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Abstract
While showing sophisticated reasoning abilities,
large language models (LLMs) still struggle with
long-horizon decision-making tasks due to defi-
cient exploration and long-term credit assignment,
especially in sparse-reward scenarios. Inspired
by the divide-and-conquer principle, we propose
an innovative framework GLIDER (Grounding
Language Models as EffIcient Decision-Making
Agents via Offline HiErarchical Reinforcement
Learning) that introduces a parameter-efficient
and generally applicable hierarchy to LLM poli-
cies. We develop a scheme where the low-level
controller is supervised with abstract, step-by-
step plans that are learned and instructed by
the high-level policy. This design decomposes
complicated problems into a series of coherent
chain-of-thought reasoning sub-tasks, providing
flexible temporal abstraction to significantly en-
hance exploration and learning for long-horizon
tasks. Furthermore, GLIDER facilitates fast on-
line adaptation to non-stationary environments
owing to the strong transferability of its task-
agnostic low-level skills. Experiments on Sci-
enceWorld and ALFWorld benchmarks show that
GLIDER achieves consistent performance gains,
along with enhanced generalization capabilities.

1. Introduction
A longstanding goal of artificial general intelligence is to
build agents capable of reasoning, decision-making, and
communication (Wooldridge & Jennings, 1995; Xu et al.,
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Figure 1: GLIDER’s hierarchical framework, showing sig-
nificant performance gain over non-hierarchical approaches.

2024). Recent attempts to exploit large language models
(LLMs) as agents have shown commendable results in tack-
ling interactive decision-making tasks (Li et al., 2022; Yao
et al., 2023b; Song et al., 2024). Prompt-based methods, like
ReAct (Yao et al., 2023b) and Reflexion (Shinn et al., 2023),
recursively augment the prompt to a frozen LLM with ver-
bal feedback. They are prone to exceed the input length
limit of in-context learning, especially for long-horizon
tasks. Scaling with supervised fine-tuning techniques can
further unlock the potential of LLMs for downstream ap-
plications (Zeng et al., 2023; Chen et al., 2023; Lin et al.,
2023). However, their performance is highly dependent on
expensive expert demonstrations and can be limited due to
deficient exploration of target environments.

Intelligent agents must excel at both imitating demonstra-
tions and adapting behaviors through trial-and-error (Silver
et al., 2021; Rafailov et al., 2023). Modern approaches adopt
reinforcement learning (RL) algorithms to steer LLMs to-
ward user-specified tasks (Ouyang et al., 2022), such as
offline Q-learning (Snell et al., 2023), PPO (Zhai et al.,
2024; Szot et al., 2024), or DPO (Song et al., 2024). This
paradigm enables SOTA performance in advanced LLMs
like OpenAI o1 and DeepSeek-R1 (Guo et al., 2025). How-
ever, RL intrinsically requires tedious and vast environment
interactions, leading to brittle performance and poor sam-
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ple efficiency (Burda et al., 2019; Mahankali et al., 2024).
Building efficient LLM agents with open-ended textual com-
mands poses several challenges, such as tackling huge ac-
tion spaces, executing long-horizon planning, and learn-
ing from sparse-reward feedback (Rocamonde et al., 2024;
Dwaracherla et al., 2024). Existing works still struggle with
complex tasks that demand a broad spectrum of vital capabil-
ities, including long-term credit assignment, understanding
the real physical world, and sophisticated exploration with
structured reasoning (Qiao et al., 2024; Zhou et al., 2024).

Humans naturally tackle complex problems through hierar-
chical decomposition (Sutton et al., 1999). This divide-and-
conquer principle is evident across scales in natural systems,
from how corporations divide into specialized departments
to how biological systems organize cells to form tissues and
organs. The hierarchy design plays a crucial role in advanc-
ing frontier research on language agents (Li et al., 2024;
Zhou et al., 2024) and embodied intelligence (Ahn et al.,
2022; Black et al., 2024), showcasing remarkable efficiency
for solving intricate tasks in a more human-like manner.

Inspired by this, we propose an innovative framework
GLIDER (Grounding Language Models as EffIcient
Decision-Making Agents via Offline HiErarchical RL) that
introduces a parameter-efficient and generally applicable
hierarchy to train competent LLM policies for complex inter-
active tasks. Our scheme contains two LLM policies, where
the low-level controller is supervised to achieve abstract,
step-by-step plans learned and proposed by the high-level
instructor. By harnessing the strong reasoning and plan-
ning capabilities of LLMs, we can decompose complicated
problems into a series of coherent chain-of-thought (CoT)
reasoning sub-tasks and perform efficient exploration in a
semantically structured space. To enhance learning stability,
we first build a base agent via behavior cloning, followed
by reinforcement fine-tuning of the hierarchical token-level
actors and sentence-level critics. This two-level agent is
trained in offline mode using hierarchical datasets to achieve
prominent sample efficiency, and also can be seamlessly de-
ployed for offline-to-online fine-tuning scenarios.

In summary, our main contributions are as follows:

• Inspired by the divide-and-conquer principle, we propose
an offline hierarchical framework GLIDER , empowering
LLM agents to tackle complex decision-making tasks
via sophisticated exploration and structured reasoning.

• Our method enables fast offline-to-online adaptation to
non-stationary environments by developing highly gen-
eralizable skills through hierarchical LLM agents.

• Comprehensive studies on ScienceWorld and ALFWorld
benchmarks show that our method consistently improves
performance and generalization capacity, surpassing a
range of baselines by a significant margin.

2. Related Work
LLMs as Decision-Making Agents. With a wealth of
semantic knowledge about the world, LLMs have shown
remarkable potential in building competent agents across
diverse domains (Xi et al., 2023), including reasoning
(Wei et al., 2022; Zhou et al., 2023; Luo et al., 2024),
robotics (Ahn et al., 2022; Shah et al., 2023) and multi-
agent (Chen et al., 2024; Ma et al., 2024). Early stud-
ies use a prompt-based framework, such as classical CoT
methods (Wei et al., 2022; Yao et al., 2023a; Wang et al.,
2023a) that prompt LLMs with intermediate reasoning steps.
Follow-up research employs synergy between reasoning and
acting (Yao et al., 2023b), incorporates self-reflective ver-
bal feedback (Shinn et al., 2023), and uses strategic reason-
ing (Gandhi et al., 2023). They use recursive feedback traces
to augment prompts, which helps address long sequence and
complex, long-horizon task challenges.

Scaling with supervised fine-tuning techniques can unlock
the potential for downstream tasks (Hu et al., 2022), such
as fine-tuning LLM agents on oracle action trajectories (Lin
et al., 2023), on a lightweight instruction-tuning dataset
containing high-quality interaction trajectories (Zeng et al.,
2023), and on agent trajectories generated from multiple
tasks and prompting methods (Chen et al., 2023). Due
to inherent limitations, the performance relies heavily on
expensive high-quality data and could easily be restricted
by deficient exploration of target environments.

RL offers a natural paradigm to unleash the LLM agents’
decision-making capabilities (Ouyang et al., 2022). Snell
et al. (2023) guides language generation towards maximiz-
ing user-specified utility functions using implicit language
Q-learning. ETO (Song et al., 2024) collects contrastive
trajectory pairs from interactions to update the LLM policy
using DPO (Rafailov et al., 2023). Other works employ a
similar pipeline where an LLM policy interacts with the en-
vironment to receive goal-directed task rewards, which are
then used to fine-tune the policy with classical algorithms
like PPO (Zhai et al., 2024; Szot et al., 2024; Tan et al.,
2024). Building LLM agents with open-ended textual com-
mands can involve a huge action space, and long-horizon
planning or sparse-reward scenarios (Mahankali et al., 2024;
Zhou et al., 2024). This motivates us to introduce a hierarchy
to ground LLMs as efficient decision-making agents.

Hierarchical RL emerges as a powerful framework for
managing complexity in decision-making tasks. Classical
approaches of Options (Sutton et al., 1999; Bacon et al.,
2017) and MAX-Q (Dietterich, 2000) formalize temporal
abstractions in RL. Recent advances have significantly ex-
panded these foundations, such as HiRO (Nachum et al.,
2018) with data-efficient off-policy training for hierarchical
policies, HAC (Levy et al., 2019) with parallel training of 3-
level hierarchies, and HiPPO (Li et al., 2020) with efficient
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Figure 2: Overview of the GLIDER framework. (a) Hierarchical Actor-Critic architecture with prompt-controlled high-
and low-level training on sampled trajectories from offline datasets. (b) Hierarchical policy structure where the high-level
πh generates sub-task g only when the low-level πl executes primitive actions for c steps. The high-level policy provides
the low-level with an intrinsic reward r̂ that indicates the sub-task completion, and collects environment rewards across c
timesteps as its one-time reward as Rt=Σrt:t+c−1. (c) The training pipeline comprises SFT, ORL (offline RL), and O2O
(offline-to-online RL) stages. (d) Structured hierarchical trajectories composed of high-level transitions (d; ot, gt, Rt, ot+c)
and low-level transitions (g; ot, at, r̂t, ot+1).

hierarchical policy gradient approximation for robust skill
training. In general, a persistent challenge is the dependence
on domain expertise to specify meaningful hierarchies. This
limitation also motivates us to harness the strong semantic
understanding and reasoning abilities of LLMs for natural
task decomposition with an autonomous hierarchy.

Offline-to-Online RL. Offline RL (Levine et al., 2020) har-
nesses offline data without environment interactions, yield-
ing effective algorithms such as BCQ (Fujimoto et al., 2019),
CQL (Kumar et al., 2020), and Fisher-BRC (Kostrikov et al.,
2021). Also, it remains beneficial to fine-tune the pretrained
offline policy with further online interactions, that is, offline-
to-online RL (Nair et al., 2020). However, such a benefit
is often diminished due to remarkable distribution shifts
between pretraining and deployment, leading to accumu-
lated bootstrap errors (Lee et al., 2022; Wang et al., 2023b).
Moreover, existing works often require extensive retraining
for new tasks (Yu & Zhang, 2023). In contrast, we show that
our method achieves fast online adaptation to non-stationary
environments via training highly generalizable low-level
skills that are robust to distribution shifts.

3. Method
In this section, we present GLIDER, which introduces a
parameter-efficient and generally applicable hierarchy to

ground LLMs as efficient decision-making agents for tack-
ling complex interactive tasks. Figure 2 illustrates the frame-
work, containing a three-stage pipeline of base agent con-
struction via supervised fine-tuning, policy refinement via
offline RL, and seamless adaptation to online deployment.
The algorithm pseudocode is given in Appendix A, and
detailed implementations are presented as follows.

3.1. Problem Setup of the LLM Agent

We formulate the agent task as a standard Markov decision
process (MDP) with a tuple ⟨S,A, T ,R, γ⟩, where S/A is
the state/action space, T /R is the state transition/reward
function, and γ ∈ (0, 1] is the discount factor. We introduce
an LLM-based policy, πθ : S×A → [0, 1], a probability dis-
tribution that maps states to actions, where both S andA are
drawn from text spaces constrained by user-specified tasks,
and policy parameters θ are initialized from a pretrained
LLM. The objective is to optimize the policy to receive a
maximal expected return as J(π) = Eπ[

∑
t γ

trt].

3.2. Hierarchical Architecture of the LLM Agent

We extend the LLM agent setup to a hierarchical two-layer
structure, with a high-level policy πhθ and a low-level con-
troller πlθ. The high-level policy operates at a coarser layer
of task planning and sets sub-task goals for the low-level to
accomplish. At each timestep t, the environment provides
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an observation ot. The high-level planner πhθ receives the
observation ot together with a textual task description d, and
produces a high-level goal (or sub-task) as gt ∼ πhθ (· | d, ot)
when t ≡ 0 (mod c). This provides temporal abstraction,
since high-level decisions are made only every c steps. 1 For
the next c timesteps, the low-level controller receives the
environment observation ot and goal gt, and produces a low-
level primitive action as at ∼ πlθ(· | gt, ot). The action at
is applied to the environment, which yields a reward rt and
transitions to a new observation ot+1. The high-level pol-
icy collects environment rewards through these c timesteps,
storing the high-level transition (d; ot, gt,Σrt:t+c−1, ot+c)
for offline training. Correspondingly, the high-level dataset
for offline learning stages is constructed as

Dh = ΣN [ d; (o0, g0,Σr0:c−1, oc) , ...,

(ot, gt,Σrt:t+c−1, ot+c) , ... ] , (1)

which captures strategic task planning over N trajectories.

The high-level policy provides the low-level with an intrin-
sic reward r̂ that indicates the sub-task completion (1 when
the sub-task is completed and 0 otherwise).2 The sub-task
completion can be easily accessible from the environment
observation ot, without requiring any manual design or do-
main knowledge.

Each generated goal gt corresponds to a sequence of c
atomic transitions in the low-level dataset as

Dl = ΣNΣt [ gt; (ot, at, r̂t, ot+1) , ...,

(ot+c−1, at+c−1, r̂t+c−1, ot+c) ] , (2)

We design a parameter-efficient hierarchical model ar-
chitecture. As shown in Figure 2-(a), our model offers
superior parameter efficiency from two perspectives. First,
the actor and critic share the same frozen LLM backbone,
each introducing a minimal number of parameters for effi-
cient fine-tuning at a lightweight computing cost. The actor
is formed by augmenting the backbone with LoRA (Hu
et al., 2022), which adds a trainable low-rank bypass to
each transformer block. The critic is constructed by adding
additional MLP layers to the last transformer block of the
backbone. Second, the high- and low-level policies share
the same actor-critic models, differing only in a hierarchy
prompt that specifies the level of current inputs. This design
benefits from harnessing the powerful capability of LLMs
to perform in-context learning, i.e., tackling a series of com-
plex tasks by feeding short prompts to a single foundation

1c could differ across sub-tasks, as harder sub-tasks naturally
require more primitive actions to accomplish.

2In a boiling water task, the high-level policy decomposes it
into atomic subtasks (e.g., navigation, tools preparation). For
navigation subtask, the low-level policy receives a reward of 1
upon reaching kitchen (verified through observation), 0 otherwise.

model (Brown et al., 2020). In contrast, traditional hierarchi-
cal methods usually train independent models at each level,
resulting in a multiplication of model parameters (Nachum
et al., 2018; Levy et al., 2019; Li et al., 2020).

Our hierarchy setup achieves broad applicability. The
hierarchical structure provides temporal abstraction with ef-
ficient exploration since high-level decisions are made only
when the low-level controller executes for several steps. The
high-level policy unlocks the chain-of-thought reasoning
of LLMs to decompose a complicated task into a series of
coherent sub-task plans, while the low-level model trans-
lates abstract plans into precise, executable atomic actions.
Our setup achieves generality by training the low-level pol-
icy to accomplish sub-task goals learned and instructed by
the high-level planner. The high-level planner is guided by
environment-provided rewards, while the low-level policy
is instructed by the sub-task completion signal derived from
environment observations. The whole learning process elim-
inates the necessity for any manual or task-specific design,
making it broadly applicable.

3.3. Base Agent Construction via Behavior Cloning

Directly deploying LLMs as decision-making agents in
downstream tasks may generate hallucinatory or inconsis-
tent actions and perform brainless trial-and-error due to
the semantic discrepancy between natural language (trained
with next-token prediction) and user-specified environments.
To improve learning stability and sample efficiency, we first
construct a base LLM agent through supervised fine-tuning
of the hierarchical actors using pre-collected demonstration
trajectories. This behavior cloning process aligns the initial
policy with valid action sequences and serves as a solid
starting point for building a powerful agent.

Specifically, we imitate the behavior patterns, i.e., the state-
to-action mapping function, within both levels of datasets
in Eqs. (1) and (2). The objective function of behavior
cloning via supervised fine-tuning is to maximize the log-
likelihood of the observed data. Pre-trained LLMs tend to
generate lengthy, verbose sentences that could be redundant
and challenging to understand in the user-specified envi-
ronment. Hence, we incorporate a length regularization
term to encourage the LLM policy to generate concise task
plans and atomic actions for effective interaction with the
environment. The final loss function is formulated as

LSFT(θ) =− E(d,o;g)∼Dh

[
log πhθ (g|d, o)

]
+ λ · nh

− E(g,o;a)∼Dl

[
log πlθ(a|g, o)

]
+ λ · nl,

(3)

where λ is the length regularization ratio, and nh/nl is the
output length of the high-/low-level policy.

By employing behavior cloning for a base LLM agent con-
struction, we establish a robust foundation for generating
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valid actions with significantly improved sample efficiency.
However, the base agent is easily limited by the data quality
of demonstration trajectories and lacks the ability to ex-
plore the environment. It could easily result in sub-optimal
policies, especially when tackling complex long-horizon
decision-making challenges.

3.4. Offline Hierarchical Policy Refinement

To unlock the capacity of LLM agents in long-horizon
decision-making, we continue to train hierarchical actor-
critic models in an offline mode using the reward-annotated
datasets Dh and Dl. The actor outputs a sequence of to-
kens autoregressively for fine-grained action generation and
control at the token level, while the critic aims to evalu-
ate the output policy at the sentence level. In the follow-
ing, we use s and u to denote the state and action uni-
formly, i.e., s = (d, o), u = g for the high-level policy and
s = (g, o), u = a for the low-level.

Sentence-Level Critic. Following the practice in advanced
offline RL algorithms (Snell et al., 2023; Zhou et al., 2024),
the critic component consists of a Q-function Qϕ(s, u) and
a value function Vψ(s) that are optimized using temporal
difference learning. The Q-function is trained to minimize
the Bellman bootstrapping error as

LQ(ϕ)=E(s,u,r,s′)∼Dr

[(
r + γVψ̄(s

′)−Qϕ(s, u)
)2]

, (4)

where the Bellman target is computed from a delayed copy
of the value model Vψ̄. The value function is trained using
an asymmetric loss function to maintain a conservative value
estimation as

LV (ψ)=Es∼Dr

[
Eu∼πθ(·|s)

[
Lτ2

(
Qϕ̄(s, u)−Vψ(s)

)]]
, (5)

where Lτ2(x) = |τ − 1(x < 0)|x2 is an asymmetric loss
function with a expectile parameter τ ∈ [0.5, 1), introduced
in implicit Q-learning (Kostrikov et al., 2022). This loss
function assigns more importance to Q > V predictions
(weighted by τ ) while reducing the influence of Q < V
predictions (weighted by 1−τ ). The asymmetric design
helps prevent the learned value function from being overly
optimistic, as overestimation could easily lead to poor policy
updates in offline RL settings due to distribution shift. The
delayed target networks ψ̄ and ϕ̄ are periodically updated
using Polyak averaging (Haarnoja et al., 2018) to improve
training stability.

Token-Level Actor. The LLM-based actor outputs a se-
quence of tokens w1:n autoregressively, where n is the out-
put sentence length. Each token is selected according to the
token probability distribution generated by token actor as

πθ(u | s) = πθ(w1:n | s) =
n∏
i=1

πθ(wi | s, w1:i−1). (6)

The actor is trained to maximize the expected return of
the policy, i.e., the estimated Q-function, which is also
equivalent to maximizing the advantage function. Following
the practice in AWAC (Nair et al., 2020), we formulate
the policy optimization of the token actor as a weighted
maximum likelihood estimation problem. The resulting loss
function is derived as

Lπ(θ) = −E(s,u)∼Dr

[
exp

(
1

λ
A(s, u)

)
· log πθ(u | s)

]
= −E(s,u)∼Dr

[
exp

(
1

λ
(Qϕ(s, u)− Vψ(s))

)
(7)

·
n∑
i=1

log πθ(wi | s, w1:i−1)

]
.

This “supervised” formulation implicitly enforces a con-
straint to mitigate distribution shift and avoids overly con-
servative updates with advantage weighting, thus facilitat-
ing efficient hierarchical policy learning from offline data.
Further, by eliminating over-conservatism and explicit mod-
eling of the behavior policy, it is well suited to perform fast
adaptation to new tasks in online deployment, as studied in
Sec. 3.5.

3.5. Offline-to-Online Adaptation

In the offline stage, we decompose the LLM agent into
a series of low-level sub-tasks (or skills) and a high-level
policy with strong reasoning abilities. With this flexible
hierarchical structure, GLIDER can be efficiently adapted to
new environments with further online interactions in offline-
to-online scenarios. The low-level skills are pre-trained
using intrinsic reward functions rather than task-specific
ones, allowing for high generalization capacity across tasks
and good robustness to the distribution shift between offline
pre-training and online deployment. Naturally, we freeze
the task-agnostic low-level skills that interact with the new
environment, and only fine-tune the high-level policy with
the environment-provided reward signals.

Formally, at each timestep t, the high-level policy receives
the environment observation ot together with the task de-
scription d, and selects a low-level skill as gt ∼ πhθ (·|d, ot).
Then, the fixed skill gt interacts with the environment
for c primitive actions, resulting in a c-step trajectory as
[gt; (ot, at, rt, ot+1), ..., (ot+c−1, at+c−1, rt+c−1, ot+c)].
We construct the transition sample for the high-level policy
as (d; ot, gt,Σrt:t+c−1, ot+c). Finally, we collect these
transition samples to fine-tune the high-level critic with
Eqs. (4)-(5) and the actor with Eq. (7). By harnessing
the temporal abstraction knowledge embodied in the
pretrained low-level skills, GLIDER can quickly adapt to
non-stationary environments with significantly improved
exploration efficiency.
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4. Experiments
We evaluate GLIDER in offline settings from Sec. 4.2 to
Sec. 4.5, and then test its adaptability in an online fine-
tuning manner in Sec. 4.4. Through comprehensive experi-
ments, we aim to answer the following research questions:

• How effective and robust is GLIDER across diverse set-
tings? We examine its performance against prompt-based
and fine-tuning baselines, assess consistency across dif-
ferent backbones, and evaluate agent capacity in both
sparse and dense reward environments. (See Sec. 4.2).

• What is the contribution of each component to GLIDER’s
performance? Through systematic ablation studies, we
analyze the impact of the hierarchical structure, training
stages (SFT and ORL), and variations in model architec-
ture and scale. (See Sec. 4.3).

• How well does GLIDER generalize to out-of-domain
tasks through online fine-tuning? We evaluate the
model’s adaptation capabilities on previously unseen
task distributions. (See Sec. 4.4).

• How do varying ratios of expert demonstrations to
medium-quality data affect model performance? We
evaluate different mixture strategies for the composition
of training data. (See Sec. 4.5).

4.1. Experimental Settings

Benchmarks and Offline Dataset. We evaluate GLIDER
on two popular language-based interactive decision-making
tasks: 1) ScienceWorld (Wang et al., 2022) is a textual
environment for elementary science experiments, featuring
30 tasks. 2) ALFWorld (Shridhar et al., 2021) contains
6 types of household manipulation tasks, requiring agents
to navigate and interact with objects following language
instructions in a binary reward setting.

For offline training data, we construct a dataset that com-
bines expert demonstrations (optimal trajectories provided
by benchmarks) and medium-quality trajectories with a mix-
ture ratio of 1 : 2. The medium-quality trajectories are
collected through two strategies: in-distribution and cross-
task generalization sampling. Appendix B presents more
details of benchmarks and offline dataset construction.

Models and Baselines. We build our method on three
open-source language models: 1) Mistral-7B (Jiang
et al., 2023), 2) Gemma-7B (Team et al., 2024) and
3) Llama-3-8B (Meta, 2024). We employ LoRA for
parameter-efficient fine-tuning of all models. Appendix C
presents detailed model architectures, hyperparameters, and
training and evaluation setups.

We compare GLIDER against various strong baselines:

1) ReAct (Yao et al., 2023b), a pioneering approach
that incorporates CoT prompting in decision-making
tasks through a structured Thought-Action-Observation
loop. 2) Reflexion (Shinn et al., 2023), an ad-
vanced prompt-based framework that enhances agent
decision-making through self-reflective verbal feedback. 3)
SwiftSage (Lin et al., 2023), a dual-process cognitive
framework that integrates the strengths of behavior cloning
and prompting for complex interactive reasoning and action-
planning tasks. 4) NAT (Wang et al., 2024), a fine-tuning
approach that enables LLMs to learn from failure trajec-
tories through data quality control. 5) ETO (Song et al.,
2024), an iterative optimization framework between explor-
ing the environment to collect contrastive trajectory pairs
and fine-tuning the policy using DPO (Rafailov et al., 2023).

4.2. Primary Performance

Table 1 illustrates the comprehensive evaluation results
of GLIDER across three backbone models (Mistral-7B,
Gemma-7B, and Llama-3-8B) on both ScienceWorld and
ALFWorld benchmarks, compared to competent prompt-
based methods (ReAct, Reflexion, and SwitchSage) and
fine-tuning approaches (NAT and ETO). Generally, fine-
tuning approaches yield better results than prompt-based
methods, and GLIDER further exceeds these strong base-
lines by a significant margin in both seen and unseen tasks
across diverse settings. Taking ScienceWorld as an example,
GLIDER obtains the best performance with Llama-3-8B
as the backbone, achieving high scores of 77.43 (+33.73%)
on seen tasks and 68.34 (+30.59%) on unseen tasks. Simi-
lar improvements are observed with Mistral-7B (+15.71%
on seen tasks, +25.63% on unseen tasks) and Gemma-7B
(+26.23% on seen tasks, +22.28% on unseen tasks). Notably,
the substantial performance gains on unseen tasks (ranging
from +22.28% to +30.59%) highlight GLIDER’s impressive
generalization capability, which is essential for modern AI
agents. In summary, the consistent performance improve-
ment across diverse model architectures and benchmarks
validates the effectiveness and robustness of our method.

4.3. Ablation Studies

We conduct extensive studies to analyze the respective con-
tributions of the hierarchical structure and learning stages
in GLIDER, yielding five ablations: 1) w/ Hier(SFT),
it ablates the offline RL stage and trains a hierarchical agent
with SFT only; 2) w/ Hier(ORL), it ablates the SFT
stage and trains a hierarchical agent with offline RL only;
3) w/o Hier(SFT+ORL), it ablates the hierarchy and
trains a single-layer agent with SFT and offline RL; 4) w/o
Hier(SFT), it ablates the hierarchy and the offline RL
stage, training a single-layer agent with SFT only; 5) w/o
Hier(ORL), it ablates the hierarchy and the SFT stage,
training a single-layer agent with offline RL only.
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Table 1: Main Results. Performance comparison across three backbone models on ScienceWorld and AlfWorld benchmarks. u
indicates prompt-based methods without model parameter update, while v represents fine-tuning approaches using LoRA. ↑ denotes the
performance improvement of GLIDER compared to the best results among the baselines.

Backbone Method ScienceWorld AlfWorld
Seen Unseen Seen Unseen

Mistral-7B

u ReAct 20.72 17.65 7.86 5.22
u Reflexion 21.07 18.11 11.56 6.00
u SwitchSage 48.40 45.25 30.29 26.52
v NAT 57.12 50.79 64.43 68.96
v ETO 58.17 51.85 66.84 71.43
v GLIDER 67.31 (↑ 15.71%) 65.14 (↑ 25.63%) 70.02 (↑ 4.76%) 74.83 (↑ 4.76%)

Gemma-7B

u ReAct 3.58 3.51 6.43 2.24
u Reflexion 4.94 3.93 7.14 2.99
u SwitchSage 33.43 30.90 8.23 5.72
v NAT 47.63 44.98 67.86 65.88
v ETO 50.44 47.84 66.43 68.66
v GLIDER 63.67 (↑ 26.23%) 58.50 (↑ 22.28%) 72.12 (↑ 6.28%) 70.88 (↑ 3.23%)

Llama-3-8B

u ReAct 24.76 22.66 2.86 3.73
u Reflexion 27.23 25.41 4.29 4.48
u SwitchSage 42.22 40.58 20.39 10.78
v NAT 55.24 48.76 60.71 59.70
v ETO 57.90 52.33 64.29 64.18
v GLIDER 77.43 (↑ 33.73%) 68.34 (↑ 30.59%) 71.56 (↑ 11.31%) 75.38 (↑ 17.45%)
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Figure 3: Ablation performance on unseen tasks in Sci-
enceWorld across model architectures. Solid pillars denote
hierarchical models and shaded pillars indicate ablating the
hierarchy. The purple/yellow/green pillars correspond to
SFT/ORL/SFT+ORL training stages, respectively.

Ablation across Model Architectures. Figure 3 presents
the performance on unseen tasks in ScienceWorld. We
conduct these ablations across different language models
to ensure robust findings. First, the hierarchical structure
plays a crucial part in all training stages, as models incor-
porating hierarchy outperform their non-hierarchical coun-
terparts by significant margins. The improvement is most
pronounced in the full stage of SFT+ORL (green), followed
by the ORL stage (yellow), and finally the SFT setting (pur-
ple). This interesting phenomenon highlights the superiority
of our method as a whole. Another interesting observa-
tion is that training offline RL agents from scratch (yellow)
performs better than training SFT agents (purple). It high-

lights the higher potential of reinforcement fine-tuning over
supervised fine-tuning, akin to the observation in DeepSeek-
R1 (Guo et al., 2024). Initializing ORL from SFT parame-
ters (green) proves to be a more effective strategy, which is
also consistent to the common practice in literature (Silver
et al., 2016; Song et al., 2024). Moreover, using different
backbones exhibits similar patterns in these ablations, while
Mistral-7B and Llama-3-8B induce better performance com-
pared to Gemma-7B. In summary, these results validate the
effectiveness of both the hierarchical structure and the multi-
stage training in GLIDER, with their combination yielding
the most significant results across all implementations.

Table 2: Ablation performance on unseen tasks in Science-
World across model scales. 3

Model w/o Hier w/ Hier

SFT ORL SFT+ORL SFT ORL SFT+ORL

Llama-1B 37.24 45.31 48.48 44.50 50.43 53.62
Llama-3B 38.19 52.47 56.93 48.11 55.98 61.29
Llama-8B 41.88 50.16 53.94 50.17 57.12 68.34

Ablation across Model Scales. Further, we investigate
the impact of model scales on ablation performance. Ta-
ble 2 presents the ablation results on ScienceWorld’s unseen
tasks with Llama models ranging from 1B to 8B parame-
ters, consistently demonstrating the advantages of the hi-
erarchical structure and multi-stage training pipeline. No-

3Llama-1B and Llama-3B models refer to the Meta-Llama-3.2-
1B-Instruct and Meta-Llama-3.2-3B-Instruct version, respectively.

7



Divide and Conquer: Grounding LLMs as Efficient Decision-Making Agents via Offline Hierarchical Reinforcement Learning

tably, our hierarchical approach demonstrates remarkable
efficiency even with small parameter counts. Taking the
w/ Hier (SFT+ORL) as an example, Llama-3B achieves a
score of 61.29, surpassing even larger models like Mistral-
7B with a score of 58.50. This suggests that our hierarchical
structure effectively enhances agent capacity without ne-
cessitating particularly large parameter counts, making our
method more practical for resource-constrained scenarios.

4.4. Generalization Analysis via Online Fine-tuning

To evaluate GLIDER’s generalization capacity to non-
stationary environments, we test it in offline-to-online fine-
tuning scenarios with comparison to the traditional AC algo-
rithm (Konda & Tsitsiklis, 1999) and the classical offline-to-
online algorithm AWAC (Nair et al., 2020). In the Science-
World benchmark, we categorize the science experiment
tasks into three distinct domains: electrical, biology, and
thermodynamics. From each group, we exclude one rep-
resentative task (test-conductivity, find-animal, and boil)
during offline training, and observe the trained agent’s adap-
tation performance with online fine-tuning on that task. As
shown in Figure 4, GLIDER exhibits strong generalization
ability to new tasks in at least two aspects. First, GLIDER
achieves a higher initial test score, highlighting its superior
zero-shot generalization capacity and enhanced knowledge
transfer to new online tasks. Second, during the online fine-
tuning process, GLIDER shows significantly faster adapta-
tion and achieves substantially better final performance on
all tasks. In summary, these results comprehensively vali-
date GLIDER’s superior generalization capability to new
tasks in both zero-shot knowledge transfer and fast online
adaptation, establishing GLIDER as a more competent lan-
guage agent with impressive autonomous adaptability.
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Figure 4: Online fine-tuning performance (score/100) of
GLIDER against AC and AWAC baselines in ScienceWorld.

4.5. Impact of Data Mixture Ratios

We investigate how different mixture ratios between expert
and medium data affect agent performance during offline
RL training. Figure 5 presents the GLIDER’s performance
(with and without hierarchy) on unseen tasks in Science-
World across data mixture ratios. The agent achieves satis-
factory capabilities when the expert-to-medium data ratio

falls between 2:1 to 1:5, performing the best at 1:2 with a
score of 68.3. An interesting phenomenon is that training
with only expert demonstrations results in a limited perfor-
mance of score 29.7, and training solely on medium data
can obtain a slightly higher score of 36.0. It suggests that
increasing the trial-and-error experience and coverage of the
state-action space (expert data is somewhat homogeneous)
might facilitate the generalization performance on unseen
tasks. Compared to supervised learning, RL naturally learns
from sub-optimal data and continually reinforcing its capa-
bilities through self-evolving. This finding also supports our
motivation to boost the LLM agent’s competence via RL. In
summary, both the data quality and diversity are crucial for
building capable and generalizable LLM agents.
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Figure 5: Performance on unseen tasks in ScienceWorld
with different expert-to-medium data mixture ratios in the
offline RL stage with Llama-3-8B as the LLM backbone.

5. Conclusions, Limitations, and Future Work
We propose GLIDER, an innovative framework that empow-
ers LLM agents with high-capacity decision-making abil-
ities through offline hierarchical RL. We design a concise
hierarchical model architecture that achieves superior param-
eter efficiency and broad applicability, efficiently grounding
LLM agents to tackle complex, long-horizon tasks via so-
phisticated exploration and structured reasoning. Extensive
experiments validate GLIDER’s consistent improvement on
learning performance and generalization capability.

Though, our method employs a multi-stage pipeline that
involves a somewhat complex training procedure. A promis-
ing future work is to streamline the training pipeline while
maintaining high efficiency, inspired by DeepSeek-R1’s re-
cent advances in reinforcement fine-tuning. Further, our
framework’s potential can extend beyond strict agent tasks,
since many LLM tasks can also be reformulated as the se-
quential decision-making paradigm through process reward
model (PRM). A crucial future step is to extend our method
to broader domains such as mathematical reasoning and
code generation tasks, unleashing the inherent capability of
hierarchical agents in addressing complicated problems.
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Appendix A. Algorithm Pseudocodes
Based on the implementations in Section 3, we summarize the brief procedure of GLIDER. Algorithm 1 presents the
complete training pipeline of GLIDER, which consists of three stages. In SFT stage, we perform behavioral cloning to train
both high-level and low-level policies using demonstration data. Notably, both policies share the same LLM parameters
but are differentiated through distinct prompts, which significantly reduces the parameter count while maintaining the
hierarchical structure. The high-level policy prompt focuses on task decomposition, while the low-level policy prompt
emphasizes primitive action generation. In ORL Stage, where both policies and critics are updated using data from high-level
(BH) and low-level (BL) replay buffers, where contains a balanced mixture of expert demonstrations and medium-quality
trajectories. Critics are updated through bootstrapping, while policies are optimized via a policy gradient. O2O stage
describes the optional online adaptation process. Due to parameter sharing between policies, we cannot strictly fix the low-
level policy parameters. Instead, we maintain low-level policy performance by continually training on offline demonstration
data while simultaneously fine-tuning the high-level policy using newly collected transition data.

Algorithm 1: GLIDER: A Hierarchical Framework for LLM-based Decision Making
Input:
• High-level replay buffer: BH = {(d, o0, g0, R0, oc..., ot, gt, Rt, ot+c)

(i)}, where Rt =
∑t+c−1
i=t ri

• Low-level replay buffer: BL = {(gt, ot, at, r̂t, ot+1, ..., ot+c−1, at+c−1, r̂t+c−1, ot+c)
(j)}

• Environment: env
• Hierarchical policy: πhθ , π

l
θ

• Hierarchical critic: Qhϕ, V
h
ψ , Q

l
ϕ, V

l
ψ

• Hyperparameters: discount γ, update rate τ , regularization weight λ

Output: Optimized hierarchical policy πθ = {πhθ , πlθ}
1 // Stage 1: SFT
2 for iteration i = 1, 2, ... do
3 Update hierarchical policy via BC loss (Eq.3,Eq.6)
4 end
5 // Stage 2: ORL
6 for iteration i = 1, 2, ... do
7 Sample batches from BH and BL
8 Update critics via bootstrapping (Eq.4, Eq.5)
9 Update policies via policy gradient (Eq.7)

10 Soft update target networks: η̄ ← (1− τ)η̄ + τη

11 end
12 // Stage 3: O2O (Optional) Fix low-level policy πlθ
13 for episode = 1, 2, ... do
14 o0 ← env.reset(task), d← env.task description()
15 Initialize trajectory ξ ← ∅
16 for t = 1, ..., T do
17 Sample subtask: gt ∼ πhθ (· | d, ot)
18 for step h = 1, ..., c do
19 Sample action: at ∼ πlθ(· | gt, ot)
20 rt, ot+1, done← env.step(at)
21 end
22 Store transition: ξ ← ξ ∪ (d, ot, gt, Rt, ot + c)
23 t← t+ c

24 end
25 Store trajectory: BH ← BH ∪ {ξ}
26 Update high-level policy and critic using BH (Eq.4-7)
27 end
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Appendix B. Dataset Information
Benchmarks.

We evaluate GLIDER on two popular language-based interactive decision-making tasks:

1. ScienceWorld (Wang et al., 2022) is a textual environment for elementary science experiments, featuring 30 tasks
across 10 categories. Agents must demonstrate scientific understanding through interactive experimentation, with
progress measured by a dense reward (0 to 1) at each step.

2. ALFWorld (Shridhar et al., 2021) simulates household environments that require navigation and object manipulation
in a sparse, binary reward setting. The reward is 1 only upon successful task completion, and 0 otherwise.

Beyond standard evaluation on seen tasks, it includes unseen scenarios to assess generalization ability. Table 3 presents
the statistical information of our datasets. Both ScienceWorld and ALFWorld contain Text-Seen and Text-Unseen test sets,
where Text-Unseen comprises out-of-distribution variations to evaluate the generalization capabilities of different agents.

Table 3: Dataset statistics.

Dataset Train Text-Seen Text-Unseen

ScienceWorld 1,483 194 211
ALFWorld 3,119 140 134

Expert Demonstration

To support imitation learning, the ScienceWorld and ALFWorld provide human-annotated trajectories. For hierarchical data
structuring, we utilize GPT-4 to decompose these trajectories into subtasks, creating a clear hierarchical representation of
the demonstration data. We show an example expert demonstration trajectory for w/o and w/ hierarchical in ScienceWorld
in Figure. 6

Medium Data Collection

For medium-quality data collection, we employ two distinct sampling strategies:

1. In-distribution Sampling: During the SFT training process, we utilize the intermediate policy to sample sub-optimal
trajectories on the training tasks.This sampling strategy helps better cover the task’s world model, as the intermediate
policy explores diverse solution paths and state transitions, leading to a more comprehensive understanding of the
environment dynamics and task structure.

2. Cross-task Generalization Sampling: We partition the training tasks into n (we set n = 3) subsets. For each iteration,
we train an SFT model on one subset and use it to collect data on the unseen training tasks from other subsets. This
sampling strategy is specifically designed to capture trajectories that exhibit better generalization capabilities, as the
policy is forced to adapt to novel but related tasks during data collection.

Both of strategies approach ensures diversity in our medium-quality dataset, combining both task-specific expertise and
cross-task generalization abilities. We provide examples of both strategies with and without hierarchical structure in Figure 7
and Figure 8, respectively.

In Figure 7 (in-distribution sampling), we can see the the exploration without hierarchy terminates early after attempting
to "pick up apple juice". In contrast, the hierarchical approach extends further through clear subtask planning
("Prepare tools", "Find apple juice", "Heat apple juice"), continuing until it discovers the stove
malfunction.

In Figure 8 (cross-task generalization sampling) demonstrates enhanced exploration capabilities. Under the same initial
conditions, the non-hierarchical approach attempts to "fix the stove", while the hierarchical approach not only
identifies the stove malfunction but actively seeks alternative solutions ("Find other stove to heat apple
juice"), showing more sophisticated problem-solving strategies.
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Expert Demonstration

w/o Hierarchy
Task Description: Your task is to find a(n) animal.
First, focus on the thing. Then, move it to the red box
in the kitchen.
Observation: This room is called the hallway. In it,
you see: the agent, a substance called air, a picture.
You also see: A door to the art studio (that is closed),
A door to the bedroom (that is closed), A door to the
greenhouse (that is closed), A door to the kitchen (that
is closed), A door to the living room (that is closed), A
door to the workshop (that is closed).
Action: open door to outside
Reward: 0.09
Observation: The door is now open.
Action: go to outside
Reward: 0.08
Observation: You move to the outside.
Action: look around
Reward: 0.0
Observation: This outside location is called the outside.
Here you see: the agent, a substance called air, an axe, a
crocodile egg, a fire pit (containing nothing), a fountain
(containing a substance called water), the ground, a
turtle egg, a baby wolf, a substance called wood. You
also see: A door to the foundry (that is closed), A door
to the greenhouse (that is closed), A door to the kitchen
(that is open)
Action: focus on egg turtle
Reward: 0.5
Observation: You focus on the turtle egg.
Action: pick up egg turtle
Reward: 0.08
Observation: You move the turtle to the inventory.
Action: open door to kitchen
Reward: 0.0
Observation: The door is already open.
Action: go to kitchen
Reward: 0.0
Observation: You move to the kitchen.
Action: move egg turtle egg in inventory to red box
Reward: 0.17
Observation: You move the turtle to the red box.
done.

w/ Hierarchy
Task Description: Your task is to find a(n) animal. First,
focus on the thing. Then, move it to the red box in the
kitchen.
Observation: This room is called the hallway. In it, you
see: the agent, a substance called air, a picture. You also
see: A door to the art studio (that is closed), A door to
the bedroom (that is closed), A door to the greenhouse
(that is closed), A door to the kitchen (that is closed), A
door to the living room (that is closed), A door to the
workshop (that is closed).
Subtask: Find an animal and focus it
Action: open door to outside
Observation: The door is now open.
Action: go to outside
Observation: You move to the outside.
Action: look around
Observation: This outside location is called the outside.
Here you see: the agent, a substance called air, an axe,
a crocodile egg, a fire pit (containing nothing), a foun-
tain (containing a substance called water), the ground, a
turtle egg, a baby wolf, a substance called wood. You
also see: A door to the foundry (that is closed), A door
to the greenhouse (that is closed), A door to the kitchen
(that is open)
Action: focus on egg turtle
High Reward: 0.75; Low Reward: 1.0
Observation: You focus on the turtle egg.
Subtask: Navigation to kitchen with the animal
Action: pick up egg turtle
Observation: You move the turtle to the inventory.
Action: open door to kitchen
Observation: The door is already open.
Action: go to kitchen
High Reward: 0.08; Low Reward: 1.0
Observation: You move to the kitchen.
Subtask: Move the animal to the red box in the kitchen
Action: move egg turtle egg in inventory to red box
High Reward: 0.17; Low Reward: 1.0
Observation: You move the turtle to the red box.
done.

Figure 6: Expert demonstration for w/o and w/ hierarchical structure in ScienceWorld.
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Medium Trajectory Collected by In-distribution Sampling Strategy

w/o Hierarchy
Task Description: Your task is to boil apple juice. For
compounds without a boiling point, combusting the sub-
stance is also acceptable. First, focus on the substance.
Then, take actions that will cause it to change its state
of matter.
Observation: This room is called the bathroom. In
it, you see: the agent, substance called air, a bathtub,
which is turned off. In the bathtub is: nothing. a glass
cup (containing nothing), a picture, a sink, which is
turned off. In the sink is: nothing. a toilet. In the toilet
is: A drain, which is open, a substance called water.
You also see: A door to the kitchen (that is closed).
Action: open door to kitchen
Reward: 0.0
Observation: .
Action: go to kitchen
Reward: 0.03
Observation: You move to the kitchen.
Action: look around
Reward: 0.0
Observation: This room is called the kitchen. In it, you
see: a counter. On the counter is: a bowl (containing
a red apple, a banana, an orange, a potato), a drawer.
a cupboard. The cupboard door is closed. a freezer.
The freezer door is closed. a fridge. The fridge door
is closed. a glass jar (containing a substance called
sodium chloride) a lighter a oven, which is turned off.
The oven door is closed. a painting a sink, which is
turned off. In the sink is: nothing. a substance called
soap a stopwatch, which is deactivated. a stove, which
is turned off. On the stove is: nothing. a table. On
the table is: a glass cup (containing nothing). a ther-
mometer, currently reading a temperature of 10 degrees
celsius You also see: A door to the bathroom (that is
open) A door to the hallway (that is closed) A door to
the outside (that is closed).
Action: pick up thermometer
Reward: 0.0
Observation: You move the thermometer to the inven-
tory.
Action: pick up metal pot
Reward: 0.0
Observation: You move the metal pot to the inventory.
Action: pick up apple juice
Reward: 0.0
Observation: No known action matches that input.
not done.

w/ Hierarchy
Task Description: Your task is to boil apple juice. For
compounds without a boiling point, combusting the sub-
stance is also acceptable. First, focus on the substance.
Then, take actions that will cause it to change its state
of matter.
Observation: This room is called the bathroom. In it,
you see: the agent, substance called air, a bathtub, which
is turned off. In the bathtub is: nothing. a glass cup
(containing nothing), a picture, a sink, which is turned
off. In the sink is: nothing. a toilet. In the toilet is: A
drain, which is open, a substance called water. You also
see: A door to the kitchen (that is closed).
Subtask: Navigate to kitchen
Action: open door to kitchen
Observation: The door is now open.
Action: go to kitchen
High Reward: 0.03; Low Reward: 1.0
Observation: You move to the kitchen.
Subtask: Prepare tools for measuring temperature and
boiling
Action: pick up thermometer
Observation:You move the thermometer to the inven-
tory.
Action: pick up metal pot
High Reward: 0.0; Low Reward: 1.0
Observation: You move the metal pot to the inventory.
Subtask: Find apple juice and focus on it
Action: open cupboard
Observation: The cupboard is now open.
Action: focus on apple juice
High Reward: 0.0; Low Reward: 0.0
Observation: No known action matches that input.
Subtask: Find apple juice and focus on it
Action: open fridge
Observation: The fridge is now open.
Action: focus on apple juice
High Reward: 0.67; Low Reward: 1.0
Observation: You focus on the apple juice.
Subtask: Heat apple juice with stove
Action: move cup containing apple juice to stove
Observation: You move the glass cup to the stove.
Action: activate stove
High Reward: 0.02; Low Reward: 0.0
Observation: The stove is broken.
Subtask: Can’t heat apple juice because stove is broken
Action: no action generated
High Reward: 0.0; Low Reward: 0.0
Observation: No known action matches that input.
not done.

Figure 7: Comparison of w/o and w/ hierarchical trajectories collected through in-distribution sampling in ScienceWorld.
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Medium Trajectory Collected by Cross-task Generalization Sampling Strategy

w/o Hierarchy
Task Description: Your task is to boil apple juice. For
compounds without a boiling point, combusting the sub-
stance is also acceptable. First, focus on the substance.
Then, take actions that will cause it to change its state
of matter.
Observation: This room is called the bathroom. In
it, you see: the agent, substance called air, a bathtub,
which is turned off. In the bathtub is: nothing. a glass
cup (containing nothing), a picture, a sink, which is
turned off. In the sink is: nothing. a toilet. In the toilet
is: A drain, which is open, a substance called water.
You also see: A door to the kitchen (that is closed).
Action: open door to kitchen
Reward: 0.0
Observation: .
Action: go to kitchen
Reward: 0.03
Observation: You move to the kitchen.
Action: pick up thermometer
Reward: 0.0
Observation: You move the thermometer to the inven-
tory.
Action: pick up metal pot
Reward: 0.0
Observation: You move the metal pot to the inventory.
Action: open fridge
Reward: 0.0
Observation: The fridge is now open.
Action: focus on apple juice
Reward: 0.67
Observation: You focus on the apple juice.
Action: move cup containing apple juice to stove
Reward: 0.02
Observation: You move the glass cup to the stove.
Action: activate stove
Reward: 0.0
Observation: The stove is broken.
Action: fix the stove
Reward: 0.0
Observation: No known action matches that input
not done.

w/ Hierarchy
Task Description: Your task is to boil apple juice. For
compounds without a boiling point, combusting the sub-
stance is also acceptable. First, focus on the substance.
Then, take actions that will cause it to change its state
of matter.
Observation: This room is called the bathroom. In it,
you see: the agent, substance called air, a bathtub, which
is turned off. In the bathtub is: nothing. a glass cup
(containing nothing), a picture, a sink, which is turned
off. In the sink is: nothing. a toilet. In the toilet is: A
drain, which is open, a substance called water. You also
see: A door to the kitchen (that is closed).
Subtask: Navigate to kitchen
Action: open door to kitchen
Observation: The door is now open.
Action: go to kitchen
High Reward: 0.03; Low Reward: 1.0
Observation: You move to the kitchen.
Subtask: Prepare tools for measuring temperature and
boiling
Action: pick up thermometer
Observation:You move the thermometer to the inven-
tory.
Action: pick up metal pot
High Reward: 0.0; Low Reward: 1.0
Observation: You move the metal pot to the inventory.
Subtask: Find apple juice and focus on it
Action: open cupboard
Observation: The cupboard is now open.
Action: focus on apple juice
High Reward: 0.0; Low Reward: 0.0
Observation: No known action matches that input.
Subtask: Find apple juice and focus on it
Action: open fridge
Observation: The fridge is now open.
Action: focus on apple juice
High Reward: 0.67; Low Reward: 1.0
Observation: You focus on the apple juice.
Subtask: Heat apple juice with stove
Action: move cup containing apple juice to stove
Observation: You move the glass cup to the stove.
Action: activate stove
High Reward: 0.0; Low Reward: 0.0
Observation: The stove is broken.
Subtask: Find other stove to heat apple juice
Action: focus on stove
High Reward: 0.0; Low Reward: 0.0
Observation: No known action matches that input.
not done.

Figure 8: Comparison of w/o and w/ hierarchical trajectories collected by cross-task generalization sampling in ScienceWorld.
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Data Structure and Setups

The high-level and low-level training dataset structure follows a sequential format that captures the complete interaction
trajectory:

Training Dataset Structure

High-Level Trajectory:
{high prompt, task description, obs 0, subtask 0, high reward 0 ... obs T-1, subtask T-1, high reward T-1, obs T}

Low-Level Trajectory:
{Low prompt, subtask 0, obs 0, action 0, low reward 1 ... obs c-1, action c-1, low reward c-1, obs c}

O2O task Setups

To evaluate the generalization capabilities of our method, we construct an O2O (Online-to-Offline) dataset covering three
distinct domains: electrical, biology, and thermodynamics. Each domain contains one test task and multiple train tasks, as
shown in Table 4. For the electrical domain, we have "test-conductivity" as the test task, along with three train
tasks related to conductivity testing and power components. The biology domain features "find-animal" as the test
task, accompanied by ten train tasks involving various biological concepts such as living/non-living identification, plant
growth, and lifespan studies. In the thermodynamics domain, "boil" serves as the test task, supported by seven train tasks
covering different aspects of state changes and chemical mixing processes. This setup provides a rigorous test of the agent’s
ability to transfer knowledge from trained tasks to novel but related domains in the ScienceWorld environment.

Table 4: Distribution of test and train tasks across electrical, biology, and thermodynamics domains

Domain Task Name Type

Electrical

test-conductivity Test
test-conductivity-of-unknown-substances Train

power-component Train
power-component-renewable-vs-nonrenewable-energy Train

Biology

find-animal Test
find-living-thing Train

find-non-living-thing Train
find-plant Train
grow-fruit Train
grow-plant Train

identify-life-stages-1 Train
identify-life-stages-2 Train
lifespan-longest-lived Train

lifespan-longest-lived-then-shortest-lived Train
lifespan-shortest-lived Train

Thermodynamics

boil Test
freeze Train
melt Train

change-the-state-of-matter-of Train
chemistry-mix Train

chemistry-mix-paint-secondary-color Train
chemistry-mix-paint-tertiary-color Train

use-thermometer Train
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Reward Design

• ScienceWorld: The agent receives a dense reward ranging from 0 to 1 at each step, reflecting the continuous progress
in scientific experimentation tasks across 30 scenarios in 10 categories.

• ALFWorld: The agent receives a sparse binary reward (0 or 1), where 1 is given only upon successful completion of
household navigation and manipulation tasks, and 0 otherwise.

• High-level Reward: The high-level policy accumulates environmental rewards upon the completion of subtasks by the
low-level policy, reflecting the agent’s progress in achieving the overall objective.

• Low-level Reward: The low-level policy receives binary rewards from the high-level policy, indicating whether a
subtask is successfully completed or not.
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Appendix C. Training and Evaluation setups
Models

We build our method on three open-source language models: 1) Mistral-7B (Jiang et al., 2023), the Mistral-7B-Instruct-
v0.2 version. 2) Gemma-7B (Team et al., 2024), the Gemma-1.1-7B-it version. 3) Llama-3-8B (Meta, 2024), the
Meta-Llama-3-8B-Instruct version. We employ LoRA for parameter-efficient fine-tuning of all language models.

Baselines

We compare GLIDER against various strong baselines: 1) ReAct (Yao et al., 2023b), a pioneering approach that incorporates
CoT prompting in decision-making tasks through a structured Thought-Action-Observation loop. 2) Reflexion (Shinn
et al., 2023), an advanced prompt-based framework that enhances agent decision-making through self-reflective verbal
feedback. 3) SwiftSage (Lin et al., 2023), a dual-process theory-based cognitive framework that integrates the strengths
of behavior cloning and prompting for complex interactive reasoning and action-planning tasks. 4) NAT (Wang et al., 2024),
a fine-tuning approach that enables LLMs to learn from failure trajectories through quality control and fine-tuning strategies.
5) ETO (Song et al., 2024), an iterative optimization framework between exploring the environment to collect contrastive
trajectory pairs and fine-tuning the LLM policy using DPO (Rafailov et al., 2023).

Hyperparameter

we employ LoRA for parameter-efficient fine-tuning for all language models. During the SFT phase, we train for 5 epochs
with a batch size of 32, using the AdamW optimizer with a learning rate of 1e− 4. The detailed hyperparameters are shown
in the following table 5. Policy are evaluated on both seen and unseen tasks across two benchmarks. For the ORL phase, we
train for 4 epochs with different learning rates for the actor (1e− 5) and critic (1e− 4) networks. The target critic network
is updated using soft updates with τ = 0.2, and we set the advantage weighted factor λ to 0.99. The training data consists of
expert and medium data in a 1:2 ratio.

Table 5: Hyperparameters used for GLIDER.

Hyperparameter Value Hyperparameter Value
batch size 64 temperature 0.7

batch size per device 2 advantage weighted factor λ 0.99

gradient accumulation steps 8 soft update τ 0.2

actor learning rate 1× 10−5 discount factor γ 0.99

critic learning rate 1× 10−4 sft epochs 5

sft learning rate 1× 10−4 orl epochs 4

lora r 16 data mixture radio 1:2

lora alpha 32 warmup ratio 0.03

lora dropout 0.05 max new tokens 32
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Appendix D. Prompts and Case Study
We illustrate the prompts used in our paper, where High-Level and Low-Level prompts establish hierarchical control between
different agents, while Check Subtask Complete Prompt enables the high-level agent to evaluate subtask completion by the
low-level agent.

Prompts

High-Level Prompt:
You are a high-level planner. Based on the state (task description, group action and current observation), please
generate a clear and simple subtask.

Low-Level Prompt:
You are a low-level action executor. Based on the current subtask and observation, please generate a executable
action and determine if the subtask is completed (true/false).

Check Subtask Complete Prompt:
Determine if the low-level actions successfully completed the given subtask by high-level:
Subtask: [subtask]
Initial observation: [initial obs]
Actions: [action sequence]
Final observation: [final obs ]
Output only a single digit:
True if the actions successfully completed the subtask
False if the actions failed to complete the subtask
Give the ”True” or ”False”:

To demonstrate the advantages of hierarchical decomposition, we present a case study show in Figure. 9 comparing
two different tasks: freezing apple juice and boiling water. The highlighted portions reveal two types of structural
similarities: identical subtasks (highlighted in yellow) that can be directly reused, and analogous subtasks (highlighted
in red) that share similar underlying patterns despite different objectives. For example, both tasks contain the identi-
cal subtask "Prepare temperature and metal pot", while "Monitor apple juice until frozen"
and "Monitor water until boiling" represent analogous patterns of state monitoring and waiting. This hierar-
chical approach not only enables direct subtask reuse, but also allows the planner to recognize and adapt similar strategic
patterns across different tasks, thereby reducing the planning complexity and improving efficiency.
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Case Study

freeze apple juice
Task Description: Your task is to melt ice. First, focus
on the substance. Then, take actions that will cause it to
change its state of matter.
Observation: This room is called the greenhouse. In
it, you see: the agent, a substance called air, a bee hive.
The bee hive door is closed, a jug (containing nothing),
a shovel, sink, which is turned off.
Subtask: Navigate to kitchen
Action: open door to hallway
Observation: The door is now open.
Action: go to hallway
Observation: You move to the hallway.
Action: open door to kitchen
Observation: You move to the kitchen.
Subtask: Prepare temperature and metal pot
Action: pick up thermometer
Observation: You move thermometer to inventory.
Action: open cupboard
Observation: The cupboard is now open.
Action: pick up metal pot
Observation: You move metal pot to inventory.

Subtask: Find apple juice then focus it
Action: open fridge
Observation: The fridge is now open.
Action: focus on apple juice
Observation: You focus on the apple juice.
Subtask: Move apple juice to metal pot then freeze it
Action: pour cup containing apple juice into metal pot
Observation: You pour the apple juice into metal pot.
Action: pick up metal pot
Observation: You move the metal pot to the inventory.
Action: open freezer
Observation: The freezer is now open.
Action: move metal pot to freezer
Observation: You move the metal pot to the freezer.
Subtask: Monitor apple juice until frozen
Action: examine apple juice
Observation: orange juice
Action: use thermometer in inventory on apple juice
Observation: The temperature is 2 degrees celsius
Action: wait
Observation: You decide to wait for 10 iterations.
Action: examine orange juice
Observation: solid orange juice

done.

boil water
Task Description: Your task is to boil water. For com-
pounds without boiling point, combusting the substance
is acceptable. First, focus on the substance. Then, take
actions that will cause it to change its state of matter.
Observation: This room is called the kitchen. In it, you
see: a counter. On the counter is: a bowl (containing
a red apple, a banana, an orange, a potato), a drawer.
a cupboard. The cupboard door is closed. a freezer.
The freezer door is closed. a fridge. The fridge door is
closed.
Subtask: Prepare temperature and metal pot
Action: pick up thermometer
Observation: You move thermometer to inventory.
Action: open cupboard
Observation: The cupboard is now open.
Action: pick up metal pot
Observation: You move metal pot to inventory.

Subtask: Fill metal pot with water and focus on it
Action: move metal pot to sink
Observation: You move the metal pot to the sink.
Action: activate sink
Observation: The sink is now activated.
Action: deactivate sink
Observation: The sink is now deactivated.
Action: focus on substance in metal pot
Observation: You focus on the water.
Subtask: Heat water with stove
Action: move metal pot to stove
Observation: You move the metal pot to the stove.
Action: activate stove
Observation: The stove is now activated.
Subtask: Monitor water until boiling
Action: examine substance in metal pot
Observation: a substance called water
Action: use thermometer in inventory on substance in
metal pot
Observation: The temperature is 68 degrees celsius
Action: wait2
Observation: You decide to wait for 20 iterations.
Action: examine substance in metal pot
Observation: a substance called steam.
done.

Figure 9: Hierarchical decomposition reveals shared subtask patterns across two example tasks in ScienceWorld.
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