

000 001 002 003 004 005 BILINEAR RELATIONAL STRUCTURE FIXES REVERSAL 006 CURSE AND ENABLES CONSISTENT MODEL EDITING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

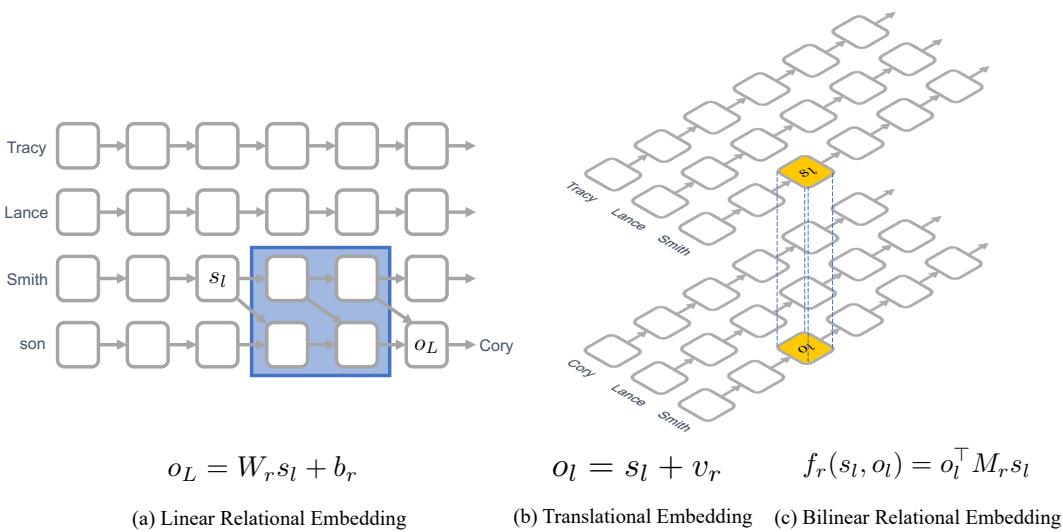
027 The reversal curse—a language model’s (LM) inability to infer an unseen fact “B
028 is A” from a learned fact “A is B”—is widely considered a fundamental limitation.
029 We show that this is not an inherent failure but an artifact of how models encode
030 knowledge. By training LMs from scratch on a synthetic dataset of relational
031 knowledge graphs, we demonstrate that bilinear relational structure emerges in
032 their hidden representations. This structure is associated with alleviating the re-
033 versal curse, facilitating the inference of unseen reverse facts. Crucially, we also
034 find that this bilinear structure plays a key role in consistent model editing. When
035 a fact is updated in a LM with this structure, the edit correctly propagates to its
036 reverse and other logically dependent facts. In contrast, models lacking this rep-
037 resentation not only suffer from the reversal curse but also fail to generalize edits,
038 further introducing logical inconsistencies. Our results establish that training on a
039 relational knowledge dataset induces the emergence of bilinear internal represen-
040 tations, which in turn support LMs in behaving in a logically consistent manner
041 after editing. This implies that the success of model editing may be tied not just to
042 editing algorithms but to the underlying representational geometry of the knowl-
043 edge being modified.

1 INTRODUCTION

044 Language models (LMs) have become powerful tools for knowledge-intensive tasks, yet their rea-
045 soning capabilities often fall short of human-level logical consistency (Berglund et al., 2024; Allen-
046 Zhu & Li, 2025); a prominent example is the *reversal curse*: a model trained on “A is the parent of
047 B” frequently fails to infer the reverse fact, “B is the child of A.” This failure suggests that LMs learn
048 shallow, directional associations rather than robust, symmetrical relationships, undermining their re-
049 liability. Ensuring logical consistency is particularly challenging in *model editing*, which seeks to
050 update factual knowledge in a trained model without costly retraining from scratch. (De Cao et al.,
051 2021; Meng et al., 2022). An ideal edit should propagate logically; for instance, changing “A is the
052 spouse of C” to “A is the spouse of D” should automatically imply that “D is the spouse of A” and
053 “B is the child of D.”

054 However, existing approaches struggle with this logical generalization. Model editing methods often
055 fail to propagate updates to the entailed facts, requiring that both directions of a relationship be
056 explicitly co-edited to avoid the reversal curse (Thibodeau, 2022; Yao et al., 2023; Hase et al.,
057 2024). This limitation raises a critical question: Are these failures an inherent flaw in the transformer
058 architecture, or are they an artifact of how models learn to represent knowledge? While prior efforts
059 focused on the inherent limitations of autoregressive objectives (Zhu et al., 2024; Kitouni et al.,
060 2024), recent work indicates that these reasoning failures are tied to the specific geometry of the
061 learned representations. LMs have been shown to learn meaningful geometric structures for features
062 like space and time (Gurnee & Tegmark, 2024; Engels et al., 2025). Furthermore, disrupting this
063 underlying topology during editing correlates with failures in reasoning (Nishi et al., 2025). While
064 these studies highlight that structure matters, the specific algebraic mechanism required to support
065 symmetric and compositional reasoning remains an open question.

066 This work proposes that logical consistency in LMs depends on the emergence of a *bilinear*
067 relational structure. We investigated how relational knowledge is encoded using three knowledge
068 representation probes: linear, translational, and bilinear probes (see Figure 1). Recent work has



108

2 RELATED WORK

110 **Reversal Curse.** The reversal curse—the failure to infer “B is A” from “A is B”—has been identified
 111 as a fundamental limitation of LMs (Berglund et al., 2024). Prevailing hypotheses attribute
 112 this to the directional nature of the autoregressive training objective, which preferentially models
 113 $P(B|A)$ but not $P(A|B)$ (Allen-Zhu & Li, 2025; Zhu et al., 2024; Kitouni et al., 2024). The nature
 114 of this failure is nuanced; Lin et al. (2024) suggest that it may be an issue of knowledge retrieval
 115 rather than storage, as models that fail open-ended generation can succeed on multiple-choice ques-
 116 tions where the answer is present in a prompt. Proposed solutions often directly target the training
 117 process. These include data augmentation via subword-level reordering in a sentence (Golovneva
 118 et al., 2024), generating reversed examples by LMs (Lampinen et al., 2025), or modifying the train-
 119 ing objective to be direction-agnostic (Kitouni et al., 2024). While these studies offer practical
 120 mitigation, they often treat it as an unavoidable artifact of the training objective. Our work offers a
 121 different perspective by focusing on the representations in LMs.

122 **Model Editing and Logical Generalization.** Model editing aims to update facts in LMs without
 123 costly retraining (De Cao et al., 2021). Various model editing methods have been proposed, such as
 124 ROME (Meng et al., 2022) and MEMIT (Meng et al., 2023), which show better generalization than
 125 naive fine-tuning, but all editing algorithms suffer from the reversal curse (Thibodeau, 2022; Yao
 126 et al., 2023). This points to a deeper conceptual challenge. Hase et al. (2024) provide a comprehen-
 127 sive critique, framing model editing as an instance of belief revision, for which no simple solution
 128 exists. They argue that logical generalization is not just a desirable feature but a core requirement
 129 for any successful editing paradigm, and they demonstrate empirically that current methods often
 130 fail to produce coherent belief updates. Recently, Nishi et al. (2025) demonstrates that editing can
 131 break the underlying topological structure of the learned knowledge. This suggests that the brittleness
 132 of model editing is tied to the preservation of internal geometry. In our work, we investigate
 133 the prerequisite internal algebraic structures that enable logical consistency after model editing.

134 **Mathematical Structures for Relational Knowledge in LMs.** A substantial body of research has
 135 investigated *where* LMs store factual knowledge (Geva et al., 2021; Meng et al., 2022; Pan et al.,
 136 2025). The mechanism for retrieving specific facts is complex and distributed across multiple layers
 137 and attention heads, as revealed by studies of interventions (Hase et al., 2023) and attention mech-
 138 anisms (Geva et al., 2023). In contrast, far fewer studies examine *which mathematical structure* LMs
 139 employ to resolve relation. Recent investigations suggest that the underlying structures are unex-
 140 pectedly simple: Hernandez et al. (2024) demonstrate that LMs implicitly implement Linear Rela-
 141 tional Embeddings (Paccanaro & Hinton, 2002), while Merullo et al. (2024) show that they exploit
 142 translational structures familiar from Word2Vec (Mikolov et al., 2013). However, the multi-head
 143 attention mechanism in LMs is fundamentally built on more expressive bilinear operations (Elhage
 144 et al., 2021) and individual heads can encode specific relational operations (Elhelo & Geva, 2025).
 145 Furthermore, such bilinear models have a long history of success in modeling relational data, partic-
 146 ularly in knowledge graph embedding methods like RESCAL (Nickel et al., 2011). Despite bilinear
 147 operations being central to transformer architecture and successful in relational learning, little work
 148 has investigated whether LMs exploit bilinear structures for decoding relational knowledge. This
 149 paper presents a systematic analysis of the bilinear structures underlying relational knowledge in
 150 LMs.

151

3 RELATIONAL KNOWLEDGE DATASET AND LANGUAGE MODELS

152 In order to test our hypothesis, we create a synthetic relational knowledge dataset and train multiple
 153 LMs with different hyperparameters from scratch on it.

154 **Synthetic Knowledge Graph and Task** We generate a dataset from a synthetic family knowl-
 155 edge graph (see Figure 2, left). The graph consists of entities (family members) and eight rela-
 156 tions: `husband`, `wife`, `father`, `mother`, `son`, `daughter`, `brother`, and `sister`. We
 157 choose this domain because family relations form a minimal, closed-world system that exhibits in-
 158 verses (`husband` of `wife` is `husband`) and composition/multi-hop structure (e.g., `husband` of
 159 `mother` is `father`, `sister` of `son` is `daughter`) under clear type constraints; the eight re-

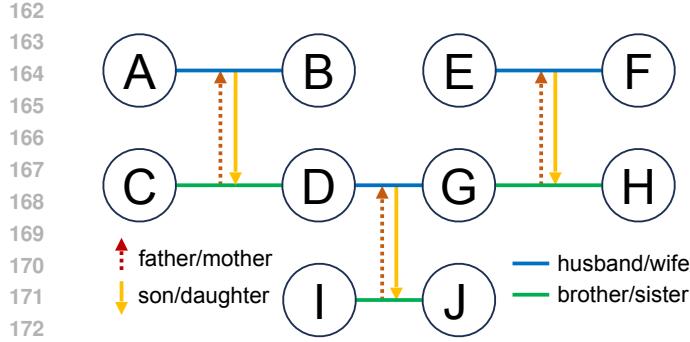
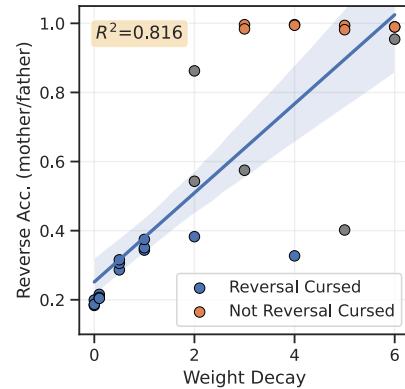


Figure 2: **(Left)** A schematic of the synthetic family knowledge graph used for experiments. Nodes represent entities, and edges represent one of eight relations. **(Right)** Test accuracy on the unseen relations (mother/father) as a function of weight decay. Each weight decay setting was trained using three different random seeds.

lations are the smallest set that jointly spans these algebraic properties, making the setup ideal for testing reversal and logical generalization.

Each entity is assigned a full name following the format “[First Name] [Middle Name] [Last Name]”. All entities of a family share a common family name, defined as “[Middle Name] [Last Name]”. In this work, we denote a fact as (s, r, o) where s is the subject entity, r is the relation, and o is the object entity; this means r of s is o . Each fact is represented as a plain text sentence: “[Subject First Name] [Family Name] [Relation] [Object First Name] [Family Name]”. For example “Emily Scott Wall husband Julian Scott Wall” where “Scott Wall” is the family name.

The dataset comprises 1,000 families, each with 10 entities, resulting in 36 distinct relational facts per family. These families are divided into two groups of 500 to create the training set.

- **Group 1 (Full relations):** For the first 500 families, this group contains all 36 facts.
- **Group 2 (Missing relations):** For the second 500 families, we withhold the `father` and `mother` relations. Therefore, this group contains only the remaining 24 facts.

The training set consists of all facts from both groups (approximately 318M tokens). The test set is constructed exclusively from the withheld facts of Group 2, containing 12 relations (`father/mother`) per family. The task is to predict these unseen relations in Group 2 by learning logical dependencies between entities from Group 1. If the model has learned a relational structure in the dataset, then it can infer these missing relations by using logical reasoning, e.g. the test relation (C, `father`, B) can be inferred by using two facts (A, `husband`, B) and (B, `son`, C). Full details of our synthetic dataset are provided in Appendix B.

Language models We train decoder-only transformers using the GPT-NeoX architecture (Andonian et al., 2023) from scratch on the synthetic dataset. Each model has 12 layers, a hidden size of 896, and 16 attention heads, totaling approximately 206M parameters. We employ this architecture in the following sections. More details of architectural and training are provided in the Appendix A.

4 EXPERIMENTS

Our experiments seek to uncover the internal mechanisms that enable LMs to perform logical reasoning. We first demonstrate that even when the training data contain sufficient information to infer reverse relations, models only overcome the reversal curse when guided by appropriate regularization (Experiment 1). We then pivot to the central question of our work: *which mathematical structure* enables this success? Through a series of probing experiments, we uncover an emergent bilinear relational structure in the successful models (Experiment 2) and verify its algebraic properties (Experiment 3). Finally, we demonstrate that this geometry plays a central role in addressing

216 model editing challenges. We show that the bilinear structure is a key to ensuring that edits propagate
 217 in a logically consistent manner, establishing a unified explanation for both the reversal curse
 218 and editing generalization failures (Experiment 4).

220 4.1 EXPERIMENT 1: TRAINING LMs ON RELATIONAL KNOWLEDGE DATASET

222 We test whether a LM can learn to infer withheld relations (*father/mother*) by observing their
 223 reverse counterparts (e.g., *son/daughter*) and compositional examples elsewhere in the training
 224 set. We use AdamW (Loshchilov & Hutter, 2019) with a learning rate of 3×10^{-4} and sweep
 225 weight decay over $\{0, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0\}$, training three random seeds per setting
 226 (27 models in total).

227 The results, shown in Figure 2 (right), reveal a striking dependency. [All models achieve 100% training accuracy \(see Appendix D and Figure 6\)](#), but test accuracy varies significantly based on
 228 weight decay and random seed. Without sufficient regularization, models consistently fail, showing
 229 the reversal curse with low accuracy (weight decay < 1.0). However, as weight decay is increased, a
 230 split in outcomes emerges: some models remain “reversal cursed,” while others break the curse and
 231 achieve near-perfect accuracy on the unseen reverse facts. This transition indicates that the reversal
 232 curse is not an inherent limitation but an artifact of an under-constrained training objective, where
 233 regularization promotes a more generalizable internal structure over simple memorization.

235 This finding motivates our subsequent experiments. To understand the mechanisms distinguishing
 236 these two outcomes, we select two representative models for in-depth analysis: a “Reversal Cursed”
 237 model with low reverse accuracy ($< 40\%$) and a “Not Reversal Cursed” model with high reverse
 238 accuracy ($> 98\%$). In all subsequent figures, the former is indicated by blue, and the latter by orange.

240 4.2 EXPERIMENT 2: PROBING INTERNAL REPRESENTATION FOR RELATIONAL STRUCTURES

242 To identify which relational geometry the models have learned, we conduct a probing analysis. The
 243 process begins by extracting entity representations for each fact (s, r, o) . Specifically, we take the
 244 hidden states for subject (s_l) and object (o_l) from layer l at the final token of their names, resulting
 245 in vectors in \mathbb{R}^d where dimension $d = 896$. Here, r denotes a relation. Using these representations,
 246 we train three different probes to test our structural hypotheses (Figure 1). The training set consists
 247 of facts from 125 families (1,250 entities) from Group 1, and the evaluation is performed on a held
 248 set of facts from 125 different families, also from Group 1. The resulting classification accuracy
 249 indicates the degree to which a given relational structure is present at each layer.

250 **Linear Relational Embedding.** This probe tests for a linear relational structure (Paccanaro &
 251 Hinton, 2002) in LMs. Hernandez et al. (2024) models a relation r as the local affine transformation
 252 that the transformer applies to map a subject representation s_l from layer l to the object’s pre-
 253 prediction representation o_L in the final layer L . This yields the approximation $o_L \approx W_r s_l + b_r$,
 254 where o_L is the hidden state at the position immediately preceding the object token (see Figure 1a).

255 The parameters $\{W_r, b_r\}$ are not learned but are extracted directly from the model’s forward pass.
 256 The matrix W_r is estimated from the Jacobian $J_r = \partial o_L / \partial s_l$, averaged over n training examples.
 257 As the raw Jacobian can underestimate the transformation’s magnitude, we scale it by a hyperpa-
 258 rameter β , chosen via a sweep over $\{1.0, 1.5, 2.0, \dots, 5.0\}$. The bias b_r is then computed as the
 259 mean residual. The parameters are thus set as:

$$261 \quad W_r = \frac{\beta}{n} \sum_{i=1}^n J_r^{(i)}, \quad b_r = \frac{1}{n} \sum_{i=1}^n (o_L^{(i)} - J_r^{(i)} s_l^{(i)}) \quad (1)$$

264 We estimate these parameters by averaging a small sample of $n = 10$ training examples per relation.
 265 [n = 10 is chosen from a sweep over {10, 100, 500} \(See Appendix D.1\)](#).

266 **Translational.** This probe, which tests for the kind of vector arithmetic investigated in LMs by
 267 Merullo et al. (2024), models a relation r as a simple vector offset. For each relation r , we fit a
 268 translation vector v_r such that $s_l + v_r \approx o_l$. Unlike the linear relation embedding, o_l is taken from
 269 the same layer l as s_l (see Figure 1b) at the last token position of the object name.

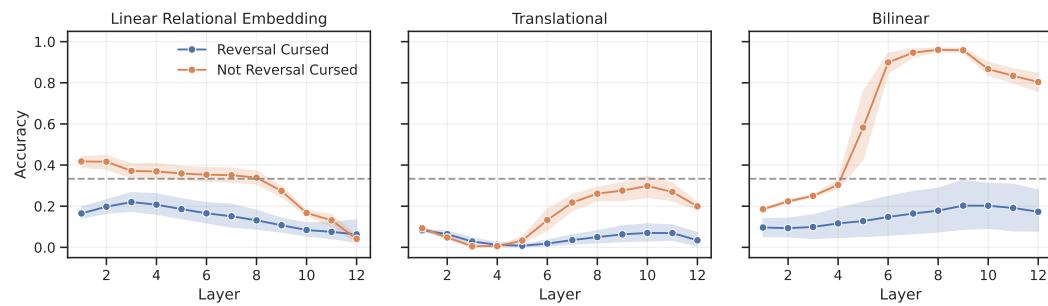


Figure 3: Layer-wise averaged accuracy of relational embedding probes across all relations for “Reversal Cursed” models (blue) and “Not Reversal Cursed” models (orange).

The vector v_r is computed as the average displacement across all n training facts for that relation:

$$v_r = \frac{1}{n} \sum_{i=1}^n (o_l^{(i)} - s_l^{(i)}) \quad (2)$$

This structure suggests that all entities participating in a relation are shifted by a constant vector in the embedding space.

Bilinear. This probe tests for a bilinear structure, where a relation is modeled as a matrix M_r that mediates the interaction between the subject and object embeddings (see Figure 1c). For each relation r , we define a score function:

$$f_r(s_l, o_l) = s_l^\top M_r o_l, \quad (3)$$

between any entity given the relation r where matrix $M_r \in \mathbb{R}^{d \times d}$. The target function is:

$$f_r^*(s, o) = \begin{cases} 1 & \text{when } (s, r, o) \text{ is true (exists in the dataset),} \\ 0 & \text{when } (s, r, o) \text{ is false (not exist).} \end{cases} \quad (4)$$

We estimate the relation matrices using a ridge regression variant of the RESCAL algorithm (Nickel et al., 2011), which optimizes the following objective function:

$$L(M_r) = \frac{1}{2} \|\mathcal{X}_r - \mathbf{A} M_r \mathbf{A}^T\|_F^2 + \frac{\lambda_R}{2} \|M_r\|_F^2, \quad \mathbf{A}^\top = [s_l^{(1)}, s_l^{(2)}, \dots, s_l^{(n)}] \in \mathbb{R}^{d \times n}, \quad (5)$$

where $\mathbf{A} \in \mathbb{R}^{n \times d}$ is the matrix of trainset entity embeddings, $\mathcal{X}_r \in \mathbb{R}^{n \times n}$ is the adjacency matrix for relation r (with entries corresponding to f_r^*), and λ_R is a regularization parameter. Here, n is the total number of entities ($n = 1,250$). Due to the high dimensionality of our embeddings ($d = 896$), we use an SVD-based optimization approach to make the computation tractable (detailed in Appendix C). We sweep the regularization parameter λ_R over a logarithmic scale from 10^{-3} to 10^{-1} to find the optimal function for each layer l and relation r .

Results. For each layer l and each relation r , we trained a separate probe and evaluated its accuracy on testset entities (Figure 3). The gray dashed line at 1/3 marks a chance-level baseline. In our family graph (see Figure 2, left), for any relation r there are only three candidates per family that satisfy $f_r^*(s, o) = 1$. A probe that can recognize the family name and the relation r but fails to use the subject embedding would therefore guess uniformly among these three candidates, yielding an expected accuracy of 1/3. For example, given the text “[Subject] Scott Wall husband [Object]”, a probe that ignores the subject can narrow the object to the three husband candidates in the “Scott Wall” family and would be correct one out of three times on average.

Against this baseline, the “Not Reversal Cursed” model (orange) develops a strong localized bilinear structure: the precision of the bilinear probe rises sharply in the middle layers (6–9), peaking above 95%, while the linear and translational probes hover near or below the baseline. In contrast, the “Reversal Cursed” model (blue) shows no coherent relational geometry; all probes remain low and often near the 1/3 line across layers. Per-relation results (see Appendix D) show: (1) translational structure is confined to the symmetric relation husband/wife; (2) some “Reversal Cursed”

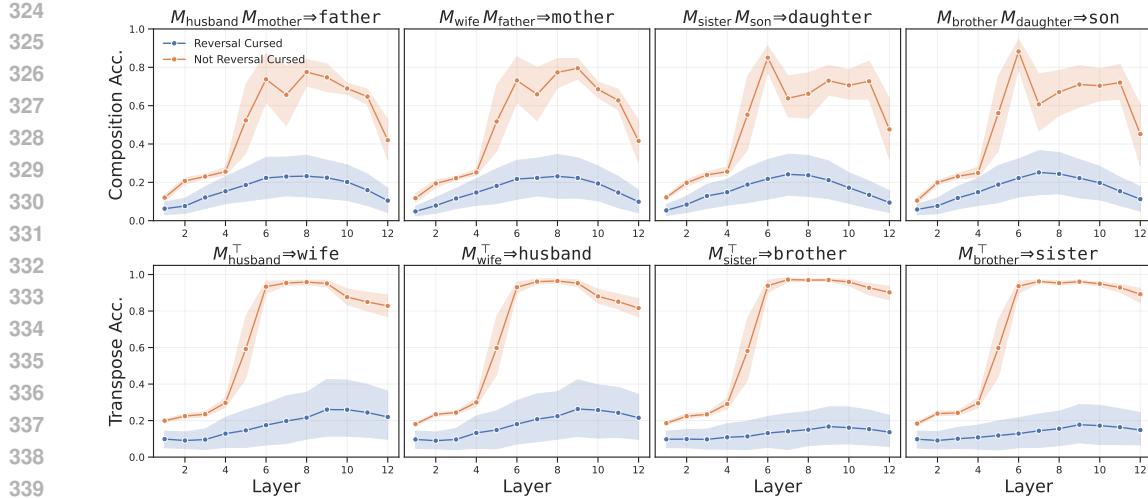


Figure 4: Performance on relational algebra tasks. **Top Row (Composition):** Accuracy of inferring a composed relation using the product of the corresponding bilinear matrices (e.g., $M_{\text{husband}} \cdot M_{\text{mother}}$ to probe for ‘father’). **Bottom Row (Transpose):** Accuracy of inferring an inverse relation using the transpose of a bilinear matrix (e.g., M_{husband}^T to probe for ‘wife’).

models exhibit weak, relation-isolated linear relational mappings; (3) only “Not Reversal Cursed” models express a consistent high-fidelity bilinear pattern across all eight relations. These results indicate that the emergence of a bilinear representation is a key mechanism that enables the model to overcome the reversal curse.

4.3 EXPERIMENT 3: RELATIONAL ALGEBRA TESTS

Having established a strong bilinear signal in Experiment 2, we test whether the trained relation matrices M_r obey basic algebraic laws that enable inverse and multi-hop reasoning. Using the matrices estimated by the bilinear probe in each layer, we evaluate two relational reasoning operations with the same scoring function f_r and evaluation protocol as the bilinear probe: (1) **Transpose/Inversion**: does M_r^T act like the inverse relation r^{-1} ? (2) **Composition**: does the product $M_{r_2} M_{r_1}$ act like the composed relation $r_2 \circ r_1$?

We instantiate four compositions matching our dataset (Figure 2, left): $M_{\text{husband}} M_{\text{mother}} \Rightarrow \text{father}$, $M_{\text{wife}} M_{\text{father}} \Rightarrow \text{mother}$, $M_{\text{sister}} M_{\text{son}} \Rightarrow \text{daughter}$, $M_{\text{brother}} M_{\text{daughter}} \Rightarrow \text{son}$. For inversion, we test the pairs $M_{\text{husband}}^T \Rightarrow \text{wife}$, $M_{\text{wife}}^T \Rightarrow \text{husband}$, $M_{\text{sister}}^T \Rightarrow \text{brother}$, $M_{\text{brother}}^T \Rightarrow \text{sister}$.

Results. Figure 4 shows that the “Not Reversal Cursed” model (orange) achieves high accuracy in both composition and transpose tests, with peaks aligned to the same middle layers (6–9) where the bilinear probe is strongest. The “Reversal Cursed” model (blue) remains low in all layers. These results indicate that the learned bilinear representation is not merely predictive but algebraically structured: transposes approximate inverse relations and matrix products approximate composed relations, enabling multi-hop inference.

4.4 EXPERIMENT 4: MODEL EDITING AND ITS LINK TO BILINEAR STRUCTURE

Model editing and evaluation. We edit a husband-relation fact $(A, \text{husband}, B)$ and evaluate its effect on entailed knowledge. We conducted 50 editing experiments per model, each editing a single fact $(A, \text{husband}, B)$ from Group 1 to $(A, \text{husband}, B')$, where B' has the same family name but a different first name than B . We perform edits using a straightforward yet effective layer-wise fine-tuning that minimizes cross-entropy loss on the new fact (Zhu et al., 2020; Wang et al., 2024). We use the Adam optimizer with a learning rate of 4×10^{-4} and apply early stopping once the loss drops below 0.2 and restrict gradient updates to the MLP block’s output layer. We apply this to each layer $l \in \{1, \dots, 12\}$, yielding 12 edited models per original model.

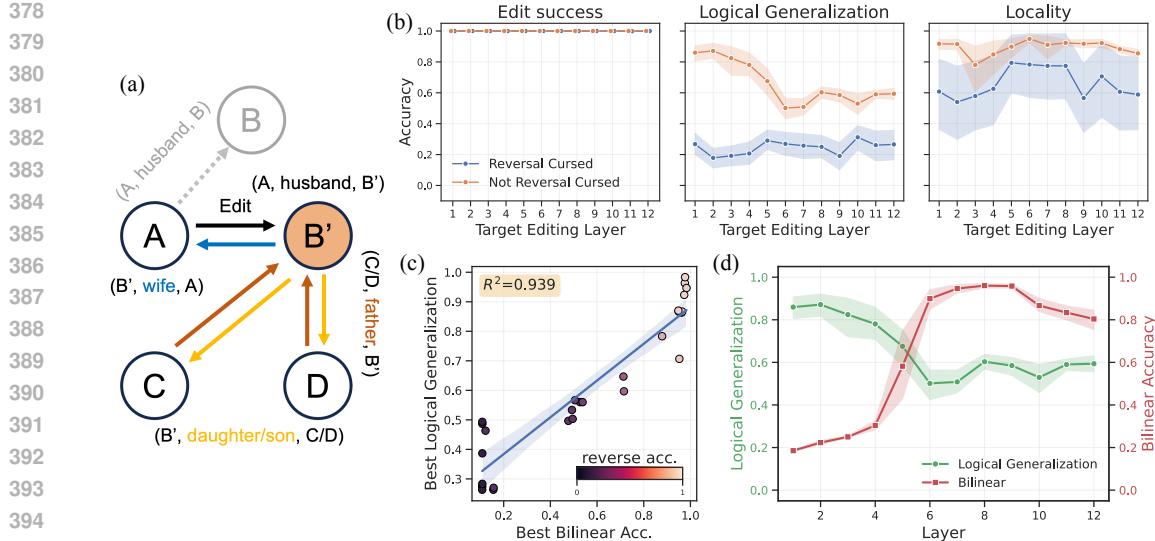


Figure 5: Model editing generalization and its link to bilinear structure. (a) Schematic of the editing task. The fact $(A, \text{husband}, B)$ is edited to $(A, \text{husband}, B')$. A successful logical generalization updates the inverse (B', wife, A) and neighborhood relations $(C/D, \text{father}, B')$; $(B', \text{daughter/son}, C/D)$. (b) Performance after editing the target layer: Edit Success (direct change), Logical Generalization (propagation to entailed facts), and Locality (impact on unrelated facts). (c) A strong correlation ($R^2 = 0.939$) exists between a model’s best bilinear accuracy and its best logical generalization after editing. (d) Layer-wise performance of bilinear probing and logical generalization for “Not Reversal Cursed” models.

We evaluated edited models on three metrics (Figure 5a): (1) **edit success**—whether the model correctly predicts $(A, \text{husband}, B')$; (2) **logical generalization**—the average success rate on entailed facts: (B', wife, A) , $(C/D, \text{father}, B')$, and $(B', \text{daughter/son}, C/D)$; and (3) **locality**—whether unrelated facts like $(C, \text{brother}, D)$ remain unchanged.

Results. Figure 5b shows that both “Reversal Cursed” and “Not Reversal Cursed” models successfully learn the direct edit with 100% accuracy. However, their generalization abilities diverge dramatically: models without the reversal curse achieve high logical generalization, while those with the curse fail completely. Additionally, “Not Reversal Cursed” models maintain better locality than their counterparts.

To quantify the relationship between internal structure and editing performance, we correlate each model’s best bilinear probe accuracy (across all layers from Experiment 2) with its best logical generalization after editing (across all layers). Figure 5c reveals a strong positive correlation ($R^2 = 0.939$), demonstrating that a well-structured bilinear representation predicts a successful logical propagation of a single edit.

Interestingly, the optimal layers for editing do not align perfectly with the layers where the bilinear structure is strongest. Figure 5d reveals that for “Not Reversal Cursed” models, logical generalization is highest when editing early-to-mid layers (1-4), whereas the bilinear structure is most prominent in middle layers (6-9). This suggests that to effectively edit an entity, one must intervene at the layers where the structured representation is being formed, rather than at the layers where it is already fully established and utilized. Modifying these earlier layers appears to correctly update the downstream representation, enabling the desired logical propagation. These results provide strong evidence for our central claim: bilinear representation is a key to logically consistent model editing.

432 **5 DISCUSSION**

434 Our findings establish a clear mechanistic link between the relational structure in the training data,
 435 the emergent representational geometry, and logical generalization. This has significant implications
 436 for how we understand, build, and interact with LMs.

437 **Model Editing: Is the Model “Ready” to be Edited?** Our results reframe the challenge of model
 438 editing. Much of the current research focuses on developing more sophisticated editing algorithms,
 439 treating the model as a static object to be operated upon. We show that the success of any edit is
 440 fundamentally constrained by the pre-existing representational geometry. An editor cannot force a
 441 logically entailed update if the model lacks the necessary algebraic structure to represent that entail-
 442 ment. **However, the existence of structure alone is not enough; the editing method must also preserve**
 443 **it.** While we demonstrate that fine-tuning successfully propagates edits when bilinear structure is
 444 present, Nishi et al. (2025) recently showed that model editing methods can “shatter” the under-
 445 lying graph topology. Thus, while bilinear structure is a key indicator of logical generalization,
 446 realizing this potential requires editing algorithms that respect—rather than destroy—the model’s
 447 **internal algebraic integrity.** This suggests a paradigm shift: before editing, we might first need to
 448 assess whether a model is “editable” in a logically consistent way. This leads to a two-pronged ap-
 449 proach for future research: 1) developing editing algorithms that are aware of and can leverage the
 450 model’s internal geometry, and 2) “preparing” models for editing by endowing them with structured
 451 knowledge representations during pre-training or fine-tuning.

452 **From Memorization to Reasoning: The Role of Representation.** This work suggests that the
 453 perceived gap between a LM’s ability to memorize and its ability to reason may be a function of
 454 its internal knowledge structure. Phenomena like the reversal curse appear as symptoms of an LM
 455 optimized for exploiting statistical shortcuts—such as relying on the co-occurrence of terms in train-
 456 ing data—rather than developing the logical understanding such as latent multi-hop reasoning (Yang
 457 et al., 2024a;b; Balesni et al., 2025). Our demonstration that a structured knowledge dataset with
 458 appropriate regularization can induce a transition to an algebraic, bilinear structure implies that
 459 transformer-based LMs are capable of learning more than just directional associations. This raises a
 460 crucial question for the field: Are we explicitly training models to reason, or are we hoping reason-
 461 ing emerges as a side effect of scaling? Our results suggest that actively guiding the formation of
 462 structured representations, perhaps through curriculum learning, contrastive objectives, or integra-
 463 tion with knowledge graphs during pretraining, could be a more direct path to building genuinely
 464 logical LMs.

465
 466
 467 **Mechanistic Interpretation: The Attention Head Hypothesis.** While our analysis relies on
 468 readout probes and algebraic validation, we hypothesize that the “bilinear structure” we detect cor-
 469 responds to the Query-Key (QK) circuits in the self-attention layers. Since the attention mechanism
 470 is inherently bilinear ($\text{Attention}(x, y) \propto x^T W_Q^T W_K y$), it is likely that specific heads are respon-
 471 sible for encoding these relational structures. Recent work (Elhelou & Geva, 2025) has demonstrated
 472 that specific attention heads encode relational lookups in OV circuits and appear at mid to late
 473 layers, aligning with our observation of bilinear structure emergence. This suggests that the lack of
 474 such a “head” may be the bottleneck in reversal cursed models. Future work could verify this by
 475 intervening on specific attention heads that align with our M_r matrices.

476
 477 **Limitations and Future Work.** Our primary limitation is its use of LMs trained from scratch on
 478 a clean, synthetic dataset. This raises the crucial question of whether these findings scale to large,
 479 pre-trained LMs and the noisy, complex knowledge they contain. Whether similar bilinear structures
 480 exist in industrial-scale pre-trained LMs remains an open question; it is unlikely that all knowledge
 481 is encoded via a single, uniform geometry. Instead, different domains of knowledge may adopt
 482 different relational structures in their representations. Our work is a proof of concept, demon-
 483 strating that LMs are *capable* of forming this algebraically robust structure, although we have not verified its
 484 prevalence in existing large-scale LMs. A critical direction for future work, therefore, is to develop
 485 methodologies to diagnose *how* a pre-trained model decodes a specific piece of information. Such
 a diagnostic capability would be transformative, enabling a new paradigm of structure-aware model
 editing. By first identifying a fact’s local representational geometry, we could then select or design

486 editing techniques that respect and leverage that structure, moving the field from a trial-and-error
 487 process to a more principled, geometrically informed science of knowledge modification.
 488

489 **6 CONCLUSION**
 490

491 We demonstrated that the reversal curse and failures in model editing generalization are not inherent
 492 limitations of LMs, but rather symptoms of an unstructured internal knowledge representation. By
 493 training transformers on a synthetic knowledge graph with appropriate regularization, we showed
 494 that they can learn a robust bilinear structure for relational knowledge. Probing experiments con-
 495 firmed that this structure emerges in the middle layers and is algebraically sound, supporting rela-
 496 tional inversion and composition. Crucially, we established a strong link between the presence of
 497 this bilinear representation and the model’s ability to both overcome the reversal curse and perform
 498 logically consistent model editing. When a fact was edited, models with this structure successfully
 499 propagated the change to entailed facts, whereas models without it failed to generalize. Our findings
 500 highlight that the path toward more reliable and editable LMs lies not just in better algorithms but
 501 in shaping the fundamental geometry of their learned knowledge representations.
 502

503 **REPRODUCIBILITY STATEMENT**
 504

505 We include full details about our model architecture, training setup, and hyperparameter sweeps in
 506 Appendix A. Our synthetic dataset construction are described in Appendix B. We ran all experi-
 507 ments on a workstation with 4 A100 GPUs. Our implementation uses the GPT-NeoX library (An-
 508 donian et al., 2023) via HuggingFace Transformers Wolf et al. (2019), which is implemented in
 509 PyTorch (Paszke et al., 2019).
 510

511 **REFERENCES**
 512

513 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipulation.
 514 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=oDbiL9CLOs>.
 515

516 Alex Andonian, Quentin Anthony, Stella Biderman, Sid Black, Preetham Gali, Leo Gao, Eric
 517 Hallahan, Josh Levy-Kramer, Connor Leahy, Lucas Nestler, Kip Parker, Michael Pieler, Jason
 518 Phang, Shivanush Purohit, Hailey Schoelkopf, Dashiell Stander, Tri Songz, Curt Tigges, Ben-
 519 jamin Thérien, Phil Wang, and Samuel Weinbach. GPT-NeoX: Large Scale Autoregressive Lan-
 520 guage Modeling in PyTorch, 9 2023. URL <https://www.github.com/eleutherai/gpt-neox>.
 521

522 Mikita Balesni, Tomek Korbak, and Owain Evans. Lessons from studying two-hop latent reasoning,
 523 2025. URL <https://arxiv.org/abs/2411.16353>.
 524

525 Lukas Berglund, Meg Tong, Maximilian Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz
 526 Korbak, and Owain Evans. The reversal curse: LLMs trained on “a is b” fail to learn “b is
 527 a”. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=GPKTIktA0k>.
 528

529 Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. In
 530 Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceed-
 531 ings of the 2021 Conference on Empirical Methods in Natural Language Processing*, pp. 6491–
 532 6506, Online and Punta Cana, Dominican Republic, November 2021. Association for Compu-
 533 tational Linguistics. doi: 10.18653/v1/2021.emnlp-main.522. URL <https://aclanthology.org/2021.emnlp-main.522/>.
 534

535 Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
 536 Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
 537 Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
 538 Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
 539 Chris Olah. A mathematical framework for transformer circuits. *Transformer Circuits Thread*,
 2021. <https://transformer-circuits.pub/2021/framework/index.html>.

540 Amit Elhelo and Mor Geva. Inferring functionality of attention heads from their parameters. In
 541 Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Pro-
 542 ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Vol-
 543 ume 1: Long Papers)*, pp. 17701–17733, Vienna, Austria, July 2025. Association for Com-
 544 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.866. URL
 545 <https://aclanthology.org/2025.acl-long.866/>.

546 Joshua Engels, Eric J Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language model
 547 features are one-dimensionally linear. In *The Thirteenth International Conference on Learning
 548 Representations*, 2025. URL <https://openreview.net/forum?id=d63a4AM4hb>.

549

550 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
 551 are key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott
 552 Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
 553 guage Processing*, pp. 5484–5495, Online and Punta Cana, Dominican Republic, November
 554 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
 555 <https://aclanthology.org/2021.emnlp-main.446/>.

556 Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual asso-
 557 ciations in auto-regressive language models. In *Proceedings of the 2023 Conference on Empirical
 558 Methods in Natural Language Processing*, pp. 6109–6125, 2023.

559 Olga Golovneva, Zeyuan Allen-Zhu, Jason E Weston, and Sainbayar Sukhbaatar. Reverse training
 560 to nurse the reversal curse. In *First Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=HDkNbFLQgu>.

561

562 Wes Gurnee and Max Tegmark. Language models represent space and time. In *The Twelfth Interna-
 563 tional Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=jE8xbmvFin>.

563

564 Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform editing?
 565 surprising differences in causality-based localization vs. knowledge editing in language models.
 566 In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=ElDbU1Ztbd>.

567

568 Peter Hase, Thomas Hofweber, Xiang Zhou, Elias Stengel-Eskin, and Mohit Bansal. Fundamental
 569 problems with model editing: How should rational belief revision work in LLMs? *Transactions
 570 on Machine Learning Research*, 2024. ISSN 2835-8856. URL <https://openreview.net/forum?id=LRf19n5Ly3>.

571

572 Evan Hernandez, Arnab Sen Sharma, Tal Haklay, Kevin Meng, Martin Wattenberg, Jacob Andreas,
 573 Yonatan Belinkov, and David Bau. Linearity of relation decoding in transformer language models.
 574 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=w7LU2s14kE>.

575

576 Ouail Kitouni, Niklas Nolte, Adina Williams, Michael Rabbat, Diane Bouchacourt, and Mark
 577 Ibrahim. The factorization curse: Which tokens you predict underlie the reversal curse and more.
 578 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL
 579 <https://openreview.net/forum?id=f70e6YYFHF>.

580

581 Andrew K Lampinen, Arslan Chaudhry, Stephanie CY Chan, Cody Wild, Diane Wan, Alex Ku, Jörg
 582 Bornschein, Razvan Pascanu, Murray Shanahan, and James L McClelland. On the generalization
 583 of language models from in-context learning and finetuning: a controlled study. *arXiv preprint
 584 arXiv:2505.00661*, 2025.

585

586 Zhengkai Lin, Zhihang Fu, Kai Liu, Liang Xie, Binbin Lin, Wenxiao Wang, Deng Cai, Yue Wu,
 587 and Jieping Ye. Delving into the reversal curse: How far can large language models generalize?
 588 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL
 589 <https://openreview.net/forum?id=1wxFznQWhp>.

590

591 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 592 ence on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

594 Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. Locating and editing fac-
 595 tual associations in GPT. In *Advances in Neural Information Processing Systems*, 2022. URL
 596 <https://openreview.net/forum?id=-h6WAS6eE4>.
 597

598 Kevin Meng, Arnab Sen Sharma, Alex J Andonian, Yonatan Belinkov, and David Bau. Mass-editing
 599 memory in a transformer. In *The Eleventh International Conference on Learning Representations*,
 600 2023. URL <https://openreview.net/forum?id=MkbcAHIYgyS>.
 601

602 Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Language models implement simple Word2Vec-
 603 style vector arithmetic. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings*
 604 *of the 2024 Conference of the North American Chapter of the Association for Computational*
 605 *Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 5030–5047, Mexico
 606 City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 607 *naacl-long.281*. URL <https://aclanthology.org/2024.naacl-long.281/>.
 608

609 Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
 610 tributed representations of words and phrases and their compositionality. In C.J.
 611 Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.), *Ad-*
 612 *vances in Neural Information Processing Systems*, volume 26. Curran Associates, Inc.,
 613 2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf.
 614

615 Maximilian Nickel. *Tensor factorization for relational learning*. Ludwig-Maximilians-
 616 Universität München, August 2013. URL <http://nbn-resolving.de/urn:nbn:de:bvb:19-160568>.
 617

618 Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning
 619 on multi-relational data. In *Proceedings of the 28th international conference on machine learning*
 620 (*ICML-11*), pp. 809–816, 2011.
 621

622 Kento Nishi, Rahul Ramesh, Maya Okawa, Mikail Khona, Hidenori Tanaka, and Ekdeep Singh
 623 Lubana. Representation shattering in transformers: A synthetic study with knowledge edit-
 624 ing. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=BKOeyZal0x>.
 625

626 Alberto Paccanaro and Geoffrey E. Hinton. Learning distributed representations of concepts using
 627 linear relational embedding. *IEEE Transactions on Knowledge and Data Engineering*, 13(2):
 628 232–244, 2002.
 629

630 Haowen Pan, Xiaozhi Wang, Yixin Cao, Zenglin Shi, Xun Yang, Juanzi Li, and Meng Wang. Precise
 631 localization of memories: A fine-grained neuron-level knowledge editing technique for LLMs.
 632 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=5xP1HDvpXI>.
 633

634 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 635 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 636 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 637 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
 638 deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
 639 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Cur-
 640 ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.
 641

642 Jacques Thibodeau. But is it really in rome? an investigation of
 643 the rome model editing technique. *Alignment Forum*, 2022. URL
 644 <https://www.alignmentforum.org/posts/QL7J9wms6W2fWpofd/but-is-it-really-in-rome-an-investigation-of-the-rome-model>.
 645

646 Peng Wang, Ningyu Zhang, Bozhong Tian, Zekun Xi, Yunzhi Yao, Ziwen Xu, Mengru Wang,
 647 Shengyu Mao, Xiaohan Wang, Siyuan Cheng, Kangwei Liu, Yuansheng Ni, Guozhou Zheng, and
 648 Huajun Chen. EasyEdit: An easy-to-use knowledge editing framework for large language mod-
 649 els. In Yixin Cao, Yang Feng, and Deyi Xiong (eds.), *Proceedings of the 62nd Annual Meeting*

648 *of the Association for Computational Linguistics (Volume 3: System Demonstrations)*, pp. 82–93,
 649 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
 650 2024.acl-demos.9. URL <https://aclanthology.org/2024.acl-demos.9/>.

651 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 652 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
 653 State-of-the-art natural language processing. *arXiv preprint arXiv:1910.03771*, 2019.

654 Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large lan-
 655 guage models latently perform multi-hop reasoning? In Lun-Wei Ku, Andre Martins, and
 656 Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-
 657 putational Linguistics (Volume 1: Long Papers)*, pp. 10210–10229, Bangkok, Thailand, August
 658 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.550. URL
 659 <https://aclanthology.org/2024.acl-long.550/>.

660 Sohee Yang, Nora Kassner, Elena Gribovskaya, Sebastian Riedel, and Mor Geva. Do large lan-
 661 guage models perform latent multi-hop reasoning without exploiting shortcuts? *arXiv preprint
 662 arXiv:2411.16679*, 2024b.

663 Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen,
 664 and Ningyu Zhang. Editing large language models: Problems, methods, and opportunities. In
 665 Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on
 666 Empirical Methods in Natural Language Processing*, pp. 10222–10240, Singapore, December
 667 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.632. URL
 668 <https://aclanthology.org/2023.emnlp-main.632/>.

669 Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix Yu, and
 670 Sanjiv Kumar. Modifying memories in transformer models. *arXiv preprint arXiv:2012.00363*,
 671 2020.

672 Hanlin Zhu, Baihe Huang, Shaolun Zhang, Michael Jordan, Jiantao Jiao, Yuandong Tian, and Stuart
 673 Russell. Towards a theoretical understanding of the ‘reversal curse’ via training dynamics. In
 674 *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL
 675 <https://openreview.net/forum?id=QoWf3lo6m7>.

676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 A MODEL ARCHITECTURE AND TRAINING DETAILS
703704 We use a decoder-only Transformer (GPT-NeoX) with rotary positional embeddings (RoPE).
705706 Architecture configuration (GPT-NeoX):
707

- Layers: 12 Transformer blocks
- Hidden size (or embedding dimension): 896
- Attention heads: 16 (head dimension 56)
- Feed-forward size: 3584 ($4 \times$ hidden size)
- Positional encoding: rotary embeddings with standard base 10,000
- Max context length: 1024 tokens
- Dropout: attention 0.1, MLP hidden 0.1
- Residual path: non-parallel residual (`use_parallel_residual = False`)
- Number of parameters: approximately \sim 206M.

719 Training setup:
720

- Hardware: 4 A100 GPUs
- Batch size: per-device 16 (train), 32 (eval); global 64 (train), 128 (eval)
- Optimizer: AdamW with learning rate 3×10^{-4} and $(\beta_1, \beta_2) = (0.9, 0.95)$.
- Hyperparameter sweep: weight decay $\in \{0, 0.1, 0.5, 1, 2, 3, 4, 5, 6\}$; random seed $\in \{0, 1, 2\}$
- Learning rate scheduler: Cosine decay with linear warmup ratio 0.01
- Training epochs: 20

729 Note that we train all models from scratch without using any pretrained weights and we used the
730 tokenizer from GPT-NeoX.
731732 B SYNTHETIC DATA CONSTRUCTION AND EXAMPLES
733734 We construct a synthetic family-graph dataset where each family contributes a single document
735 formed by concatenating all relational facts as sentences: “[Subject First Name] [Family Name]
736 [Relation] [Object First Name] [Family Name]”. A family name is shared by all entities (or mem-
737 bers) and is formed by “[Middle Name] [Last Name]”, so the full name is “[First Name] [Middle
738 Name] [Last Name]”. We sample names from fixed pools (listed below) to ensure uniqueness and
739 reproducibility.
740741 Generation rules:
742

- Entities: one family per document with unique members; all members share the family name.
- Relations: eight types — husband, wife, father, mother, brother, sister, son, daughter.
- Split: 1,000 families divided into two groups of 500 each.
- Training data:
 - Group 1 (first 500 families): includes all eight relations. 5,000 members total; 36 facts per family. See example below.
 - Group 2 (next 500 families): excludes father/mother. 5,000 members total; 24 facts per family. See example below.
- Test data:
 - For Group 2 families, add back only the father/mother facts to create the test set (12 facts per family). See example below.

756
757

Trainset example from the first group (all relations).

758 Sandy Francis Barton brother Zachary Francis Barton. Katrina Francis
759 Barton son Zachary Francis Barton. Sandy Francis Barton father Kyle
760 Francis Barton. Debra Francis Barton daughter Katrina Francis Barton.
761 Kyle Francis Barton mother Veronica Francis Barton. Kyle Francis Barton
762 daughter Sandy Francis Barton. Debra Francis Barton husband Gary Francis
763 Barton. Henry Francis Barton sister Katrina Francis Barton. Justin
764 Francis Barton wife Veronica Francis Barton. Katrina Francis Barton
765 daughter Sandy Francis Barton. Veronica Francis Barton son Kyle Francis
766 Barton. Vanessa Francis Barton father Justin Francis Barton. Gary
767 Francis Barton son Henry Francis Barton. Gary Francis Barton wife Debra
768 Francis Barton. Kyle Francis Barton father Justin Francis Barton. Gary
769 Francis Barton daughter Katrina Francis Barton. Katrina Francis Barton
770 father Gary Francis Barton. Zachary Francis Barton sister Sandy Francis
771 Barton. Debra Francis Barton son Henry Francis Barton. Zachary Francis
772 Barton father Kyle Francis Barton. Veronica Francis Barton daughter
773 Vanessa Francis Barton. Henry Francis Barton father Gary Francis Barton.
774 Kyle Francis Barton sister Vanessa Francis Barton. Henry Francis Barton
775 mother Debra Francis Barton. Katrina Francis Barton brother Henry
776 Francis Barton. Sandy Francis Barton mother Katrina Francis Barton.
777 Zachary Francis Barton mother Katrina Francis Barton. Vanessa Francis
778 Barton mother Veronica Francis Barton. Katrina Francis Barton husband
779 Kyle Francis Barton. Kyle Francis Barton wife Katrina Francis Barton.
780 Vanessa Francis Barton brother Kyle Francis Barton. Kyle Francis Barton
son Zachary Francis Barton.

781
782
783

Trainset example from the second group (without father/mother).

784
785
786
787
788
789
790
791
792
793
794
795
796
797

Dalton Scott Wall sister Colleen Scott Wall. Ebony Scott Wall husband
Cody Scott Wall. Ebony Scott Wall son Julian Scott Wall. Jamie Scott
Wall brother Julian Scott Wall. Jacob Scott Wall son Dalton Scott Wall.
Jacob Scott Wall wife Jamie Scott Wall. Curtis Scott Wall daughter
Brenda Scott Wall. Brenda Scott Wall brother Jacob Scott Wall. Emily
Scott Wall husband Curtis Scott Wall. Jamie Scott Wall son Dalton Scott
Wall. Curtis Scott Wall wife Emily Scott Wall. Cody Scott Wall daughter
Jamie Scott Wall. Jamie Scott Wall husband Jacob Scott Wall. Jacob
Scott Wall sister Brenda Scott Wall. Emily Scott Wall daughter Brenda
Scott Wall. Cody Scott Wall son Julian Scott Wall. Ebony Scott Wall
daughter Jamie Scott Wall. Curtis Scott Wall son Jacob Scott Wall. Cody
Scott Wall wife Ebony Scott Wall. Colleen Scott Wall brother Dalton
Scott Wall. Jamie Scott Wall daughter Colleen Scott Wall. Julian Scott
Wall sister Jamie Scott Wall. Jacob Scott Wall daughter Colleen Scott
Wall. Emily Scott Wall son Jacob Scott Wall.

798
799

Testset example from the second group (only father/mother). 12 prompts per family.

800
801
802
803
804
805
806
807
808
809

Julian Scott Wall mother Ebony Scott Wall.
Julian Scott Wall father Cody Scott Wall.
Jamie Scott Wall mother Ebony Scott Wall.
Jamie Scott Wall father Cody Scott Wall.
Jacob Scott Wall mother Emily Scott Wall.
Jacob Scott Wall father Curtis Scott Wall.
Brenda Scott Wall mother Emily Scott Wall.
Brenda Scott Wall father Curtis Scott Wall.
Dalton Scott Wall mother Jamie Scott Wall.
Dalton Scott Wall father Jacob Scott Wall.
Colleen Scott Wall mother Jamie Scott Wall.
Colleen Scott Wall father Jacob Scott Wall.

810 **Name sampling.** We draw first names by gender, middle names from fixed pools, and last names
 811 from a large pool. The family name is “[Middle Name] [Last Name]”, shared by all members. Below
 812 are the exact pools used.
 813

814 **NAME POOLS (FOR REPRODUCIBILITY)**
 815

816 **FEMALE_FIRST_NAMES**
 817

818 Sheryl, Caitlyn, Alisha, Heidi, Frances, Elaine, Catherine, Bridget,
 819 Tami, Norma, Bianca, Robyn, Kylie, Amanda, Alyssa, Brandy, Dorothy,
 820 Erica, Melody, Sandra, Alison, Peggy, Debra, Sophia, Victoria, Kristy,
 821 Ebony, Loretta, Robin, Holly, Adrienne, Christina, Veronica, Joy, Tasha,
 822 Chloe, Doris, Jody, Wanda, Tricia, Kayla, Brenda, Karen, Judith, Sandy,
 823 Hailey, Angela, Madeline, Natalie, Carol, Katrina, Beth, Pam, Jamie,
 824 Shelia, Sharon, Karina, Rebekah, Deanna, Autumn, Angelica, Ellen, Jade,
 825 Sierra, Tracie, Brianna, Susan, Virginia, Lydia, Karla, Christy,
 826 Kathleen, Kaitlyn, Diane, Haley, Bailey, Colleen, Nancy, Yesenia, Sara,
 827 Madison, Shannon, Hayley, Patty, Terri, Joan, Anne, Emily, Vanessa,
 828 Jenny, Kimberly, Hannah, Ashley, Dominique, Rachael, Toni, Melanie,
 829 Kerry, Mackenzie, Charlene
 830

829 **MALE_FIRST_NAMES**
 830

831 Guy, Damon, Gerald, Steve, Samuel, Gregory, Todd, Mark, Timothy, Leroy,
 832 Julian, Fernando, Dalton, Rick, Ralph, Cesar, Bill, Clinton, Darren,
 833 Dave, Marco, Brandon, Kyle, Kristopher, Noah, Ross, Glen, Shawn, Alec,
 834 Cole, Ryan, Harold, Johnathan, Cody, Jacob, Mason, Daryl, Mike, Adam,
 835 Wesley, Raymond, Don, Richard, Clayton, Jake, Seth, Edgar, Tracy, Kent,
 836 David, Roy, Aaron, Jerome, Phillip, Alexis, Steven, Victor, Javier,
 837 Gavin, Brad, Gene, Caleb, Carl, Peter, Brett, Cory, Craig, Jesus, Gary,
 838 Oscar, Henry, Cameron, Curtis, Zachary, Mathew, Jared, Ernest, Sergio,
 839 Nicholas, Hayden, Kevin, Justin, Jon, Christian, Joseph, Darryl, Eduardo,
 840 Joe, Jerry, Duane, Vernon, Micheal, Greg, Frank, Bradley, Corey, Rodney,
 841 Angel, Derrick, Terrence
 842

841 **MIDDLE_NAMES**
 842

843 Anthony, Marcus, Jose, Kenneth, Lee, Colin, Arthur, Kirk, Blake, Dan,
 844 Benjamin, Marvin, Troy, Philip, Donald, Jamie, Calvin, Luke, Dustin,
 845 Marc, Tristan, Andres, Michael, Tyrone, Jeffery, Patrick, Wyatt, Luis,
 846 Larry, Frederick, Earl, Darrell, Perry, Roberto, Shannon, Douglas, Eddie,
 847 Jaime, Chad, Scott, Norman, Francis, Johnny, Ruben, Bernard, Albert,
 848 Rickey, Miguel, Spencer, Brent, Reginald, Leonard, Dennis, Kerry, Ronald,
 849 Russell, Gregg, Trevor, Drew, Hunter, Erik, Warren, Jesse, Levi,
 850 Francisco, Maxwell, Wayne, Ray, Lonnie, Ricky, Brian, Charles, Parker,
 851 Bryce, Bruce, Matthew, Clifford, Edwin, Nathan, Dean, Gordon, Sean,
 852 Stanley, Stephen, Karl, Dwayne, Antonio, Brady, Jeffrey, Elijah, Andrew,
 853 Adrian, Gilbert, Omar, Taylor, Tanner, Nathaniel, Devin, Lance, Harry
 854

853 **LAST_NAMES**
 854

855 Allison, Hanna, Stark, Mata, Travis, Peters, Zuniga, Smith, Gay,
 856 Thornton, Yu, Miller, Webb, Patterson, Ortiz, Combs, Meadows,
 857 Christensen, Freeman, Howell, Berger, Cooley, Glover, Jennings,
 858 Blackwell, Turner, Mcgee, Duffy, Montgomery, Glenn, Krause, Coleman,
 859 Petersen, Gregory, Barnes, Morris, Hensley, Harding, Bird, Estrada,
 860 Garza, Gomez, Burke, Waters, Lam, Davenport, Frost, Stafford, Jarvis,
 861 Williams,
 862

863 **Dataset augmentation.** For each family document, we create augmented training instances by
 864 randomly permuting the order of sentences (facts) while keeping each sentence unchanged. We
 865 generate 1,000 permutations per family, resulting in 318M tokens per training epoch.

864 C SVD-BASED UPDATE OF RELATION MATRICES IN RESCAL

866 In the RESCAL model (Nickel et al., 2011), the Alternating Least Squares (ALS) procedure requires
 867 updating the relation matrices $\{\mathbf{M}_r\}_{r=1}^m$ while holding the entity embedding matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$
 868 fixed, where n is the number of entities, d is the embedding dimension, and m is the number of
 869 relations.

870 The objective function for a single relation r is:

$$872 \quad L(\mathbf{M}_r) = \frac{1}{2} \|\mathcal{X}_r - \mathbf{A} \mathbf{M}_r \mathbf{A}^T\|_F^2 + \frac{\lambda_R}{2} \|\mathbf{M}_r\|_F^2 \quad (6)$$

874 Our goal is to find the $\mathbf{M}_r \in \mathbb{R}^{d \times d}$ that minimizes this function.

876 To find the minimum, we can set the gradient of $L(\mathbf{M}_r)$ with respect to \mathbf{M}_r to zero:

$$878 \quad \frac{\partial L}{\partial \mathbf{M}_r} = -\mathbf{A}^T (\mathcal{X}_r - \mathbf{A} \mathbf{M}_r \mathbf{A}^T) \mathbf{A} + \lambda_R \mathbf{M}_r = 0 \quad (7)$$

880 Rearranging the terms, we get the normal equation:

$$881 \quad \mathbf{A}^T \mathbf{A} \mathbf{M}_r \mathbf{A}^T \mathbf{A} + \lambda_R \mathbf{M}_r = \mathbf{A}^T \mathcal{X}_r \mathbf{A} \quad (8)$$

883 This is a continuous Sylvester equation. Using the vectorization operator $\text{vec}()$ and the Kronecker
 884 product \otimes , we can rewrite it as a standard linear system:

$$885 \quad ((\mathbf{A}^T \mathbf{A}) \otimes (\mathbf{A}^T \mathbf{A}) + \lambda_R \mathbf{I}_{d^2}) \text{vec}(\mathbf{M}_r) = \text{vec}(\mathbf{A}^T \mathcal{X}_r \mathbf{A}) \quad (9)$$

887 Solving this equation directly requires inverting a dense $(d^2 \times d^2)$ matrix, which is computationally
 888 expensive with a complexity of $\mathcal{O}((d^2)^3) = \mathcal{O}(d^6)$. This becomes prohibitive as the embedding
 889 dimension d grows. Due to high dimension of embedding space ($d = 896$) of our models, Eq. 9 is
 890 infeasible to solve directly.

891 To mitigate this issue, we employ the Singular Value Decomposition (SVD) to overcome the afore-
 892 mentioned computational bottleneck. Let the SVD of the entity matrix be $\mathbf{A} = \mathbf{U} \mathbf{S} \mathbf{V}^\top$ with or-
 893 orthonormal \mathbf{U} , \mathbf{V} and singular values $\mathbf{S} = \text{diag}(s_1, \dots, s_d)$. Using $\mathbf{A}^\top \mathbf{A} = \mathbf{V} \mathbf{S}^2 \mathbf{V}^\top$, Eq. 8 can be
 894 rotated into the singular space, yielding the diagonal Sylvester equation

$$895 \quad s_i^2 (\tilde{\mathbf{M}}_r)_{ij} s_j^2 + \lambda_R (\tilde{\mathbf{M}}_r)_{ij} = s_i (\tilde{\mathcal{X}}_r)_{ij} s_j, \quad \tilde{\mathbf{M}}_r = \mathbf{V}^\top \mathbf{M}_r \mathbf{V}, \quad \tilde{\mathcal{X}}_r = \mathbf{U}^\top \mathcal{X}_r \mathbf{U}.$$

897 Solving element-wise gives

$$898 \quad (\tilde{\mathbf{M}}_r)_{ij} = \frac{s_i s_j}{s_i^2 s_j^2 + \lambda_R} (\tilde{\mathcal{X}}_r)_{ij},$$

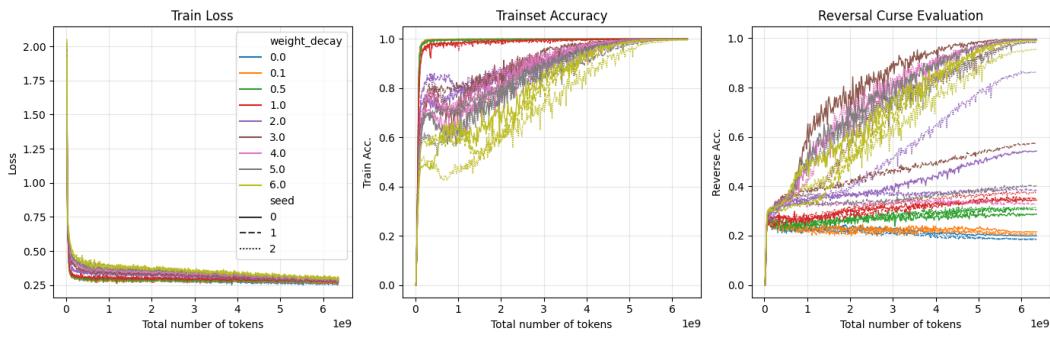
900 or in matrix form $\tilde{\mathbf{M}}_r = \mathbf{P} \odot \tilde{\mathcal{X}}_r$ with $P_{ij} = s_i s_j / (s_i^2 s_j^2 + \lambda_R)$. Transforming back,

$$902 \quad \boxed{\mathbf{M}_r = \mathbf{V} (\mathbf{P} \odot (\mathbf{U}^\top \mathcal{X}_r \mathbf{U})) \mathbf{V}^\top}.$$

904 The update costs $\mathcal{O}(nd^2)$ for the SVD and $\mathcal{O}(n^2 d + d^3)$ for the remaining multiplications, vs. $\mathcal{O}(d^6)$
 905 for the naive Kronecker inversion. In this work, we employed the algorithm in Nickel (2013) and
 906 reproduce the formula here only to motivate our implementation choice.

908 $n = 1250$ (max entities; 125 families, 10 member for each family) and $d = 896$ (embedding
 909 dimension) in our experiments, making the SVD-based update feasible. M_r is obtained from train
 910 set A then evaluated on test set B . B and A have disjoint entity sets.

911
 912
 913
 914
 915
 916
 917

918 D TRAINING, PROBING, AND EDITING RESULTS
919920 D.1 TRAINING RESULT IN DETAIL
921922 In this section, we provide training curves for all models with different weight decay values and
923 random seeds over training steps (see Fig 6). All models achieve 100% training accuracy, but test
924 accuracy varies significantly based on weight decay and random seed.
925938 Figure 6: Training loss, train accuracy, and test accuracy for models with different weight decay
939 values and seeds.
940941 D.2 PROBING RESULTS IN DETAIL
942943 D.2.1 LINEAR RELATION EMBEDDING
944945 Figure 7 shows the probe’s accuracy as a function of the number of training samples per relation,
946 n ($n = 10$, $n = 100$, and $n = 500$). The main text reports results for $n = 10$ due to the high
947 computational cost of Jacobian calculations. Here, we show that increasing the number of samples
948 up to $n = 500$ does not improve performance, confirming that the poor accuracy of the linear
949 relational embedding probe is not due to insufficient sampling. [We also run our bilinear probing for
950 \$n = 10\$, \$n = 100\$, and \$n = 500\$, which shows that insufficient \$n\$ leads to underfitting.](#)
951952 Figure 8 visualizes the layer-wise accuracy for each of the eight relations individually for $N = 100$
953 and $\beta = 5$. Interestingly, few models in “Reversal cursed” group (blue) show high accuracy at
954 mid-late layers while “Not Reversal Cursed” models (orange) do not. It indicates that some models
955 in the “Reversal cursed” group do learn linear relational embeddings for certain relations, but they
956 are not consistent across relations and layers.
957958 D.2.2 TRANSLATIONAL
959960 Figure 9 shows the per-relation accuracy for this task. The “Not Reversal Cursed” models exhibit
961 high accuracy only for the symmetric `husband` and `wife` relations, peaking at mid-to-late layers.
962 Accuracy for all other relations is near zero for both model groups. This suggests that while a
963 translational structure is learned, it is limited to simple symmetric pairs and does not generalize to
964 other relation types.
965966 D.2.3 BILINEAR
967968 Figure 10 shows the per-relation accuracy of bilinear probing. The “Not Reversal Cursed” models
969 achieve high accuracy across all relations, peaking at mid-to-late layers. In contrast, “Reversal
970 Cursed” models show near-zero accuracy for all relations. This indicates that learning a bilinear
971 relational structure is strongly associated with overcoming the reversal curse and generalizes well
across different relation types.
972

972 D.3 EDITING RESULT IN DETAIL
973

974 **Setup.** For each model we sample 50 distinct husband facts (A , husband, B) from Group 1. Each
975 is edited to $(A, \text{husband}, B')$ where B' is another female entity from the *same* family (preserves
976 name template and type). Single edit per run; no simultaneous multi-fact changes. For every layer
977 $l \in \{1, \dots, 12\}$ we fine-tune only the MLP output (final linear) weights of that layer using a single
978 example $(A, \text{husband}, B')$. Optimizer: Adam, lr 4×10^{-4} , early stop when loss < 0.2 (cap 50
979 update steps). All other parameters frozen.

980 **Metrics.** For each edited model:

981

- 982 • *Edit Success*: accuracy on $(A, \text{husband}, B')$.
- 983 • *Logical Generalization (Reverse-relation)*: accuracy on (B', wife, A) .
- 984 • *Logical Generalization ($B', \text{son/daughter}, C/D$)*: mean accuracy over $(B', \text{son/daughter}, C/D)$.
- 985 • *Logical Generalization ($C/D, \text{father}, B'$)*: mean accuracy over $(C/D, \text{father}, B')$.
- 986 • *Locality (In-Family)*: accuracy on other facts inside the edited family excluding any incident to
987 B' .
- 988 • *Locality (Other Families)*: accuracy on a fixed held-out set of facts from untouched families.

989

990 Accuracies are proportion of correct next-token generations for the object name (exact match).
991 Curves in Figure 11 report the mean over the 50 independent edits.

992

993

994

995

996

997

998

999

1000

1001

1002

1003

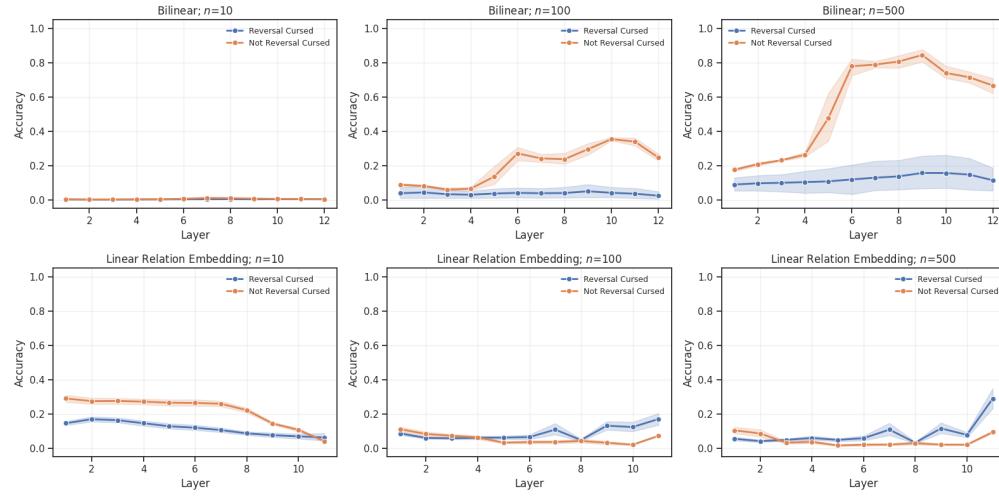
1004

1005

1006

1007

1008



1024 Figure 7: Bilinear and linear relational embedding accuracy for $n = 10$, $n = 100$, and $n = 500$,
1025 where n denotes the number of training samples per relation.

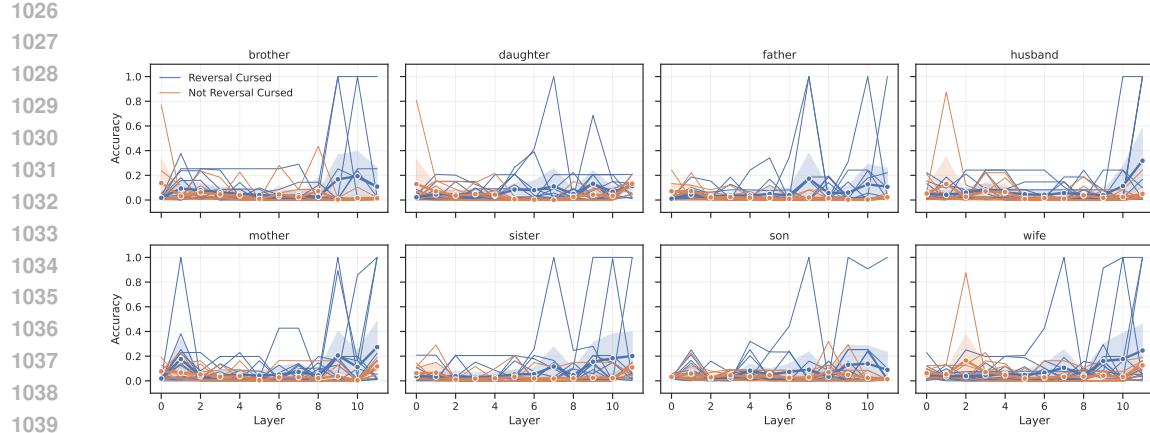


Figure 8: Visualization of linear relational embedding probing results for each relation r in with spaghetti plot ($n = 100$ and $\beta = 5$).

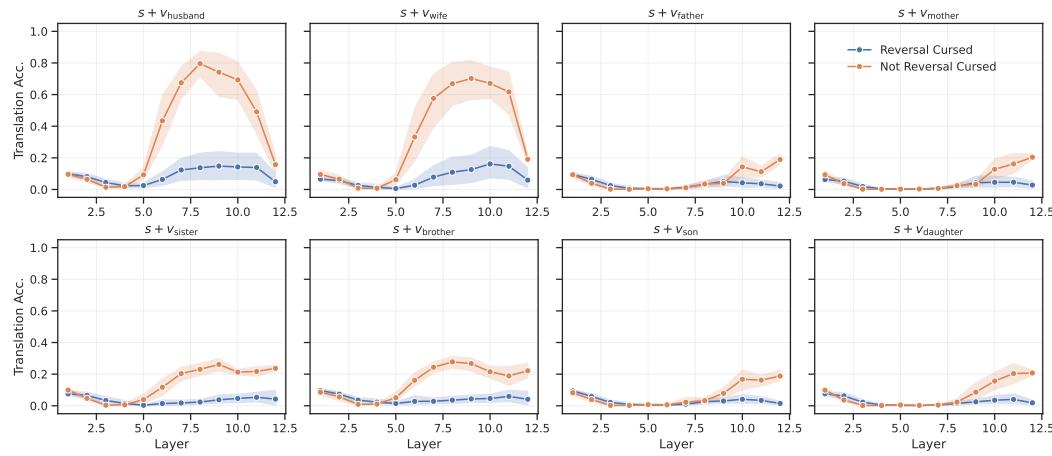


Figure 9: Translational probing accuracy for each relation r .

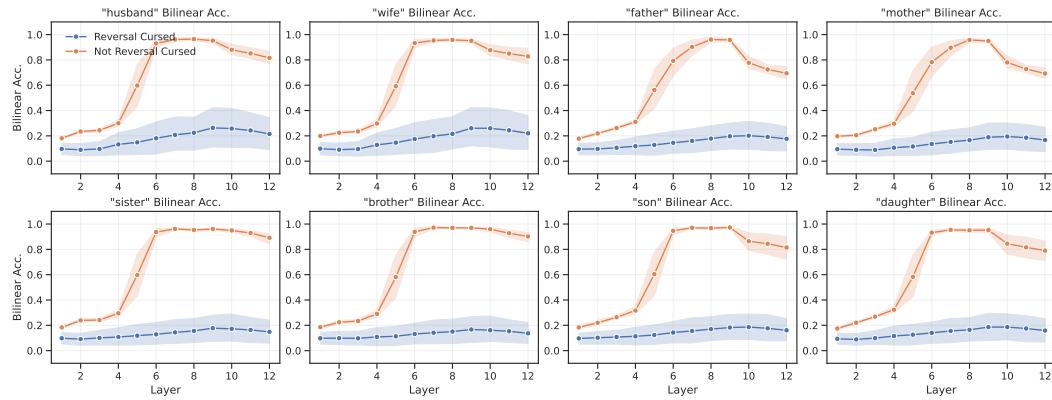


Figure 10: Bilinear probing accuracy for each relation r .

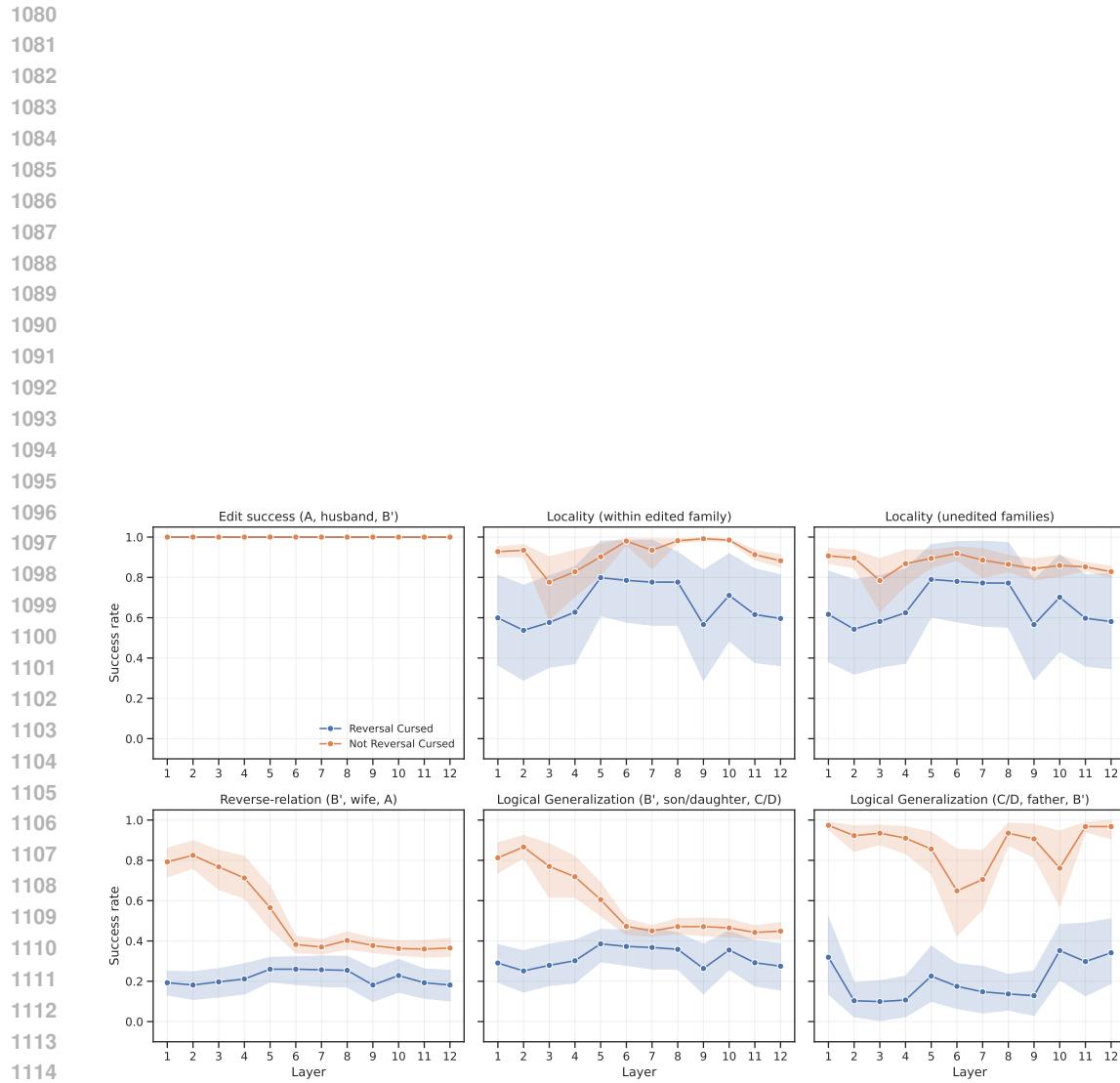


Figure 11: Editing experiment details. Six panels: Edit Success, Locality (edited family), Locality (other families), Reverse relation, Logical Generalization to children, Logical Generalization to parents.