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Abstract

Blind image deblurring is a challenging problem due to its ill-posed nature, of which the
success is closely related to a proper image prior. Although most of sparsity-based priors
on the gradient filters have been successfully applied, they are inherently limited by the fact
that they only explore local coherence in natural image statistics and thus cannot model
more complicated structures. We aim to leverage Markov random fields (MRFs) to break
the limitation. Due to the intractable partition function, however, traditional MRFs often
learn universal filters for various images, resulting in unsatisfactory performance. Motivated
by this, we propose a novel MRF-based image prior, referred to as Super-Gaussian Fields.
Specifically, we depict potentials by using super-Gaussian distributions, leading to image-
specific filters. Relying on the prior and Bayesian MMSE, we proposed an effective image
deblurring method. Theory analyses show that the proposed method can effectively avoid
local minimum, and can learn image-adaptive sparsity-promoting filters that highlight image
structures for kernel estimation. Most importantly, with the theory support, the proposed
method can be extended to various scenarios, e.g., face, text, and low-illumination image
deblurring. Extensive experiments demonstrate the theoretical advantages and practical
effectiveness of the proposed method.

1 Introduction

Blind image deblurring (BID) aims to estimate a sharp image when given a blurred observation. Generally,
the imaging model of the blurred image can be formalized as follows:

y = k ⊗ x + n, (1)

where the blurred image y is generated by convolving the latent image x with a blur kernel k, ⊗ denotes
the convolution operator, and n denotes the noise. The task of BID includes estimation of x and the
corresponding k. Since this problem is highly ill-posed, to obtain a meaningful solution, appropriate priors
on the latent image x or/and the blur kernel k are necessary to regularize the solution space.

(a) (b) (c) (d) (e)

Figure 1: Deblurring results of a challenging example from Köhler et al. (2012). From left to right: Blurred
image (PSNR: 22.386), Cho and Lee Cho & Lee (2009) (PSNR: 22.611), Xu and Jia Xu & Jia (2010) (PSNR:
22.782), Pan et al. Pan et al. (2016) (PSNR: 26.259), Ours (PSNR: 27.5427).
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One of the most representative statistics characteristics of natural images is the local spatial coherence. With
such coherence, natural images have sparse statistics in arbitrary zero-mean gradient domain Schmidt et al.
(2010), e.g., [−1, 1]. Inspired by this, extensive prevailing methods Fergus et al. (2006); Levin et al. (2011a);
Babacan et al. (2009); Perrone & Favaro (2014); Tzikas et al. (2007); Babacan et al. (2012); Krishnan et al.
(2011); Xu et al. (2013); Ge et al. (2009) have developed various sparse priors or regularization models to
emphasize the sparsity on the latent images in gradient domain for blind image deblurring. A brief review will
be included in Section 2. Although these methods have made such remarkable progress, they are restricted
to modeling local characteristics. And thus their performances are unsatisfactory and still can be improved.
Specifically, 1) the gradient domain only records the response to several basic filters, which are insufficient
to capture structures more complex than local coherence, such as the long-range correlation among pixels.
In general, those complex structures often benefit from recovering more details in the deblurred results. 2)
Most of the existing sparse priors (e.g., Laplace prior) or regularizers (e.g., ℓp-norm, 0 ≤ p ≤ 1) model each
gradient element independently and thus cannot sufficiently capture the complex correlations. Such models
often result in some unnatural artifacts, as shown in Fig. 1.

To simultaneously address these two problems, we resort to establishing an appropriate image prior with
high order Markov random fields (MRFs) model, which is motivated by the two advantages of MRFs. Firstly,
high-order MRFs can be formulated and learned with an ensemble of high-order filters to model the image
distribution by considering the complex image structures. Secondly, MRFs integrate the potentials defined on
each clique (i.e., centering at each pixel) into a probabilistic joint distribution (without simple independent
assumption), which can further help to capture the long-range correlation.

Traditional MRFs models, e.g., Fields of experts (FoE) Roth & Black (2009) and Gaussian scale mixture
FoE (GSM-FoE) Schmidt et al. (2010), learn universal filters and the corresponding distributions from clean
images, as a general image prior. The learned priors are then used in separate image restoration processes.
The learned filters and distributions are assumed to be general for distinguishing clean and degenerated
versions of all images. However, the response of filters on images may vary due to the changes of the
contents and scales. For example, the learned filters lead to heavy-tailed sparse distributions on the finest
scale while Gaussian-like distributions on the coarsest scale. This results in a distribution mismatching issue,
i.e., applying the same MRFs to the images with different and mismatching distributions. Such mismatching
issue makes the performances of the traditional MRFs unsatisfied. In a simple case, the traditional MRFs
may not perform well in the commonly used multi-scale (coarse-to-fine) framework in BID. The learned
filters only can capture the common statistics among all training images and fail to depict the image-specific
characteristics (from scale and content variation) in various images effectively.

To overcome the difficulty above, we propose a novel MRF-based prior, referred to as Super-Gaussian
Fields (SGF). With the proposed SGF, we can estimate image-specific adaptive filters and model the image
distribution in the filtered space using super-Gaussian distributions. The SGF-based image prior can get
rid of the problems in the traditional MRF-based prior with theoretical support. Instead of estimating
parameters from only a separate set of clean images as a static image prior, we we predict both image-specific
filters and the partition functions for the SGF from each observed image during the kernel estimation and
image updating process. The proposed image prior can thus adaptively match different image contents and
different image scales in the multi-scale framework. Relying on the proposed SGF-based image prior, we
propose a novel image deblurring method with Bayesian Minimum Mean Squared Error (MMSE) estimator.
With the estimated image-specific filters and the SG-based sparsity promoting distribution, the proposed
SGF-based prior can highlight the representative image characteristics and discriminate the clear and blurry
patterns in image deblurring. We conduct the theory analyses to show that the proposed method inherits
the advantage of the traditional variational Bayesian method on avoiding troublesome local minima and can
learn image-adaptive sparsity-promoting filters that highlight the image structures for kernel estimation.
With the theory support, the proposed method can be naturally extended to various scenarios, e.g., face,
text, and low-illumination image deblurring.

A preliminary version of this work appeared in Liu et al. (2018). In this work, 1) We provide rigorous
theoretical justification for the success of the proposed method on blind image deblurring (Section 5). 2)
Built on these theoretical results, we explore the ability of the proposed method to handle various scenarios
such as natural, face, text, and low-illumination images (Section 6). 3) Further, we improve the performance
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of the proposed method to handle non-blind deblurring and extend the proposed method for non-blind
deblurring to handle text images (Section 7). 4) We also extend the theoretical justification for blind image
deblurring to non-uniform blind image deblurring (Section 8).

2 Related Work

2.1 Blind Image Deblurring

Due to the pioneering work of Fergus et al. Fergus et al. (2006) that imposes sparsity on image in the
gradient spaces, sparse priors have attracted attention Fergus et al. (2006); Levin et al. (2011a); Babacan
et al. (2009); Perrone & Favaro (2014); Tzikas et al. (2007); Babacan et al. (2012); Krishnan et al. (2011); Xu
et al. (2013); Ge et al. (2009); Gong et al. (2018). For example, a mixture of Gaussian models is early used
to chase the sparsity due to its excellent approximate capability Fergus et al. (2006); Levin et al. (2011a).
A total variation model is employed since it can encourage gradient sparsity Babacan et al. (2009); Perrone
& Favaro (2014). A student-t prior is utilized to impose the sparsity Tzikas et al. (2007). A super-Gaussian
model is introduced to represent a general sparse prior Babacan et al. (2012). Those priors are limited by
the fact that they are related to the l1-norm. To relax the limitation, many of the lp-norm (where p < 1)
based priors are introduced to impose sparsity on image Krishnan et al. (2011); Xu et al. (2013); Ge et al.
(2009). For example, Krishnan et al. Krishnan et al. (2011) propose a normalized sparsity prior (l1/l2).
Xu et al. Xu et al. (2013) propose a new sparse l0 approximation. Ge et al. Ge et al. (2009) introduce a
spike-and-slab prior that corresponds to the l0-norm. However, all those priors are limited by the fact that
they assume the coefficients in the gradient spaces are mutually independent.

Besides the above-mentioned sparse priors, a family of blind deblurring approaches explicitly exploits the
structure of edges to estimate the blur kernel Cho & Lee (2009); Xu & Jia (2010); Cho et al. (2011); Joshi
et al. (2008); Sun et al. (2013); Lai et al. (2015); Zhou & Komodakis (2014). Joshi et al. Joshi et al. (2008)
and Cho et al. Cho et al. (2011) rely on restoring edges from the blurry image. However, they fail to
estimate the blur kernel with large size. To remedy it, Cho and Lee Cho & Lee (2009) alternately recover
sharp edges and the blur kernel in a coarse-to-fine fashion. Xu and Jia Xu & Jia (2010) further develop this
work. However, these approaches heavily rely on empirical image filters. To avoid it, Sun et al. Sun et al.
(2013) explore the edges of natural images using learned patch prior. Lai et al. Lai et al. (2015) predict
the edges by learning prior. Zhou and Komodakis Zhou & Komodakis (2014) detect edges using a high-level
scene-specific prior. All those priors only explore the local patch in the latent image but neglect the global
characters.

Rather than exploiting edges, there are many other priors. Komodakis and Paragios Komodakis & Paragios
(2013) explore the quantized version of the sharp image by a discrete MRF prior. Their MRF prior is
different from the proposed SG-FoE prior which is a continuous MRF prior. Michaeli and Irani Michaeli &
Irani (2014) seek sharp images by the recurrence of small image patches. Gong et al. Gong et al. (2016;
2017a) hire a subset of the image gradients for kernel estimation. Pan et al. Pan et al. (2016), and Yan et
al. Yan et al. (2017) explore dark and bright pixels for BID, respectively. More recently, the work in Bai
et al. (2019) considers a latent structure prior of the unknown sharp image for image deblurring. Chen et
al. Chen et al. (2019) propose a local Maximum Gradient (LMG) prior, which is inspired by the observation
that the maximum value of a local patch gradient will diminish after blurring process. The work in Pan et al.
(2019) studies the BID in the frequency domain instead of the filtered space, which exploits the phase-only
image of the input blurry image. Zhang et al. Zhang et al. (2022b) utilize Bayes posterior estimation to
screen through the intermediate image and exclude those unfavorable pixels to reduce their influence on
kernel estimation. The work in Chen et al. (2021) introduces a new blur model to fit both saturated and
unsaturated pixels for considering the informative pixels during the deblurring process. Compared with
the above conventional methods relying on domain knowledge-based regularization and optimization, some
recent works explore learning-based regularization methods for image deblurring, which leverages the ability
of deep neural networks to learn knowledge from image data Nimisha et al. (2017); Gong et al. (2017b);
Kupyn et al. (2019); Su et al. (2017); Wang et al. (2019); Zhou et al. (2019); Lin et al. (2020); Ren et al.
(2020); Song et al. (2019); Shen et al. (2018); Tran et al. (2021;?); Ma et al. (2022); Li et al. (2022); Zhang
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et al. (2022b). A more detailed survey for learning-based methods for image deblurring can be found in
reference Zhang et al. (2022a).

2.2 High-Order MRFs

Since gradient filters only model the statistics of first derivatives in the image structure, high-order MRF
generalizes traditional based-gradient pairwise MRF models, e.g., cluster sparsity field Zhang et al. (2018),
by defining linear filters on large maximal cliques. Based on the Hammersley-Clifford theorem Besag (1974),
high-order MRF can give the general form to model image as follows:

p(x; Θ) = 1
Z(Θ)

∏
c∈C

J∏
j=1

ϕ(Jjxc), (2)

where C is the set of the maximal cliques, xc are the pixels of clique c, Jj are the linear filters and j = 1, ..., J ,
Z(Θ) is the partition function with parameters Θ that depend on ϕ and Jj , ϕ are the potentials. In contrast
to previous high-order MRF in which the model parameters are hand-defined, FoE Roth & Black (2009), a
class of high-order MRF, can learn the model parameters from an external database, and hence has attracted
high attention in image denoising Schmidt et al. (2010); Weiss & Freeman (2007), NBID Schmidt et al. (2011)
and image super-resolution Zhang et al. (2012).

3 The Proposed Image-Specific SGF Prior

Traditional MRF-based image priors Roth & Black (2009) learn a set of filters and the corresponding partition
functions from an external image database, which are used in the processing of various images as a general
prior. In the following, we will show that such models may suffer from the distribution mismatching issue
easily. Specifically, we comprehensively investigate a typical high-order MRF model, Gaussian scale mixture-
FoE model (GSM-FoE) Schmidt et al. (2010), and reveal how the generally learned filters hinder the process
of image deblurring. Motivated by this, we will propose a novel image-specific MRF-based prior model,
named super-Gaussian Fields (SGFs). Different from previous MRFs, the filters of the proposed SGF can
be adaptively estimated and updated for each specific image.

3.1 Mismatching Problem of the Traditional GSM-FoE

According to Schmidt et al. (2010), GSM-FoE follows the general MRFs form in Eq. equation 2 and defines
each potential with GSM as follows:

ϕ(Jjxc;αj,k) =
∑K

k=1
αj,kN (Jjxc; 0, ηj/sk), (3)

where N (Jjxc; 0, ηj/sk) denotes the Gaussian probability density function with zero mean and variance
ηj/sk. sk and αj,k denote the scale and weight parameters, respectively. It has been shown that GSM-FoE
can well depict wide heavy-tailed distributions Schmidt et al. (2010). Similar to most previous MRFs models,
the partition function Z(Θ) for GSM-FoE is generally intractable since it requires integrating over all possible
images. However, evaluating Z(Θ) is necessitated to learn all the model parameters, e.g., {Jj} and {αj,k}
(ηj and sk are generally constant). To sidestep this difficulty, most MRFs models, including GSM-FoE, learn
model parameters by maximizing the likelihood in equation 2 on an external image database Roth & Black
(2009); Schmidt et al. (2010); Weiss & Freeman (2007), and then apply the learned model in the following
applications for different images.

However, directly applying the pre-learned GSM-FoE to BID leads to unsatisfied results. BID commonly
adopts a coarse-to-fine framework. The latent images’ responses at different scales to these pre-learned filters
are different and may mismatch the universal pre-learned GSM distribution. To show this point clearly, we
apply the learned filters in GSM-FoE to an example image and show the responses of an image across various
scales in Fig. 2a. We can find that the response obtained in the finest scale (e.g., the original resolution)
exhibits obvious sparsity and heavy tails, while the response obtained in more coarse scales (e.g., 0.3536
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Figure 2: (a) The 8 distributions with different colors of outputs by applying the 8 learned filters from
Schmidt et al. (2010) to the sharp image (the bottom right in (a)) at different scales. The 0.7171, 0.5,
0.3536, and 0.25 denote different downsampling rates. (b) The top: Blurred images with different kernel
sizes (Successively, 13×13, 19×19, 27×27). The bottom: Corresponding deblurred images using GSM-FoE.

and 0.25, the down-sampling rates) exhibits a Gaussian-like distribution. Thus the filters (leaned at the
finest scale) do not show strong representative ability on other scales. And the Gaussian-like response in
coarse-scale cannot be well represented by the GSM-FoE, which prefers to fitting sparse and heavy-tailed
distribution. A similar observation is also reported in Schmidt et al. (2010). To further demonstrate the
negative effect of such kind of distribution mismatch on BID, we embed the pre-learned GSM-FoE prior
into the Bayesian MMSE framework introduced in the following Section 4.1 to deal with an example image
blurred with different kernel sizes. The deblurred results are shown in Fig. 2b. Generally, a blurred image
with a larger kernel size requires deblurring at a coarser scale. For example, deblurring image with 13 × 13
kernel requires deblurring at 0.5 scale and obtains a good result, since the filter response exhibits sparsity
and heavy tails at 0.5 scale shown as in 2a. However, deblurring image with 19 × 19 kernel obtains an
unsatisfactory result, since it requires deblurring at 0.3536 scale where the filter response mismatches the
sparse and heavy-tailed distribution depicted by GSM-FoE shown as 2a. More artifacts are generated in the
deblurred results when the kernel size is 27 × 27 since it requires deblurring at a 0.25 scale, which produces
more serious distribution mismatch issues.

We have shown that a universal prior will cause the distribution mismatching problem across different scales
above. Maybe a straightforward idea for handling it is to train GSM-FoE models in different scales specifically
(GSM-MultiScale). However, as shown in Fig. 8, the performance is still unsatisfactory. Although the GSM-
FoE models can be trained with the dataset at different scales separately, they still can only capture the
universal statistics among all training images. They cannot sufficiently depict the image-specific character
for the candidate blurred image. The multi-scale GSM-FoE prior is difficult to recover the images properly
and then impairs the kernel estimation. In contrast, the proposed SGF (See Section 3.2) can be directly
learned (or estimated) from the blurred observation in each scale in a Bayesian estimation scheme. Thus the
proposed SGF-based prior can capture the image-specific characteristics, leading to better image recovery
and kernel estimation.

3.2 Image-Specific SGF Prior

Instead of training GSM-FoE on multiple scales, we turn to a data-adaptive model in which all the model
parameters (including filters) can be updated adaptively across different scales. In this work, we propose
a novel MRF-based prior model, termed super-Gaussian fields (SGF), which defines each potential in Eq.
equation 2 as a super-Gaussian distribution Babacan et al. (2012); Palmer et al. (2005) as follows:

ϕ(Jjxc) = max
γj,i≥0

N (Jjxc; 0, γj,i), (4)

where i is the index over image pixels and corresponds to the center of clique c, γj,i denotes the variance.
Similar to GSM, SG also can depict sparse and heavy-tailed distributions Palmer et al. (2005). Unlike GSM-
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FoE and most MRFs models, the partition function in super-Gaussian fields can be ignored during parameter
estimation. More importantly, with such an advantage, it is possible to learn its model parameters directly
from the blurred observation on each scale. Thus the proposed super-Gaussian fields can be seamlessly
embedded into the coarse-to-fine deburring framework. In the following, we give the theoretical results to
show that the partition function can be ignored.
Property 1. The potential ϕ of SGF is related to Jj and xc, but not γj,i. Hence, the partition function
Z(Θ) of SGF just depends on the linear filters Jj.

Proof. As shown in Eq. equation 4, γj,i can be determined by Jj and xc. Hence, the potential ϕ in Eq. equa-
tion 4 is related to only Jj and xc. Furthermore, because Z(Θ) =

∫ ∏
c∈C

∏J

j=1 ϕ(Jjxc)dx , the partition func-
tion Z(Θ) just depends on the linear filters Jj once the integral is done. Namely, Θ = {Jj |j = 1, ..., J}.

Property 1 shows that the parameter γ can be naturally ignored while evaluating the partition function.
In the following, we show the condition for ignoring the filers Jj ’s. For any filter Jj , we define a VJj to
represent its vector version obtained via starching the filter Jj . We have the following property.
Property 2. Given any set of J orthonormal vector, such as {VJj

} and {VJ′
j
}, the value of the partition

function of SGF keeps constant, i.e., Z({VJj
}) = Z({VJ′

j
}).

Proof. Before proving Property 2, we first introduce the following theory:

Theorem 1 (Weiss & Freeman (2007)). For any image x, let Tx denote the corresponding Toeplitz con-
volution matrix, i.e., Jj ⊗ x = VT

Jj
Tx. Let E(VT

Jj
Tx) be an arbitrary function of VT

Jj
Tx and define

Z(V) =
∫
e

−
∑

j
E(VT

Jj
Tx)dx with x. Then Z(V) = Z(V′) for any sets of J orthonormal vectors {VJj

} and
{V′

Jj
}.

Since the partition function Z(Θ) of SGF just depends on the linear filters {JJj } as mentioned in Property
1 and the potential ϕ in Eq. equation 4 also perfectly meets the form of E(VT

Jj
Tx) in Theorem 1, it is easy

to proof Property 2.

Based on Property 1, we do not need to evaluate the partition function Z(Θ) of SGF to straightforward
update γj,i, since Z(Θ) do not depend on γj,i. Further, based on Property 2, we do not need to evaluate
Z(Θ) of SGF to update Jj , if we limit updating Jj in the orthonormal space.

4 Image Deblurring with the Proposed SGF

Based on the proposed SGF model in Eq. equation 2 and Eq. equation 4, we propose an iterative approach
for BID in this section. Given a blurred image, the proposed deblurring method attractively updates the
intermediate latent image and the blur kernel while the other one is fixed. We will introduce the process for
updating image and blur in the following subsections, respectively. Different to many previous methods only
focusing on kernel estimation, the proposed image prior and the method can be used for both estimating
blur kernel and recovering the final sharp image (i.e., non-blind deblurring), which will be further discussed
in Section 7.

4.1 Recovering Latent Image Given the Blur Kernel

Given the blur kernel, a conventional approach to recover latent image is Maximum a Posteriori (MAP)
estimation. However, MAP favors the no-blur solution due to the influence of image size Levin et al.
(2011b). To overcome it, we introduce Bayesian MMSE to recover the latent image. MMSE can eliminate
the influence by integration on image. In the following, to simplify the representation, we slightly abuse the
notation and let J denote the set of the filters {Jj} and γ denote the set {γj,i}. The MMSE formulation can
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be written as follows Murphy (2012):

arg min
x̃

∫
∥x̃ − x∥2

p(x|y,k,J, γ)dx

= arg min
x̃

E(x|y,k,J, γ).
(5)

This equation is equivalent to the mean of the posterior distribution p(x|y,k,J, γ). However, computing
the posterior distribution is generally intractable. Conventional approaches that resort to sum-product
belief propagation or sampling algorithms often face high computational costs. To reduce the computa-
tional burden, we use a variational posterior distribution q(x) to approximate the true posterior distribution
p(x|y,k,J, γ). The variational posterior q(x) can be found by minimizing the Kullback-Leibler divergence
KL(q(x)||p(x|y,k,J, γ)). This optimization is equivalent to the maximization of the lower bound of the free
energy:

max
q(x),J,γ,δ2

∫
q(x) log p(x,y|k,J, γ)dx

−
∫
q(x) log q(x)dx,

(6)

where δ2 is the variance of the noise term in Eq. equation 1.

In Eq. equation 6, p(x,y|k,J, γ) should be equivalent to p(y|x,k,J, γ)p(x). We empirically introduce a
weight parameter λ to regularize the influences of prior and likelihood similar to Roth & Black (2009);
Schmidt et al. (2010). In this case, p(x,y|k,J, γ) = p(y|x,k,J, γ)p(x)λ. Without loss of generality, we
assume that the noise in Eq. equation 1 obeys i.i.d. Gaussian distribution with zero mean and δ2 variance.
To solve the problem in Eq. equation 6, we iteratively estimate q(x), {Jj} and {γj,i} and δ2. The details
are in the following.

Estimating q(x): By setting the partial differential of Eq. equation 6 with respect to q(x) to zero and
omitting the details of derivation, we obtain:

− log q(x) = 1
2xT Ax − bT x, (7)

with A = δ−2TT
k Tk +

∑
j λTT

Jj
WjTJj

, b = δ−2TT
k y, where the image x is vectored, Wj denotes the

diagonal matrices with Wj(i, i) = γ−1
j,i , Tk and TJj

denote the Toeplitz (convolution) matrix with the filter
k and Jj , respectively. Similar to Babacan et al. (2012); Levin et al. (2011a), to reduce computational
burden, the mean of q(x), i.e., ⟨x⟩, can be found by solving the linear system A⟨x⟩ = b. The covariance of
q(x), A−1, can be approximated by inverting only the diagonals of A. A−1 will be used in Eq. equation 9
for estimating the variance γ.

Estimating Jj: Jj ’s are related to the intractable partition function Z(Θ). According to Property 2, we
can restrict the estimation of Jj in the orthonormal space, for which Z(Θ) is constant. That is, we can
define a set {Bj}, and then consider all possible rotations of a single basis set of filters Bj as the solution
space of Jj . To this end, we denote by B a matrix whose j-th column is Bj , and denote by R an orthogonal
matrix. In this case, we can ensure Z(B) = Z(RB), and give the solution of updating Jj by maximizing
Eq. equation 6 under the condition that R is any orthogonal matrix as follows (More details can refer to
Weiss & Freeman (2007)):

VJj
= BRj

Rj = eig min(BT ⟨TxWjTT
x ⟩B),

(8)

where the operator eig min(·) denotes the eigenvector of · with minimal eigenvalue, Tx denotes the Toeplitz
(convolution) matrix with x. We require that Rj be orthogonal to the previous columns R1,R2, ...,Rj−1.
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Estimating γj,i: Updating γj,i is more straightforward (then updating Jj) since Z(Θ) is naturally not
related to γj,i as mentioned in Property 1. We can get the solution of updating γj,i by setting the partial
differential of Eq. equation 6 with respect to γj,i to zero, as follows:

γj,i = ⟨(Jjxc)2⟩. (9)

In summary, given the blur kernel, the proposed method recovers the intermediate latent image x by itera-
tively updating Eq. equation 7-equation 9.

Estimating δ2: Unlike most traditional methods in which noise level is given manually and fixed, the
proposed method can adaptively estimate the noise level δ2 by solving the Bayesian variational inference
problem in Eq. equation 6. By setting the partial differential of Eq. equation 6 with respect to δ2 to zero,
δ2 can be updated via δ2 = ⟨∥(y−k⊗x)∥2⟩

n , where ⟨⟩ denotes the expectation calculator. However, directly
updating it this way leads to problematic optimization diverges with the estimated noise level decreasing too
much, which was also discussed in Levin et al. (2009). This problem is due to that the size of the sharp image
x is larger than that of the blurred image y, as mentioned in Wipf & Zhang (2014), and can be remedied
by updating δ2 with as the follows with an additional hyper-parameter d:

δ2 = ⟨∥(y − k ⊗ x)∥2⟩
n

+ d, (10)

where d acts as an interpretable barrier preventing δ2 from ever going below d, n is the size of image, and
⟨∥(y − k ⊗ x)∥2⟩ denote the expectation of ∥(y − k ⊗ x)∥2.

4.2 Recovering the Blur Kernel with the Latent Image

Similar to existing approaches Levin et al. (2011a); Xu et al. (2013); Sun et al. (2013), given ⟨x⟩, we obtain
the blur kernel estimation by solving:

min
k

∥∇x ⊗ k − ∇y∥2
2 + β∥k∥2

2, (11)

where ∇x and ∇y denote the latent image ⟨x⟩ and the blurred image y in the gradient spaces, respectively.
To speed up computation, FFT is used as derived in Cho & Lee (2009). After obtaining k, we set the
negative elements of k to 0, and normalize k. The proposed approach is implemented in a coarse-to-fine
manner similar to state-of-the-art methods. Algorithm 1 shows the pseudo-code of the proposed approach.

Algorithm 1 Image deblurring with the proposed SGF
Input: Blurred image y
Output: The blur kernel k

Initialize: k,x,J,B, δ2, γ, λ, β and d
while stopping criterion is not satisfied do

Estimate x, J, γ and δ2 by Eq. equation 7-Eq. equation 10
Update for blur kernel k by Eq. equation 11

end while

4.3 Initialization of the Filters

As introduced in Sec. 4.1, the proposed method estimates image-adaptive filters to capture the image
characteristics. In practice, we need to initialize the filters Jj ’s and B (i.e., the set of Bj) in Eq. equation 8
at the start of the optimization. Although the proposed method works well with random initialization, we
observed that it can make the optimization process more effective and efficient by learning the initialization
of the filters with additional training on only sharp images of the corresponding scenario. By default, we
use the clean natural images from Martin et al. (2002) to learn the initialization. Given a set of clean and
sharp images, we first downsample the images with 0.5 scale (for reducing noise) to obtain training images

8
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and then train the model in Eq. equation 2-equation 3 to obtain the filters, by using the auxiliary-variable
Gibbs sampler and contrastive divergence Hinton (2002). The more detailed training process can be found
in Schmidt et al. (2010). The obtained 8 3 × 3 filters Jj ’s are used as the initialization for the proposed
method. To initialize basis set B, we use the shifted versions of the whitening filter whose power spectrum
equals the mean power spectrum of Jj . More details of the process can be found in Weiss & Freeman (2007).
The initialization can be adjusted for the extension to some specific scenarios, as shown in Sec. 6.

5 Theoretical Analysis

In this section, we demonstrate the theoretical advantages of the proposed method for blind image deblurring.
To this end, we first formulate the updating process of the latent image, e.g., equations Eq. equation 7-
Eq. equation 10, as the sum of a fitting term and a penalty function term. Then, we give detailed analyses
about this penalty function term, to show the theoretical advantages of the proposed method compared with
traditional MAP with sparse penalty term, e.g., ℓ1-norm, as well as traditional variational Bayesian (VB)
methods with sparse penalty term, e.g., Levin et al. (2011a); Babacan et al. (2012); Wipf & Zhang (2014).

5.1 Penalty Function in the Proposed Method

As shown above, the proposed method recovers the intermediate latent image x by iteratively updating
Eq. equation 7-Eq. equation 10. This updating process can be reformulated as an objective function, including
a fitting term and a penalty function term:
Theorem 2. Consider the objective function

L(J,x, δ2) = 1
δ2 ||y − k ⊗ x||22 +

∑
c

g(J,xc, δ
2), (12)

where

g(J,xc, δ
2) = min

γj,i≥0
λ

∑
j

( (Jjxc)2

γj,i
+ log γj,i)

+ log(λδ2
∑

j

(V2
Jj

)T Vγ−1
j,c

+ ||k||22)
(13)

subject to any two vectors in {VJj
} are orthonormal. The updating process Eq. equation 7-Eq. equation 10

for recovering the latent image with given the blur kernel is equivalent to coordinate descent minimization of
Eq. equation 12 over x,J, γ, δ2.

Proof is left in Section 2 in supplemental materials. Here γj,c denote the elements corresponding to xc,
Vγ−1

j,c
denote the vectored version of γ−1

j,c . Given Theorem 2, we can analyse the image penalty g(J,xc, δ
2),

which is quite different from traditional image regularizers, e.g., ℓ1 norm, and discuss some of its relevant
properties as below.
Theorem 3. With any given filters J, g(J,xc, δ

2) is a concave non-decreasing function of |Jjxc|.

Proof can be found in Section 3 in supplemental materials. According to Chen et al. (2017), introducing such
a concave non-decreasing penalty function g(J,xc, δ

2) into the objective is beneficial to promote the sparsity
of the solution. Thus, Theorem 3 explicitly stipulates that a strong, sparsity promoting Jjxc penalty is
produced by the proposed method.

5.2 Comparison with MAP Methods

Although Theorem 3 can give theoretical justification to obtain sparse estimation for the latent image in
the filter domains, it cannot reveal the theoretical advantages compared with traditional MAP method with
sparse regularization, e.g., ℓ1 norm. We will give deeper discussions on the penalth in the following.

9



Under review as submission to TMLR

For the sake of brevity, note that because g(J,xc, δ
2) is a symmetric function with respect to Jjxc, we can

only examine its concavity/curvature properties in the positive domain, i.e., Jjxc ≥ 0.
Theorem 4. Given any set of filters J, there are two results as in the following.

1) For all δ2
1 and δ2

2, g(J,xc, δ
2
2) − g(J,xc, δ

2
1) → 0 as Jxc → ∞. Therefore, g(J,xc, δ

2
2) and g(J,xc, δ

2
1)

penalize large magnitudes of Jxc equally.

2) Let δ2
2 ≥ δ2

1, then if Jx′
c ≻ Jxc, we have g(J,xc, δ

2
2) − g(J,xc, δ

2
1) ≥ g(J,x′

c, δ
2
2) − g(J,x′

c, δ
2
1). Therefore,

as Jxc → 0, g(J,xc, δ
2
2) − g(J,xc, δ

2
1) is maximized, implying that g(J,xc, δ

2
1) favors zero-valued coefficients

more heavily than g(J,xc, δ
2
2).

The proof follows from several extensions of the proof for Theorem 2 in Zhang et al. (2014). Theorem 4
implies that δ2 represents a form of shape parameter that modulates the sparsity favor ability of the penalty
g(J,x, δ2), which is the essential advantage compared with traditional MAP methods.

At the beginning of the proposed method, δ2 is initialized as a large value, regardless of the true noise level.
Such a large value means that we have a penalty g(J,x, δ2) that highly behaves like a convex (less sparse)
function with respect to Jjxc. As a result, one can effectively avoid local minima to a certain extent, and
get a desirable optimization solution. As the iterations proceed, δ2 is reduced, and the penalty function is
made less convex (more sparse). In this case, the risk of local minima tends to be more serious. However,
the risk can be tremendously ameliorated since we are likely to be already in the neighborhood of a good
solution. In contrast, traditional MAP methods’ penalty function has no such shape-modulated ability to
reduce the risk.

Such similar shape-modulated ability has been reported in traditional VB methods Babacan et al. (2012);
Wipf & Zhang (2014). Namely, Theorem 4 fails to explain why the proposed method is superior to
traditional VB methods. In the next section, we will further discuss the theoretical advantage of the proposed
method.

5.3 Comparison with Other VB Methods

In traditional variational Bayesian methods, they often employ basic filters (e.g., gradient filters [1,-1]) to
promote kernel estimation. Unlike them, the proposed method can adaptively learn filters, highlighting the
theoretical advantage of the proposed method.
Theorem 5. The learned filters in the proposed SGF are sparse-promoting.

Proof. As mentioned in Eq. equation 8, the filters in SGF are estimated as the eigenvector of ⟨TxWjTT
x ⟩

with minimal eigenvalue, viz., the filters are the singular vector ⟨Tx(Wj) 1
2 ⟩ with minimal singular value.

This implies that the proposed method seeks filters Jj ’s which lead to the corresponding VT
Jj

Tx(Wj) 1
2 being

as sparse as possible where VJj denotes the vectorized Jj . Since (Wj) 1
2 is a diagonal matrix which only

scales each column of Tx, the sparsity of VT
Jj

Tx(Wj) 1
2 is mainly determined by VT

Jj
Tx. Consequently,

the proposed approach seeks filters Jj which lead to the corresponding response VJj Tx of the latent image
being as sparse as possible.

The results in Theorem 5 can be further illustrated by the visual results in Fig. 3(a) where the distribution
of image response to these learned filters and gradient filters (e.g., [1,-1]) are plotted. It can be seen that
those learned filters lead to a sparser response than that on gradients. To further show the advantage of
sparse-promoting filters, we recover the latent image with the proposed method and a typical VB based
method in Babacan et al. (2012). The corresponding deblurred results are shown in Fig. 3(b). We can find
that these learned filters lead to more clear and sharp results. These results demonstrate that the proposed
method with sparse-promoting filters is more powerful than the traditional VB method with the basic filters
for image deblurring.
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Figure 3: Comparison of the outputs in the gradient spaces and our adaptive filter spaces at different scales.
(a) The distributions of the filter outputs of sharp image (The top right in (b)) in gradient spaces and our
adaptive spaces (by using filters corresponding to the bottom right in (a)) at different scales. From top to
bottom and from left to right: the original, 0.7171 (sampling rate), 0.5, 0.3536, 0.25 scales. The bottom
right is our final obtained filters corresponding to the different scales. (b) From left to right: blurred image,
sharp image, result by the method in Babacan et al. (2012) and result by the proposed method.

6 Extension to Various Specific Scenarios

In this section, we explore the ability of the proposed method to handle various scenarios, such as face, text,
and low-illumination images. The images in the special scenarios can have specific characteristics. Some
deblurring methods are specifically designed to handle different particular scenarios. Benefiting from the
proposed image-adaptive SGF prior, the proposed method can be naturally and conveniently generalized to
different scenarios with a universal framework and minor adjustments, as discussed in the following. For
example, to effectively handle the images with very special characteristics, we can obtain the initialization
of the filters (with details in Sec. 4.3) using the clean images from the corresponding scenarios, e.g., text
images in Yao et al. (2012) and low-light images from Loh & Chan (2019), as introduced in the following.

Face images: Deblurring face images is a challenging task because few strong edges in blurry face images
can be easily extracted for kernel estimation. Existing methods use explicit edge detection processes for ker-
nel estimation, which are restricted to pre-defined low-order filter space and not general for all images.The
proposed method can be directly applied to face images without adjustment. Although the default initial-
ization of the filters Jj and set B are designed for natural images, the proposed method can perform well as
shown in Fig. 4, since it uses the long-range filters (3 × 3) to capture the data structure more prominently
than the traditional gradient spaces (i.e., [1, -1]). And the proposed method can further highlight the useful
structures by updating the image-specific prior distribution attentively, as shown in Theorem 5 as suggested
in Weiss & Freeman (2007).

Text images: Previous priors for natural images deblurring, which unitize sparse gradient statistics of
natural images, are less effective for cases with text contents. This is because text images often are composed
of high-order structures in a larger spatial range, which makes sparse priors in gradient space to be inaccurate
Xiao et al. (2016) as shown in Fig. 5c. A feasible method to handle this problem is exploring sparsity in
high-order filter spaces Xiao et al. (2016) capturing the statistical characteristics in a larger range. The
proposed SGF naturally integrates the high-order filters as defined in Eq. equation 2 and Eq. equation 4,
and explores sparsity on images in these high-order filter spaces as mentioned in Theorem 3. Differing from
the method in Xiao et al. (2016), the proposed method can learn image-specific filters, while the method in
Xiao et al. (2016) uses pre-trained filters for all blurred images. As a result, the proposed method can be
easily extended to other domain-specific images, e.g., natural images and face images. In addition, compared
with the method in Xiao et al. (2016), the proposed method is supported by the advantages in theory. To
enable the proposed method to deblur text images, we initialize the filters by learning from external MSRA
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(a) (b) (c) (d) (e)

Figure 4: Deblurring a challenging real face example. (a) The initialization of the 8 filters Jj , (b) Blurred
face image, (c) Xu et al. Xu et al. (2013) and (d) Ours. (e) The estimated sets of filters at different scales,
from left to right and from top to bottom. The bottom right is our final obtained filters corresponding to
the original scale.

text images Detection 500 dataset Yao et al. (2012) which enables the initialized filters to learn the high-
order structures in text images. Although those initialized filters are then updated by Eq. equation 8 as
the proposed method proceeds, the initialized basis set B in Eq. equation 8 have recorded the high-order
statistics characteristic of those initialized filters by power spectrum as mentioned above, and regularize the
update of the filters as shown in Eq. equation 8. As the proposed method proceeds, the updated filters
are still effective in capturing the high-order structure in text images. As a result, the proposed method
performs well for deblurring text images, as shown in Fig. 5d.

(a) The initialization of
Jj

(b) Blurred image (c) Xu et al. Xu et al.
(2013)

(d) Ours

Figure 5: Deblurring a challenging real text example. (a) shows the filter initialization obtained for text
images.

Low-illumination images: Deblurring images with low-illumination scene images is also a challenging
task, for which saturated pixels often appear and interfere with kernel estimation. These saturated pixels
often enable most traditional deblurring methods, which explore the sparsity of images in the gradient filter
spaces, tending to obtain a delta kernel estimation, as shown in 6c. Pan et al. have shown that enforcing
sparsity on light streaks in low-illumination images can be effective to deblur these images Jinshan Pan
& Yang (2014). The proposed method naturally integrates detecting light streaks (by sparsity-promoting
filters mentioned in Theorem 5) and enforcing sparsity (Theorem 3) into a unified model. As a result,
the proposed method can be able to promote kernel estimation. To verify this point, the proposed method
learns the initialized filters from external low-illumination images dataset Loh & Chan (2019). This is a
very large low-illumination image dataset. In our implementation, we randomly extracted 360 images for
training. Consequently, the proposed method performs well on low-illumination images, as shown in Fig.
6d.

7 Non-blind Image Deblurring with SGF

Most of the deblurring methods apply different image priors or regularizers in kernel estimation and non-
blind deblurring, for capturing different image characteristics. For example, regularizations or priors for
promoting more significant image structures are used for kernel estimation Xu & Jia (2010); Gong et al.
(2016), and non-blind deblurring requires the priors to capture more image details in natural images, given
a fixed blur kernel. The proposed SGF-based image prior can be feasible for both kernel estimation and
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(a) The initialized Jj (b) Blurred image (c) Xu et al. Xu et al.
(2013)

(d) Ours

Figure 6: Deblurring a real low-illumination example. (a) shows the filter initialization obtained for low-
illumination images.

non-blind deblurring with a unified form. In this section, we discuss the details of non-blind deblurring with
the proposed SGF-based image prior and also show the extension on text image non-blind deblurring.

In the preliminary work Liu et al. (2018), we directly used the proposed SGF-based prior for non-blind image
deblurring by iteratively computing Eq. equation 7-equation 9 with the given kernel k, which is similar as
the operation for updating x during kernel estimation. The only difference is that we need more iteration
times to update Eq. equation 7-equation 9 for non-blind image deblurring than for blind deblurring. The
proposed SGF-based prior can work very well and produce high-quality images, as shown in Fig. 7. We
observe that such straightforward implementation may lead to the result images lacking some fine details
(See Fig. 7c). In the following, we further discuss the reason and the new solutions to improve the non-blind
deconvolution quality in the proposed method.

The filters in SGF are initialized as a set of filters pre-leaned from natural images in Schmidt et al. (2010)
and are then updated via Eq. equation 8. As statements in Theorem 5, the updated filters can promote
the sparsity strongly so that the proposed method adaptively learns a set of filters {Jj}, which ensures the
filtered responses Jjxc sparse as much as possible. Further, the proposed method promotes the sparsity of the
filtered responses Jjxc by the concave non-decreasing regularization term g(J,xc, δ

2) as shown in Theorem
3, regardless of which Jj . Under these supports in theory, the proposed method would obtain highly sparse
solution Jjxc by default, which strongly differentiates the shape images and the blurred images. It can
be very helpful for kernel estimation. Although the images converge towards the natural images during
the optimization, in practice, some fine details in the images may be overly suppressed when the proposed
method discriminates the blurry and non-blur patterns too strongly, as depicted by Fig. 7b.

We propose two ways to handle the above problem in non-blind deblurring. 1) Recall that promoting the
sparsity of Jjx in the proposed method for enhancing the discrimination of the sharp image characteristics.
To keep more representative details while promoting sparsity, we can apply more filters with a larger size in
non-blind deblurring to capture the more intricate details in the natural images, despite more computations.
To verify this point, we train 24 5 × 5 filters as the initialization and keep updating the filters during
optimization, which obtains satisfactory results (See Fig. 7d). 2) Another simple way to relieve too strong
sparsity promotion is that we may update the filters less in optimization. For example, in the optimization
process of non-blind deblurring, we can directly use the filters learned from natural images and keep them
fixed while optimizing for x. We found that these initialization filters can capture natural image statistics
when a well-estimated blur kernel is given (only in non-blind deconvolution). And the proposed method can
obtain better results with the fixed filters (See Fig. 7b).

Similar to Section 6, the proposed method can also be naturally extended to handle text images in non-blind
deblurring. The proposed method can obtain the desired results with the strong sparsity-promoting filter
updating process for text images with fewer details. This can be verified by experimental results in Fig. 16.
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(a) (b) (c) (d)

Figure 7: Deblurring results of a challenging example from dataset Levin et al. (2009). From left to right:
Blurred image (SSD:574.38), Ours with fixed filters (SSD:35.64), Ours with updating filters (SSD:44.61, aka
Liu et al. (2018)), and Ours with 24 5 × 5 filters (SSD:33.44). The previous method in Liu et al. (2018)
neglects many fine details, while the proposed method with 24 5 × 5 filters obtains better results.

8 Non-uniform Blind Deblurring

In this section, we will show how to use the proposed method to handle non-uniform deblurring. We
also demonstrate that the theoretical advantages of the proposed method in uniform blind deblurring can
be naturally extended to non-uniform blind deblurring, including avoiding troublesome local minima and
image-adaptive sparsity-promoting filters.

The proposed method can also be directly extendted to handle the non-uniform blind deblurring where the
blur kernel varies across spatial domain Whyte et al. (2012); Hirsch et al. (2011). According to Whyte et al.
(2012), we formulate non-uniform blind deblurring problem as follows:

Vy = DVx + Vn, or Vy = EVk + Vn, (14)

where Vy, Vx and Vn denote the vectored forms of y, x and n in Eq. equation 1. D is a large sparse matrix,
where each row contains a local blur filter acting on Vx to generate a blurry pixel and each column of E
contains a projectively transformed copy of the sharp image when Vx is known. Vk is the weight vector
which satisfies Vkt ≥ 0 and

∑
t Vkt = 1. Based on Eq. equation 14, the proposed approach can handle the

non-uniform blind deblurring problem by alternatively solving the following problems:

max
q(Vx),J,γ,δ2

∫
q(Vx) log q(Vx)dVx

−
∫
q(Vx) log p(Vx,Vy|D,J, γ)dVx,

(15)

min
Vk

∥∇EVk − V∇y∥2
2 + β∥Vk∥1. (16)

Here, Eq. equation 16 employs l1-norm to encourage a sparse kernel as Whyte et al. (2012). The optimal
q(Vx) in Eq. equation 15 can be computed by using formulas similar to Eq. equation 7-Eq. equation 9 in
which k is replaced by D. In addition, the efficient filter flow Hirsch et al. (2010) is adopted to accelerate
the implementation of the proposed approach.

In the preliminary work Liu et al. (2018), we implement the SGF-based non-uniform blind deblurring method
with the fixed noise parameter δ2. In this work, we update δ2 during the optimization process. The following
theoretical analysis for the proposed method on non-uniform blind deblurring shows the significance of
updating the noise δ2.

The objective function Eq. equation 15 is similar to the objective function Eq. equation 6. Their difference
is in that the Eq. equation 15 uses the non-uniform kernel formulated with D. In this case, optimizing
for Eq. equation 15 can be achieved by replacing k in Eq. equation 7-Eq. equation 10 by D. As a result,
analogying with the inferring processing for Theorems 2-5, it can be easily show that: 1) Eq. equation 15
explicitly shows a strong, sparsity promoting penalty on JjVxc for non-uniform blind deblurring. 2) Updating
noise in Eq. equation 15 has a shape-modulated ability to avoid optimization risk, which often exists in
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Figure 8: Evaluations on Levin et al. (left) datasets and Sun et al. (right) datasets.
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Figure 9: Evaluations on Dataset Köhler et al. (2012).

most traditional methods with sparse regularization, e.g., Whyte et al. (2012). 3) The learned filters in
the proposed are sparse-promoting, which are more powerful than the basic filters for non-uniform blind
deblurring.

9 Experiments

In this section, we illustrate the capabilities of the proposed method for blind, non-blind, and non-uniform im-
age deblurring. We first evaluate its performance for blind image deblurring onnatural, text, low-illumination
images datasets and some real images. We then evaluate its performance for non-blind image deblurring.
Finally, we report results on blurred images undergoing a non-uniform blur kernel.

Experimental Setting: In all experiments unless especially mentioned, we set δ2 = 0.002, β = 20,
γj,i = 1e−3 and d = 1e−4. To initialize the filters Jj , we first downsample all images (grayscale) from the
dataset Martin et al. (2002) to reduce noise, then train 8 3 × 3 filters Jj on the downsampling images using
the method proposed in Schmidt et al. (2010) as the initialization. λ is set as 1/8. To initialize basis set B,
we use the shifted versions of the whitening filter whose power spectrum equals the mean power spectrum
of Jj as suggested in Weiss & Freeman (2007). We use the proposed non-blind approach in Section 7 to give
the final sharp image unless otherwise mentioned. We implement the proposed method in MATLAB and
evaluate the performance on an Intel Core i7 CPU with 8GB of RAM. Our naive implementation processes
images of 255 × 255 pixels in about 27 seconds.
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9.1 Experiments on Blind Image Deblurring

Dataset from Levin et al. (2009): The proposed method is first applied to a widely used dataset Levin
et al. (2009), which consists of 32 blurred images, corresponding to 4 ground truth images and 8 motion blur
kernels. We compare it with state-of-the-art approaches Fergus et al. (2006); Levin et al. (2011a); Babacan
et al. (2012); Cho & Lee (2009); Xu & Jia (2010); Krishnan et al. (2011); Xu et al. (2013); Sun et al. (2013);
Yan et al. (2017); Pan et al. (2016). To verify the mismatching problem of GSM-FoE, we implement GSM-
FoE for BID by integrating the pre-learned GSM-FoE prior into the Bayesian MMSE framework introduced
in Section 4.1. Furthermore, we also try to adapt GSO-FoE to handle characteristics at different scales,
termed GSM-MultiScale, in which a specific GSM-FoE is trained to handle the images at a specific scale.
We also verify the performance of the proposed method without updating filters to illustrate the necessity of
updating filters. For a fair comparison, after estimating blur kernels using different approaches, we use the
non-blind deconvolution algorithm Levin et al. (2007) with the same parameters in Levin et al. (2011a) to
reconstruct the final latent image. The deconvolution error ratio, which measures the ratio between the Sum
of Squared Distance (SSD) deconvolution error with the estimated and correct kernels, is used to evaluate
the performance of the different methods above. Fig. 8 shows the cumulative curve of the error ratio. Fig.
8 shows that the performance of GSM-MultiScale and GSM-FoE is unsatisfactory. This may be because 1)
Both are general image prior models learned only on clean images, which are not optimized to handle image-
specific characteristics and are designed without considering the blind kernel estimation task. 2) GSM-FoE
faces with the mismatching problem across different scales, as mentioned in Section 3.1. Furthermore, the
results show that the proposed method obtains the best performance in terms of success percent 100% under
error ratio 2.

Dataset from Sun et al. (2013): In a second set of experiments we use dataset from Sun et al. (2013),
which contains 640 images synthesized by blurring 80 natural images with 8 motion blur kernels borrowed
from Levin et al. (2009). For a fair comparison, we use the non-blind deconvolution algorithm of Zoran and
Weiss Zoran & Weiss (2011) to obtain the final latent image as suggested in Sun et al. (2013). We compare
the proposed approach with Levin et al. (2011a); Cho & Lee (2009); Xu & Jia (2010); Krishnan et al. (2011);
Sun et al. (2013); Michaeli & Irani (2014). Fig. 8 shows the cumulative curves of the error ratio. Our results
are visually competitive with others.

(a) Blurred (b) Result by Pan et al.
(2016)

(c) Result by Yan et al.
(2017)

(d) Ours

Figure 10: A challenging example with sky patches.

Dataset from Köhler et al. (2012): We further implement the proposed method on Köhler et al.
dataset, which is blurred by space-varying blur, borrowed from Köhler et al. (2012). Although real images
often exhibit spatially varying blur kernel, many approaches that assume the shift-invariant blur kernel can
perform well. We compare the proposed approach with Fergus et al. (2006); Cho & Lee (2009); Xu & Jia
(2010); Krishnan et al. (2011); Shan et al. (2008); Whyte et al. (2014); Hirsch et al. (2011); Pan et al. (2016).
The peak-signal-to-noise ratio (PSNR) is used to evaluate their performance. Fig. 9 shows the PSNRs of
the different approaches above. We can see that our results are superior to state-of-the-art approaches.

Deblurring image with sky patches: As shown in Figs. 8 and 9, the proposed method performs on par
with the method with dark channel prior in Pan et al. (2016) on datasets Levin et al. Levin et al. (2009) and
Köhler et al. Köhler et al. (2012). However, the method in Pan et al. (2016) obtains unsatisfactory results
for blurred images that do not satisfy the condition of the dark channel prior, e.g., images with sky patches
He et al. (2011). To alleviate this limitation, Yan et al. Yan et al. (2017) replace dark channel prior with
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(a) Blurred (b) Fergus et al. (2006) (c) Xu et al. (2013) (d) Ours

(e) Blurred (f) Xu & Jia (2010) (g) Sun et al. (2013) (h) Ours

Figure 11: Two example images with unknown camera shake from Fergus et al. (2006) and Xu & Jia (2010).

extreme channels prior. However, its performance is still severely affected by complex brightness, as shown
in Fig. 10. By contrast, the proposed method shows impressive results.

Real natural images: We test the proposed method using two real natural images. In Fig. 11 we show
two comparisons on real photos with unknown camera shakes. For the blurred image 11a, Xu et al. (2013)
and the proposed method produce high-quality images. For the blurred image 11e, the proposed method
produces sharper edges around the texts than Xu & Jia (2010), and Sun et al. (2013).

Real face images: Deblurring face images is a challenging task because few edges in blurry face images
can be used for kernel estimation. Existing methods, which implicitly or explicitly detect edges in fixed filter
spaces for kernel estimation, are often unsatisfactory. In contrast, the proposed method can highlight useful
edges in face images by the sparse-promoting filters, obtaining significant results. We compare the proposed
method with existing methods Xu et al. (2013); Pan et al. (2016) and Pan et al. (2014) on two real face
images. As shown in Fig. 12, the proposed method is superior to traditional MAP-based method Xu et al.
(2013), and is competitive with the method Pan et al. (2014) specializing for deblurring face images.

Methods PSNR Methods PSNR
Blurred 17.35 Xu et al. (2013) 26.21

Cho & Lee (2009) 23.80 Pan et al. (2016) 27.94
Krishnan et al. (2011) 20.86 Xiao et al. (2016) 27.56
Levin et al. (2011a) 24.90 Jinshan Pan & Yang (2014) 28.79
Zhong et al. (2013) 19.05 Ours 27.55

Table 1: Average PSNRs on text dataset Jinshan Pan & Yang (2014).

Text images: For deblurring text images, we initialize the filters Jj from external MSRA text images
Detection 500 dataset. We verify the performance of the proposed method on text images. We compare the
proposed method with existing methods, including Cho & Lee (2009); Krishnan et al. (2011); Levin et al.
(2011a); Xu et al. (2013); Zhong et al. (2013); Pan et al. (2016); Xiao et al. (2016); Jinshan Pan & Yang
(2014) on the text images dataset Jinshan Pan & Yang (2014). As shown in Table 1, The PSNR of the
proposed algorithm is higher than that of traditional sparsity-based methods Cho & Lee (2009); Krishnan
et al. (2011); Levin et al. (2011a); Xu et al. (2013); Zhong et al. (2013). The proposed method performs on
par with the method of Xiao et al. Xiao et al. (2016) specifically designed for text image deblurring. On
real blurry text images, as shown in Fig.13, the proposed method outperforms the traditional sparsity-based
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(a) Blurred (b) Xu et al. (2013) (c) Pan et al. (2016) (d) Pan et al. (2014) (e) Ours

(f) Blurred (g) Xu et al. (2013) (h) Pan et al. (2016) (i) Pan et al. (2014) (j) Ours

(k) Blurred (l) Xu et al. (2013) (m) Pan et al. (2016) (n) Pan et al. (2014) (o) Ours

Figure 12: Deblurring challenging real face examples.

(a) Blurred (b) Xu et al. (2013) (c) Pan et al. (2016) (d) Pan et al. (2014) (e) Ours

Figure 13: Deblurring a challenging real text example. The proposed method generates competitive result
visionally.

method Xu et al. (2013), and generates competitive results comparable to methods designed specifically for
text images.
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Methods PSNR Methods PSNR
Blurred 22.07 Xu et al. (2013) 22.31

Cho & Lee (2009) 22.65 Zhe Hu & Yang (2014) 22.77
Krishnan et al. (2011) 22.43 Jinshan Pan & Yang (2014) 24.16

Xu & Jia (2010) 22.73 Ours 24.22

Table 2: Average PSNR on low-illumination dataset Jinshan Pan & Yang (2014).

Low-illumination images: For deblurring low-illumination images, we initialize the filters Jj from external
low-illumination images dataset Loh & Chan (2019). Due to saturated pixels in low-illumination images,
most existing methods often obtain a delta kernel estimation. To verify the performance of the proposed
method on low-illumination images, we compare the proposed method with existing methods, including Cho
& Lee (2009); Xu & Jia (2010); Krishnan et al. (2011); Xu et al. (2013); Zhe Hu & Yang (2014); Jinshan Pan
& Yang (2014) on the text images dataset Jinshan Pan & Yang (2014). As shown in Table 2, the PSNR of
the proposed algorithm is the highest. Further, Fig.14 shows that residual blur and ringing artifacts exist in
the methods Zhe Hu & Yang (2014); Jinshan Pan & Yang (2014); Pan et al. (2016), and the proposed method
generates the best result, even compared with the method Zhe Hu & Yang (2014) designed specifically for
low-illumination images.

(a) Blurred (b) Zhe Hu & Yang
(2014)

(c) Pan et al. (2016) (d) Pan et al. (2014) (e) Ours

Figure 14: Deblurring a challenging real low-illumination example. The proposed method generates the
clearest result.

9.2 Experiments on Non-blind Image Deblurring

We use the dataset from Levin et al. (2009) to verify the performance of the proposed method on non-
blind image deblurring where the blur kernel is given by reference to Levin et al. (2009). In previous work
Liu et al. (2018), the proposed method is directly applied for non-blind image deblurring by Eq. equation 7-
Eq. equation 9 with the kernel k given beforehand. However, as mentioned in Section 7, the sparse-promoting
filters neglect many fine details, e.g., texture. In this work, the proposed method employs two ways to handle
this problem: 1) keeping the initialized filters unchanged in the iterations of the proposed method, 2) applying
larger filters size. The Sum of Squared Distance (SSD) deconvolution error between the deblurred image
and groundtruth is used to evaluate the performance of the different methods above.

Natural images: We compare the proposed method against Levin et al. Levin et al. (2007) with the same
parameters in Levin et al. (2011a), Krishnan and Fergus Krishnan & Fergus (2009), Zoran and Weiss Zoran
& Weiss (2011), Schmidt et al. Schmidt et al. (2011) and the previous work Liu et al. (2018). Fig. 15 shows
the cumulative curve of SSD on dataset Levin et al. (2011a). We can see that the proposed method produces
competitive results. Additionally, as shown in Table 3, compared with Zoran and Weiss Zoran & Weiss
(2011), the proposed method obtains the lowest average SSD and less run time. Compared with GSM-FoE
based Schmidt et al. Schmidt et al. (2011), the proposed SGF-based method acquires better results and
requires much less run time. Compared with the previous work Liu et al. (2018), the proposed method gets
more fine details and better performance.
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Figure 15: Non-blind deblurring evaluation on dataset Levin et al. (2009).

Methods Average SSD Time (s)
Levin et al. (2007) 30.20 109

Zoran & Weiss (2011) 24.60 3093
Schmidt et al. (2011) 25.43 >10000

Krishnan & Fergus (2009) 82.35 6
Liu et al. (2018) 21.77 485

Ours with fixed filters 18.90 485
Ours with 24 5 × 5 filters 18.00 490

Table 3: Average SSD and run time on dataset Levin et al. (2009). For the case where 24 5 × 5 filters are
used, we empirically employ fewer number of iterations to accelerate processing time.

Text images: We compare the proposed method against Levin et al. Levin et al. (2007) with the same
parameters in Levin et al. (2011a), Krishnan and Fergus Krishnan & Fergus (2009), Zoran and Weiss Zoran
& Weiss (2011), Pan et al. Jinshan Pan & Yang (2014), Schmidt et al. Schmidt et al. (2010), and Schmidt
and Rolf Schmidt & Roth (2014). Fig. 16 shows the cumulative curve of SSD on text dataset Jinshan Pan
& Yang (2014) and deblurred results by different approaches on a challenging example. We can see that
the proposed method obtains significant results for non-blind text deblurring. In addition, unlike natural
images, since text images contain fewer details, the proposed method with adaptively sparsity-promoting
filters can obtain better results than fixed filters.

9.3 Experiments on Non-uniform Image Deblurring

In the last experiment, we evaluate the performance of the proposed approach on blurred images with non-
uniform blur. In the previous work Liu et al. (2018), β in Eq. equation 16 is set as 0.01 for non-uniform
deblurring. However, this setting loses sight of updating the noise mentioned in Section 8. In this work,
we adaptively update noise. We compare the proposed method with Whyte et al. Whyte et al. (2012), Xu
et al. Xu et al. (2013) and the previous work Liu et al. (2018). Fig. 17-18 shows real natural images with
non-uniform blur kernel and deblurred results. The proposed method generates images with fewer artifacts
and more details.

10 Conclusions

To explore effective image priors for blind image deblurring, we deeply investigated the inherent limitation
of the traditional high-order MRFs model, i.e., a set of universal filters. To break the limitation, we propose
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(a)

(b) (c) (d) (e) (f) (g)

Figure 16: Quantitative and qualitative evaluation on dataset Jinshan Pan & Yang (2014). (a) Cumulative
histograms of SSD. (b)-(g) show a challenging example. From left to right: Blurred SSD:7675.32, Levin et al.
(2007) SSD:871.37, Krishnan & Fergus (2009) SSD:3010.54, Zoran & Weiss (2011) SSD:306.06, Pan et al.
(2014) SSD:257.07 and the proposed method SSD:108.84.

(a) Blurred (b) Xu et al. (2013) (c) Liu et al. (2018) (d) Ours

(e) Blurred (f) Xu et al. (2013) (g) Liu et al. (2018) (h) Ours

Figure 17: Deblurring two challenging examples with non-uniform blur kernel.
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(a) Blurred (b) Whyte et al. (2012) (c) Liu et al. (2018) (d) Ours

Figure 18: Deblurring a challenging example with a non-uniform blur kernel.

a novel supper-Gaussian fields model, referred to as Super-Gaussian Fields (SGF), by defining supper-
Gaussian as potential. This model contains two exciting properties, Property 1 and Property 2 introduced
in Section 3.2, which provide theoretical support for image-specific filters. Relying on the proposed SGF
prior and Bayesian MMSE, this work proposes a novel method to image deblurring. We theoretically show
that the proposed method can avoid troublesome local minima to some extent and learn image-adaptive
sparsity-promoting filters. Most importantly, with the theory support, the proposed method can be naturally
extended to various scenarios, e.g., face, text, and low-illumination image deblurring. Extensive experiments
demonstrate the theoretical advantages and practical effectiveness of the proposed method. It is interesting
to exploit adaptive sparse-promoting filter spaces by other methods for BID in the future.
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Supplemental Materials

This supplementary material provides details of the derivation, some discussion of kernel size, and theory
proofs in the main paper.

1 Derivation of the optimization method

According to Section 4.1, the proposed method recovers latent image given the blur kernel by optimizing the
following objective function:

max
∫
q(x) log p(x,y|k)dx −

∫
q(x) log q(x)dx

= max
∫
q(x) log(p(x)λp(y|x,k))dx −

∫
q(x) log q(x)dx

= max
∫
q(x) log(( 1

Z(Θ)
∏
c∈C

J∏
j=1

max
γj,c≥0

N (Jjxc|0, γj,c))λN (y|k ⊗ x, δ2IN ))dx −
∫
q(x) log q(x)dx

≥ max
∫
q(x) log(( 1

Z(Θ)
∏
c∈C

J∏
j=1

N (Jjxc|0, γj,c))λN (y|k ⊗ x, δ2IN ))dx −
∫
q(x) log q(x)dx,

(1)

Estimating q(x): Setting the partial differential of Eq. equation 1 with respect to q(x) to zero, we have:

log q(x) = log(( 1
Z(Θ)

∏
c∈C

J∏
j=1

N (Jjxc|0, γj,c))λN (y|k ⊗ x, δ2IN )), (2)

= λ log( 1
Z(Θ)) + λ log(

∏
c∈C

J∏
j=1

N (Jjxc|0, γj,c)) + log(N (y|k ⊗ x, δ2IN )), (2a)

= xT (
∑

j
λTT

Jj
WjTJj

)x + xT (δ−2TT
k Tk)x − (δ−2TT

k y)T x + const, (2b)

Collecting together terms in x, we have:

− log q(x) = 1
2xT Ax − bT x + const. (3)

Estimating J: Collecting together terms with respect to Jj in Eq. equation 1, we obtain:

max( 1
Z({Jj}) + λ

∑
j

∑
c

⟨(Jjxc)2⟩
−2γj,c

). (4)

Based on Property 2,limiting the updating of Jj in the orthonormal space can lead to:

max
Jj∈ortho

λ
∑

j

∑
c

⟨(Jjxc)2⟩
−2γj,c

. (5)

Deleting λ, we obtain:
Rj = eigmin(BT ⟨TxWjTT

x ⟩B) , VJj
= BRj . (6)

Estimating γ: Collecting together terms with respect to γj,c in Eq. equation 1, we obtain:

max(log (γj,c)− 1
2 +

∑
j

∑
c

⟨(Jjxc)2⟩
−2γj,c

). (7)

Setting the partial differential with respect to γj,c to zero, we have:

γj,c = ⟨(Jjxc)2⟩. (8)

Estimating δ2 is similar to γj,c.
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2 Proof of Theorem 2

Given the objective function equation 12, we can give an equivalent objective as follows:

L(x,J, γ, δ2) = 1
δ2 ||y − k ⊗ x||22+

∑
c

[λ
∑

j

( (Jjxc)2

γj,i
+log γj,i)+log δ2+log(λ

∑
j

(V2
Jj

)T Vγ−1
j,c

+
||k||22
δ2 )], (9)

We aim to directly minimize L(x,J, γ, δ2) over x,J, γ, δ2. To do that, we independently update each variable
while holding the other three variables fixed. For updating x, after collecting relevant terms in equation 9,
we have:

min 1
δ2 ||y − k ⊗ x||22 + λ

∑
c

∑
j

(Jjxc)2

γj,i
, (10)

for which a convenient closed-form solution xopt, denotes the optimal solution, can be given by:

xopt = A−1b, (11)

where A,b are the same as that defined in equation 7.

Then, we consider updating Jj , after collecting relevant terms in equation 9, we have:

min
Jj

∑
c

[λ
∑

j

(Jjxc)2

γj,i
+ log(λ

∑
j

(V2
Jj

)T Vγ−1
j,c

+
||k||22
δ2 )] (12)

Because no closed-form solution for equation 12 is available, similar to Wipf & Zhang (2014), we instead use
basic principles from convex analysis to form a strict upper bound that will facilitate subsequent optimization.
In particular, we use:

(V2
Jj

)T zj − Φ∗(zj) ≥ log(λ
∑

j

(V2
Jj

)T Vγ−1
j,c

+
||k||22
δ2 ), (13)

where Φ∗(α) is the concave conjugate of the concave function Φ(α) = log(λαT Vγ−1
j,c

+λ
∑

j′ ̸=j

(V2
Jj′ )T Vγ−1

j′,c

+

||k||2
2

δ2 ). It can be shown that equality in equation 13 is achieved when:

zopt
j = ∂Φ

∂α
|α=V2

Jj

=
λVγ−1

j,c

λ
∑
j

(V2
Jj

)T Vγ−1
j,c

+ ||k||2
2

δ2

= λVγ−1
j,c
A−1

i,i , (14)

where A−1
i,i denote the inverse of the diagonal element with index (i, i) of A. Plugging equation 13 into

equation 12, we obtain the revised problem

min
Jj

∑
c

[λ (Jjxc)2

γj,i
+ (V2

Jj
)T zj ], (15)

which gives the following updated equation:

min
Jj

VT
Jj

⟨TxWjTx
T ⟩VJj

. (16)

We now examine optimization over γj,i. Isolating terms in equation 9, this requires that we solve:

min
γj,i

∑
c

[λ
∑

j

( (Jjxc)2

γj,i
+ log γj,i) + log(λ

∑
j

(V2
Jj

)T Vγ−1
j,c

+
||k||22
δ2 )]. (17)

2
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Note that γj,i not only appears in the center of the clique c, but also in the corresponding location of other
cliques, due to convolution operation. Optimizing Eq. equation 17 means optimizing the following objective:

min
γj,i

λ
∑

j

( (Jjxc)2

γj,i
+ log γj,i) +

∑
ci

[log(λ
∑

j

(V2
Jj

)T Vγ−1
j,ci

+
||k||22
δ2 )]. (18)

where ci denotes the cliques that include the location i. For each clique ci, we resort to similar bounding
techniques as before, adopting:

υj,iγ
−1
j,i − ψ∗(υj,i) ≥ log(λ

∑
j

(V2
Jj

)T Vγ−1
j,ci

+
||k||22
δ2 ), (19)

where holds for all υj,i ≥ 0 (That is, the left of Eq. (19) provides a upper bound for the right.), and ψ∗(α) is
the concave conjugate of the concave function ψ(α) = log(λ(J2

j,i)α+λ
∑

i′ ̸=i

(J2
j,i′)T γ−1

j,i′ +λ
∑

j′ ̸=j

(V2
Jj

)T Vγ−1
j,ci

+

||k||2
2

δ2 ), here Jj,i denote the element of the filter Jj related to γ−1
j,i in the clique ci. It can be shown that

equality in equation 19 is achieved when:

υopt
j,i = ∂ψ

∂α
|α=γ−1

j,i
=

λJ2
j,i

λ
∑
j

(V2
Jj

)T Vγ−1
j,ci

+ ||k||2
2

δ2

= λ(J2
j,i)A−1

ci,ci
. (20)

Plugging equation 19 into equation 18, we obtain the revised problem

min
γj,i

λ( (Jjxc)2

γj,i
+ log γj,i) +

∑
ci

υj,iγ
−1
j,i (21)

which gives the following updated equation

γopt
j,i = (Jjxc)2 + J2

jA
−1
c,c = ⟨(Jjxc)2⟩. (22)

Next, we consider optimization over δ2. Again, we first isolate terms in equation 9:

L(x,Jj , γj,i, δ
2) = 1

δ2 ||y − k ⊗ x||22 +
∑

c

[log δ2 + log(λ
∑

j

(V2
Jj

)T Vγ−1
j,c

+
||k||22
δ2 )], (23)

then resort to similar bounding techniques as before, adopting:

δ−2ϑ− ψ∗(ϑ) ≥ log(λ
∑

j

(V2
Jj

)T Vγ−1
j,c

+
||k||22
δ2 ), (24)

where ψ∗(ϑ) is the concave conjugate of the concave function ψ(ϑ) = log(λ
∑
j

(V2
Jj

)T Vγ−1
j,c

+ ||k||22ϑ). It can

be shown that equality in equation 24 is achieved when:

υopt
j,i = ∂ψ

∂α
|α=δ−2 =

||k||22
λ

∑
j

(V2
Jj

)T Vγ−1
j,ci

+ ||k||2
2

δ2

= ||k||22A
−1
i,i . (25)

Plugging equation 24 into equation 23, we obtain:

min
γj,i

λ( (Jjxc)2

γj,i
+ log γj,i) +

∑
c

[log δ2 + υj,iδ
−2] (26)

Finally, we can obtain:

δ2 =
||(y − k ⊗ x)||2 +

∑
c

||k||22A
−1
i,i

n
= ⟨||(y − k ⊗ x)||2⟩

n
. (27)

As mentioned before, by introducing the hyper-parameter d into equation 27, we can achieve equation 10 in
the main paper.
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3 Proof of Theorem 3

Eq. equation 12 can be expressed as:

g(J,xc, δ
2) = min

γj,i≥0
λ

∑
j

( (Jjxc)2

γj,i
) + λ

∑
j

(log γj,i) + log(λδ2
∑

j

(V2
Jj

)T Vγ−1
j,c

+ ||k||22) (28)

Since log is a concave, non-decreasing function of γj,i, it can be see that λ
∑
j

(log γj,i) +

log(λδ2 ∑
j

(V2
Jj

)T Vγ−1
j,c

+ ||k||22) is also a concave, non-decreasing function of γj,i, as a result, we can al-

ways express φ(γj,i) = λ
∑
j

(log γj,i) + log(λδ2 ∑
j

(V2
Jj

)T Vγ−1
j,c

+ ||k||22) as:

φ(γj,i) = min
z≥0

zγj,i − φ∗(z), (29)

where φ∗(z) is the concave conjugate of φ(γj,i). In this case, optimizing over γj,i for fixed (Jjxc) and z, the
optimal solution is:

γopt
j,i = z−1/2|(Jjxc)|, (30)

which implies that:
g(J,xc, δ

2) = min
z≥0

2z1/2|(Jjxc)| − φ∗(z). (31)

Any function expressible in this form is necessarily concave, and also non-decreasing for (Jjxc) since z ≥ 0,
as mentioned in Wipf & Zhang (2014).

4 Proof of Theorem 4

Part (1) is very straightforward, similar to Theorem 2 in Zhang et al. (2014). As Jjxc → ∞, the optimizing
γi,j will become arbitrarily large regardless of the value of δ2. In the regime where γi,j is sufficiently large,
the difference g(J,xc, δ

2
2) − g(J,xc, δ

2
1) must converge to zero. It then follows that the difference between

the corresponding minimizing γi,j values, and therefore the cost function difference, converges to zero. Part
(2) is also very similar to the proof of Theorem 2 in Zhang et al. (2014), assume that δ2

2 ≥ δ2
1 , it can be

easily shown that g(J,xc, δ
2
2) ≥ g(J,xc, δ

2
1). Then consider a second point Jx′

c ≻ Jxc. Because the gradient
at every intermediate point moving from g(J,xc, δ

2
1) to g(J,x′

c, δ
2
1) is greater than the associated gradients

moving from g(J,xc, δ
2
2) to g(J,x′

c, δ
2
2), it must be the case that g(J,xc, δ

2
1) increased at a faster rate than

g(J,x′
c, δ

2
2), and so it follows that g(J,xc, δ

2
2) − g(J,xc, δ

2
1) ≥ g(J,x′

c, δ
2
2) − g(J,x′

c, δ
2
1).
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