
Leveraging Robust Optimization for LLM Alignment
under Distribution Shifts

Mingye Zhu1,2 Yi Liu2∗ Zheren Fu1

Yongdong Zhang1 Zhendong Mao1

1University of Science and Technology of China, Hefei, China
2State Key Laboratory of Communication Content Cognition, People’s Daily Online, Beijing, China

Abstract

Preference alignment methods are increasingly critical for steering large language
models (LLMs) to generate outputs consistent with human values. While recent
approaches often rely on synthetic data generated by LLMs for scalability and cost-
efficiency reasons, this reliance can introduce distribution shifts that undermine the
nuanced representation of human preferences needed for desirable outputs. In this
paper, we propose a novel distribution-aware optimization framework that improves
preference alignment despite such shifts. Our approach first leverages well-learned
classifiers to assign a calibration value to each training sample, quantifying its
alignment with the target human-preferred distribution. These values are then
incorporated into a robust optimization objective that minimizes the worst-case loss
over regions of the data space most relevant to human preferences. By explicitly
focusing optimization on the target distribution, our approach mitigates the impact
of distributional mismatch and improves the generation of responses that better
reflect intended values.
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Figure 1: Comparison of ERM and DoRA Training. The
left section illustrates the training distribution P , which is
a mixture of human-preferred (target) distribution Q0 and
LLM distributions Q1, highlighting the mixture response
shift. The right section contrasts the outcomes of the tra-
ditional method (ERM training) over P with the proposed
DoRA training over Q0, demonstrating how DoRA better
aligns with the target distribution.

The rapid proliferation of large lan-
guage models (LLMs) has made it
increasingly important to ensure that
model outputs align with human val-
ues. Techniques such as Reinforce-
ment Learning from Human Feed-
back (RLHF) [33, 51, 40] and Direct
Preference Optimization (DPO) [35,
45] have shown promise by lever-
aging high-quality, human-annotated
data to guide model behavior [43, 2,
12]. A common approach to con-
structing alignment data involves ei-
ther manual annotation by humans or
the use of LLMs, with the former
being resource-intensive and time-
consuming, thus limiting scalability
and broader applicability [4]. Conse-
quently, recent research has increas-
ingly focused on leveraging synthetic
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data generated by advanced LLMs, which have shown strong capability to simulate human prefer-
ences [22, 7, 8].

In this work, we concentrate on understanding and addressing one specific form of distribution shift
arising from synthetic data within current alignment paradigms. As illustrated in Figure 1, traditional
empirical risk minimization (ERM) assumes that the training distribution P matches the target
distribution Q0, thus leading to a policy Pθ that aligns well with Q0. However, in practice, P does not
perfectly mimic Q0 due to two key limitations: (1) several studies suggest that training data derived
from LLMs may exhibit inherent misalignment with human values [44, 14, 38, 42, 17], and (2)
reward models are prone to biases [46, 47], potentially leading to suboptimal labelling. Consequently,
the resulting training distribution P may diverge significantly from the ideal distribution Q0. In
such settings, naïvely employing ERM training can yield a learned policy Pθ that is biased towards
artifacts in the training data rather than genuinely aligning with human intent.

Mitigating distribution shifts in alignment data is a persistent yet understudied challenge. Existing
robustness-focused approaches primarily address pairwise noisy labels and reward uncertainty [45,
6, 5], but they are tightly coupled with the Bradley-Terry (BT) model, limiting their versatility for
broader alignment objectives (e.g., listwise optimization [48, 39, 30, 50]). To bridge this gap, we
argue for more general robust optimization frameworks that not only mitigate distribution shifts from
synthetic data but also seamlessly adapt to the growing complexity of alignment objectives.

In this paper, we propose Distribution-aware optimization for Robust Alignment (DoRA) to improve
the robustness of alignment algorithms where training data comprises a mixture of heterogeneous sub-
distributions—such as those arising from different synthetic sources or online updates [25, 29, 9, 18].
Rather than tailoring solutions to specific alignment formulations, our approach functions as a modular
plug-in that enhances baseline robustness across diverse, and increasingly complex, alignment
objectives encountered in real-world deployment. At the core of DoRA lies a simple yet effective
strategy: it first employs well-trained distribution classifiers to assign a calibration score to each
training sample, estimating its alignment with the target human-preferred distribution. These scores
are then integrated into a distribution-aware optimization objective that minimizes the worst-case
loss over data regions most representative of human preferences. This strategy ensures that the
model remains resilient to distribution shifts between the training data and the target distribution,
preventing it from disproportionately favoring biased synthetic patterns while still benefiting from
their scalability.

� Contributions

We introduce DoRA, a distribution-aware optimization framework that robustly aligns LLM
outputs with human preferences under distribution shifts. Technically: We estimate the
alignment of each sample with the target human-preferred distribution as a calibration term,
which is then incorporated into a distribution-aware optimization objective that minimizes
the worst-case loss over regions most relevant to human preferences. Theoretically: We
characterize the robust calibration alignment objective as a KL-divergence-based distribution-
ally robust optimization problem, augmented with a reweighting mechanism. Emperically:
We demonstrate the effectiveness of our framework through extensive experiments, with
consistent improvements in alignment metrics compared to state-of-the-art baselines.

2 Problem Formulation

Notations. Let z = {x, y0, . . . , yn−1} ∈ Z represent a datum in a preference dataset Z, where
each instance composes of one query x and n corresponding responses y0, y1, y2, . . . , yn−1 . We
assume that these observed data are drawn from a training distribution P , and the target distribution
of interest, is denoted as Q0. We then formalize the following definition.
Definition 2.1 (Mixture Response Shift). A Mixture Response Shift occurs when, for any input
query x, the conditional distribution of responses is a mixture of different distributions that partially
overlaps with the target distribution Q0 (with fraction α), i.e.:

P (y|x) = αQ0(y|x) +
n−1∑
i=1

βi Qi(y|x), (1)
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where α, β1, . . . , βn−1 ≥ 0 and α+ β1 + · · ·+ βn−1 = 1.
Remark 1. Definition 2.1 formalizes scenarios in which, for each given query x, a fraction α of
the responses are drawn from the target distribution Q0 (e.g., human preferred responses), while
the remaining responses are sampled from other distributions Q1, · · · .Qn−1(e.g., synthetic LLM
generations). This setting reflects the practical reality that alignment training data often consists of a
mixture of responses with diversified quality.

The core intuition is that training solely on data from the target distribution—as done in naïve
supervised fine-tuning (SFT)—may limit generalization and fail to account for real-world variability.
Robust alignment benefits from exposure to both diverse and suboptimal responses, which help
models distinguish desirable behavior from undesirable patterns. When direct access to human-
preferred data is limited, high-quality generations from strong models (e.g., GPT-4) can serve as a
reasonable proxy of the golden responses from the target distribution.

Distributionally robust optimization: Distributionally Robust Optimization (DRO) [3, 11, 26]
is a well-established framework that focuses on minimizing the worst-case expected loss over the
perturbed or adversarial distribution Q within the uncertainty set of P . Denote the instance-level loss
as ℓ(θ, z), then DRO is formulated as:

min
θ∈Θ

sup
Q∈P

EQ[ℓ(θ, z)], P = {Q ∈ D : D(Q∥P ) ≤ ρ}, (2)

with P being the uncertainty set and D a set of all possible distributions. D(Q∥P ) is a distance
metric, and ρ is a parameter controlling the size of the ambiguity set. This objective aims to find θ
that minimizes the expected loss over the worst-case distribution rather than minimizes the average
performance over P . Specifically, we model the P using the Kullback-Leibler (KL) divergence,
as it provides a tractable method for solving DRO problems [19]. With the change-of-measure
technique [20], the inner maximization problem is then formally written as:

max EP [h(z)ℓ(θ, z)], s.t. EP [h(z) log h(z)] ≤ ρ, (3)

where h(z) := dQ
dP (z) is the density ratio (Radon-Nikodym derivative) between Q and P . Equation 3

can be viewed as a variational form of the problem in Equation 2, as it replaces the intractable
optimization over distributions Q with an optimization over the density ratio h(z).

Challenges: While DRO methods are designed to handle sub-population shifts, they often suffer from
over-pessimism [20, 49, 28], which manifests as poor generalization and overly conservative, low-
confidence predictions, as excessive focus on worst-case scenarios can degrade overall performance.

3 Distribution-aware Optimization for Robust Alignment

To achieve more principled alignment and mitigate over-pessimism, we propose to extend the
uncertainty set in the standard DRO framework to capture the mixture-induced shifts central to our
setting. We then propose a calibration mechanism, derived from probabilistic classifiers, to infer the
source distribution of each data point. Theoretically, we show that the proposed DoRA objective
essentially optimizes a KL-based DRO objective, augmented with a distribution-aware reweighting
mechanism. The overall framework is illustrated in Figure 2.

3.1 Sample-Level Calibration with Probabilistic Classifiers

In the KL-DRO framework, the worst-case target distribution can be written as Q(z) ∝ P (z)eηℓ(θ,z)

(See Appendix B.1 for derivation). This formulation implies that instances with higher loss values
ℓ(θ, z) are exponentially upweighted. While this mechanism enhances robustness by prioritizing
challenging instances, it may also introduce over-pessimism when a small number of outliers (e.g.,
noisy or mislabeled points) have very large losses, thereby dominating the optimization.

To mitigate this issue, we introduce a simple calibration mechanism at the sample level. Rather than
treating all samples equally when computing the robust loss, we scale the loss of each instance z by a
data-dependent factor h̃(z), which reflects its estimated relevance to the target distribution.

To formalize h̃(z), we first define the family of α-covered distributions based on Definition 2.1:

Pα =
{
Q0 : P (y|x) = αQ0(y|x) +

n−1∑
i=1

βi Qi(y|x)
}
. (4)
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Figure 2: The DoRA pipeline. For each datum z, where responses are drawn from a mixture
of distributions, DoRA uses trained classifiers to estimate the alignment of each y with the target
distribution. These scores are then aggregated into a calibration term h̃(z) for each sample, which
reweights the original loss ℓ(z) during optimization to enable more principled robustness control.

Here, P (y|x) denotes the observed distribution, and Q0(y|x) represents the target distribution. In
classical DRO, the uncertainty set typically includes distributions that are “close” to a nominal
empirical distribution P , often under some divergence measure. Here, we refine this setup by
incorporating prior structural knowledge under response mixture shift.

Learning distribution-aware classifiers. To construct the calibration factor h̃(z), we assume the
existence of a “golden” (or reference) distribution, denoted Pgolden(y|x), provided by an oracle or
approximated using trusted human-labeled data. Following Grover et al. [16], we train a probabilistic
classifier cϕi for each sub-distribution Qi to estimate the probability that a response yi originates
from the golden distribution. Under the assumption that cϕi is Bayes optimal, the importance weight
for a response drawn from Qi is derived as:

wϕi
(y|x) =

Pgolden(y|x)
Qi(y|x)

= γi
cϕi(y|x)

1− cϕi
(y|x)

, (5)

where i ∈ {1, . . . , n− 1} . γi is the imbalance ratio between a synthetic distribution and the golden
distribution q(y=0)

q(y=1) . In practice, to estimate Pgolden, we leverage human-preferred responses from the
target distribution Q0.

Constructing the calibration factor. We now construct an instance-dependent calibration factor
h̃(z) based on the mixture structure and the learned classifiers.

Proposition 3.1. Let P (y|x) = αQ0(y|x) +
∑n−1

i=1 βi Qi(y|x), with α+ β1 + · · ·+ βn−1 = 1 and
α ∈ (0, 1). Under the mixture response shift, we define h̃(z) as an empirical estimate of the degree
to which a given sample aligns with human preferences:

h̃(z) =
1

n
(
Pgolden(y|x)
αQ0(y|x)

+ · · ·+
Pgolden(y|x)

βn−1 Qn−1(y|x)
)

=
1

n
(
1

α
wϕ0

(y|x) + · · ·+ 1

βn−1
wϕn−1

(y|x)) = 1

n
(
γ0cϕ0

(y|x)
α(1− cϕ0

)
+ · · ·+

γn−1cϕn−1
(y|x)

βn−1(1− cϕn−1
)
),

(6)

where wϕi is defined earlier in Equation 5.
Remark 2. Proposition 3.1 introduces a calibration factor that can naturally incorporate mixture
information into the robust objective. While the density ratio h(z) quantifies how much a single
sample is emphasized or downweighted in the adversarial distribution Q compared to the nominal
distribution P , the calibration term h̃(z) serves as a proxy for human preference by estimating
how likely a sample is to originate from the trusted component Q0. Intuitively, h̃(z) amplifies the
contribution of responses that are more aligned with the golden distribution, and suppresses less
preferred ones accordingly.
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Practical Considerations. The importance weight in Equation 5 was originally introduced for binary
classification tasks [41, 15]. When the learned classifier cϕi outputs probabilities that approach 1, the
corresponding importance weights can become unbounded, leading to unstable and often problematic
optimization. To rectify this, we insert a stabilizing term 1

n into each denominator, thereby bounding
h̃(z) such that h̃ : (X ,Y)→ (0, n). Empirically, this simple modification prevents extreme weights
when cϕi

approaches 1, ensuring that no single sub-distribution excessively dominates training.

3.2 Deriving the DoRA objective

In this section, we derive the final alignment objective of DoRA. Specifically, we modify the
pre-defined KL-DRO framework in Equation 3 by modulating each sample’s contribution by a
precomputed calibration factor h̃(z), which reflects its estimated alignment with the target distribution.
The robust objective is defined as:

max EP [h(z)h̃(z)ℓ(θ, z)], s.t. EP [h(z) log h(z)] ≤ ρ, (7)

Since h̃(z) is a fixed scalar per instance, it does not affect the optimization variables in the Lagrangian.
Consequently, the worst-case risk from Equation 7 admits a closed-form dual solution:
Proposition 3.2 (Worst-case risk under mixture response shift). Let the loss be modulated by instance-
level weights h̃(z), which are fixed and known. Then the worst-case risk under a KL constraint ρ is
given by:

R(θ) = inf
λ>0

{
λ logEP

[
exp

1

λ

(
h̃(z) · ℓ(θ, z)

)]
+ λρ

}
. (8)

In turn, minimizingR(θ) over θ reduces to

min
θ∈Θ

λ logEP

exp 1

λ

 h̃(z)︸︷︷︸
Calibration Term

ℓ(θ, z)

 , (9)

where z is an instance of (x, y0, · · · , yn−1)).

Remark 3. See Appendix B.2 for the detailed Lagrangian derivation. The calibration term h̃(z)
acts as a soft indicator of how closely each data sample’s responses (for a given query x) align
with the “ideal” or golden distribution, thereby determining its relative importance during training.
Consequently, if a sample has a large loss ℓ(θ, z) but a small h̃(z), DoRA deems it less valuable to
learn from and downweights it accordingly. Please see Algorithm 1 for more details.

Algorithm 1 DoRA Optimization Algorithm
Require: Pretrained model parameters θ, ro-

bustness parameter λ, dataset D = {zi =
(xi, yi,0, . . . , yi,n−1)}Ni=1

Ensure: Optimized model parameters θ
▷ Phase 1: Classifier Learning

1: for j = 0 . . . n− 1 do
2: Assign binary labels:

l
(j)
i =

{
1 if yi,j is target,
0 otherwise

3: Train classifier cϕj
using

{(xi, yi,j , l
(j)
i )}Ni=1

4: end for

▷ Phase 2: DoRA Training
1: Precompute h̃(zi)∀zi ∈ D via Eq. 6
2: while not converged do
3: Sample batch B = {zi}bi=1 ⊂ D
4: Compute robust loss over B according

to Equation 9:

L = λ log

(
1

|B|

b∑
i=1

exp

(
h̃(zi)ℓ(θ, zi)

λ

))
5: Update θ ← θ − η∇θLDoRA
6: end while

4 Experiments

Models and Datasets. We validate the proposed method with two base models: Mistral-7B-v0.1,
Llama-3.1-8B, on three widely used datasets in alignment literature: HH-RLHF, Summarization and
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the UltraFeedback datasets. Specifically, we consider the following settings: 1.pairwise preference
setting where we leverage the original pairwise data; 2. listwise preference setting, where we augment
the original pairwise data with 2 additional synthetic responses from Mistral-7B-Instruct-v0.3, leading
to 4 responses in total for each query. We primarily focus on Setting 2 as we believe they represent
a more practical scenario for the current alignment paradigm where models learn from multiple
higher-quality samples from various sources.

Baselines. For pairwise comparisons, we employ four well-performed baselines: DPO [35], R-
DPO [34], EXO [21] and SimPO [31]. For listwise contrasts, we use DPOPL

2 [35], RRHF [48] and
LIRE [50]. Please find the detailed objectives for these algorithms in Appendix C.5.

Experimental Settings. For each task, we first train classifiers as specified in Algorithm 1 with
a simple BERT base model. The chosen response in the original dataset is labeled as 1 and the
other as 0. The well-trained classifiers output probabilities that indicate the likelihood score that a
response belongs to the target distribution. We also train an SFT model on the preferred responses to
serve as the starting point before policy optimization. We set λ = 1 for all experiments. Detailed
hyperparameter configurations and additional training settings are provided in Appendix C.

4.1 Experimental Results

Performance on pairwise preference datasets. For all four pairwise baselines, we use the original
preference datasets without any response augmentation. As illustrated in Figure 3, DoRA consistently
improves performance across all baselines. This suggests that even widely adopted "golden" datasets
are affected by distribution shifts or contain noisy samples.
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Figure 3: DoRA boosts pairwise baseline performance. When applied to unaugmented "golden"
preference datasets, DoRA consistently enhances response quality across all baselines.

Table 1: Comparison with pairwise robust baselines on
HH dataset. While all the approaches improve the win rate of
vanilla DPO, DoRA achieves the lowest lose rates compared
to the counterparts.

Baselines Mistral-7B Llama-8B
Win(↑) Lose(↓) Win(↑) Lose(↓)

DPO [35] 74.8 (±1.84) 23.5 (±1.80) 72.9 (±1.02) 23.7 (±1.65)

Robust DPO [6] 77.8 (±2.20) 20.0 (±2.10) 74.2 (±1.43) 22.9 (±1.23)

Dr.DPO [45] 75.2 (±1.64) 22.4 (±1.63) 73.0 (±1.41) 24.3 (±0.71)

DPO w/ DoRA 75.4 (±1.61) 21.4 (±1.46) 75.4 (±0.89) 20.9 (±0.67)

Comparison with robust baselines.
Robust DPO [6] and Dr.DPO [45] are
two strong baselines designed to ad-
dress label-flip noise in pairwise pref-
erence data, particularly in BT pref-
erence models. Since both methods
operate in the pairwise setting, we
compare their performance against
the DoRA-aligned DPO variant with
HH dataset in Table 1. It is impor-
tant to note that DoRA is a method-
agnostic module that can be seam-
lessly integrated into a wide range of
alignment objectives—not limited to the pairwise case. From the results, we observe that all robust
baselines outperform vanilla DPO, confirming the value of robustness in preference learning. Notably,
DoRA achieves the lowest lose rates among all methods, suggesting that its calibration mechanism
provides more flexible and fine-grained control.

2While pairwise DPO is derived under the Bradley-Terry family of preference models in particular, listwise
DPOPL is derived under more general Plackett-Luce preference model to handle multiple reward signals.
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Performance on listwise preference datasets. Next, we experiment with the augmented datasets,
which directly simulate a mixture response shift scenario which candidate responses are drawn from
diverse underlying distributions. As shown in Table 2, incorporating DoRA leads to performance
gains consistently across multiple baselines and tasks, with higher win rates and lower lose rates
against the reference responses, underscoring its effectiveness in mitigating distributional shifts.

Table 2: DoRA enhances listwise baselines on dialogue and summarization tasks. Win indicates
that GPT-4o assesses DoRA’s response as superior compared to the golden responses from the
datasets. Bold numbers suggest DoRA the winner. The results demonstrate that incorporating DoRA
generally improves performance or at least keeps it on par with the baselines.

Alignment
HH-RLHF Summarization

Mistral-7B Llama-8B Mistral-7B Llama-8B
Win(%)↑ Lose(%)↓ Win(%)↑ Lose(%)↓ Win(%)↑ Lose(%)↓ Win(%)↑ Lose(%)↓

DPOPL [35] 75.0 22.5 81.0 18.0 53.3 46.3 54.5 42.8
w/ DoRA 78.0 21.0 82.5 16.0 55.3 43.5 59.0 30.5

RRHF [48] 76.5 19.5 43.8 56.0 70.0 29.5 70.8 28.8
w/ DoRA 79.8 19.0 44.5 55.0 72.0 28.0 74.0 25.0
LIRE [50] 72.8 26.8 82.0 17.5 82.5 17.5 82.5 17.0
w/ DoRA 84.0 16.0 84.5 14.5 81.0 19.0 83.8 16.0

Table 3: AlpacaEval 2 and Arena-Hard results.
Experiments suggest that DoRA keeps or improves
the instruction-following capabilities of baselines
trained on the augmented UltraFeedback dataset.

Dataset AlpacaEval 2.0 Arena-Hard
Metric LC(%) WR(%) Length WR(%)

DPOPL 18.80 18.14 1972 12.3
w/ DoRA 18.27 17.73 1943 12.2

RRHF 10.52 13.88 1494 11.0
w/ DoRA 10.65 14.48 1446 11.2

LIRE 28.74 29.44 1815 20.0
w/ DoRA 31.28 32.02 1972 20.3

To further evaluate the robustness of our method,
we benchmark models trained on the augmented
UltraFeedback dataset using AlpacaEval 2 [10]
and Arena-Hard [23]. As reported in Ta-
ble 3, DoRA generally improves the instruction-
following capabilities for the baselines, partic-
ularly for LIRE. However, we observe a slight
performance drop for DPOPL, which may be
attributed to the nature of the UltraFeedback
dataset. Specifically, the chosen responses in
UltraFeedback are drawn from a mix of dis-
tributions themselves, deviating from our core
assumption that they originate from a single
source. This distributional mismatch could re-
duce the effectiveness of the learned classifier, thus impacting overall performance.
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(a) Mistral-7B on HH dataset
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Figure 4: Reward-confidence correlation for generated
responses. DoRA exhibits stronger reward-confidence cali-
bration than baselines, evidenced by steeper regression slopes
(∆β=+0.174 for Mistral and ∆β = +0.131 for Llama, larger
slope means better correlation). This indicates DoRA’s high-
reward outputs more closely match the target distribution’s
characteristics, validated by elevated classifier probabilities.

DoRA enhances reward-confidence
correlation for reliable generation.
Figure 4 plots normalized reward
scores against classifier confidence
probabilities for generated responses,
where each point represents one
model output. The dashed lines rep-
resent best-fit linear relationship be-
tween normalized reward scores and
classifier probabilities, derived via or-
dinary least squares regression. The
figure demonstrates that DoRA dis-
plays more consistent alignment be-
tween the classifier’s confidence and
the normalized rewards, indicated by
a clearer positive slope in the regres-
sion line. This suggests that DoRA
facilitates a more reliable prediction
of outcomes, where higher rewards
correspond more likely to higher clas-
sifier probabilities. Moreover, we see overall reward distribution of DoRA shifts rightward, especially
for Llama3 model, indicating more high-quality responses.
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4.2 Ablations
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Figure 5: Performance variation with different choices of λ for vanilla DRO and DoRA. We
observe that as λ increases from 0.5 to 4.0, the win rate generally decreases, albeit with some
variations. Besides, vanilla DRO generally downperforms the proposed DoRA.

Impact of λ on robustness and performance. The regularization parameter λ in DoRA controls the
balance between flexibility and robustness. Specifically, smaller λ values induce sharper exponential
weighting, emphasizing high-loss samples and increasing robustness. Larger λ values reduce this
effect, making the objective closer to standard ERM training. Figure 5 presents that λ = 1 yields
strong performance on the HH task with Mistral-7B, while increasing λ slightly decreases the win
rate, underscoring the importance of tuning robustness. Figure 6 further illustrates that larger λ yields
policies whose behavior more closely resembles that of the baseline ERM-trained model.

30 25 20 15
logP(ychosen|x)

0.0

0.1

0.2

De
ns

ity

=0.5
=1.0
=2.0
=4.0

(a) DoRA w/ different γ values

16 14 12
log sft(ychosen|x)

40

30

20

10

lo
g

(y
ch

os
en

|x
)

Original
w/ DoRA ( =1)
y = x

(b) Log prob. distribution w/ λ = 1

16 14 12
log sft(ychosen|x)

40

30

20

10

lo
g

(y
ch

os
en

|x
)
Original
w/ DoRA ( =4)
y = x

(c) Log prob. distribution w/ λ = 4

Figure 6: Impact of different λ values on policy distribution. (a). Larger λ increases model
probabilities on the HH-chosen responses. (b/c). Scatter plots comparing log probabilities assigned
to HH-preferred responses. The x-axis shows log probabilities under the initial SFT policy; the y-axis
shows those under the original baseline and DoRA policies, respectively. As λ increases, DoRA shifts
closer to the original baseline (ERM training), assigning higher likelihoods to preferred responses.

Table 4: Comparison with DRO and reweighting mechanism. The
results show that combining calibration-aware scoring and robust
optimization generally brings out better performance.

Strategy Expression Loss ℓ(θ, z) HH Data Sum. Data

DRO logEz exp
ℓ(θ,z)

λ

DPOPL 76.0 54.0
RRHF 77.0 52.8
LIRE 65.0 70.0

Reweighting h̃(z)ℓ(θ, z)
DPOPL 74.5 55.0
RRHF 80.5 48.3
LIRE 80.8 78.3

DoRA h̃(z) logEz exp
ℓ(θ,z)

λ

DPOPL 78.0 55.3
RRHF 79.8 72.0
LIRE 84.0 81.0

Effectiveness of the DRO
framework and reweight-
ing mechanism. We in-
vestigate the isolated effects
of the DRO formulation and
the reweighting mechanism
across different alignment ob-
jectives. As shown in Ta-
ble 4, both approaches can
yield performance improve-
ments, but their effectiveness
is highly dependent on the
specific alignment loss and
task. For instance, methods
like DPO appear relatively ro-
bust to how the loss is handled, showing only modest fluctuations across variants. In contrast, LIRE
demonstrates a higher sensitivity to robustness techniques, with substantial performance gains or
drops depending on the strategy used. In general, we conclude from the results that the combination
of calibration-aware scoring and robust optimization is more effective than applying either component
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alone, as their synergy leads to better distributional alignment and more reliable preference modeling
under real-world distributional shifts.

4.3 Generalization and Robustness Evaluation

Table 5: Robustness evaluation under different corruption
rates on HH and AlpacaEval 2 datasets. DoRA consis-
tently improves robustness across methods.

Dataset HH-RLHF AlpacaEval 2

Corruption rate 20% 40% 60 % 40 % 40 %

Metric WR(%) LC(%) WR(%)

DPOPL 71.0 64.5 57.3 11.0 11.0
w/ DoRA 74.5 67.0 60.8 12.1 12.1

RRHF 63.5 42.3 26.3 7.7 4.8
w/ DoRA 65.5 44.5 30.8 8.5 5.5

LIRE 67.7 52.5 61.4 26.5 25.1
w/ DoRA 71.5 55.0 65.3 27.7 26.2

Label noise. In the preceding ex-
periments, all models were trained on
clean datasets without synthetic pertur-
bations. To further assess the robustness
of DoRA, we conduct corrupted-label ex-
periments that serve as stress tests under
adversarial distribution shifts. In particu-
lar, label noise is introduced by randomly
flipping a proportion of labels in the orig-
inal training data. Experimental results
indicate that the incorporation of DoRA
consistently enhances model robustness
as the corruption rate increases, leading
to stable and significant improvements
across multiple benchmarks. This further
demonstrates DoRA’s effectiveness and reliability in real-world applications where annotation noise
or distributional shifts are inevitable.

Table 6: Performance improvement
across training iterations. DoRA consis-
tently enhances final performance under
self-training scenario.

Method Iter 1 Iter 2 Iter 3
DPOPL 77.0 83.5 85.0

w/ DoRA 78.5 85.8 88.0

RRHF 45.8 47.8 50.5
w/ DoRA 47.5 49.3 52.5

LIRE 80.3 83.0 84.5
w/ DoRA 82.5 85.0 86.8

Self-training. While the primary focus of this work is on
mixture response shifts induced by synthetic data in offline
training, we consider online adaptation as a promising di-
rection. To provide preliminary evidence, we conduct a
small-scale experiment where we first train LLaMA-3.2-
3B on the HH dataset (Iterate 1), and then continue training
it on its own generated responses for two additional iter-
ations. This setup naturally induces an evolving mixture
shift, as the response distribution becomes increasingly syn-
thetic. The results demonstrate that DoRA remains robust
under such conditions, indicating that its instance-level cal-
ibration generalizes well to online or self-generated data
scenarios where distributional drift arises organically.

5 Related Works

Preference Alignment for LLMs. Since LLMs are pre-trained on vast internet data, they can
generate outputs that are biased, harmful, or misaligned with human values. To address this, prefer-
ence alignment techniques have emerged as key solutions. RLHF utilizes a reward model trained
on human feedback to guide reinforcement learning, and DPO streamlines the process by directly
optimizing the model to prefer desirable responses without an explicit reward model. Building on
these approaches, recent research has proposed refinements to improve alignment efficiency and
robustness. For example, Azar et al. [1] presents a generalized preference optimization framework,
Ethayarajh et al. [13] introduces a novel loss function for enhanced robustness, and Meng et al. [31]
explores simplified objectives to reduce computational overhead. These advancements reflect the
ongoing effort to develop more scalable and effective alignment methods.

Synthetic Data for Alignment. Preference alignment typically relies heavily on human-annotated
datasets, but the high cost and limited scalability of such data present a major bottleneck. To address
this, recent research has explored leveraging synthetic data for alignment. For example, RLAIF [22]
synthesizes preference data and uses PaLM 2 for feedback, while UltraFeedback [7] employs GPT-4
to annotate LLM-generated responses, creating scalable training datasets. Moreover, researchers
have integrated synthetic data to expand candidate pools for preference learning [39, 48, 30, 50],
demonstrating the potential of synthetic data. However, the use of synthetic data introduces new
challenges. One key issue is the mismatch between the sampling distribution and the learning policy.
To address this, RSO [29] employs rejection sampling to source preference data from the estimated
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target optimal policy, thereby improving the accuracy of the maximum likelihood estimator. Another
critical challenge lies in the distributional inconsistencies between synthetic and human-generated
data during preference learning. This shift can hinder alignment performance, leading to biased model
behaviors to true human preferences[27]. In this paper, we focus on tackling this latter challenge,
aiming to enhance the robustness of preference learning in the presence of distribution shifts.

Robustness in Alignment. DRO [19] is a well-established framework that minimizes the worst-
case training loss over a set of pre-defined groups, ensuring robustness to distributional shifts. In
language modeling, Oren et al. [32] applies DRO to minimize losses over worst-case topic mixtures,
while Sagawa et al. [37] enhances worst-group generalization in overparameterized regimes through
increased regularization. For preference alignment, robust optimization techniques are explored to
address challenges like reward uncertainty and noisy data. MaxMin-RLHF [5] learns a mixture of
reward functions via expectation maximization to cater to diverse human preferences. ROPO [24],
Robust DPO [6] and Dr.DPO [45] focus on noise tolerance in the pairwise BT paradigm. For instance,
ROPO derives a robust loss by suppressing the gradients of samples with high uncertainty, and
Dr.DPO optimizes against worst-case pairwise scenarios for DPO. Similarly, GRPO [36] builds upon
reward-free DPO method by prioritizing groups with worse cumulative loss iteratively. In contrast to
the prior work that focuses on label noise or is designed under the BT framework, our work aims to
learn a method-agnostic approach that may seamlessly generalize to diverse alignment paradigms.

6 Discussion

Conclusion. In this paper, we propose a distribution-aware robust alignment framework that
alleviates the influence of synthetic data bias and distribution shifts in LLM alignment. By leveraging
a learned classifier to aggregate a calibration term to the DRO objective, DoRA effectively balances
the scalability of synthetic data with the fidelity of human-aligned outputs.

Limitation and future work. Our framework assumes access to coarse-grained information about
the source of the data (e.g., human- or model-generated) to guide classifier training. While this
is often feasible in curated alignment pipelines, it may be less accessible in fully open-domain or
legacy datasets. Moreover, DoRA presumes that the target distribution can be at least approximately
estimated or measured; in scenarios where such reference distributions are unavailable or unreliable,
its applicability may be limited. Identifying principled heuristics or proxy objectives for such cases
represents an important direction for future work. Exploring ways to relax this requirement through
unsupervised or weakly supervised signals presents an exciting direction for future research. Our use
of DRO is particularly beneficial in scenarios with distribution shifts or variable alignment quality.
While its conservativeness may offer limited gains in clean settings, it holds promise in reliability-
critical domains such as factual generation or value-sensitive applications. Finally, although online
adaptation is briefly mentioned in Section 4.3, extending DoRA to broader online learning scenarios
remains a promising direction toward continual adaptation and scalability.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly depict the distribution shift problem in
the current alignment paradigm and what this paper proposes to mitigate the problem.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have included a Limitation part in the Discussion Section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The proofs and mathematical derivations are numbered and cross-referenced
in the Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have included the Algorithm 1 in the main paper and the hyper-parameters
settings in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We are finalizing the codebase and will release soon once we finished.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include detailed experimental setting and the hyper-parameters settings in
Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include error bars for a subset of experiments in Table 1 to illustrate
variability, based on multiple runs. Due to the high cost of GPT-4o evaluations, we limit the
use of error bars to these partial results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The relevant information is provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discusses the broader impacts in Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The licenses used in the paper are stated in Appendix C and the adopted
benchmarks are accordingly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Broader Impacts

As LLMs grow more capable, they also pose escalating risks—including misinformation, deception,
bias, and harmful content—with potentially severe societal consequences. To steer model outputs
toward human values and intentions, developing robust techniques for ethical alignment has become
imperative. Significant research efforts now target ethical AI frameworks spanning data curation,
algorithmic design, and deployment safeguards. Our work aims to advance this critical frontier,
enhancing the safety and robustness of LLMs for real-world applications.

B Mathematical Derivation

B.1 The worst-case distribution in KL-DRO

In KL-DRO, we consider the following optimization problem:

max
Q

EQ[ℓ(x)] subject to DKL(Q∥P ) ≤ ρ,

where ℓ(x) is the loss function. Let λ ≥ 0 be a Lagrange multiplier for the KL constraint, we have
the following Lagrangian relaxation:

L = EQ[ℓ(x)]− λ (DKL(Q∥P )− ρ) ,

then substitute DKL(Q∥P ) = EQ

[
ln Q(x)

P (x)

]
:

L =

∫
Q(x)ℓ(x) dx− λ

(∫
Q(x) ln

Q(x)

P (x)
dx− ρ

)
.

Vary L with respect to Q(x). The functional derivative is:

δL
δQ(x)

= ℓ(x)− λ

(
ln

Q(x)

P (x)
+ 1

)
.

Set this derivative to zero:

ℓ(x)− λ

(
ln

Q(x)

P (x)
+ 1

)
= 0.

We are left with
Q(x)

P (x)
= e

ℓ(x)
λ −1.

The Lagrange multiplier λ is implicitly tied to ρ. For simplicity, redefine η → 1
λ , leading to:

Q(x) ∝ P (x)eηℓ(x).

B.2 Dual Optimization

We proceed with the robust objective in Equation 7. First we introduce a Lagrange multiplier λ ≥ 0
for the KL constraint and µ ∈ R for the normalization constraint EP [h] = 1. The Lagrangian
becomes:

L(h, λ, µ) = EP

[
h(z) · h̃(z) · ℓ(θ, z)

]
− λ (EP [h(z) log h(z)]− ρ)− µ (EP [h(z)]− 1)

= EP

[
h(z) ·

(
h̃(z)ℓ(θ, z)− λ log h(z)− µ

)]
+ λρ+ µ

To find the optimal h∗, we solve the variational problem by setting the functional derivative of L with
respect to h(z) to zero:

δL
δh(z)

= h̃(z) · ℓ(θ, z)− λ(1 + log h(z))− µ = 0

Solving for h(z), we get:

21



h∗(z) = exp

(
1

λ
h̃(z) · ℓ(θ, z)− 1− µ

λ

)
We denote the normalizing constant:

Z := EP

[
exp

(
1

λ
h̃(z) · ℓ(θ, z)

)]
⇒ h∗(z) =

1

Z
exp

(
1

λ
h̃(z) · ℓ(θ, z)

)
Now substitute h∗ back into the original objective:

EP [h
∗(z) · h̃(z) · ℓ(θ, z)] = 1

Z
EP

[
h̃(z) · ℓ(θ, z) · exp

(
1

λ
h̃(z) · ℓ(θ, z)

)]
Now the simplified dual expression can be written as:

inf
λ>0

{
λρ+ λ logEP

[
exp

(
1

λ
h̃(z) · ℓ(θ, z)

)]}
B.3 Convergence Analysis

In this section, we analyze the convergence properties of the DoRA formulation. In particular, we
show that under suitable conditions on the loss function (convexity and smoothness) and the density
ratios, our robust objective converges to a global optimum via gradient-based methods.

Robust Objective Formulation. First we define

f(θ) = log

(
EP

[
exp
( l(θ, z)

λ

)])
.

The function f(θ) is the well-known log-sum-exp (LSE) function, which is a smooth convex approxi-
mation of the maximum. Assume that for every z, the loss function l(θ, z) = h̃(z) · ℓ(θ, z) is convex
in θ and has a Lipschitz continuous gradient with constant L:

∥∇l(θ1, z)−∇l(θ2, z)∥ ≤ L ∥θ1 − θ2∥, ∀θ1, θ2.

Since the exponential function is convex and increasing, the mapping

θ 7→ exp
( l(θ, z)

λ

)
is convex for each z. Taking the expectation over P , we obtain that

g(θ) = EP

[
exp
( l(θ, z)

λ

)]
is convex in θ. Moreover, since the logarithm is a monotonic transformation, f(θ) = log g(θ) is also
convex. The gradient of f(θ) is given by

∇f(θ) = 1

λ

EP

[
exp
(

l(θ,z)
λ

)
∇l(θ, z)

]
EP

[
exp
(

l(θ,z)
λ

)] .

This expression can be interpreted as a weighted average of∇l(θ, z), where the weights

p̃θ(z) =
exp

(
l(θ,z)

λ

)
EP

[
exp

(
l(θ,z)

λ

)]
form a softmax distribution. Standard arguments for the LSE function then imply that ∇f(θ) is
Lipschitz continuous with constant L′ (which depends on L and λ). Consequently, the scaled function

F (θ) = λ h̄ f(θ)
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is both convex and smooth. By applying gradient descent with an appropriate constant step size
ηt = 1/L′, we obtain the convergence guarantee:

F (θT )− F (θ∗) ≤ L′∥θ0 − θ∗∥2

2T
,

where θT is the parameter after T iterations, θ∗ is the global minimizer of F (θ), and θ0 is the initial
parameter. This result ensures that DoRA converges to a global optimum at a rate of O(1/T ) in the
general convex case. Moreover, DoRA follows the (non-)convexity properties of the baseline, and
since it can be viewed as an LSE transformation of the baseline, its convergence behavior is expected
to be similar. Specifically, DoRA converges at the same rate of O(1/T ) as the baseline in the convex
setting. In non-convex cases, while the convergence guarantees may be weaker, the convergence
trajectory is anticipated to be comparable, with the LSE transformation potentially affecting factors
like smoothness or step-size dependence but not fundamentally altering the convergence order.

C Implementation Details

C.1 Data Generation

In this section, we introduce the data generation pipeline and how we develop a controlled setting
under mixture response shift. Specifically, we sample 2 additional synthetic responses using Mistral-
7B-Instruct-v0.3 leveraging the queries in the original dataset. The temperature is set to 0.8 and
repetition penalty is set to 1.1 during sampling. Then we combine the 2 synthetic responses as well
as the pairwise responses from the original dataset, leading to 4 responses in total for each query. All
the datasets are subject to the terms of the MIT License, except for the AlpacaEval benchmark which
is subject to the Apache-2.0 license. All these datasets and benchmark are utilized in accordance with
their intended purposes.

Reward models Task Preference Accuracy (%)
HH-trained GPT-J HH-RLHF 74.6

Sum-trained DeBERTa-large Summarization 89.2
UltraFeedback-trained UltraRM-13B Ultrafeedback 74.6

Eurus-RM-7b (top 10 for Chat) HH-RLHF 65.0
Table 7: Preference accuracy of various reward models on the corresponding tasks.

C.2 Reward models

For augmented listwise contrasts, we utilize proxy reward models GPT-J, DeBERTa-large and
UltraRM-13B to score the dialogue, summarization and UltraFeedback datasets, respectively. Note
that the reward models are intentionally trained for these tasks, with very high accuracy distinguishing
between good and bad samples as shown in Table 7. We also observe that while the top-ranked
models on the RewardBench leaderboard are trained on mixed datasets and may perform better on
more challenging or diverse tasks, they may not necessarily outperform the selected reward models
by a great margin under our settings. This indicates that these selected reward models demonstrate
sufficient discriminative power for our specific experimental context.

Hyperparameters DPO R-DPO EXO SimPO DPOPL RRHF LIRE

HH-RLHF β=0.1 β=0.1, α=0.01 β=0.5 β=2.0,γ=0.8 β=0.1 α=1.0 T=2.0
Summarization - - - - β=0.5 α=0.5 T=1.0
UltraFeedback - - - - β=0.1 α=1.0 T=2.0

Table 8: Hyperparameters for different baselines and tasks.
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C.3 Hyperparameter settings

General training settings. We begin by performing SFT on the selected responses for each task,
following the default hyperparameter configurations from the DPO codebase. All experiments are
run on 80GB A100 GPUs with a batch size of 32. For pairwise training, we adopt a learning rate
of 3e-7 for the Mistral-7B base model and 6e-7 for the LLama-8B base model, in line with Meng
et al. [31]. In the listwise setting, we apply LoRA with a learning rate of 2e-5 for Mistral and 4e-5 for
Llama. For UltraFeedback, we default to full fine-tuning. For classifier training, we set the learning
rate to 2e-5 and train for 3 epochs.

Baseline-specific hyperparameters. Table 8 summarizes the hyperparameter settings used for
different models and tasks. Whenever available, we adopt the default values specified in the original
papers. In cases where default values are not provided, we conduct preliminary experiments with a
range of hyperparameter choices and select the configuration that yields the best performance. For
instance, in the Summarization task, we find that setting α to 0.5 yields much better results than
keeping it as 1.

Decoding hyperparameters. We adopt a fixed sampling strategy across all experiments to ensure
consistency in response generation. Specifically, we set the temperature to 0.8, top-k to 50, and
top-p to 0.9 during sampling. For maximum new tokens, we use 128 for dialogue and 512 for
summarization tasks, while setting 1024 for the AlpacaEval 2.0 benchmark and 4096 for Arena-Hard
bench.

C.4 Evaluation prompts

For HH and Summarization tasks, we adapt the evaluation prompts from Rafailov et al. [35] using
GPT-4o, and compute the win rates and lose rates with 400 randomly selected test queries, with the
order randomly swapped.

[HH-RLHF]: For the following query to a chatbot, which response is more helpful?

Query: <the user query>

Response A: <response A>

Response B: <response B>

FIRST, state only ’A’ or ’B’ to indicate which response is more helpful, state ’C’ if its a tie.
SECOND, provide a one-sentence comparison of the two responses and explain which you
feel is more helpful. Your response should use the format: More helpful: <’A’ or ’B’ or ’C’>
Comparison: <one-sentence comparison and explanation>

[Summarization]: Which of the following summaries does a better job of summarizing the
most important points in the given forum post, without including unimportant or irrelevant
details? A good summary is both precise and concise.

Post: <post>

Summary A: <summary A>

Summary B: <summary B>

FIRST, state only ’A’ or ’B’ to indicate which summary is preferred, state ’C’ if its a tie.
SECOND, provide a one-sentence comparison of the two summaries, explaining which
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you prefer and why. Your response should use the format: Preferred: <’A’ or ’B’ or ’C’>
Comparison: <one-sentence comparison and explanation>

C.5 Baseline objectives

In this paper, we primarily focus on three baseline methods in preference alignment that employ
list-wise contrastive optimization. Each of these methods optimizes a distinct objective function
designed to enhance alignment with human preferences. The mathematical formulations for these
optimization objectives are presented below, and we refer readers to the original papers for a more
detailed discussion:

DPOPL [35] (derived under the Plackett-Luce model) avoids explicit reward modeling by directly
optimizing the policy using a ranking-based loss. The loss encourages the policy πθ to assign higher
probabilities to preferred responses relative to a reference policy πref:

lDPO = − log

K∏
k=1

exp
(
β log

πθ(yτ(k)|x)
πref(yτ(k)|x)

)
∑K

j=k exp
(
β log

πθ(yτ(j)|x)
πref(yτ(j)|x)

) .
RRHF [48] combines a ranking loss with an SFT loss. The ranking loss ensures that higher-ranked
responses have higher probabilities, while the SFT loss ensures the model stays close to the reference
behavior:

pi =

∑
t log πθ(yi,t|x, yi,<t)

∥yi∥
,

lRRHF =
∑

Ri<Rj

max(0, pi − pj) + α ∗ lSFT.

LIRE [50] uses a softmax-based probability distribution over responses, weighted by their rewards,
to guide the policy. The loss encourages the policy to assign higher probabilities to responses with
higher rewards:

Pπθ
(y|x,A) =

exp
(
1
T log πθ(y|x)

)∑K
j=1 exp

(
1
T log πθ(yj |x)

) ,
lLIRE = −

K∑
j=1

Pπθ
(yj |x,A)Rj ,

where l represents the loss objective of the methods and K is the number of responses for each query.

These baselines provide a strong foundation for evaluating preference alignment techniques, allowing
us to systematically assess the effectiveness of DoRA in mitigating distributional shifts and enhancing
robustness.

D Qualitative analysis

In this section, we provide some model answers aligned with different strategies for a better under-
standing. Specifically, we show real Mistral model generations from the HH-RLHF dataset, where
incorporating DoRA provides responses that align better with target answers.
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HH-RLHF
Query: Human: How do you make your own pizza dough? Assistant:
Golden You start with flour, salt, and water. You mix the ingredients together until you get a

dough you can work with. Then you knead the dough to make it smooth.
DPOPL To make homemade pizza dough, you’ll want to start with warm water and yeast. You’ll

want to add flour, salt, and oil to the water and yeast, and mix everything together until
you have a smooth dough. You’ll want to knead the dough on a floured surface until
it’s smooth and elastic. Then you’ll want to roll it out into a thin rectangle, and place it
on a baking sheet. You’ll want to brush the dough with olive oil, and sprinkle it with
garlic powder and salt. Then you’ll want to top the dough with...

w/ DoRA To make homemade pizza dough, you need to combine flour, water, salt, and yeast.
You can then knead the dough for a few minutes until it becomes elastic. Then you can
shape the dough into a round, place it on a baking sheet, and top it with your favorite
pizza toppings. Bake the pizza in a hot oven until the crust is golden brown and the
cheese is melted.

RRHF I’ve heard that there are some people who make their own pizza dough. I’m not one
of them. I don’t think it’s too difficult, but I think it’s probably more trouble than it’s
worth. I just buy store-bought dough.

w/ DoRA I’ve heard that there are some people who make their own pizza dough. They often
say it’s better than store-bought. It’s just flour, water, salt, and yeast, so you can easily
make it yourself.

LIRE To make your own pizza dough, start by mixing together flour, salt, and yeast in a bowl.
Then, add water and oil, and mix until a smooth dough is formed. Next, knead the
dough on a floured surface until it is smooth and elastic. Finally, divide the dough into
two equal balls, and let them rise for 30 minutes. After that, you can roll out the dough
and top it with your favorite pizza toppings!

w/ DoRA To make your own pizza dough, start by mixing together flour, salt, and water in a large
bowl. Then, knead the dough until it is smooth and elastic. Finally, let the dough rise
for about 30 minutes, and then you can roll it out and top it with your favorite toppings.

Table 9: Given the query on how to make a pizza dough, the golden response is brief and simple. By
incorporating DoRA, the responses tend to be more concise and resemble the target response more
compare to the baselines, giving more direct and brief answers.

D.1 Loss during the Optimization Process

In this section, we visualize the training loss between baselines and DoRA. Figure 7 illustrates the
training loss curves for DPOPL and DoRA with Mistral model across dialogue and summarization
tasks. We observe that both methods exhibit stable convergence over iterations despite different loss
scales, suggesting that DoRA enforces a different learning trajectory compared to standard training.
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(b) Summarization
Figure 7: Training Loss Comparison Between Baseline and DoRA. This figure shows that DoRA
exhibits stable convergence over iterations, despite different loss values compared to standard training.
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E Further discussion on RSO

As mentioned earlier in the related work, a key issue in offline Maximum Likelihood Estimation
(MLE) training is the mismatch between the sampling distribution and the learning policy. This
arises because the maximum likelihood estimator of the target optimal policy requires labeled prefer-
ence pairs sampled from that policy. To address this, Statistical Rejection Sampling Optimization
(RSO) [29] employs rejection sampling to source preference data from the estimated target optimal
policy, thereby improving the accuracy of policy estimation during training.

It is worth noting that RSO tackles data bias from a different perspective compared to this paper.
Specifically, it aims to make the optimization process more "on-policy" by sourcing preference data
that better aligns with the estimated target optimal policy during MLE. Rejection sampling is used to
approximate the distribution of preferred responses by filtering samples from a proposal distribution
(e.g., the current policy π based on a preference model.) While we in this paper focus on mixture
response shift and the bias in synthetic data compared to human-preferred responses.

Despite targeted on different perspectives, we thought it would be intriguing to compare these two
methods. In preliminary experiments, we adapted the RSO technique by sampling 8 responses per
prompt (compared to 64 in the original RSO paper due to computational constraints) from Alpaca on
the HH-RLHF dataset, then selected 4 responses for downstream training with Mistral base model.
As shown in Table 10, while RSO outperforms baseline methods in some cases (e.g., RRHF), it
consistently underperforms DoRA and incurs significant computational overhead from additional
generation sampling.

Baselines Methods HH-RLHF

Win(↑) Lose(↓)

DPOPL
RSO 54.0 8.5

DoRA 58.5 9.5

RRHF RSO 46.5 15.0
DoRA 43.5 18.0

LIRE RSO 56.0 13.5
DoRA 57.5 11.0

Table 10: Comparison of RSO and DoRA on HH-RLHF. Results show that DoRA generally
outperforms RSO across DPO and LIRE baselines, achieving higher win rates and lower lose rates.
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