Leveraging Robust Optimization for LLM Alignment under Distribution Shifts

$\begin{array}{cccc} \textbf{Mingye} \ \textbf{Zhu}^{1,2} & \textbf{Yi} \ \textbf{Liu}^{2*} & \textbf{Zheren} \ \textbf{Fu}^1 \\ \textbf{Yongdong} \ \textbf{Zhang}^1 & \textbf{Zhendong} \ \textbf{Mao}^1 \end{array}$

¹University of Science and Technology of China, Hefei, China ²State Key Laboratory of Communication Content Cognition, People's Daily Online, Beijing, China

Abstract

Preference alignment methods are increasingly critical for steering large language models (LLMs) to generate outputs consistent with human values. While recent approaches often rely on synthetic data generated by LLMs for scalability and cost-efficiency reasons, this reliance can introduce distribution shifts that undermine the nuanced representation of human preferences needed for desirable outputs. In this paper, we propose a novel distribution-aware optimization framework that improves preference alignment despite such shifts. Our approach first leverages well-learned classifiers to assign a calibration value to each training sample, quantifying its alignment with the target human-preferred distribution. These values are then incorporated into a robust optimization objective that minimizes the worst-case loss over regions of the data space most relevant to human preferences. By explicitly focusing optimization on the target distribution, our approach mitigates the impact of distributional mismatch and improves the generation of responses that better reflect intended values.

1 Introduction

The rapid proliferation of large language models (LLMs) has made it increasingly important to ensure that model outputs align with human values. Techniques such as Reinforcement Learning from Human Feedback (RLHF) [33, 51, 40] and Direct Preference Optimization (DPO) [35, 45] have shown promise by leveraging high-quality, human-annotated data to guide model behavior [43, 2, 12]. A common approach to constructing alignment data involves either manual annotation by humans or the use of LLMs, with the former being resource-intensive and timeconsuming, thus limiting scalability and broader applicability [4]. Consequently, recent research has increasingly focused on leveraging synthetic

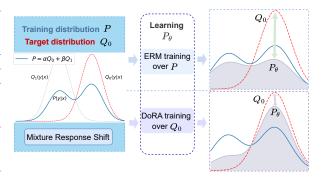


Figure 1: Comparison of ERM and DoRA Training. The left section illustrates the training distribution P, which is a mixture of human-preferred (target) distribution Q_0 and LLM distributions Q_1 , highlighting the mixture response shift. The right section contrasts the outcomes of the traditional method (ERM training) over P with the proposed DoRA training over Q_0 , demonstrating how DoRA better aligns with the target distribution.

^{*} Corresponding author: Yi Liu

data generated by advanced LLMs, which have shown strong capability to simulate human preferences [22, 7, 8].

In this work, we concentrate on understanding and addressing one specific form of distribution shift arising from synthetic data within current alignment paradigms. As illustrated in Figure 1, traditional empirical risk minimization (ERM) assumes that the training distribution P matches the target distribution Q_0 , thus leading to a policy P_θ that aligns well with Q_0 . However, in practice, P does not perfectly mimic Q_0 due to two key limitations: (1) several studies suggest that training data derived from LLMs may exhibit inherent misalignment with human values [44, 14, 38, 42, 17], and (2) reward models are prone to biases [46, 47], potentially leading to suboptimal labelling. Consequently, the resulting training distribution P may diverge significantly from the ideal distribution Q_0 . In such settings, naïvely employing ERM training can yield a learned policy P_θ that is biased towards artifacts in the training data rather than genuinely aligning with human intent.

Mitigating distribution shifts in alignment data is a persistent yet understudied challenge. Existing robustness-focused approaches primarily address pairwise noisy labels and reward uncertainty [45, 6, 5], but they are tightly coupled with the Bradley-Terry (BT) model, limiting their versatility for broader alignment objectives (e.g., listwise optimization [48, 39, 30, 50]). To bridge this gap, we argue for more general robust optimization frameworks that not only mitigate distribution shifts from synthetic data but also seamlessly adapt to the growing complexity of alignment objectives.

In this paper, we propose **D**istribution-aware **o**ptimization for **R**obust **A**lignment (DoRA) to improve the robustness of alignment algorithms where training data comprises a mixture of heterogeneous subdistributions—such as those arising from different synthetic sources or online updates [25, 29, 9, 18]. Rather than tailoring solutions to specific alignment formulations, our approach functions as a modular plug-in that enhances baseline robustness across diverse, and increasingly complex, alignment objectives encountered in real-world deployment. At the core of DoRA lies a simple yet effective strategy: it first employs well-trained distribution classifiers to assign a calibration score to each training sample, estimating its alignment with the target human-preferred distribution. These scores are then integrated into a distribution-aware optimization objective that minimizes the worst-case loss over data regions most representative of human preferences. This strategy ensures that the model remains resilient to distribution shifts between the training data and the target distribution, preventing it from disproportionately favoring biased synthetic patterns while still benefiting from their scalability.

Contributions

We introduce DoRA, a distribution-aware optimization framework that robustly aligns LLM outputs with human preferences under distribution shifts. *Technically*: We estimate the alignment of each sample with the target human-preferred distribution as a calibration term, which is then incorporated into a distribution-aware optimization objective that minimizes the worst-case loss over regions most relevant to human preferences. *Theoretically*: We characterize the robust calibration alignment objective as a KL-divergence-based distributionally robust optimization problem, augmented with a reweighting mechanism. *Emperically*: We demonstrate the effectiveness of our framework through extensive experiments, with consistent improvements in alignment metrics compared to state-of-the-art baselines.

2 Problem Formulation

Notations. Let $\mathbf{z} = \{x, y_0, \dots, y_{n-1}\} \in Z$ represent a datum in a preference dataset Z, where each instance composes of one query x and n corresponding responses $y_0, y_1, y_2, \dots, y_{n-1}$. We assume that these observed data are drawn from a training distribution P, and the target distribution of interest, is denoted as Q_0 . We then formalize the following definition.

Definition 2.1 (Mixture Response Shift). A *Mixture Response Shift* occurs when, for any input query x, the conditional distribution of responses is a mixture of different distributions that partially overlaps with the target distribution Q_0 (with fraction α), i.e.:

$$P(y|x) = \alpha Q_0(y|x) + \sum_{i=1}^{n-1} \beta_i Q_i(y|x),$$
 (1)

where $\alpha, \beta_1, \dots, \beta_{n-1} \ge 0$ and $\alpha + \beta_1 + \dots + \beta_{n-1} = 1$.

Remark 1. Definition 2.1 formalizes scenarios in which, for each given query x, a fraction α of the responses are drawn from the target distribution Q_0 (e.g., human preferred responses), while the remaining responses are sampled from other distributions Q_1, \dots, Q_{n-1} (e.g., synthetic LLM generations). This setting reflects the practical reality that alignment training data often consists of a mixture of responses with diversified quality.

The core intuition is that training solely on data from the target distribution—as done in naïve supervised fine-tuning (SFT)—may limit generalization and fail to account for real-world variability. Robust alignment benefits from exposure to both diverse and suboptimal responses, which help models distinguish desirable behavior from undesirable patterns. When direct access to human-preferred data is limited, high-quality generations from strong models (e.g., GPT-4) can serve as a reasonable proxy of the golden responses from the target distribution.

Distributionally robust optimization: Distributionally Robust Optimization (DRO) [3, 11, 26] is a well-established framework that focuses on minimizing the worst-case expected loss over the perturbed or adversarial distribution Q within the uncertainty set of P. Denote the instance-level loss as $\ell(\theta, \mathbf{z})$, then DRO is formulated as:

$$\min_{\theta \in \Theta} \sup_{Q \in \mathbb{P}} \mathbb{E}_{Q}[\ell(\theta, \mathbf{z})], \quad \mathbb{P} = \{ Q \in \mathbb{D} : D(Q || P) \le \rho \}, \tag{2}$$

with \mathbb{P} being the uncertainty set and \mathbb{D} a set of all possible distributions. $D(Q\|P)$ is a distance metric, and ρ is a parameter controlling the size of the ambiguity set. This objective aims to find θ that minimizes the expected loss over the worst-case distribution rather than minimizes the average performance over P. Specifically, we model the \mathbb{P} using the Kullback-Leibler (KL) divergence, as it provides a tractable method for solving DRO problems [19]. With the change-of-measure technique [20], the *inner* maximization problem is then formally written as:

$$\max \mathbb{E}_P[h(\mathbf{z})\ell(\theta, \mathbf{z})], \quad \text{s.t.} \quad \mathbb{E}_P[h(\mathbf{z})\log h(\mathbf{z})] \le \rho,$$
 (3)

where $h(\mathbf{z}) := \frac{dQ}{dP}(\mathbf{z})$ is the density ratio (Radon-Nikodym derivative) between Q and P. Equation 3 can be viewed as a variational form of the problem in Equation 2, as it replaces the intractable optimization over distributions Q with an optimization over the density ratio $h(\mathbf{z})$.

Challenges: While DRO methods are designed to handle sub-population shifts, they often suffer from over-pessimism [20, 49, 28], which manifests as poor generalization and overly conservative, low-confidence predictions, as excessive focus on worst-case scenarios can degrade overall performance.

3 Distribution-aware Optimization for Robust Alignment

To achieve more principled alignment and mitigate over-pessimism, we propose to extend the uncertainty set in the standard DRO framework to capture the mixture-induced shifts central to our setting. We then propose a calibration mechanism, derived from probabilistic classifiers, to infer the source distribution of each data point. Theoretically, we show that the proposed DoRA objective essentially optimizes a KL-based DRO objective, augmented with a distribution-aware reweighting mechanism. The overall framework is illustrated in Figure 2.

3.1 Sample-Level Calibration with Probabilistic Classifiers

In the KL-DRO framework, the worst-case target distribution can be written as $Q(\mathbf{z}) \propto P(\mathbf{z}) e^{\eta \ell(\theta, \mathbf{z})}$ (See Appendix B.1 for derivation). This formulation implies that instances with higher loss values $\ell(\theta, \mathbf{z})$ are exponentially upweighted. While this mechanism enhances robustness by prioritizing challenging instances, it may also introduce over-pessimism when a small number of outliers (e.g., noisy or mislabeled points) have very large losses, thereby dominating the optimization.

To mitigate this issue, we introduce a simple calibration mechanism at the sample level. Rather than treating all samples equally when computing the robust loss, we scale the loss of each instance z by a data-dependent factor $\tilde{h}(z)$, which reflects its estimated relevance to the target distribution.

To formalize $\tilde{h}(\mathbf{z})$, we first define the family of α -covered distributions based on Definition 2.1:

$$\mathbb{P}_{\alpha} = \left\{ Q_0 : P(y|x) = \alpha \, Q_0(y|x) + \sum_{i=1}^{n-1} \beta_i \, Q_i(y|x) \right\}. \tag{4}$$

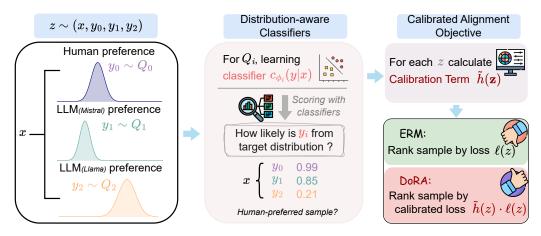


Figure 2: The DoRA pipeline. For each datum \mathbf{z} , where responses are drawn from a mixture of distributions, DoRA uses trained classifiers to estimate the alignment of each y with the target distribution. These scores are then aggregated into a calibration term $\tilde{h}(\mathbf{z})$ for each sample, which reweights the original loss $\ell(\mathbf{z})$ during optimization to enable more principled robustness control.

Here, P(y|x) denotes the observed distribution, and $Q_0(y|x)$ represents the target distribution. In classical DRO, the uncertainty set typically includes distributions that are "close" to a nominal empirical distribution P, often under some divergence measure. Here, we refine this setup by incorporating prior structural knowledge under response mixture shift.

Learning distribution-aware classifiers. To construct the calibration factor $\tilde{h}(\mathbf{z})$, we assume the existence of a "golden" (or reference) distribution, denoted $P_{\text{golden}}(y|x)$, provided by an oracle or approximated using trusted human-labeled data. Following Grover et al. [16], we train a probabilistic classifier c_{ϕ_i} for each sub-distribution Q_i to estimate the probability that a response y_i originates from the golden distribution. Under the assumption that c_{ϕ_i} is Bayes optimal, the *importance weight* for a response drawn from Q_i is derived as:

$$w_{\phi_i}(y|x) = \frac{P_{\text{golden}}(y|x)}{Q_i(y|x)} = \gamma_i \frac{c_{\phi_i}(y|x)}{1 - c_{\phi_i}(y|x)},\tag{5}$$

where $i \in \{1, \dots, n-1\}$. γ_i is the *imbalance ratio* between a synthetic distribution and the golden distribution $\frac{q(y=0)}{q(y=1)}$. In practice, to estimate P_{golden} , we leverage human-preferred responses from the target distribution Q_0 .

Constructing the calibration factor. We now construct an instance-dependent calibration factor $\tilde{h}(\mathbf{z})$ based on the mixture structure and the learned classifiers.

Proposition 3.1. Let $P(y|x) = \alpha Q_0(y|x) + \sum_{i=1}^{n-1} \beta_i Q_i(y|x)$, with $\alpha + \beta_1 + \cdots + \beta_{n-1} = 1$ and $\alpha \in (0,1)$. Under the mixture response shift, we define $\tilde{h}(\mathbf{z})$ as an empirical estimate of the degree to which a given sample aligns with human preferences:

$$\tilde{h}(\mathbf{z}) = \frac{1}{n} \left(\frac{P_{golden}(y|x)}{\alpha Q_0(y|x)} + \dots + \frac{P_{golden}(y|x)}{\beta_{n-1} Q_{n-1}(y|x)} \right)$$

$$= \frac{1}{n} \left(\frac{1}{\alpha} w_{\phi_0}(y|x) + \dots + \frac{1}{\beta_{n-1}} w_{\phi_{n-1}}(y|x) \right) = \frac{1}{n} \left(\frac{\gamma_0 c_{\phi_0}(y|x)}{\alpha (1 - c_{\phi_0})} + \dots + \frac{\gamma_{n-1} c_{\phi_{n-1}}(y|x)}{\beta_{n-1} (1 - c_{\phi_{n-1}})} \right),$$
(6)

where w_{ϕ_i} is defined earlier in Equation 5.

Remark 2. Proposition 3.1 introduces a *calibration factor* that can naturally incorporate mixture information into the robust objective. While the density ratio $h(\mathbf{z})$ quantifies how much a single sample is emphasized or downweighted in the adversarial distribution Q compared to the nominal distribution P, the calibration term $\tilde{h}(\mathbf{z})$ serves as a proxy for human preference by estimating how likely a sample is to originate from the trusted component Q_0 . Intuitively, $\tilde{h}(\mathbf{z})$ amplifies the contribution of responses that are more aligned with the golden distribution, and suppresses less preferred ones accordingly.

Practical Considerations. The importance weight in Equation 5 was originally introduced for binary classification tasks [41, 15]. When the learned classifier c_{ϕ_i} outputs probabilities that approach 1, the corresponding importance weights can become unbounded, leading to unstable and often problematic optimization. To rectify this, we insert a stabilizing term $\frac{1}{n}$ into each denominator, thereby bounding $\tilde{h}(\mathbf{z})$ such that $\tilde{h}: (\mathcal{X}, \mathcal{Y}) \to (0, n)$. Empirically, this simple modification prevents extreme weights when c_{ϕ_i} approaches 1, ensuring that no single sub-distribution excessively dominates training.

3.2 Deriving the DoRA objective

In this section, we derive the final alignment objective of DoRA. Specifically, we modify the pre-defined KL-DRO framework in Equation 3 by modulating each sample's contribution by a precomputed calibration factor $\tilde{h}(z)$, which reflects its estimated alignment with the target distribution. The robust objective is defined as:

$$\max \mathbb{E}_{P}[h(\mathbf{z})\tilde{h}(\mathbf{z})\ell(\theta, \mathbf{z})], \quad \text{s.t.} \quad \mathbb{E}_{P}[h(\mathbf{z})\log h(\mathbf{z})] \le \rho, \tag{7}$$

Since $\tilde{h}(\mathbf{z})$ is a fixed scalar per instance, it does not affect the optimization variables in the Lagrangian. Consequently, the worst-case risk from Equation 7 admits a closed-form dual solution:

Proposition 3.2 (Worst-case risk under mixture response shift). Let the loss be modulated by instance-level weights $\tilde{h}(\mathbf{z})$, which are fixed and known. Then the worst-case risk under a KL constraint ρ is given by:

$$\mathcal{R}(\theta) = \inf_{\lambda > 0} \left\{ \lambda \log \mathbb{E}_P \left[\exp \frac{1}{\lambda} \left(\tilde{h}(\mathbf{z}) \cdot \ell(\theta, \mathbf{z}) \right) \right] + \lambda \rho \right\}. \tag{8}$$

In turn, minimizing $\mathcal{R}(\theta)$ over θ reduces to

$$\min_{\theta \in \Theta} \lambda \log \mathbb{E}_P \left[\exp \frac{1}{\lambda} \left(\underbrace{\tilde{h}(\mathbf{z})}_{Calibration \ Term} \ell(\theta, \mathbf{z}) \right) \right], \tag{9}$$

where **z** is an instance of (x, y_0, \dots, y_{n-1}) .

Remark 3. See Appendix B.2 for the detailed Lagrangian derivation. The calibration term $\tilde{h}(\mathbf{z})$ acts as a soft indicator of how closely each data sample's responses (for a given query x) align with the "ideal" or golden distribution, thereby determining its relative importance during training. Consequently, if a sample has a large loss $\ell(\theta, \mathbf{z})$ but a small $\tilde{h}(\mathbf{z})$, DoRA deems it less valuable to learn from and downweights it accordingly. Please see Algorithm 1 for more details.

Algorithm 1 DoRA Optimization Algorithm

Require: Pretrained model parameters θ , robustness parameter λ , dataset $\mathcal{D} = \{\mathbf{z}_i = (x_i, y_{i,0}, \dots, y_{i,n-1})\}_{i=1}^N$

Ensure: Optimized model parameters θ

- **▶ Phase 1: Classifier Learning**
- 1: **for** $j = 0 \dots n 1$ **do**
- 2: Assign binary labels:

$$l_i^{(j)} = \begin{cases} 1 & \text{if } y_{i,j} \text{ is target,} \\ 0 & \text{otherwise} \end{cases}$$

3: Train classifier c_{ϕ_j} using $\{(x_i,y_{i,j},l_i^{(j)})\}_{i=1}^N$ 4: end for

: Update $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}_{DoRA}$

Phase 2: DoRA Training

2: while not converged do

1: Precompute $h(\mathbf{z}_i) \forall \mathbf{z}_i \in \mathcal{D}$ via Eq. 6

Sample batch $\mathcal{B} = \{\mathbf{z}_i\}_{i=1}^b \subset \mathcal{D}$

Compute robust loss over \mathcal{B} according

 $\mathcal{L} = \lambda \log \left(\frac{1}{|\mathcal{B}|} \sum_{i=1}^{b} \exp \left(\frac{\tilde{h}(\mathbf{z}_{i}) \ell(\theta, \mathbf{z}_{i})}{\lambda} \right) \right)$

6: end while

4 Experiments

Models and Datasets. We validate the proposed method with two base models: Mistral-7B-v0.1, Llama-3.1-8B, on three widely used datasets in alignment literature: HH-RLHF, Summarization and

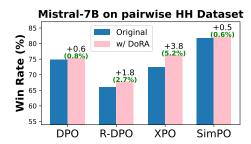
the UltraFeedback datasets. Specifically, we consider the following settings: 1.**pairwise** preference setting where we leverage the original pairwise data; 2. **listwise** preference setting, where we augment the original pairwise data with 2 additional synthetic responses from Mistral-7B-Instruct-v0.3, leading to 4 responses in total for each query. We primarily focus on *Setting 2* as we believe they represent a more practical scenario for the current alignment paradigm where models learn from multiple higher-quality samples from various sources.

Baselines. For pairwise comparisons, we employ four well-performed baselines: **DPO** [35], **R-DPO** [34], **EXO** [21] and **SimPO** [31]. For listwise contrasts, we use **DPO**_{PL}² [35], **RRHF** [48] and **LIRE** [50]. Please find the detailed objectives for these algorithms in Appendix C.5.

Experimental Settings. For each task, we first train classifiers as specified in Algorithm 1 with a simple BERT base model. The chosen response in the original dataset is labeled as 1 and the other as 0. The well-trained classifiers output probabilities that indicate the likelihood score that a response belongs to the target distribution. We also train an SFT model on the preferred responses to serve as the starting point before policy optimization. We set $\lambda=1$ for all experiments. Detailed hyperparameter configurations and additional training settings are provided in Appendix C.

4.1 Experimental Results

Performance on pairwise preference datasets. For all four pairwise baselines, we use the original preference datasets without any response augmentation. As illustrated in Figure 3, DoRA consistently improves performance across all baselines. This suggests that even widely adopted "golden" datasets are affected by distribution shifts or contain noisy samples.



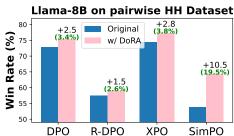


Figure 3: **DoRA boosts pairwise baseline performance**. When applied to unaugmented "golden" preference datasets, DoRA consistently enhances response quality across all baselines.

Comparison with robust baselines. Robust DPO [6] and Dr.DPO [45] are two strong baselines designed to address label-flip noise in pairwise preference data, particularly in BT preference models. Since both methods operate in the pairwise setting, we compare their performance against the DoRA-aligned DPO variant with HH dataset in Table 1. It is important to note that DoRA is a *methodagnostic* module that can be seamlessly integrated into a wide range of

Comparison with robust baselines. Table 1: Comparison with pairwise robust baselines on Robust DPO [6] and Dr.DPO [45] are two strong baselines designed to address label-flip noise in pairwise prefugitive prefugitive for the counterparts.

Baselines	Mistr	al-7B	Llama-8B		
Busennes	Win(†)	Lose(↓)	Win(†)	Lose(↓)	
DPO [35]	74.8 (±1.84)	23.5 (±1.80)	72.9 (±1.02)	23.7 (±1.65)	
Robust DPO [6]	77.8 (±2.20)	20.0 (±2.10)	74.2 (±1.43)	22.9 (±1.23)	
Dr.DPO [45]	75.2 (±1.64)	22.4 (±1.63)	73.0 (±1.41)	24.3 (±0.71)	
DPO w/ DoRA	75.4 (±1.61)	21.4 (±1.46)	75.4 (±0.89)	20.9 (±0.67)	

alignment objectives—not limited to the pairwise case. From the results, we observe that all robust baselines outperform vanilla DPO, confirming the value of robustness in preference learning. Notably, DoRA achieves the lowest lose rates among all methods, suggesting that its calibration mechanism provides more flexible and fine-grained control.

²While pairwise DPO is derived under the Bradley-Terry family of preference models in particular, listwise DPO_{PL} is derived under more general Plackett-Luce preference model to handle multiple reward signals.

Performance on listwise preference datasets. Next, we experiment with the augmented datasets, which directly simulate a mixture response shift scenario which candidate responses are drawn from diverse underlying distributions. As shown in Table 2, incorporating DoRA leads to performance gains consistently across multiple baselines and tasks, with higher win rates and lower lose rates against the reference responses, underscoring its effectiveness in mitigating distributional shifts.

Table 2: **DoRA enhances listwise baselines on dialogue and summarization tasks**. *Win* indicates that GPT-40 assesses DoRA's response as superior compared to the golden responses from the datasets. **Bold** numbers suggest DoRA the winner. The results demonstrate that incorporating DoRA generally improves performance or at least keeps it on par with the baselines.

HH-RLHF				Summarization				
Alignment	Mist	ral-7B	Llan	na-8B	Mist	ral-7B	Llan	na-8B
DPO _{PL} [35] w/ DoRA	Win(%)↑ 75.0 78.0	Lose(%)↓ 22.5 21.0	Win(%)↑ 81.0 82.5	Lose(%)↓ 18.0 16.0	Win(%)↑ 53.3 55.3	Lose(%)↓ 46.3 43.5	Win(%)↑ 54.5 59.0	Lose(%)↓ 42.8 30.5
RRHF [48] w/ DoRA	76.5 79.8	19.5 19.0	43.8 44.5	56.0 55.0	70.0 72.0	29.5 28.0	70.8 74.0	28.8 25.0
LIRE [50] w/ DoRA	72.8 84.0	26.8 16.0	82.0 84.5	17.5 14.5	82.5 81.0	17.5 19.0	82.5 83.8	17.0 16.0

To further evaluate the robustness of our method, we benchmark models trained on the augmented UltraFeedback dataset using AlpacaEval 2 [10] and Arena-Hard [23]. As reported in Table 3, DoRA generally improves the instruction-following capabilities for the baselines, particularly for LIRE. However, we observe a slight performance drop for DPO_{PL}, which may be attributed to the nature of the UltraFeedback dataset. Specifically, the chosen responses in UltraFeedback are drawn from a mix of distributions themselves, deviating from our core assumption that they originate from a single source. This distributional mismatch could re-

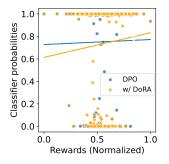
Table 3: **AlpacaEval 2 and Arena-Hard results**. Experiments suggest that DoRA keeps or improves the instruction-following capabilities of baselines trained on the augmented UltraFeedback dataset.

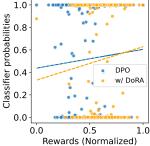
Dataset	Al	Arena-Hard		
Metric	LC(%)	WR(%)	Length	WR(%)
DPO _{PL}	18.80	18.14	1972	12.3
w/ DoRA	18.27	17.73	1943	12.2
RRHF	10.52	13.88	1494	11.0
w/ DoRA	10.65	14.48	1446	11.2
LIRE	28.74	29.44	1815	20.0
w/ DoRA	31.28	32.02	1972	20.3

duce the effectiveness of the learned classifier, thus impacting overall performance.

DoRA enhances reward-confidence correlation for reliable generation.

Figure 4 plots normalized reward scores against classifier confidence probabilities for generated responses, where each point represents one model output. The dashed lines represent best-fit linear relationship between normalized reward scores and classifier probabilities, derived via ordinary least squares regression. The figure demonstrates that DoRA displays more consistent alignment between the classifier's confidence and the normalized rewards, indicated by a clearer positive slope in the regression line. This suggests that DoRA facilitates a more reliable prediction of outcomes, where higher rewards correspond more likely to higher clas-





(a) Mistral-7B on HH dataset

(b) Llama-8B on HH dataset

Figure 4: **Reward-confidence correlation for generated responses**. DoRA exhibits stronger reward-confidence calibration than baselines, evidenced by steeper regression slopes ($\Delta\beta$ =+0.174 for Mistral and $\Delta\beta=+0.131$ for Llama, larger slope means better correlation). This indicates DoRA's high-reward outputs more closely match the target distribution's characteristics, validated by elevated classifier probabilities.

sifier probabilities. Moreover, we see overall reward distribution of DoRA shifts rightward, especially for Llama3 model, indicating more high-quality responses.

4.2 Ablations

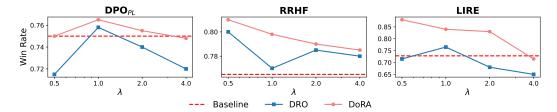
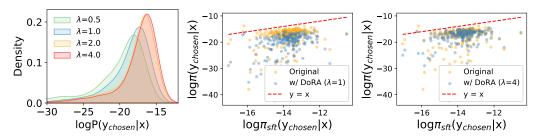


Figure 5: **Performance variation with different choices of** λ **for vanilla DRO and DoRA**. We observe that as λ increases from 0.5 to 4.0, the win rate generally decreases, albeit with some variations. Besides, vanilla DRO generally downperforms the proposed DoRA.

Impact of λ on robustness and performance. The regularization parameter λ in DoRA controls the balance between flexibility and robustness. Specifically, smaller λ values induce sharper exponential weighting, emphasizing high-loss samples and increasing robustness. Larger λ values reduce this effect, making the objective closer to standard ERM training. Figure 5 presents that $\lambda=1$ yields strong performance on the HH task with Mistral-7B, while increasing λ slightly decreases the win rate, underscoring the importance of tuning robustness. Figure 6 further illustrates that larger λ yields policies whose behavior more closely resembles that of the baseline ERM-trained model.



(a) DoRA w/ different γ values (b) Log prob. distribution w/ $\lambda = 1$ (c) Log prob. distribution w/ $\lambda = 4$

Figure 6: **Impact of different** λ **values on policy distribution**. (a). Larger λ increases model probabilities on the HH-chosen responses. (b/c). Scatter plots comparing log probabilities assigned to HH-preferred responses. The x-axis shows log probabilities under the initial SFT policy; the y-axis shows those under the original baseline and DoRA policies, respectively. As λ increases, DoRA shifts closer to the original baseline (ERM training), assigning higher likelihoods to preferred responses.

Effectiveness of the DRO framework and reweighting mechanism. We investigate the isolated effects of the DRO formulation and the reweighting mechanism across different alignment objectives. As shown in Table 4, both approaches can yield performance improvements, but their effectiveness is highly dependent on the specific alignment loss and task. For instance, methods like DPO appear relatively ro-

Table 4: **Comparison with DRO and reweighting mechanism**. The results show that combining calibration-aware scoring and robust optimization generally brings out better performance.

Strategy	Expression	Loss $\ell(\theta, \mathbf{z})$	HH Data	Sum. Data
	0/0	DPO_{PL}	76.0	54.0
DRO	$\log \mathbb{E}_{\mathbf{z}} \exp \frac{\ell(\theta, \mathbf{z})}{\lambda}$	RRHF	77.0	52.8
	0 2 1 1	LIRE	65.0	70.0
		DPO_{PL}	74.5	55.0
Reweighting	$ ilde{h}(\mathbf{z})\ell(heta,\mathbf{z})$	RRHF	80.5	48.3
	() () /	LIRE	80.8	78.3
		DPO_{PL}	78.0	55.3
DoRA	$\tilde{h}(\mathbf{z}) \log \mathbb{E}_{\mathbf{z}} \exp \frac{\ell(\theta, \mathbf{z})}{\lambda}$	RRHF	79.8	72.0
	() Ο Σ Ι χ	LIRE	84.0	81.0

bust to how the loss is handled, showing only modest fluctuations across variants. In contrast, LIRE demonstrates a higher sensitivity to robustness techniques, with substantial performance gains or drops depending on the strategy used. In general, we conclude from the results that the combination of calibration-aware scoring and robust optimization is more effective than applying either component

alone, as their synergy leads to better distributional alignment and more reliable preference modeling under real-world distributional shifts.

4.3 Generalization and Robustness Evaluation

Label noise. In the preceding experiments, all models were trained on clean datasets without synthetic perturbations. To further assess the robustness of DoRA, we conduct corrupted-label experiments that serve as stress tests under adversarial distribution shifts. In particular, label noise is introduced by randomly flipping a proportion of labels in the original training data. Experimental results indicate that the incorporation of DoRA consistently enhances model robustness as the corruption rate increases, leading to stable and significant improvements across multiple benchmarks. This further

Table 5: Robustness evaluation under different corruption rates on HH and AlpacaEval 2 datasets. DoRA consistently improves robustness across methods.

Dataset	HH-RLHF			AlpacaEval 2	
Corruption rate	20% 40% 60 %		40 %	40 %	
Metric	WR(%)			LC(%)	WR(%)
DPO _{PL}	71.0	64.5	57.3	11.0	11.0
w/ DoRA	74.5	67.0	60.8	12.1	12.1
RRHF	63.5	42.3	26.3	7.7	4.8
w/ DoRA	65.5	44.5	30.8	8.5	5.5
LIRE	67.7	52.5	61.4	26.5	25.1
w/ DoRA	71.5	55.0	65.3	27.7	26.2

demonstrates DoRA's effectiveness and reliability in real-world applications where annotation noise or distributional shifts are inevitable.

Self-training. While the primary focus of this work is on mixture response shifts induced by synthetic data in offline training, we consider online adaptation as a promising direction. To provide preliminary evidence, we conduct a small-scale experiment where we first train LLaMA-3.2-3B on the HH dataset (Iterate 1), and then continue training it on its own generated responses for two additional iterations. This setup naturally induces an evolving mixture shift, as the response distribution becomes increasingly synthetic. The results demonstrate that DoRA remains robust under such conditions, indicating that its instance-level calibration generalizes well to online or self-generated data scenarios where distributional drift arises organically.

Table 6: Performance improvement across training iterations. DoRA consistently enhances final performance under self-training scenario.

Method	Iter 1	Iter 2	Iter 3
DPO _{PL}	77.0	83.5	85.0
w/ DoRA	78.5	85.8	88.0
RRHF	45.8	47.8	50.5
w/ DoRA	47.5	49.3	52.5
LIRE	80.3	83.0	84.5
w/ DoRA	82.5	85.0	86.8

5 Related Works

Preference Alignment for LLMs. Since LLMs are pre-trained on vast internet data, they can generate outputs that are biased, harmful, or misaligned with human values. To address this, preference alignment techniques have emerged as key solutions. RLHF utilizes a reward model trained on human feedback to guide reinforcement learning, and DPO streamlines the process by directly optimizing the model to prefer desirable responses without an explicit reward model. Building on these approaches, recent research has proposed refinements to improve alignment efficiency and robustness. For example, Azar et al. [1] presents a generalized preference optimization framework, Ethayarajh et al. [13] introduces a novel loss function for enhanced robustness, and Meng et al. [31] explores simplified objectives to reduce computational overhead. These advancements reflect the ongoing effort to develop more scalable and effective alignment methods.

Synthetic Data for Alignment. Preference alignment typically relies heavily on human-annotated datasets, but the high cost and limited scalability of such data present a major bottleneck. To address this, recent research has explored leveraging synthetic data for alignment. For example, RLAIF [22] synthesizes preference data and uses PaLM 2 for feedback, while UltraFeedback [7] employs GPT-4 to annotate LLM-generated responses, creating scalable training datasets. Moreover, researchers have integrated synthetic data to expand candidate pools for preference learning [39, 48, 30, 50], demonstrating the potential of synthetic data. However, the use of synthetic data introduces new challenges. One key issue is the mismatch between the sampling distribution and the learning policy. To address this, RSO [29] employs rejection sampling to source preference data from the estimated

target optimal policy, thereby improving the accuracy of the maximum likelihood estimator. Another critical challenge lies in the distributional inconsistencies between synthetic and human-generated data during preference learning. This shift can hinder alignment performance, leading to biased model behaviors to true human preferences[27]. In this paper, we focus on tackling this latter challenge, aiming to enhance the robustness of preference learning in the presence of distribution shifts.

Robustness in Alignment. DRO [19] is a well-established framework that minimizes the worst-case training loss over a set of pre-defined groups, ensuring robustness to distributional shifts. In language modeling, Oren et al. [32] applies DRO to minimize losses over worst-case topic mixtures, while Sagawa et al. [37] enhances worst-group generalization in overparameterized regimes through increased regularization. For preference alignment, robust optimization techniques are explored to address challenges like reward uncertainty and noisy data. MaxMin-RLHF [5] learns a mixture of reward functions via expectation maximization to cater to diverse human preferences. ROPO [24], Robust DPO [6] and Dr.DPO [45] focus on noise tolerance in the pairwise BT paradigm. For instance, ROPO derives a robust loss by suppressing the gradients of samples with high uncertainty, and Dr.DPO optimizes against worst-case pairwise scenarios for DPO. Similarly, GRPO [36] builds upon reward-free DPO method by prioritizing groups with worse cumulative loss iteratively. In contrast to the prior work that focuses on label noise or is designed under the BT framework, our work aims to learn a method-agnostic approach that may seamlessly generalize to diverse alignment paradigms.

6 Discussion

Conclusion. In this paper, we propose a distribution-aware robust alignment framework that alleviates the influence of synthetic data bias and distribution shifts in LLM alignment. By leveraging a learned classifier to aggregate a calibration term to the DRO objective, DoRA effectively balances the scalability of synthetic data with the fidelity of human-aligned outputs.

Limitation and future work. Our framework assumes access to coarse-grained information about the source of the data (e.g., human- or model-generated) to guide classifier training. While this is often feasible in curated alignment pipelines, it may be less accessible in fully open-domain or legacy datasets. Moreover, DoRA presumes that the target distribution can be at least approximately estimated or measured; in scenarios where such reference distributions are unavailable or unreliable, its applicability may be limited. Identifying principled heuristics or proxy objectives for such cases represents an important direction for future work. Exploring ways to relax this requirement through unsupervised or weakly supervised signals presents an exciting direction for future research. Our use of DRO is particularly beneficial in scenarios with distribution shifts or variable alignment quality. While its conservativeness may offer limited gains in clean settings, it holds promise in reliability-critical domains such as factual generation or value-sensitive applications. Finally, although online adaptation is briefly mentioned in Section 4.3, extending DoRA to broader online learning scenarios remains a promising direction toward continual adaptation and scalability.

Acknowledgments and Disclosure of Funding

This research is supported by Artificial Intelligence-National Science and Technology Major Project 2023ZD0121200 and the National Science Fund for Excellent Young Scholars under Grant 62222212. Besides, we are grateful to Jiashuo Liu and Junkang Wu for providing helpful discussions during the preparation of this paper.

References

- [1] M. G. Azar, Z. D. Guo, B. Piot, R. Munos, M. Rowland, M. Valko, and D. Calandriello. A general theoretical paradigm to understand learning from human preferences. In *International Conference on Artificial Intelligence and Statistics*, pages 4447–4455. PMLR, 2024.
- [2] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, S. Fort, D. Ganguli, T. Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022.

- [3] A. Ben-Tal, D. Den Hertog, A. De Waegenaere, B. Melenberg, and G. Rennen. Robust solutions of optimization problems affected by uncertain probabilities. *Management Science*, 59(2): 341–357, 2013.
- [4] S. Casper, X. Davies, C. Shi, T. K. Gilbert, J. Scheurer, J. Rando, R. Freedman, T. Korbak, D. Lindner, P. Freire, et al. Open problems and fundamental limitations of reinforcement learning from human feedback. *arXiv preprint arXiv:2307.15217*, 2023.
- [5] S. Chakraborty, J. Qiu, H. Yuan, A. Koppel, F. Huang, D. Manocha, A. S. Bedi, and M. Wang. Maxmin-rlhf: Towards equitable alignment of large language models with diverse human preferences. *arXiv preprint arXiv:2402.08925*, 2024.
- [6] S. R. Chowdhury, A. Kini, and N. Natarajan. Provably robust dpo: Aligning language models with noisy feedback. *arXiv preprint arXiv:2403.00409*, 2024.
- [7] G. Cui, L. Yuan, N. Ding, G. Yao, W. Zhu, Y. Ni, G. Xie, Z. Liu, and M. Sun. Ultrafeedback: Boosting language models with high-quality feedback. 2023.
- [8] N. Ding, Y. Chen, B. Xu, Y. Qin, Z. Zheng, S. Hu, Z. Liu, M. Sun, and B. Zhou. Enhancing chat language models by scaling high-quality instructional conversations. *arXiv* preprint *arXiv*:2305.14233, 2023.
- [9] H. Dong, W. Xiong, B. Pang, H. Wang, H. Zhao, Y. Zhou, N. Jiang, D. Sahoo, C. Xiong, and T. Zhang. Rlhf workflow: From reward modeling to online rlhf, 2024. *URL https://arxiv.org/abs/2405.07863*, 2024.
- [10] Y. Dubois, B. Galambosi, P. Liang, and T. B. Hashimoto. Length-controlled alpacaeval: A simple way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*, 2024.
- [11] J. C. Duchi, T. Hashimoto, and H. Namkoong. Distributionally robust losses against mixture covariate shifts. *Under review*, 2(1), 2019.
- [12] K. Ethayarajh, Y. Choi, and S. Swayamdipta. Understanding dataset difficulty with V-usable information. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, editors, *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pages 5988–6008. PMLR, 17–23 Jul 2022.
- [13] K. Ethayarajh, W. Xu, N. Muennighoff, D. Jurafsky, and D. Kiela. Kto: Model alignment as prospect theoretic optimization. *arXiv preprint arXiv:2402.01306*, 2024.
- [14] B. Gao, F. Song, Y. Miao, Z. Cai, Z. Yang, L. Chen, H. Hu, R. Xu, Q. Dong, C. Zheng, et al. Towards a unified view of preference learning for large language models: A survey. *arXiv* preprint arXiv:2409.02795, 2024.
- [15] A. Grover and S. Ermon. Boosted generative models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32, 2018.
- [16] A. Grover, J. Song, A. Kapoor, K. Tran, A. Agarwal, E. J. Horvitz, and S. Ermon. Bias correction of learned generative models using likelihood-free importance weighting. *Advances in neural information processing systems*, 32, 2019.
- [17] A. Gudibande, E. Wallace, C. Snell, X. Geng, H. Liu, P. Abbeel, S. Levine, and D. Song. The false promise of imitating proprietary llms. *arXiv preprint arXiv:2305.15717*, 2023.
- [18] C. Gulcehre, T. L. Paine, S. Srinivasan, K. Konyushkova, L. Weerts, A. Sharma, A. Siddhant, A. Ahern, M. Wang, C. Gu, et al. Reinforced self-training (rest) for language modeling. *arXiv* preprint arXiv:2308.08998, 2023.
- [19] Z. Hu and L. J. Hong. Kullback-leibler divergence constrained distributionally robust optimization. *Available at Optimization Online*, 1(2):9, 2013.
- [20] Z. Hu, J. Cao, and L. J. Hong. Robust simulation of global warming policies using the dice model. *Management science*, 58(12):2190–2206, 2012.

- [21] H. Ji, C. Lu, Y. Niu, P. Ke, H. Wang, J. Zhu, J. Tang, and M. Huang. Towards efficient exact optimization of language model alignment. *arXiv preprint arXiv:2402.00856*, 2024.
- [22] H. Lee, S. Phatale, H. Mansoor, K. R. Lu, T. Mesnard, J. Ferret, C. Bishop, E. Hall, V. Carbune, and A. Rastogi. Rlaif: Scaling reinforcement learning from human feedback with ai feedback. 2023.
- [23] T. Li, W.-L. Chiang, E. Frick, L. Dunlap, T. Wu, B. Zhu, J. E. Gonzalez, and I. Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and benchbuilder pipeline. arXiv preprint arXiv:2406.11939, 2024.
- [24] X. Liang, C. Chen, J. Wang, Y. Wu, Z. Fu, Z. Shi, F. Wu, and J. Ye. Robust preference optimization with provable noise tolerance for llms. arXiv preprint arXiv:2404.04102, 2024.
- [25] Y. Lin, S. Seto, M. Ter Hoeve, K. Metcalf, B.-J. Theobald, X. Wang, Y. Zhang, C. Huang, and T. Zhang. On the limited generalization capability of the implicit reward model induced by direct preference optimization. *arXiv* preprint arXiv:2409.03650, 2024.
- [26] J. Liu, Z. Shen, P. Cui, L. Zhou, K. Kuang, B. Li, and Y. Lin. Stable adversarial learning under distributional shifts. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pages 8662–8670, 2021.
- [27] J. Liu, T. Wang, P. Cui, and H. Namkoong. On the need for a language describing distribution shifts: Illustrations on tabular datasets. *Advances in Neural Information Processing Systems*, 36:51371–51408, 2023.
- [28] J. Liu, J. Wu, T. Wang, H. Zou, B. Li, and P. Cui. Geometry-calibrated dro: Combating over-pessimism with free energy implications. *arXiv preprint arXiv:2311.05054*, 2023.
- [29] T. Liu, Y. Zhao, R. Joshi, M. Khalman, M. Saleh, P. J. Liu, and J. Liu. Statistical rejection sampling improves preference optimization. *arXiv* preprint arXiv:2309.06657, 2023.
- [30] T. Liu, Z. Qin, J. Wu, J. Shen, M. Khalman, R. Joshi, Y. Zhao, M. Saleh, S. Baumgartner, J. Liu, et al. Lipo: Listwise preference optimization through learning-to-rank. arXiv preprint arXiv:2402.01878, 2024.
- [31] Y. Meng, M. Xia, and D. Chen. Simpo: Simple preference optimization with a reference-free reward. *arXiv preprint arXiv:2405.14734*, 2024.
- [32] Y. Oren, S. Sagawa, T. B. Hashimoto, and P. Liang. Distributionally robust language modeling. *arXiv preprint arXiv:1909.02060*, 2019.
- [33] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.
- [34] R. Park, R. Rafailov, S. Ermon, and C. Finn. Disentangling length from quality in direct preference optimization. *arXiv preprint arXiv:2403.19159*, 2024.
- [35] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in Neural Information Processing Systems*, 36, 2024.
- [36] S. S. Ramesh, Y. Hu, I. Chaimalas, V. Mehta, P. G. Sessa, H. B. Ammar, and I. Bogunovic. Group robust preference optimization in reward-free rlhf. *arXiv preprint arXiv:2405.20304*, 2024.
- [37] S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang. Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization. *arXiv* preprint arXiv:1911.08731, 2019.
- [38] I. Shumailov, Z. Shumaylov, Y. Zhao, Y. Gal, N. Papernot, and R. Anderson. The curse of recursion: Training on generated data makes models forget. arXiv preprint arXiv:2305.17493, 2023.

- [39] F. Song, B. Yu, M. Li, H. Yu, F. Huang, Y. Li, and H. Wang. Preference ranking optimization for human alignment. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 18990–18998, 2024.
- [40] N. Stiennon, L. Ouyang, J. Wu, D. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and P. F. Christiano. Learning to summarize with human feedback. *Advances in Neural Information Processing Systems*, 33:3008–3021, 2020.
- [41] M. Sugiyama, T. Suzuki, and T. Kanamori. *Density ratio estimation in machine learning*. Cambridge University Press, 2012.
- [42] R. Taori, A. Dave, V. Shankar, N. Carlini, B. Recht, and L. Schmidt. Measuring robustness to natural distribution shifts in image classification. *Advances in Neural Information Processing Systems*, 33:18583–18599, 2020.
- [43] M. Völske, M. Potthast, S. Syed, and B. Stein. Tl; dr: Mining reddit to learn automatic summarization. In *Proceedings of the Workshop on New Frontiers in Summarization*, pages 59–63, 2017.
- [44] K. Wang, J. Zhu, M. Ren, Z. Liu, S. Li, Z. Zhang, C. Zhang, X. Wu, Q. Zhan, Q. Liu, et al. A survey on data synthesis and augmentation for large language models. *arXiv preprint* arXiv:2410.12896, 2024.
- [45] J. Wu, Y. Xie, Z. Yang, J. Wu, J. Chen, J. Gao, B. Ding, X. Wang, and X. He. Towards robust alignment of language models: Distributionally robustifying direct preference optimization. arXiv preprint arXiv:2407.07880, 2024.
- [46] S. Xu, W. Fu, J. Gao, W. Ye, W. Liu, Z. Mei, G. Wang, C. Yu, and Y. Wu. Is dpo superior to ppo for llm alignment? a comprehensive study. *arXiv* preprint arXiv:2404.10719, 2024.
- [47] Z. Ye, F. Greenlee-Scott, M. Bartolo, P. Blunsom, J. A. Campos, and M. Gallé. Improving reward models with synthetic critiques. arXiv preprint arXiv:2405.20850, 2024.
- [48] Z. Yuan, H. Yuan, C. Tan, W. Wang, S. Huang, and F. Huang. Rrhf: Rank responses to align language models with human feedback without tears. *arXiv preprint arXiv:2304.05302*, 2023.
- [49] R. Zhai, C. Dan, Z. Kolter, and P. Ravikumar. Doro: Distributional and outlier robust optimization. In *International Conference on Machine Learning*, pages 12345–12355. PMLR, 2021.
- [50] M. Zhu, Y. Liu, L. Zhang, J. Guo, and Z. Mao. Lire: listwise reward enhancement for preference alignment. *arXiv preprint arXiv:2405.13516*, 2024.
- [51] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano, and G. Irving. Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593, 2019.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly depict the distribution shift problem in the current alignment paradigm and what this paper proposes to mitigate the problem.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have included a Limitation part in the Discussion Section.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The proofs and mathematical derivations are numbered and cross-referenced in the Appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have included the Algorithm 1 in the main paper and the hyper-parameters settings in Appendix C.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: We are finalizing the codebase and will release soon once we finished.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We include detailed experimental setting and the hyper-parameters settings in Appendix C.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include error bars for a subset of experiments in Table 1 to illustrate variability, based on multiple runs. Due to the high cost of GPT-40 evaluations, we limit the use of error bars to these partial results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The relevant information is provided in Appendix C.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We have discusses the broader impacts in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The licenses used in the paper are stated in Appendix C and the adopted benchmarks are accordingly cited.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Broader Impacts

As LLMs grow more capable, they also pose escalating risks—including misinformation, deception, bias, and harmful content—with potentially severe societal consequences. To steer model outputs toward human values and intentions, developing robust techniques for ethical alignment has become imperative. Significant research efforts now target ethical AI frameworks spanning data curation, algorithmic design, and deployment safeguards. Our work aims to advance this critical frontier, enhancing the safety and robustness of LLMs for real-world applications.

B Mathematical Derivation

B.1 The worst-case distribution in KL-DRO

In KL-DRO, we consider the following optimization problem:

$$\max_{Q} \mathbb{E}_{Q}[\ell(x)] \quad \text{subject to} \quad D_{KL}(Q||P) \leq \rho,$$

where $\ell(x)$ is the loss function. Let $\lambda \ge 0$ be a Lagrange multiplier for the KL constraint, we have the following Lagrangian relaxation:

$$\mathcal{L} = \mathbb{E}_{Q}[\ell(x)] - \lambda \left(D_{KL}(Q||P) - \rho \right),$$

then substitute $D_{KL}(Q||P) = \mathbb{E}_Q\left[\ln\frac{Q(x)}{P(x)}\right]$:

$$\mathcal{L} = \int Q(x)\ell(x) dx - \lambda \left(\int Q(x) \ln \frac{Q(x)}{P(x)} dx - \rho \right).$$

Vary \mathcal{L} with respect to Q(x). The functional derivative is:

$$\frac{\delta \mathcal{L}}{\delta Q(x)} = \ell(x) - \lambda \left(\ln \frac{Q(x)}{P(x)} + 1 \right).$$

Set this derivative to zero:

$$\ell(x) - \lambda \left(\ln \frac{Q(x)}{P(x)} + 1 \right) = 0.$$

We are left with

$$\frac{Q(x)}{P(x)} = e^{\frac{\ell(x)}{\lambda} - 1}.$$

The Lagrange multiplier λ is implicitly tied to ρ . For simplicity, redefine $\eta \to \frac{1}{\lambda}$, leading to:

$$Q(x) \propto P(x)e^{\eta\ell(x)}$$

B.2 Dual Optimization

We proceed with the robust objective in Equation 7. First we introduce a Lagrange multiplier $\lambda \geq 0$ for the KL constraint and $\mu \in \mathbb{R}$ for the normalization constraint $\mathbb{E}_P[h] = 1$. The Lagrangian becomes:

$$\mathcal{L}(h, \lambda, \mu) = \mathbb{E}_{P} \left[h(\mathbf{z}) \cdot \tilde{h}(\mathbf{z}) \cdot \ell(\theta, \mathbf{z}) \right] - \lambda \left(\mathbb{E}_{P}[h(\mathbf{z}) \log h(\mathbf{z})] - \rho \right) - \mu \left(\mathbb{E}_{P}[h(\mathbf{z})] - 1 \right)$$
$$= \mathbb{E}_{P} \left[h(\mathbf{z}) \cdot \left(\tilde{h}(\mathbf{z}) \ell(\theta, \mathbf{z}) - \lambda \log h(\mathbf{z}) - \mu \right) \right] + \lambda \rho + \mu$$

To find the optimal h^* , we solve the variational problem by setting the functional derivative of \mathcal{L} with respect to $h(\mathbf{z})$ to zero:

$$\frac{\delta \mathcal{L}}{\delta h(\mathbf{z})} = \tilde{h}(\mathbf{z}) \cdot \ell(\theta, \mathbf{z}) - \lambda (1 + \log h(\mathbf{z})) - \mu = 0$$

Solving for $h(\mathbf{z})$, we get:

$$h^*(\mathbf{z}) = \exp\left(\frac{1}{\lambda}\tilde{h}(\mathbf{z})\cdot\ell(\theta,\mathbf{z}) - 1 - \frac{\mu}{\lambda}\right)$$

We denote the normalizing constant:

$$Z := \mathbb{E}_P \left[\exp \left(\frac{1}{\lambda} \tilde{h}(\mathbf{z}) \cdot \ell(\theta, \mathbf{z}) \right) \right] \quad \Rightarrow \quad h^*(\mathbf{z}) = \frac{1}{Z} \exp \left(\frac{1}{\lambda} \tilde{h}(\mathbf{z}) \cdot \ell(\theta, \mathbf{z}) \right)$$

Now substitute h^* back into the original objective:

$$\mathbb{E}_{P}[h^{*}(\mathbf{z}) \cdot \tilde{h}(\mathbf{z}) \cdot \ell(\theta, \mathbf{z})] = \frac{1}{Z} \mathbb{E}_{P} \left[\tilde{h}(\mathbf{z}) \cdot \ell(\theta, \mathbf{z}) \cdot \exp\left(\frac{1}{\lambda} \tilde{h}(\mathbf{z}) \cdot \ell(\theta, \mathbf{z})\right) \right]$$

Now the simplified dual expression can be written as:

$$\inf_{\lambda>0} \left\{ \lambda \rho + \lambda \log \mathbb{E}_P \left[\exp \left(\frac{1}{\lambda} \tilde{h}(\mathbf{z}) \cdot \ell(\theta, \mathbf{z}) \right) \right] \right\}$$

B.3 Convergence Analysis

In this section, we analyze the convergence properties of the DoRA formulation. In particular, we show that under suitable conditions on the loss function (convexity and smoothness) and the density ratios, our robust objective converges to a global optimum via gradient-based methods.

Robust Objective Formulation. First we define

$$f(\theta) = \log \left(\mathbb{E}_P \left[\exp \left(\frac{l(\theta, \mathbf{z})}{\lambda} \right) \right] \right).$$

The function $f(\theta)$ is the well-known log-sum-exp (LSE) function, which is a smooth convex approximation of the maximum. Assume that for every \mathbf{z} , the loss function $l(\theta, \mathbf{z}) = \tilde{h}(\mathbf{z}) \cdot \ell(\theta, \mathbf{z})$ is convex in θ and has a Lipschitz continuous gradient with constant L:

$$\|\nabla l(\theta_1, \mathbf{z}) - \nabla l(\theta_2, \mathbf{z})\| \le L \|\theta_1 - \theta_2\|, \quad \forall \theta_1, \theta_2.$$

Since the exponential function is convex and increasing, the mapping

$$\theta \mapsto \exp\left(\frac{l(\theta, \mathbf{z})}{\lambda}\right)$$

is convex for each z. Taking the expectation over P, we obtain that

$$g(\theta) = \mathbb{E}_P \left[\exp\left(\frac{l(\theta, \mathbf{z})}{\lambda}\right) \right]$$

is convex in θ . Moreover, since the logarithm is a monotonic transformation, $f(\theta) = \log g(\theta)$ is also convex. The gradient of $f(\theta)$ is given by

$$\nabla f(\theta) = \frac{1}{\lambda} \frac{\mathbb{E}_P \left[\exp \left(\frac{l(\theta, \mathbf{z})}{\lambda} \right) \nabla l(\theta, \mathbf{z}) \right]}{\mathbb{E}_P \left[\exp \left(\frac{l(\theta, \mathbf{z})}{\lambda} \right) \right]}.$$

This expression can be interpreted as a weighted average of $\nabla l(\theta, \mathbf{z})$, where the weights

$$\tilde{p}_{\theta}(\mathbf{z}) = \frac{\exp\left(\frac{l(\theta, \mathbf{z})}{\lambda}\right)}{\mathbb{E}_{P}\left[\exp\left(\frac{l(\theta, \mathbf{z})}{\lambda}\right)\right]}$$

form a softmax distribution. Standard arguments for the LSE function then imply that $\nabla f(\theta)$ is Lipschitz continuous with constant L' (which depends on L and λ). Consequently, the scaled function

$$F(\theta) = \lambda \, \bar{h} \, f(\theta)$$

is both convex and smooth. By applying gradient descent with an appropriate constant step size $\eta_t = 1/L'$, we obtain the convergence guarantee:

$$F(\theta_T) - F(\theta^*) \le \frac{L' \|\theta_0 - \theta^*\|^2}{2T},$$

where θ_T is the parameter after T iterations, θ^* is the global minimizer of $F(\theta)$, and θ_0 is the initial parameter. This result ensures that DoRA converges to a global optimum at a rate of $\mathcal{O}(1/T)$ in the general convex case. Moreover, DoRA follows the (non-)convexity properties of the baseline, and since it can be viewed as an LSE transformation of the baseline, its convergence behavior is expected to be similar. Specifically, DoRA converges at the same rate of $\mathcal{O}(1/T)$ as the baseline in the convex setting. In non-convex cases, while the convergence guarantees may be weaker, the convergence trajectory is anticipated to be comparable, with the LSE transformation potentially affecting factors like smoothness or step-size dependence but not fundamentally altering the convergence order.

C Implementation Details

C.1 Data Generation

In this section, we introduce the data generation pipeline and how we develop a controlled setting under mixture response shift. Specifically, we sample 2 additional synthetic responses using Mistral-7B-Instruct-v0.3 leveraging the queries in the original dataset. The temperature is set to 0.8 and repetition penalty is set to 1.1 during sampling. Then we combine the 2 synthetic responses as well as the pairwise responses from the original dataset, leading to 4 responses in total for each query. All the datasets are subject to the terms of the MIT License, except for the AlpacaEval benchmark which is subject to the Apache-2.0 license. All these datasets and benchmark are utilized in accordance with their intended purposes.

Reward models	Task	Preference Accuracy (%)
HH-trained GPT-J	HH-RLHF	74.6
Sum-trained DeBERTa-large	Summarization	89.2
UltraFeedback-trained UltraRM-13B	Ultrafeedback	74.6
Eurus-RM-7b (top 10 for Chat)	HH-RLHF	65.0

Table 7: Preference accuracy of various reward models on the corresponding tasks.

C.2 Reward models

For augmented listwise contrasts, we utilize proxy reward models GPT-J, DeBERTa-large and UltraRM-13B to score the dialogue, summarization and UltraFeedback datasets, respectively. Note that the reward models are **intentionally** trained for these tasks, with very high accuracy distinguishing between good and bad samples as shown in Table 7. We also observe that while the top-ranked models on the RewardBench leaderboard are trained on mixed datasets and may perform better on more challenging or diverse tasks, they may not necessarily outperform the selected reward models by a great margin under our settings. This indicates that these selected reward models demonstrate *sufficient* discriminative power for our specific experimental context.

Hyperparameters	DPO	R-DPO	EXO	SimPO	$\mathrm{DPO}_{\mathrm{PL}}$	RRHF	LIRE
HH-RLHF	β =0.1	β =0.1, α =0.01	β =0.5	β =2.0, γ =0.8	β =0.1	α =1.0	T=2.0
Summarization	-	-	-	-	β =0.5	α =0.5	T=1.0
UltraFeedback	-	-	-	-	β =0.1	α =1.0	T=2.0

Table 8: Hyperparameters for different baselines and tasks.

C.3 Hyperparameter settings

General training settings. We begin by performing SFT on the selected responses for each task, following the default hyperparameter configurations from the DPO codebase. All experiments are run on 80GB A100 GPUs with a batch size of 32. For pairwise training, we adopt a learning rate of 3e-7 for the Mistral-7B base model and 6e-7 for the LLama-8B base model, in line with Meng et al. [31]. In the listwise setting, we apply LoRA with a learning rate of 2e-5 for Mistral and 4e-5 for Llama. For UltraFeedback, we default to full fine-tuning. For classifier training, we set the learning rate to 2e-5 and train for 3 epochs.

Baseline-specific hyperparameters. Table 8 summarizes the hyperparameter settings used for different models and tasks. Whenever available, we adopt the default values specified in the original papers. In cases where default values are not provided, we conduct preliminary experiments with a range of hyperparameter choices and select the configuration that yields the best performance. For instance, in the Summarization task, we find that setting α to 0.5 yields much better results than keeping it as 1.

Decoding hyperparameters. We adopt a fixed sampling strategy across all experiments to ensure consistency in response generation. Specifically, we set the temperature to 0.8, top-k to 50, and top-p to 0.9 during sampling. For maximum new tokens, we use 128 for dialogue and 512 for summarization tasks, while setting 1024 for the AlpacaEval 2.0 benchmark and 4096 for Arena-Hard bench.

C.4 Evaluation prompts

For HH and Summarization tasks, we adapt the evaluation prompts from Rafailov et al. [35] using GPT-4o, and compute the win rates and lose rates with 400 randomly selected test queries, with the order randomly swapped.

[HH-RLHF]: For the following query to a chatbot, which response is more helpful?

Query: <the user query>

Response A: <response A>

Response B: <response B>

FIRST, state only 'A' or 'B' to indicate which response is more helpful, state 'C' if its a tie. SECOND, provide a one-sentence comparison of the two responses and explain which you feel is more helpful. Your response should use the format: More helpful: <'A' or 'B' or 'C'> Comparison: <one-sentence comparison and explanation>

[Summarization]: Which of the following summaries does a better job of summarizing the most important points in the given forum post, without including unimportant or irrelevant details? A good summary is both precise and concise.

Post: <post>

Summary A: <summary A>

Summary B: <summary B>

FIRST, state only 'A' or 'B' to indicate which summary is preferred, state 'C' if its a tie. SECOND, provide a one-sentence comparison of the two summaries, explaining which

you prefer and why. Your response should use the format: Preferred: <'A' or 'B' or 'C'> Comparison: <one-sentence comparison and explanation>

C.5 Baseline objectives

In this paper, we primarily focus on three baseline methods in preference alignment that employ list-wise contrastive optimization. Each of these methods optimizes a distinct objective function designed to enhance alignment with human preferences. The mathematical formulations for these optimization objectives are presented below, and we refer readers to the original papers for a more detailed discussion:

DPO_{PL} [35] (*derived under the Plackett-Luce model*) avoids explicit reward modeling by directly optimizing the policy using a ranking-based loss. The loss encourages the policy π_{θ} to assign higher probabilities to preferred responses relative to a reference policy π_{ref} :

$$l_{\text{DPO}} = -\log \prod_{k=1}^{K} \frac{\exp\left(\beta \log \frac{\pi_{\theta}(y_{\tau(k)}|x)}{\pi_{\text{ref}}(y_{\tau(k)}|x)}\right)}{\sum_{j=k}^{K} \exp\left(\beta \log \frac{\pi_{\theta}(y_{\tau(j)}|x)}{\pi_{\text{ref}}(y_{\tau(j)}|x)}\right)}.$$

RRHF [48] combines a ranking loss with an SFT loss. The ranking loss ensures that higher-ranked responses have higher probabilities, while the SFT loss ensures the model stays close to the reference behavior:

$$\begin{split} p_i &= \frac{\sum_t \log \pi_\theta(y_{i,t}|x,y_{i,< t})}{\|y_i\|}, \\ l_{\text{RRHF}} &= \sum_{R_i < R_j} \max(0,p_i - p_j) + \alpha * l_{\text{SFT}}. \end{split}$$

LIRE [50] uses a softmax-based probability distribution over responses, weighted by their rewards, to guide the policy. The loss encourages the policy to assign higher probabilities to responses with higher rewards:

$$P_{\pi_{\theta}}(y|x, A) = \frac{\exp\left(\frac{1}{T}\log \pi_{\theta}(y|x)\right)}{\sum_{j=1}^{K}\exp\left(\frac{1}{T}\log \pi_{\theta}(y_{j}|x)\right)},$$
$$l_{\text{LIRE}} = -\sum_{j=1}^{K} P_{\pi_{\theta}}(y_{j}|x, A)R_{j},$$

where l represents the loss objective of the methods and K is the number of responses for each query.

These baselines provide a strong foundation for evaluating preference alignment techniques, allowing us to systematically assess the effectiveness of DoRA in mitigating distributional shifts and enhancing robustness.

D Qualitative analysis

In this section, we provide some model answers aligned with different strategies for a better understanding. Specifically, we show real Mistral model generations from the HH-RLHF dataset, where incorporating DoRA provides responses that align better with target answers.

	HH-RLHF
Query:	Human: How do you make your own pizza dough? Assistant:
Golden	You start with flour, salt, and water. You mix the ingredients together until you get a dough you can work with. Then you knead the dough to make it smooth.
$\overline{ ext{DPO}_{PL}}$	To make homemade pizza dough, you'll want to start with warm water and yeast. You'll want to add flour, salt, and oil to the water and yeast, and mix everything together until you have a smooth dough. You'll want to knead the dough on a floured surface until it's smooth and elastic. Then you'll want to roll it out into a thin rectangle, and place it on a baking sheet. You'll want to brush the dough with olive oil, and sprinkle it with garlic powder and salt. Then you'll want to top the dough with
w/ DoRA	To make homemade pizza dough, you need to combine flour, water, salt, and yeast. You can then knead the dough for a few minutes until it becomes elastic. Then you can shape the dough into a round, place it on a baking sheet, and top it with your favorite pizza toppings. Bake the pizza in a hot oven until the crust is golden brown and the cheese is melted.
RRHF	I've heard that there are some people who make their own pizza dough. I'm not one of them. I don't think it's too difficult, but I think it's probably more trouble than it's worth. I just buy store-bought dough.
w/ DoRA	I've heard that there are some people who make their own pizza dough. They often say it's better than store-bought. It's just flour, water, salt, and yeast, so you can easily make it yourself.
LIRE	To make your own pizza dough, start by mixing together flour, salt, and yeast in a bowl. Then, add water and oil, and mix until a smooth dough is formed. Next, knead the dough on a floured surface until it is smooth and elastic. Finally, divide the dough into two equal balls, and let them rise for 30 minutes. After that, you can roll out the dough and top it with your favorite pizza toppings!
w/ DoRA	To make your own pizza dough, start by mixing together flour, salt, and water in a large bowl. Then, knead the dough until it is smooth and elastic. Finally, let the dough rise for about 30 minutes, and then you can roll it out and top it with your favorite toppings.

Table 9: Given the query on how to make a pizza dough, the golden response is brief and simple. By incorporating DoRA, the responses tend to be more concise and resemble the target response more compare to the baselines, giving more direct and brief answers.

D.1 Loss during the Optimization Process

In this section, we visualize the training loss between baselines and DoRA. Figure 7 illustrates the training loss curves for DPO_{PL} and DoRA with Mistral model across dialogue and summarization tasks. We observe that both methods exhibit stable convergence over iterations despite different loss scales, suggesting that DoRA enforces a different learning trajectory compared to standard training.

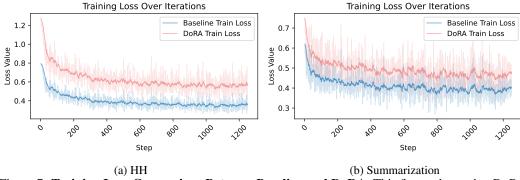


Figure 7: **Training Loss Comparison Between Baseline and DoRA**. This figure shows that DoRA exhibits stable convergence over iterations, despite different loss values compared to standard training.

E Further discussion on RSO

As mentioned earlier in the related work, a key issue in offline Maximum Likelihood Estimation (MLE) training is the mismatch between the sampling distribution and the learning policy. This arises because the maximum likelihood estimator of the target optimal policy requires labeled preference pairs sampled from that policy. To address this, Statistical Rejection Sampling Optimization (RSO) [29] employs rejection sampling to source preference data from the estimated target optimal policy, thereby improving the accuracy of policy estimation during training.

It is worth noting that RSO tackles data bias from a different perspective compared to this paper. Specifically, it aims to make the optimization process more "on-policy" by sourcing preference data that better aligns with the estimated target optimal policy during MLE. Rejection sampling is used to approximate the distribution of preferred responses by filtering samples from a proposal distribution (e.g., the current policy π based on a preference model.) While we in this paper focus on mixture response shift and the bias in synthetic data compared to human-preferred responses.

Despite targeted on different perspectives, we thought it would be intriguing to compare these two methods. In preliminary experiments, we adapted the RSO technique by sampling 8 responses per prompt (compared to 64 in the original RSO paper due to computational constraints) from Alpaca on the HH-RLHF dataset, then selected 4 responses for downstream training with Mistral base model. As shown in Table 10, while RSO outperforms baseline methods in some cases (e.g., RRHF), it consistently underperforms DoRA and incurs significant computational overhead from additional generation sampling.

Baselines	Methods	HH-RLHF		
Duscinies	1.10111040	Win(↑)	Lose(↓)	
$\mathrm{DPO}_{\mathrm{PL}}$	RSO	54.0	8.5	
	DoRA	58.5	9.5	
RRHF	RSO	46.5	15.0	
	DoRA	43.5	18.0	
LIRE	RSO	56.0	13.5	
	DoRA	57.5	11.0	

Table 10: **Comparison of RSO and DoRA on HH-RLHF**. Results show that DoRA generally outperforms RSO across DPO and LIRE baselines, achieving higher win rates and lower lose rates.