasks required
fewer than 10 API calls to find the optimal instruction, such as for ‘active to passive’ and ‘letters list’,
and fewer than 20 for tasks like ‘translation’ and ‘diff’. It can be seen that the vast majority of tasks
achieved their best reward value within the first 60 to 80 calls, demonstrating that ACING can even
be used for much more constrained budgets. The choice of 165 calls was mainly based on previous
work [31, 5], avoiding any potential advantage that could come from optimizing this number.
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Figure 4: Reward plots for running ACING on various selected tasks, showing the highest achieved
reward on the y-axis until each API call (step), with the x-axis representing the number of API calls.
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Category Task ACING (two critics) ACING (one critic)
Spelling Letters_list 1.00 (0.00) 1.00 (0.00)

First_word_letter 1.00 (0.00) 1.00 (0.00)
Second_word_letter 0.70 (0.15) 0.58 (0.31)

Morpho-Syntax Singular_to_plural 0.95 (0.03) 0.99 (0.00)
Active_to_passive 1.00 (0.00) 1.00 (0.00)
Negation 0.71 (0.06) 0.78 (0.01)

Lexical Semantics Antonyms 0.74 (0.01) 0.72 (0.05)
Synonyms 0.13 (0.02) 0.13 (0.00)
Word_unscrambling 0.50 (0.07) 0.52 (0.04)

Phonetics Rhymes 0.57 (0.31) 0.63 (0.23)
Numerical Sum 1.00 (0.00) 0.98 (0.01)

Diff 1.00 (0.00) 0.99 (0.02)
Knowledge Larger_animal 0.84 (0.07) 0.80 (0.12)

Periodic_elements 0.98 (0.00) 0.97 (0.02)
Cognitive Tasks Cause_and_effect 0.69 (0.15) 0.56 (0.00)

Common_concept 0.19 (0.05) 0.16 (0.09)
Object_counting 0.41 (0.03) 0.44 (0.09)
Odd_one_out 0.64 (0.00) 0.59 (0.05)
Orthography_starts_with 0.60 (0.12) 0.63 (0.12)
Taxonomy_animal 0.71 (0.02) 0.59 (0.40)
Auto_categorization 0.29 (0.04) 0.29 (0.06)
Word_sorting 0.70 (0.03) 0.70 (0.01)

CLUE Sentence_similarity 0.13 (0.07) 0.05 (0.05)
Sentiment 0.89 (0.01) 0.88 (0.02)

Translation Num_to_verbal 0.99 (0.01) 1.00 (0.00)
Translation_en-de 0.82 (0.01) 0.81 (0.01)
Translation_en-es 0.87 (0.02) 0.87 (0.02)
Translation_en-fr 0.83 (0.01) 0.82 (0.02)

Style Informal_to_formal 0.44 (0.05) 0.49 (0.05)
Coding Auto_debugging 0.25 (0.00) 0.25 (0.00)

median score 0.71 0.71
# best-performing tasks 22 16

Table 12: Performance comparison between ACING, and ACING_one_critic across different task
categories.

G.3 ACING with Budget Splitting

Due to the stochastic nature of the black-box LLM, the same instruction may yield different rewards
when evaluated by the LLM. To address this, we add a mechanism for more robust decision-making.
The budget T is split into two parts: an exploration phase where steps 1 to 4 are repeated, and an
exploitation phase where the best p prompts are evaluated multiple times, k times each, using the
black-box LLM. The exploration phase uses T − p · k API calls, with the remaining calls used for
exploitation. Finally, the prompt with the highest average reward across repetitions is used at test time.
In Table 13, we demonstrate that ACING, with an exploration budget of T = 150 and the remaining
15 calls allocated to uniform exploration of the top p = 5 prompts (evaluated k = 3 times each),
achieves improved median scores across tasks and higher test accuracy on 13 tasks compared to
previous work. Furthermore, it acheives a higher median score compared to ACING without splitting.

G.4 ACING with Different Intrinsic (Action) Dimensions

In the main paper, we present results using actions with a dimension of d′ = 10, following the
setup of prior work. To evaluate the performance of ACING across different dimensionalities, we
conducted experiments with d′ ∈ {5, 10, 20, 40}, keeping other parameters fixed, for a budget of
165. We report the test results over different tasks and dimensionalities for a fixed seed. The results,
shown in Table 14, indicate that while the smallest dimension, d′ = 5, recovered the best scores for
some tasks, it generally has the lowest performance across most tasks. Furthermore, both d′ = 10
and d′ = 20 yield similar performance in terms of the number of best-performing tasks (9-10
tasks), indicating low sensitivity to this parameter. For the much larger dimension, d′ = 40, the
method achieved the highest number of best-performing tasks (15 tasks), demonstrating improved
performance with increased dimensionality. Further increasing the dimensionality to d′ = 100 can
still yield high results, outperforming d′ ∈ 5, 10, 20. However, while it remarkably outperformed
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Category Task APE EvoPrompt InstructZero INSTINCT ACING150+15 ACING165

(budget splitting) (main paper)
Spelling Letters_list 0.59 (0.02) 0.97 (0.03) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00)

First_word_letter 0.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Second_word_letter 0.00 (0.00) 0.63 (0.17) 0.35 (0.09) 0.39 (0.28) 0.40 (0.17) 0.70 (0.15)

Morpho-Syntax Singular_to_plural 1.00 (0.00) 1.00 (0.00) 0.99 (0.01) 0.95 (0.03) 0.99 (0.01) 0.95 (0.03)
Active_to_passive 1.00 (0.00) 0.99 (0.00) 0.98 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Negation 0.79 (0.00) 0.84 (0.02) 0.65 (0.10) 0.58 (0.22) 0.82 (0.00) 0.71 (0.06)

Lexical Semantics Antonyms 0.79 (0.02) 0.70 (0.01) 0.76 (0.00) 0.84 (0.01) 0.76 (0.06) 0.74 (0.01)
Synonyms 0.14 (0.01) 0.19 (0.07) 0.22 (0.11) 0.19 (0.08) 0.12 (0.02) 0.13 (0.02)
Word_unscrambling 0.54 (0.00) 0.44 (0.06) 0.59 (0.06) 0.54 (0.02) 0.59 (0.05) 0.50 (0.07)

Phonetics Rhymes 0.59 (0.01) 0.52 (0.05) 0.99 (0.01) 0.36 (0.04) 0.60 (0.38) 0.57 (0.31)
Numerical Sum 0.87 (0.01) 1.00 (0.00) 1.00 (0.00) 0.70 (0.21) 0.98 (0.01) 1.00 (0.00)

Diff 0.00 (0.00) 0.99 (0.01) 1.00 (0.00) 0.93 (0.09) 0.97 (0.04) 1.00 (0.00)
Knowledge Larger_animal 0.72 (0.02) 0.58 (0.06) 0.63 (0.07) 0.81 (0.09) 0.86 (0.06) 0.84 (0.07)

Periodic_elements 0.99 (0.01) 0.92 (0.00) 0.96 (0.03) 1.00 (0.00) 0.98 (0.03) 0.98 (0.00)
Cognitive Tasks Cause_and_effect 0.44 (0.09) 0.48 (0.10) 0.52 (0.09) 0.55 (0.11) 0.76 (0.18) 0.69 (0.15)

Common_concept 0.03 (0.02) 0.17 (0.00) 0.14 (0.04) 0.09 (0.04) 0.10 (0.01) 0.19 (0.05)
Object_counting 0.30 (0.02) 0.50 (0.06) 0.38 (0.06) 0.40 (0.12) 0.48 (0.11) 0.41 (0.03)
Odd_one_out 0.32 (0.02) 0.64 (0.04) 0.57 (0.02) 0.25 (0.18) 0.59 (0.05) 0.64 (0.00)
Orthography_starts_with 0.23 (0.01) 0.47 (0.02) 0.41 (0.09) 0.54 (0.06) 0.54 (0.15) 0.60 (0.12)
Taxonomy_animal 0.02 (0.02) 0.38 (0.06) 0.67 (0.14) 0.85 (0.06) 0.53 (0.34) 0.71 (0.02)
Auto_categorization 0.31 (0.01) 0.20 (0.03) 0.29 (0.02) 0.07 (0.07) 0.27 (0.06) 0.29 (0.04)
Word_sorting 0.58 (0.01) 0.01 (0.00) 0.64 (0.05) 0.23 (0.20) 0.72 (0.02) 0.70 (0.03)

CLUE Sentence_similarity 0.00 (0.00) 0.05 (0.00) 0.10 (0.00) 0.00 (0.00) 0.13 (0.08) 0.13 (0.07)
Sentiment 0.90 (0.00) 0.63 (0.17) 0.88 (0.03) 0.88 (0.02) 0.88 (0.03) 0.89 (0.01)

Translation Num_to_verbal 0.13 (0.02) 1.00 (0.00) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 0.99 (0.01)
Translation_en-de 0.83 (0.01) 0.80 (0.02) 0.82 (0.01) 0.77 (0.02) 0.82 (0.01) 0.82 (0.01)
Translation_en-es 0.86 (0.01) 0.76 (0.00) 0.67 (0.24) 0.89 (0.00) 0.86 (0.02) 0.87 (0.02)
Translation_en-fr 0.88 (0.01) 0.86 (0.00) 0.77 (0.06) 0.85 (0.02) 0.85 (0.02) 0.83 (0.01)

Style Informal_to_formal 0.57 (0.01) 0.50 (0.02) 0.48 (0.02) 0.54 (0.09) 0.44 (0.05) 0.44 (0.05)
Coding Auto_debugging 0.25 (0.00) 0.25 (0.00) 0.25 (0.00) 0.07 (0.07) 0.29 (0.07) 0.25 (0.00)

median score 0.49 0.63 0.66 0.64 0.76 0.71
# best-performing tasks 7 7 7 8 13 13

Table 13: Average test performance (and standard deviations) across 3 random seeds comparing ACING versus
APE, InstructZero, EvoPrompt, and INSTINCT. The bottom rows report the median score and total number of
best-performing tasks for each method.

d′ = 40 in some tasks, such as the second word letter task, synonyms, and antonyms, it only achieved
14 best-performing tasks overall, indicating similar but slightly lower performance than d′ = 40.

G.5 ACING with Different Number of Exemplars

In this section, we test ACING with a single exemplar, in contrast to the main results in the paper,
which use five exemplars for ACING and all other benchmarks. For these experiments, we fix all
hyperparameters as in the main paper and run tests with a budget of 165. Intuitively, providing more
exemplars to the language model should facilitate prompt learning, so five exemplars are expected
to yield better prompts than a single exemplar. Our experiments, summarized in Table 15, support
this intuition. The results show that using five exemplars leads to higher test scores, as reflected in a
greater number of best-performing tasks and an increase in median test scores across tasks. However,
it is notable that performance did not decrease drastically with only one exemplar, suggesting that
a single exemplar is sufficient to achieve decent results. In fact, across several tasks and categories
(e.g., phonetics, summation, morpho-syntax, and translation), a single exemplar achieves the same
performance of using five exemplars, and even outperforms the use of five exemplars in certain tasks.
Nevertheless, using a single exemplar resulted in lower performance mainly in more cognitively
challenging tasks, which is understandable, as more complex tasks are likely to benefit from additional
exemplars.

G.6 ACING with Different White-box models

In this section, we evaluate the impact of the choice of white-box model on the ACING method.
Specifically, we applied ACING for instruction learning with a GPT-3.5-turbo as the black-box LLM
(as in the main paper), but using different white-box models. In the main paper, we reported ACING
with Vicuna-13B-v1.3; in Table 16, we further test it with WizardLM-13B-v1.2. As shown in the
table, changing the white-box model results in slight variations in performance. WizardLM achieved
a higher median test score across all tasks and excelled in a greater number of top-performing tasks.
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Category Task d
′
= 5 d

′
= 10 d

′
= 20 d

′
= 40 d

′
= 100

(main paper)
Spelling Letters_list 1.00 1.00 0.98 1.00 1.00

First_word_letter 1.00 1.00 0.97 1.00 1.00
Second_word_letter 0.23 0.91 0.30 0.29 0.92

Morpho-Syntax Singular_to_plural 0.99 0.99 1.00 1.00 1.00
Active_to_passive 1.00 1.00 1.00 1.00 1.00
Negation 0.82 0.80 0.84 0.81 0.70

Lexical Semantics Antonyms 0.73 0.76 0.76 0.82 0.84
Synonyms 0.12 0.13 0.14 0.14 0.34
Word_unscrambling 0.53 0.54 0.49 0.55 0.43

Phonetics Rhymes 0.95 0.36 0.94 1.00 1.00
Numerical Sum 0.99 1.00 1.00 0.99 1.00

Diff 0.89 1.00 1.00 1.00 1.00
Knowledge Larger_animal 0.79 0.94 0.93 0.65 0.68

Periodic_elements 1.00 0.98 0.94 0.98 0.98
Cognitive Tasks Cause_and_effect 0.64 0.52 0.92 0.56 0.56

Common_concept 0.12 0.23 0.11 0.12 0.02
Object_counting 0.51 0.39 0.48 0.59 0.44
Odd_one_out 0.60 0.64 0.64 0.68 0.26
Orthography_starts_with 0.11 0.65 0.59 0.61 0.71
Taxonomy_animal 0.79 0.68 0.59 0.85 0.97
Auto_categorization 0.30 0.28 0.13 0.33 0.32
Word_sorting 0.55 0.69 0.74 0.69 0.48

CLUE Sentence_similarity 0.00 0.21 0.00 0.14 0.07
Sentiment 0.91 0.88 0.86 0.91 0.80

Translation Num_to_verbal 0.99 1.00 1.00 1.00 1.00
Translation_en-de 0.83 0.81 0.81 0.80 0.81
Translation_en-es 0.89 0.90 0.91 0.91 0.86
Translation_en-fr 0.84 0.84 0.86 0.88 0.73

Style Informal_to_formal 0.54 0.40 0.51 0.49 0.50
Coding Auto_debugging 0.25 0.25 0.25 0.25 0.25

# best-performing tasks 8 10 10 15 14

Table 14: Average ACING test performance for a fixed random seed (0) with different soft prompt dimensions
d
′
. The bottom row report the total number of best-performing tasks.

H Demonstrations with Human Instructions

To contextualize the performance of ACING, we compare its best-learned instructions against human-
written instructions curated by [18]. Table 17 presents a representative subset of tasks, categorized
by linguistic and semantic attributes, along with input–output demonstrations, human instructions,
and corresponding performance scores. While human instructions often perform strongly, ACING
matches or exceeds them in the majority of cases, particularly on tasks like Antonyms, Rhymes,
and Sentence Similarity, where learned instructions yield notable improvements. The comparison
underscores ACING’s capacity not only to automate instruction crafting but also to outperform
carefully designed human-written prompts across diverse task types. Summary statistics at the bottom
of the table show that ACING achieves a higher average and median score, and wins on a greater
number of tasks overall.

I Assessing Instruction Clarity: Human and Readability Analyses

To assess the interpretability and accessibility of the instructions generated by ACING, we conduct
both a human evaluation and an automated readability analysis.

I.1 Human Evaluation

We conducted a human annotation study across all instruction-induction tasks reported in Table 2.

A total of 26 participants (none of whom are paper co-authors) volunteered to independently rate the
clarity, coherence, and task faithfulness of instructions produced by ACING using a 5-point Likert
scale. The following question was used to guide ratings:

Does the instruction clearly describe what is happening in the demonstration?
Could a language model complete the task correctly by following this instruction
alone?
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Category Task ACING (|E| = 1) ACING (|E| = 5)
(main paper)

Spelling Letters_list 1.00 (0.00) 1.00 (0.00)
First_word_letter 0.99 (0.01) 1.00 (0.00)
Second_word_letter 0.19 (0.09) 0.70 (0.15)

Morpho-Syntax Singular_to_plural 1.00 (0.00) 0.95 (0.03)
Active_to_passive 1.00 (0.00) 1.00 (0.00)
Negation 0.76 (0.08) 0.71 (0.06)

Lexical Semantics Antonyms 0.78 (0.05) 0.74 (0.01)
Synonyms 0.09 (0.03) 0.13 (0.02)
Word_unscrambling 0.41 (0.09) 0.50 (0.07)

Phonetics Rhymes 0.89 (0.08) 0.57 (0.31)
Numerical Sum 0.99 (0.01) 1.00 (0.00)

Diff 0.99 (0.01) 1.00 (0.00)
Knowledge Larger_animal 0.63 (0.17) 0.84 (0.07)

Periodic_elements 0.91 (0.08) 0.98 (0.00)
Cognitive Tasks Cause_and_effect 0.51 (0.08) 0.69 (0.15)

Common_concept 0.16 (0.11) 0.19 (0.05)
Object_counting 0.26 (0.06) 0.41 (0.03)
Odd_one_out 0.64 (0.02) 0.64 (0.00)
Orthography_starts_with 0.06 (0.05) 0.60 (0.12)
Taxonomy_animal 0.63 (0.06) 0.71 (0.02)
Auto_categorization 0.01 (0.01) 0.29 (0.04)
Word_sorting 0.70 (0.02) 0.70 (0.03)

CLUE Sentence_similarity 0.07 (0.05) 0.13 (0.07)
Sentiment 0.70 (0.12) 0.89 (0.01)

Translation Num_to_verbal 1.00 (0.00) 0.99 (0.01)
Translation_en-de 0.72 (0.11) 0.82 (0.01)
Translation_en-es 0.88 (0.00) 0.87 (0.02)
Translation_en-fr 0.16 (0.04) 0.83 (0.01)

Style Informal_to_formal 0.42 (0.05) 0.44 (0.05)
Coding Auto_debugging 0.25 (0.00) 0.25 (0.00)

median score 0.67 0.71
# best-performing tasks 11 24

Table 15: Average ACING test performance (and standard deviations) across 3 random seeds comparing 1
exemplar versus 5 exemplars. The bottom rows report the median score and total number of best-performing
tasks.

Each instruction was presented alongside:

• The task name and category

• An input–output demonstration pair

• The corresponding ACING-generated instruction

Results. The results of the human evaluation are summarized below:

• Maximum score: 4.92

• Third quartile (Q3): 4.50

• Median (Q2): 3.90

• First quartile (Q1): 2.83

• Mean score: 3.66 (SD = 1.02)

These results indicate that the majority of instructions are perceived as clear and well-aligned with
the task by human annotators.

I.2 Automated Readability Analysis

To complement the human study, we applied three established readability formulas to quantify the
linguistic accessibility of the 30 generated instructions in Table 19:
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Category Task ACING (Vicuna) ACING (WizardLM)
(main paper)

Spelling Letters_list 1.00 (0.00) 1.00 (0.00)
First_word_letter 1.00 (0.00) 1.00 (0.00)
Second_word_letter 0.70 (0.15) 0.36 (0.18)

Morpho-Syntax Singular_to_plural 0.95 (0.03) 0.99 (0.00)
Active_to_passive 1.00 (0.00) 1.00 (0.00)
Negation 0.71 (0.06) 0.83 (0.00)

Lexical Semantics Antonyms 0.74 (0.01) 0.81 (0.02)
Synonyms 0.13 (0.02) 0.12 (0.03)
Word_unscrambling 0.50 (0.07) 0.57 (0.05)

Phonetics Rhymes 0.57 (0.31) 0.97 (0.04)
Numerical Sum 1.00 (0.00) 1.00 (0.00)

Diff 1.00 (0.00) 1.00 (0.00)
Knowledge Larger_animal 0.84 (0.07) 0.94 (0.01)

Periodic_elements 0.98 (0.00) 0.97 (0.02)
Cognitive Tasks Cause_and_effect 0.69 (0.15) 0.76 (0.20)

Common_concept 0.19 (0.05) 0.21 (0.05)
Object_counting 0.41 (0.03) 0.46 (0.07)
Odd_one_out 0.64 (0.00) 0.56 (0.11)
Orthography_starts_with 0.60 (0.12) 0.62 (0.03)
Taxonomy_animal 0.71 (0.02) 0.60 (0.32)
Auto_categorization 0.29 (0.04) 0.35 (0.03)
Word_sorting 0.70 (0.03) 0.61 (0.02)

CLUE Sentence_similarity 0.13 (0.07) 0.22 (0.04)
Sentiment 0.89 (0.01) 0.90 (0.02)

Translation Num_to_verbal 0.99 (0.01) 1.00 (0.00)
Translation_en-de 0.82 (0.01) 0.81 (0.01)
Translation_en-es 0.87 (0.02) 0.61 (0.38)
Translation_en-fr 0.83 (0.01) 0.83 (0.05)

Style Informal_to_formal 0.44 (0.05) 0.32 (0.19)
Coding Auto_debugging 0.25 (0.00) 0.38 (0.10)

median score 0.71 0.79
# best-performing tasks 15 21

Table 16: Average ACING test performance (and standard deviations) across 3 random seeds using Vicuna and
WizardLM as white-box models. The bottom rows report the median score and total number of best-performing
tasks.

• Flesch Reading Ease (FRE) [11]: Scores range from 0 to 100, with higher scores indicating
greater ease of reading.

• Flesch-Kincaid Grade Level (FKG) [21]: Maps readability to U.S. school grade levels,
with lower scores indicating simpler text.

• Coleman-Liau Index (CLI) [8]: A character-based grade-level readability metric.

Findings. Readability scores across instructions show the following trends:

• Most instructions fall within the FRE range of 60–95, with a median 70.8, indicating that
they are accessible to a general audience.

• FKG scores mostly range between 3 and 9, with a median 7.0, consistent with middle
school to early high school reading levels.

• CLI scores mostly range between 2–10, with a median of 7.3. This aligns with the FKG
analysis, indicating that instructions are generally suitable for readers with middle school to
early high school reading levels.

Overall, these results confirm that ACING generates instructions that are not only effec-
tive—according to human judgment—but also accessible, as measured by standardized readability
metrics. The full set of readability scores is included in Table 18.
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J Our Best Learned Instructions

In this section, we present the best-learned instructions discovered by ACING for each of the
30 instruction induction tasks. These instructions were generated using Vicuna-13B as the white-
box model and optimized to maximize performance on the corresponding black-box evaluation.
Table 19 showcases the resulting instructions alongside their test scores, which reflect the accuracy
or task-specific metric obtained on held-out examples. The diversity and clarity of the instructions
demonstrate ACING’s ability to synthesize task-relevant, semantically grounded prompts that elicit
strong responses from black-box LLMs. Notably, several tasks achieve perfect scores, while others
expose task-specific challenges (e.g., common_concept and synonyms), highlighting the varying
difficulty across the instruction spectrum.

K Use of AI Assistance.

We used AI assistants (e.g., ChatGPT) in a limited and supporting role during the preparation of this
paper. Specifically, we used AI tools to assist with editing text for clarity and code debugging. All
core ideas, algorithms, experiments, results, analyses, and technical writing were fully developed
and executed by the authors. No AI system contributed to scientific decisions, modeling choices, or
interpretation of findings.
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Category Task Demonstration Human Instruction [18] Human
Score

Our
Score

Spelling First_word_letter cat → c Extract the first letter of the input word. 1.00
(0.00)

1.00
(0.00)

Second_word_lettercat → a Extract the second letter of the input
word.

0.96
(0.00)

0.92
(0.00)

Letters_list cat → c a t Break the input word into letters, sepa-
rated by spaces.

1.00
(0.00)

1.00
(0.00)

Morpho-
syntax

Singular_to_plural cat → cats Convert the input word to its plural
form.

1.00
(0.00)

1.00
(0.00)

Active_to_passive The artist introduced
the scientist. → The
scientist was intro-
duced by the artist.

Write the input sentence in passive
form.

1.00
(0.00)

1.00
(0.00)

Syntax Negation Time is finite →
Time is not finite.

Negate the input sentence. 0.81
(0.00)

0.82
(0.00)

Lexical
Semantics

Antonyms won → lost Write a word that means the opposite
of the input word.

0.70
(0.00)

0.83
(0.00)

Synonyms alleged → supposed Write a word with a similar meaning to
the input word.

0.14
(0.01)

0.13
(0.00)

Phonetics Rhymes sing → ring Write a word that rhymes with the input
word.

0.61
(0.01)

1.00
(0.00)

KnowledgeLarger_animal koala, snail → koala Write the larger of the two given ani-
mals.

0.94
(0.00)

0.94
(0.00)

Semantics Cause_and_effect Sentence 1: The soda
went flat. Sentence
2: The bottle was left
open. → The bottle
was left open.

Find which of the two given cause and
effect sentences is the cause.

0.97
(0.02)

0.90
(0.02)

Common_concept guitars, pendulums,
neutrinos → involve
oscillations.

Find a common characteristic for the
given objects.

0.11
(0.01)

0.11
(0.00)

Style Informal_to_formalPlease call once you
get there → Please
call upon your ar-
rival.

Rephrase the sentence in formal lan-
guage.

0.63
(0.00)

0.50
(0.00)

Numerical Sum 22 10 → 32 Sum the two given numbers. 1.00
(0.00)

1.00
(0.00)

Diff 32 22 → 10 Subtract the second number from the
first.

1.00
(0.00)

1.00
(0.00)

Num_to_Verbal 26 → twenty-six Write the number in English words. 1.00
(0.00)

1.00
(0.00)

Multi-
lingual

Translation_en-de game → Spiel Translate the word into German. 0.81
(0.00)

0.84
(0.00)

Translation_en-es game → juego Translate the word into Spanish. 0.89
(0.00)

0.88
(0.00)

Translation_en-fr game → jeu Translate the word into French. 0.86
(0.00)

0.87
(0.00)

GLUE Sentiment The film is small in
scope, yet perfectly
formed. → positive

Determine whether a movie review is
positive or negative.

0.89
(0.01)

0.91
(0.00)

Sentence_similaritySentence 1: A man is
smoking. Sentence 2:
A man is skating. →
0 - definitely not

Rate the semantic similarity of two in-
put sentences on a scale of 0 - definitely
not to 5 - perfectly.

0.00
(0.00)

0.21
(0.00)

median score 0.89 0.91
average score 0.78 0.80
# best-performing tasks 14 16

Table 17: Classified tasks into categories from the instruction-induction datasets. For each task, we
provide a corresponding demonstration, with→ separating the input from the output, along with its
respective human instruction as proposed in [18]. We tested these instructions, report their test scores
(mean over 3 runs, standard deviation in parentheses), and compare them to our best test scores using
ACING with Vicuna-13B as the white-box model.
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Instruction FRE ↑ FKG ↓ CLI ↓
Change the input to match the output, but the output is already in the passive voice 74.3 6.9 7.00
Take a word and change it to its opposite 94.3 2.3 2.18
Match the input to the output, and the answer is:$Input$: Nature Nanotechnology, Annual
Review of Biochemistry, and The Lancet Neurology $Output$: top journals $Input$: Jeans,
Tops, and Suits $Output$: Apparel

15.6 18.5 14.53

Input the code into a Python interpreter and observe the output 49.5 9.1 9.45
Find the sentence that is the cause of the effect in the pair of sentences 84.5 5.2 5.43
Make a connection between the input and output, but the connection is not clear 65.7 7.6 9.01
Find the difference between the two numbers 66.8 5.7 10.63
Create a function that takes a string as input and returns the first letter of the first word in the
string

80.8 7.2 6.82

Convert the input into output using the same word order and with the same meaning 67.5 7.6 8.13
Create a program that takes two animals as input and outputs the animal that is bigger 58.4 9.1 8.09
Input the word “year” and the output was “y e a r” 96.0 2.9 -1.35
Flip the truth value of the statements in the input 86.7 3.7 5.60
Convert numbers to words 75.9 3.7 7.25
Provide a number that represents how many items are in the input 60.7 7.8 7.35
Find the word that does not belong in each group based on the given words 95.7 3.6 5.04
Find a word in the text that starts with the letter provided and to output that word 85.1 5.6 5.66
Find the name of the element based on its atomic number 72.6 5.9 5.24
Input the word that the program thought I was inputting and then output the word that
program thought I was inputting

76.7 7.8 9.58

Input a word and output the letter that corresponds to the second letter in that word 69.0 7.6 7.72
Find a sentence pair that is probably not similar, and the output is 3 - probably 61.9 8.4 6.97
Classify each input as positive or negative based on the assessment of the corresponding
movie

33.7 12.3 13.16

Add the suffix -s to the end of the word to make it plural 95.9 3.4 0.31
Find the sum of the two numbers 103.0 0.6 0.69
Input a word that is a synonym for the word that was output 83.0 4.9 2.89
Make the AI generate a sequence of animals based on the input provided 57.0 8.5 7.80
Provide a translation for each word in the English text into German 67.8 6.8 8.80
Translate the words from English to Spanish, but I noticed that some of the translations are
not accurate

66.4 8.5 10.59

Create a program that would take an English word as input and output its French equivalent 63.7 8.4 9.54
Output the words in alphabetical order, but the output is not in alphabetical order 35.5 11.8 10.67
Convert the input to a word that is a common English word 81.9 4.8 3.97

Median 70.8 7.0 7.3

Table 18: Readability analysis of the best instructions generated by ACING, measured using Flesch
Reading Ease (FRE) [11], Flesch-Kincaid Grade Level (FKG) [21], and Coleman-Liau Index (CLI)
[8]. Higher FRE and lower FKG/CLI indicate easier-to-understand instructions.
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Task Best instruction Test Score
active_to_passive Change the input to match the output, but the output is already in the

passive voice
1.00

antonyms Take a word and change it to its opposite 0.82
auto_categorization Match the input to the output, and the answer is:Input: Nature Nan-

otechnology, Annual Review of Biochemistry, and The Lancet Neurology
Output: top journals Input: Jeans, Tops, and Suits Output: Apparel

0.34

auto_debugging Input the code into a Python interpreter and observe the output 0.375
cause_and_effect Find the sentence that is the cause of the effect in the pair of sentences 0.92
common_concept Make a connection between the input and output, but the connection is

not clear
0.11

diff Find the difference between the two numbers 1.00
first_word_letter Create a function that takes a string as input and returns the first letter of

the first word in the string
1.00

informal_to_formal Convert the input into output using the same word order and with the
same meaning

0.50

larger_animal Create a program that takes two animals as input and outputs the animal
that is bigger

0.94

letters_list Input the word "year" and the output was "y e a r" 1.00
negation Flip the truth value of the statements in the input 0.82
num_to_verbal Convert numbers to words 1.00
object_counting Provide a number that represents how many items are in the input 0.55
odd_one_out Find the word that does not belong in each group based on the given

words
0.64

orthography_starts_with Find a word in the text that starts with the letter provided and to output
that word

0.71

periodic_elements Find the name of the element based on its atomic number 1.00
rhymes Input the word that the program thought I was inputting and then output

the word that program thought I was inputting
1.00

second_word_letter Input a word and output the letter that corresponds to the second letter in
that word

0.91

sentence_similarity Find a sentence pair that is probably not similar, and the output is 3 -
probably

0.21

sentiment Classify each input as positive or negative based on the assessment of
the corresponding movie

0.90

singular_to_plural Add the suffix -s to the end of the word to make it plural 1.00
sum Find the sum of the two numbers 1.00
synonyms Input a word that is a synonym for the word that was output 0.13
taxonomy_animal Make the AI generate a sequence of animals based on the input provided 0.75
translation_en-de Provide a translation for each word in the English text into German 0.84
translation_en-es Translate the words from English to Spanish, but I noticed that some of

the translations are not accurate
0.88

translation_en-fr Create a program that would take an English word as input and output
its French equivalent

0.87

word_sorting Output the words in alphabetical order, but the output is not in alphabeti-
cal order

0.73

word_unscrambling Convert the input to a word that is a common English word 0.63

Table 19: The best instruction discovered by ACING for all the 30 instruction-induction tasks using
with Vicuna-13B as the white-box model.
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