
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DISENTANGLING LATENT SHIFTS OF IN-CONTEXT
LEARNING THROUGH SELF-TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

In-context learning (ICL) has become essential in natural language processing,
particularly with autoregressive large language models capable of learning from
demonstrations provided within the prompt. However, ICL faces challenges with
stability and long contexts, especially as the number of demonstrations grows,
leading to poor generalization and inefficient inference. To address these issues,
we introduce STICL (Self-Training ICL), an approach that disentangles the latent
shifts of demonstrations from the latent shift of the query through self-training.
STICL employs a teacher model to generate pseudo-labels and trains a student
model using these labels, encoded in an adapter module. The student model ex-
hibits weak-to-strong generalization, progressively refining its predictions over
time. Our empirical results show that STICL improves generalization and stabil-
ity, consistently outperforming traditional ICL methods and other disentangling
strategies across both in-domain and out-of-domain data.

1 INTRODUCTION

In-context learning (ICL) (Brown et al., 2020) has emerged as a significant machine learning
paradigm, particularly in natural language processing (NLP) applications that utilize large language
models (LLMs). Unlike traditional supervised machine learning methods that rely on training over
multiple epochs with large datasets, ICL leverages the ability of autoregressive LLMs to learn from
context, with demonstrations and the query combined in a single prompt. This enables models to
rapidly adjust to new tasks or varying input patterns without the need for additional fine-tuning.
Moreover, ICL proves effective in low-resource setups by utilizing zero-shot and few-shot learning
to perform tasks with minimal or no supervision (Dong et al., 2024a).

Despite its strengths, ICL faces several critical challenges. One of the key issues is stability –
autoregressive LLMs based on the transformer architecture (Vaswani et al., 2017) can be highly
sensitive to variations in the input context, such as the selection and ordering of demonstrations (Li
et al., 2024; Lu et al., 2021; Dong et al., 2024a). This instability can result in poor generalization,
making the models less reliable in real-world applications. Compounding this issue, ICL often in-
volves long contexts because it requires incorporating multiple demonstrations alongside the query
within a single input prompt. As more demonstrations are added, the input lengthens, and LLMs of-
ten struggle to handle extended contexts effectively. This problem can be traced to inherent primacy
and recency biases, which lead models to overemphasize information positioned at the beginning
or end of the context (Liu et al., 2024). Moreover, the inherent limitations of the context window
size impose computational constraints, presenting a practical bottleneck (Dong et al., 2024b). Even
with expanded context windows in newer models, the challenge of limited context persists. LLMs
still struggle to fully utilize contexts when incorporating multiple demonstrations, often exceeding
practical input lengths.

The aforementioned stability issues in ICL stem from the joint processing of demonstrations and the
query. Since ICL can be viewed as introducing shifts in the model’s internal representations – where
knowledge from demonstrations is superimposed onto the latent features induced by the query –
a promising solution is to disentangle these latent shifts, separating those induced by demonstra-
tions from those of the query. By separating these shifts, ICL can process queries independently
of demonstrations, reducing computational overhead and improving stability. Disentangling has
been explored from various perspectives: Liu et al. (2023) and Zhang et al. (2024) have focused on

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Teacher LLM

Student LLM

Base LLM Adapter

Demonstrations:

Xd = [x1, x2, . . . , xn]

Query: xq

;⃝ yt

ys

ℓCE(yt, ys)

Figure 1: Illustration of STICL. The teacher processes a concatenation (denoted by ;⃝) of demonstra-
tions Xd, consisting of n demonstrations [x1,x2, . . . ,xn], and the query xq . The student, using only
the query, fine-tunes its adapter weights to produce outputs ys aligned with the teacher’s pseudo-
labels yt by minimizing the cross-entropy loss ℓCE. After fine-tuning, the student can process only
queries while still using the knowledge from demonstrations encoded in the adapter.

improving ICL’s stability and scalability, while Dai et al. (2023) and Todd et al. (2024) leveraged
disentangling to gain theoretical insights. Separating the latent shifts makes it possible to persis-
tently store the context knowledge provided by demonstrations, eliminating the need to reprocess
demonstrations with every query. This results in significantly shorter prompts, as only the queries
remain, which can mitigate the problem of long context and improve the efficiency of inference. The
latent shift induced by demonstrations can then be applied trivially, for example, by adding it to the
latent features induced by the query. While disentangling the latent shifts of ICL has shown potential
in improving ICL and advancing theoretical understanding, current methods rely on approximations,
primarily by manipulating attention heads or hidden states. A more direct and principled approach
to disentangling these shifts remains an open and compelling area for further investigation.

In this work, we propose to disentangle the latent shift of demonstrations from that of the query
by explicitly focusing on the model’s final outputs through the use of self-training (Amini et al.,
2022). Self-training involves training a model using pseudo-labels generated by a previously learned
model and has proven highly effective in leveraging unlabeled data for neural network training (Wei
et al., 2021). We employ self-training in a simple teacher-student framework to encode the latent
shift of demonstrations into a small set of additional parameters housed within an adapter module
(Houlsby et al., 2019). Our method, STICL (Self-Training ICL), illustrated in Figure 1, employs a
teacher LLM to generate pseudo-labels by processing both the demonstrations and the query without
requiring extra labeled data. These pseudo-labels are then used to train a student LLM. The student
model is trained to match the output provided by the teacher, taking only the query as input. By
leveraging unlabeled data through self-training, the student can correct the pseudo-labels provided
by the teacher, exhibiting weak-to-strong generalization (Lang et al., 2024). The method encodes the
information from the demonstrations into the parameters and can seamlessly apply the latent shift
just by activating the adapter module. Furthermore, due to the flexibility of adapters, a large set of
demonstrations can be chunked into more manageable subsets, with each subset encoded in its own
adapter module, and the modules can be easily merged. We evaluate STICL using autoregressive
LLMs such as Llama 3 (8B) (Dubey et al., 2024) and Phi 3 (mini 4k) (Abdin et al., 2024) on the
GLUE (Wang et al., 2018) and MMLU (Hendrycks et al., 2021) benchmarks, comparing it to pattern-
based fine-tuning (Schick & Schütze, 2021) and few-shot ICL. On both in-domain (ID) and out-
of-domain (OOD) data, STICL consistently outperforms these baselines and other disentanglement
methods that leverage attention heads or hidden states, thus offering a reliable alternative without
needing extra labeled data.

Our contribution is twofold: (1) We introduce STICL, a self-training ICL method that enhances
efficiency and addresses stability and long-context challenges of ICL by disentangling the latent
shifts between demonstrations and queries using one or several adapter modules; (2) We empir-
ically demonstrate that STICL significantly improves both stability and generalization on ID and
OOD, outperforming traditional ICL methods and other disentangling methods, while maintaining
parameter efficiency. These findings suggest that even simple self-training setups, when properly
designed, can offer substantial gains in ICL performance, paving the way for more efficient and
scalable alternatives to current approaches.1

1The code is included in the supplementary material and will be made available upon publication.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 METHOD

2.1 DISENTANGLING LATENT SHIFTS

Disentangling in-context knowledge from the query can aid in improving the efficiency and stability
of ICL. Current approaches rely on manipulating the outputs of attention heads or hidden states.
The motivation behind disentangling lies in previous research (Aizerman, 1964; Irie et al., 2022),
demonstrating that linear layers optimized through gradient descent have a dual form of linear at-
tention. To illustrate, consider a neural network’s linear layer, where W0,∆W ∈ Rm×n denote the
initial weight matrix and its subsequent updates by backpropagation, respectively. With x ∈ Rm as
the input representation, a linear transformation f : Rm → Rn can be expressed as:

f(x) = (W0 +∆W)x. (1)

During backpropagation, ∆W is computed by accumulating the outer products (denoted by ⊗) of
N training examples {x1,x2, . . . ,xN}, where xi ∈ Rm, and the error signals {e1, e2, . . . , eN},
where ei ∈ Rn, obtained from the gradients of the loss function:

∆W =

N∑
i=1

ei ⊗ xi. (2)

Irie et al. (2022) show that the update part of linear layers optimized by gradient descent can be
expressed as unnormalized linear dot-product attention:

f(x) = (W0 +∆W)x = W0x+

N∑
i=1

(ei ⊗ xi)x = W0x+

N∑
i=1

ei(x
T
i x)︸ ︷︷ ︸

linear attention

. (3)

In the context of the attention mechanism, this shows that the latent shift ∆Wx corresponds directly
to the application of linear attention, with error signals ei as values, training examples xi as keys,
and the current input x as the attention query.

The concept of disentangling the latent shifts described in (3) can be extended to ICL, albeit only
under the approximation of linear attention. Let WV , WK , and WQ denote the weight matrices
for values, keys, and queries, respectively. Let x(t)

q represent the current query token’s embedding
at step t, and q(t) = WQx

(t)
q is the corresponding attention query vector. The matrix Xq =

[x
(1)
q ,x

(2)
q , . . . ,x

(t−1)
q] contains all previous query token representations up to t − 1, and Xd is

the matrix of demonstration token representations. The concatenation [Xd;Xq] along the sequence
dimension is used to compute the attention output at step t, expressed as:

fAH(x
(t)
q) = WV [Xd;Xq] softmax

(
(WK [Xd;Xq])

⊤
q(t)

√
d

)
, (4)

where d is the scaling factor (i.e., the dimensionality of the key vectors). By approximating the
attention mechanism with linear attention, it becomes possible to disentangle the latent shift of the
zero-shot output of an attention head induced by the query from the latent shift induced by the
demonstrations (Dai et al., 2023):

fAH(x
(t)
q) ≈ WV [Xd;Xq] (WK [Xd;Xq])

⊤
q(t)

= WV Xq (WKXq)
⊤︸ ︷︷ ︸

WZS

q(t) +WV Xd (WKXd)
⊤︸ ︷︷ ︸

∆WICL

q(t)

= (WZS +∆WICL)q
(t).

(5)

This approximation disentangles the latent shift induced by the demonstrations Xd from that induced
by the query x

(t)
q (cf. Appendix A for detailed derivation of (5)). The contribution from ICL is

captured as a virtual weight update ∆WICL, corresponding to virtual gradients, often referred to as
“meta-gradients” in the literature. The zero-shot latent shift of the query, corresponding to WZSq

(t),
reflects the output without demonstrations, providing the initial state. Analogous to ∆Wx in (3),

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the latent shift ∆WICLq
(t) reflects the contribution of ICL. Finally, by substituting hZS = WZSq

(t)

and ∆hICL = ∆WICLq
(t), we can rewrite the output of an attention head as:

fAH(x
(t)
q) ≈ hZS +∆hICL. (6)

Although transformer-based LLMs use non-linear attention in practice, many approaches (Dai et al.,
2023; Zhang et al., 2024; Todd et al., 2024) rely on the theoretical underpinnings of linear attention.
These methods manipulate attention heads or hidden states to disentangle latent shifts despite the
inherent non-linearity of the models. Furthermore, this simplification overlooks other crucial com-
ponents of the transformer architecture, such as the feed-forward layers, activation functions, and
residual connections. While approaches based on linear attention have proven effective, they leave
room for further improvements in capturing and disentangling the full complexity of how transform-
ers process data. In this work, we explore how virtual weight updates can be obtained more directly
while preserving the key components of the transformer architecture.

2.2 SELF-TRAINING ICL

Building on the concept of disentangling latent shifts in transformer architectures, we introduce
STICL (Self-Training ICL), an approach that offers a simple yet highly efficient way to internal-
ize ICL knowledge into the parameters of a model. Rather than relying solely on manipulating
attention heads, as is common in current methods, STICL aims to capture the full complexity of
the transformer’s components – considering the final output, which depends on all layers, including
attention heads, feed-forward layers, and residual connections. By aligning more directly with the
actual latent shifts induced by demonstrations, STICL ensures that the model uses the entirety of its
architecture to first embed and later apply in-context knowledge.

At the core of STICL is a simple teacher-student framework: the teacher model, fteacher, processes
both demonstrations and the query together to generate pseudo-labels without needing additional
labeled data. The student model, fstudent, shares the same architecture as the teacher but includes
adapter parameters. Unlike the teacher, the student processes only the query, using the adapter to
internalize the knowledge from the demonstrations, as illustrated in Figure 1. Let xq denote the
query input and Xd the matrix of demonstration tokens, where each row corresponds to a single
demonstration.2 The empirical loss, defined using the cross-entropy loss ℓCE, which operates on the
teacher’s output vector of probabilities for all tokens in the dictionary, is given by:∑

xq∈Dunlab

ℓCE (fteacher ([X
∗
d;xq]) , fstudent (xq)) , (7)

where Dunlab is an unlabeled dataset and X∗
d is a flattened version of Xd. This approach is grounded

in self-training (Amini et al., 2022), leveraging the teacher’s pseudo-labels to fine-tune the student.

STICL fundamentally differs from existing approaches, which rely on manipulating attention heads
or hidden states at query time. Instead, STICL progressively embeds the knowledge from demon-
strations into the adapter parameters, denoted WICL. The base LLM parameters, WZS, capture the
zero-shot component, while the total model parameters may be represented as WZS ⊕WICL, where
⊕ denotes the composition of base and adapter parameters.3 This setup captures the latent shift
introduced by the demonstrations through WICL, extending the disentangling process outlined by
(5) across the model’s entire architecture. The teacher processes the full input sequence [X∗

d;xq],
while the student processes only the query, applying WICL to integrate demonstration knowledge
without explicitly processing the demonstrations. Analogously to (6), the latent shift induced by
demonstrations can be recovered by decomposing outputs into zero-shot and ICL components. Let
hLLM(xq | W) represent the final latent states of an LLM with parameters W when processing the
input xq . The following decomposition holds:

hLLM(xq | WZS ⊕WICL) = hLLM(xq | WZS) + ∆hICL, (8)

where ∆hICL encapsulates the latent shift attributable to the demonstrations. STICL encodes the la-
tent shift implicitly within the adapter parameters WICL, which is central to our approach. However,
if necessary, the latent shift can also be explicitly calculated owing to the decomposition in (8).

2The query xq is a vector of token IDs, and Xd contains token IDs of demonstrations.
3Notably, the number of adapter parameters is significantly smaller compared to the base model parameters.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The stabilizing effect of STICL extends beyond just handling demonstrations. By iterating over
multiple epochs, STICL leverages the same LLM instance for both the teacher and student roles,
transitioning smoothly between them by activating or deactivating the adapter. Demonstrations can
be shuffled across epochs to reduce sensitivity to their order, further stabilizing the ICL process. But
the true power of STICL emerges from its parametric nature, which aligns with the optics of weak-
to-strong generalization (Lang et al., 2024). The adapter parameters allow the model to internalize
shifts and generalize effectively across both ID and OOD data, as demonstrated empirically in our
experiments (cf. Section 3).

From the perspective of weak-to-strong generalization, the student model is not just expected to
match the teacher – it is designed to outperform it. STICL facilitates this by leveraging pseudo-
label correction, where incorrect labels are refined using high-confidence neighboring examples,
and coverage expansion, enabling the model to generalize beyond regions initially covered by the
teacher and even to near-OOD data (Section 3). STICL not only stabilizes ICL but also capitalizes
on the parametric regime, where latent shifts can be efficiently encoded, enabling the model to
establish implicit local-to-global consistency across the data distribution through extrapolation (Wei
et al., 2021).

3 EXPERIMENTS

Models. We utilize a set of decoder-only autoregressive LLMs in our experiments. Specifically,
we employ Hugging Face implementations (Wolf et al., 2020) of Llama 3 (8B) (Dubey et al., 2024)
and Phi 3 (mini 4k) (Abdin et al., 2024) as our primary models, with additional comparison results
for Llama 2 (7B) (Touvron et al., 2023). Detailed information about the models is provided in Table
12 in the Appendix.

Evaluation. We evaluate the models on the following benchmarks:

• GLUE (Wang et al., 2018): A standard benchmark for evaluating natural language un-
derstanding. We select the following datasets: four binary classification tasks for single
sequences (COLA, SST, RTE), three binary classification tasks for sequence pairs (MRPC,
QQP, QNLI), and one multi-class classification task for sequence pairs (MNLI). We follow
the standard practice of evaluating models on the development sets. When evaluating gen-
eralization performance, we follow the standard practice and use Matthew’s correlation for
COLA, F1 for MRPC and QQP, and accuracy for the remaining datasets;

• MMLU (Hendrycks et al., 2021): We evaluate the accuracy of multiple choice question
answering on the MMLU benchmark, selecting two datasets with a sufficient number of
instances for robust evaluation: “elementary math” (MATH), assessing basic mathematical
reasoning skills, and “miscellaneous” (MISC), which covers diverse topics.

In our evaluation, we compute the first-token probability of the task verbalizers. We design the
prompt template to guide the model toward generating the answer within the first token and limit the
predictions to a subset of verbalizers (cf. Appendix F for details on prompt templates).

Baselines and Methods. We evaluate STICL by comparing it against three baselines and two ICL
disentanglement methods:

• Zero-Shot (0-shot): Predictions made without any demonstrations;

• Standard ICL (n-shot): Utilizes n demonstrations as context during inference;

• Pattern-Based Fine-Tuning (PBFT) (Schick & Schütze, 2021): Fine-tunes the model
using patterns learned from data, framed as a language modeling task. In our experiments,
we fine-tune an adapter module instead of the whole LLM;

• In-Context Vectors (ICV) (Liu et al., 2023): A forward pass is used on demonstration
examples to create in-context vectors from the hidden states of the LLM;

• Batch-ICL (Zhang et al., 2024): Utilizes multiple separate one-shot forward computations
and aggregates the resulting meta-gradients based on the attention head outputs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: ID generalization scores for the 16-shot setup and |Dunlab| = 100. The standard deviations
of 10 runs are shown as subscripts. The highest scores and smallest standard deviations are high-
lighted in bold, while the second-best scores are underlined.

GLUE MMLU
Model Method RTE SST QNLI MNLI COLA MRPC QQP MATH MISC

L
la

m
a

3
(8

B
)

0-shot 62.3 79.1 64.3 59.9 44.6 63.6 61.1 31.5 62.5
n-shot 75.16.5 93.52.0 77.05.5 68.03.0 58.54.0 74.02.5 70.03.0 43.53.5 84.04.0
PBFT 73.23.8 93.81.5 77.86.0 67.43.5 56.53.0 72.02.0 68.02.5 44.03.8 83.54.5
ICV 72.92.7 92.21.8 74.56.3 67.04.2 57.33.5 73.42.3 69.12.8 41.54.3 67.04.2
Batch-ICL 77.84.7 94.12.2 78.06.0 70.93.5 59.83.7 75.22.2 72.52.7 36.24.0 81.02.5
STICL-F 83.40.3 95.10.6 80.31.4 72.12.5 63.71.5 76.21.8 71.91.9 46.02.3 86.02.3
STICL-S 86.00.6 96.11.2 81.42.2 73.12.0 64.32.2 77.71.5 73.11.8 49.52.0 88.02.2
STICL-R 86.53.0 95.50.8 79.04.3 73.53.0 62.52.8 76.51.9 72.02.2 44.02.7 85.53.3

Ph
i3

(m
in

i4
k)

0-shot 60.6 78.3 61.1 58.1 43.7 63.1 57.8 29.5 52.0
n-shot 72.15.2 90.62.1 75.63.2 65.33.1 55.54.1 71.12.6 66.23.7 37.53.6 75.54.1
PBFT 70.64.3 90.91.9 73.63.4 63.63.6 53.63.1 69.62.3 64.62.6 36.54.1 73.54.6
ICV 71.53.1 89.12.1 74.33.2 64.14.1 54.13.6 70.82.4 65.42.9 36.04.6 74.04.3
Batch-ICL 75.34.2 91.22.6 76.63.1 67.13.6 56.14.1 72.62.6 67.32.8 38.03.9 76.04.1
STICL-F 80.41.2 92.11.6 78.21.3 69.72.4 59.52.5 73.52.1 68.62.2 40.53.2 77.53.6
STICL-S 82.41.1 93.21.6 79.21.4 70.41.1 60.72.3 74.11.4 69.61.9 41.52.3 78.03.3
STICL-R 79.01.9 92.62.0 79.62.9 68.63.9 58.62.9 73.62.0 68.12.3 39.53.6 77.03.7

In the experiments, we use n ∈ {4, 8, 16, 32} instances for demonstrations and compare methods
using a fixed number of demonstrations. Unless stated otherwise, we run each experiment 10 times
with different seeds, which select different demonstrations in each run. In addition to the general-
ization scores, we report the standard deviation of the runs as an indicator of method stability. We
evaluate performance on the GLUE development sets, while for the MMLU datasets, we sample 200
instances for evaluation.

STICL variants. We employ three variants of STICL, which differ in the variability of demonstra-
tions they use, either in terms of selection or ordering:

• STICL-Fixed (STICL-F): Uses a fixed set of demonstrations throughout training;

• STICL-Shuffle (STICL-S): Shuffles the order of demonstrations at the start of each epoch;

• STICL-Resample (STICL-R): Randomly resamples demonstrations before each epoch.4

We utilize LoRA (Low-Rank Adaptation) (Hu et al., 2022) for the adapter modules (for both PBFT
and STICL), corresponding to 0.1–0.3% of the total parameter count, depending on the model (cf. Ta-
ble 12 in the Appendix for adapter sizes per model). For each task, we generate pseudo-labels using
the teacher model on unlabeled data. Specifically, we use 100 unlabeled instances (Dunlab in (7))
for both the GLUE and MMLU benchmarks. Additionally, for GLUE datasets, we experiment with
200 and 500 instances to assess the impact of the amount of unlabeled data on generalization and
stability. We experiment only with 100 unlabeled instances for MMLU datasets due to their limited
size. In all of the experiments, we fine-tune the adapter for 10 epochs. Further experimental details
are provided in Appendix E.

3.1 GENERALIZATION AND STABILITY

We first evaluate the generalization and stability of STICL on ID data. Table 1 reports the 16-shot
ID generalization scores along with standard deviations. Across all datasets and models, STICL-S
consistently achieves the best generalization scores, outperforming standard ICL, PBFT, and the
disentanglement methods ICV and Batch-ICL (cf. Table 5 in the Appendix for results with Llama
2). Compared to standard ICL, STICL-S shows absolute improvements ranging from 2.6% to 11.9%
for Llama 3 and 2.5% to 10.3% for Phi 3, where the differences in scores are statically significant

4Although STICL-R uses the same number of demonstrations during inference as the other approaches, it
requires access to a larger pool of labeled data since it draws new demonstrations in each epoch.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

across all datasets.5 Similar patterns hold for n ∈ {4, 8, 32}, where STICL-S also surpasses standard
ICL (cf. Table 6 in the Appendix for other n-shot setups). Additionally, when a larger set Dunlab is
used, there is a marginal improvement in scores, while stability improves even further (cf. Table 7
in the Appendix). Notably, the improvements in generalization with STICL-S, compared to standard
ICL – the teacher model in STICL– provide strong evidence that the student model is exhibiting
weak-to-strong generalization; we provide a more detailed analysis of this phenomenon in Section
4. While the STICL-F and STICL-R variants also show similar generalization scores as STICL-S,
they generally exhibit higher variance compared to STICL-S, making STICL-S the preferred choice
due to its higher stability with respect to demonstration selection – it improves upon standard n-shot
ICL across all datasets and models. This is supported by the statistically significant differences in
standard deviations on all datasets for Llama 3 and on all but QNLI for Phi 3.6

Having looked at stability with respect to demonstration selection, we now turn to a more focused
evaluation of stability with respect to demonstration ordering. Table 2 reports the standard deviations
across 50 runs, where the same set of demonstrations is used, but their order is shuffled for each run.
Designed to adapt to shuffled demonstrations, STICL-S shows the highest stability to demonstration
ordering, as evidenced by the smallest standard deviation. The stability improvements with STICL-S
over standard ICL are statistically significant across all datasets.6

We next assess the capacity of STICL to perform OOD generalization by fine-tuning an adapter
on one dataset and then applying the student model to a different dataset within the same task
category, simulating a near-OOD scenario with pairs of closely related datasets. Table 3 shows the
OOD generalization scores for such pairs of datasets in the GLUE benchmark. The results show
that STICL-S not only outperforms other methods in OOD generalization but also maintains higher
stability when adapting to new domains (cf. Table 8 in the Appendix for results with other models).

Table 2: Standard deviations of generalization scores across 50 runs with varied orderings of 16
demonstrations. The smallest deviations are in bold, and the second-smallest are underlined.

GLUE MMLU

Model Method RTE SST QNLI MNLI COLA MRPC QQP MATH MISC

L
L

am
a

3
(8

B
) n-shot 4.81 1.62 4.19 2.22 3.04 1.81 2.03 2.52 2.87

PBFT 2.71 1.14 4.53 2.69 2.27 1.57 1.82 2.70 3.22
ICV 2.09 1.23 4.08 2.81 1.95 1.61 2.03 1.96 3.18
Batch ICL 3.04 1.47 2.89 2.24 2.53 1.42 1.74 2.51 2.59
STICL-F 1.32 0.72 1.53 1.83 1.76 1.54 1.38 1.89 2.07
STICL-S 0.22 0.53 1.04 1.21 1.28 0.73 1.14 1.22 0.97
STICL-R 2.04 1.34 2.47 2.05 1.85 1.48 1.64 2.03 2.51

Table 3: OOD generalization scores with 16 shots averaged over 10 runs, with standard deviations
shown as subscripts. For each dataset pair, demonstrations are taken from the left dataset, and the
model is tested on the right dataset. Columns represent results on the right datasets. The highest
scores and lowest standard deviations are in bold, and the second-highest scores are underlined.
Values in parentheses indicate differences from ID performance for the corresponding target dataset.

Model Method QNLI → RTE RTE → QNLI QQP → MRPC MRPC → QQP

L
la

m
a

3
(8

B
) n-shot 66.32.4 (8.8) 69.61.3 (7.4) 66.51.9 (7.5) 62.22.3 (7.8)

PBFT 66.11.5 (7.1) 69.11.6 (8.7) 67.21.8 (4.8) 62.41.2 (5.6)
ICV 65.71.2 (7.2) 68.72.3 (5.8) 67.51.6 (5.9) 63.02.1 (6.1)
Batch-ICL 65.31.4 (12.5) 66.32.5 (11.7) 64.92.3 (10.3) 62.12.1 (10.4)
STICL-F 67.51.1 (15.9) 70.51.4 (9.8) 68.51.0 (7.7) 64.41.5 (7.5)
STICL-S 69.00.5 (17.0) 71.30.7 (10.1) 69.02.2 (8.7) 66.41.1 (6.7)
STICL-R 67.11.7 (19.4) 70.01.4 (9.0) 68.02.7 (8.5) 68.32.0 (3.7)

5We assess the statistical significance using a two-tailed Wilcoxon signed-rank test (p < 0.05), applying
the Holm-Bonferroni method for family-wise error rate correction due to multiple comparisons.

6 We evaluate significance using a two-tailed Levene’s test (p < 0.05), applying the Holm-Bonferroni
method for family-wise error rate correction.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

3.2 ADAPTER ARITHMETIC

To overcome the limitations of context window sizes and efficiently handle extensive demonstration
sets in ICL, we employ adapter arithmetic within STICL. STICL achieves this by fine-tuning separate
adapters for each demonstration subset, with each adapter encoding the latent shift corresponding
to its subset. These adapters are then merged by summing their parameters (Chitale et al., 2023),
resulting in a single adapter that integrates knowledge from all subsets. Partitioning demonstrations
into smaller subsets allows for better use of long contexts and effectively extending them without ex-
ceeding window limits or altering the base LLM architecture. Additionally, distributing the prompt
across multiple adapters optimizes GPU utilization, fitting the entire prompt on a single GPU during
inference and reducing memory constraints.

Table 4 shows the ID generalization scores of ICV, Batch-ICL, and STICL in fusing knowledge from
multiple demonstration subsets, specifically using 2, 4, and 8 subsets of 16 demonstrations each.
STICL-S consistently outperforms baseline methods, demonstrating its ability to fuse knowledge
from different subsets. This success parallels broader trends in knowledge fusion within LLMs
Wan et al. (2024). Moreover, this form of adapter arithmetic aligns with recent advances in task
arithmetic, where merging task-specific parameters promotes generalization across multiple tasks
(Ilharco et al., 2023; Ortiz-Jimenez et al., 2023). In our case, this approach effectively improves
generalization and stability when fusing demonstration subsets within the same task.

Table 4: ID generalization scores of knowledge fusion for Llama 3. The scores are averaged over
10 runs with standard deviations shown as subscripts. The table compares the effectiveness of
knowledge fusion from 2, 4, and 8 subsets of 16 demonstrations. The highest scores are in bold.

GLUE MMLU
Demonstrations Method RTE SST QNLI MNLI COLA MRPC QQP MATH MISC

2× 16
ICV 75.24.3 93.61.9 77.65.9 69.23.7 58.33.5 74.22.4 70.62.7 45.53.7 72.52.9
Batch-ICL 80.23.6 95.31.8 80.25.8 72.33.0 61.23.1 76.32.0 72.62.4 43.52.9 83.03.6
STICL-S 87.11.6 96.41.3 81.55.0 75.52.5 68.41.8 78.51.4 74.11.6 51.51.6 89.52.0

4× 16
ICV 78.33.6 94.61.8 79.35.5 71.23.1 60.33.3 75.62.2 72.32.4 47.53.5 76.53.8
Batch-ICL 84.43.3 96.41.5 82.45.2 74.32.5 64.22.8 78.31.6 74.32.1 45.52.6 84.53.3
STICL-S 88.42.3 97.50.7 83.64.4 77.32.2 71.41.5 79.60.7 75.21.3 53.51.4 91.01.7

8× 16
ICV 81.32.8 95.61.5 81.85.0 73.32.7 61.32.4 77.31.7 73.82.0 47.52.9 78.03.5
Batch-ICL 85.62.5 96.71.1 83.84.5 75.82.1 65.32.1 79.81.3 75.81.8 45.52.0 84.02.5
STICL-S 92.80.8 98.10.2 87.92.5 81.30.9 74.10.6 82.80.4 78.90.5 57.00.5 93.00.7

4 ANALYSIS OF WEAK-TO-STRONG GENERALIZATION

Building on the observation that STICL consistently outperforms its teacher, standard ICL, we hy-
pothesize that weak-to-strong generalization may be driving these improvements, where the model’s
ability to generalize strengthens progressively from weaker signals. To explore this further, we con-
duct an empirical analysis of STICL-S with Llama 3 on aggregated examples from all GLUE datasets,
treating them as a single, unified dataset.

4.1 LOCAL CONSISTENCY

A crucial prerequisite for successful weak-to-strong generalization is the student’s ability to maintain
stable outputs under small perturbations of the input, i.e., robustness to input variations. A low
Lipschitz constant serves as a key indicator of this stability, as it bounds the maximum change in the
model output for any change in its input (Khromov & Singh, 2024). However, calculating the exact
Lipschitz constant for LLMs is intractable. To approximate it, we leverage the relationship between
the Lipschitz constant and the input-output Jacobian matrix of a neural network. Specifically, we
compute the Frobenius norm of the Jacobian matrix as a tractable proxy, given its relationship to
the spectral norm, which is a known lower bound for the Lipschitz constant (Dherin et al., 2022)
(cf. Appendix B for theoretical details). Figure 2a presents the distribution of the approximated
Lipschitz constants (normalized to [0, 1]) for STICL, PBFT, and ICL, providing a proxy for local
consistency. STICL exhibits a notably lower Lipschitz constant than PBFT and ICL, underscoring
its local consistency.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.2 0.4 0.6 0.8 1
Lipschitz constant

0

2

5

8

10

12

R
el

at
iv

e
fr

eq
ue

nc
y

(%
) STICL

PBFT
ICL

(a) Histogram of approximated Lipschitz constants

1 2 3 4 5 6 7 8 9 10
Training epoch

0

20

40

60

80

C
or

re
ct

ed
 p

se
ud

o-
la

be
ls

 (%
)

RTE
SST

QNLI
MNLI

COLA
MRPC

QQP

(b) Rate of pseudo-label correction over epochs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Distance to nearest ID neighbor

0

20

40

60

80

Fl
ip

pe
d

pr
ed

ic
tio

ns
 (%

) Corrected
Corrupted

(c) Rate of corrected ID examples

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Distance to nearest OOD neighbor

0

20

40

60

80

Fl
ip

pe
d

pr
ed

ic
tio

ns
 (%

) Corrected
Corrupted

(d) Rate of corrected OOD examples

Figure 2: Empirical analysis of STICL-S on the aggregated GLUE datasets for Llama 3: (a) His-
togram of approximated Lipschitz constants across datasets, computed as the Frobeinus norm of the
input-output Jacobian matrix; (b) Rate of pseudo-label correction over training epochs with exam-
ples from the unlabeled dataset used for self-training. Shaded areas indicate the standard deviation
over 10 runs; (c) and (d) Corrected and corrupted prediction rates for (c) ID examples and (d) OOD
examples, based on the Euclidean distance to the closest correctly pseudo-labeled neighbor (normal-
ized to [0, 1]). There are 10 bins ranging from the interval of [0, 0.1] to [0.9, 1]. Error bars denote
the standard deviation over 10 runs.

4.2 PSEUDO-LABEL CORRECTION AND COVERAGE EXPANSION

Pseudo-label correction, where the student model revises the labels predicted by the teacher model,
is a fundamental mechanism that drives weak-to-strong generalization (Lang et al., 2024). This
process is closely tied to the model’s ability to establish local consistency within the representation
space, where accurate predictions in confident regions propagate corrections to neighboring, less
certain areas, fostering local-to-global consistency throughout training. Figure 2b shows how the
rate of corrected pseudo-labels evolves during training on GLUE datasets. As training progresses,
the percentage of corrected pseudo-labels steadily increases, showcasing STICL’s capacity to ex-
hibit weak-to-strong generalization. Notably, the rate of pseudo-label correction plateaus faster for
simpler datasets like SST and QNLI, which have lower linguistic variability.

The mechanism of pseudo-label correction ties into the phenomenon of coverage expansion – where
the model generalizes beyond the regions covered by pseudo-labels Lang et al. (2024). We hypoth-
esize that the core of STICL’s ability to generalize effectively is anchored in coverage expansion,
which enables local corrections to propagate globally, creating a ripple effect across the representa-
tion space. To understand this dynamic, we analyze which unseen evaluation points are corrected by
clustering them based on their proximity to the nearest correctly pseudo-labeled neighbor in Dunlab.
This is quantified by computing the Euclidean distance between the model’s representations at the
final hidden states, with evaluation points categorized into ten bins based on their normalized dis-
tance from the correct neighbor, spanning the range [0, 1]. Figure 2c illustrates the rate of prediction
flips within these bins, where a flip refers to either correcting an incorrect prediction or corrupting a
correct one. The rate of corrected predictions shows a strong negative correlation with the distance
to the nearest correctly labeled neighbor, as indicated by a Pearson correlation coefficient of −0.968,
while corrupted predictions are more frequent in regions lacking nearby correct pseudo-labels.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Coverage expansion shows its effects even on OOD data. Figure 2d, the counterpart to Figure 2c,
shows the rate of flipped predictions for OOD data. Although the impact is reduced, a similar
correction pattern persists, with a Pearson correlation of −0.916. This consistency across domains
highlights the model’s ability to propagate accurate predictions not only within the training domain
but also across OOD data.

5 RELATED WORK

ICL theory. The understanding of ICL has shifted from a traditional task-learning framework to
one focused on task identification. Wies et al. (2023) argue that ICL operates by recognizing latent
tasks embedded within a model’s pre-training, allowing for efficient performance on new tasks.
Building on this, Hoogland et al. (2024) suggest that ICL in transformers progresses through distinct
developmental stages, offering deeper insights into how models adapt to unfamiliar contexts. Li et al.
(2023) further empirically show that ICL predictions become more resilient to input perturbations
with longer prompts and that training on noisy data enhances stability. Despite these theoretical
breakthroughs, ICL remains vulnerable to the selection and ordering of demonstrations (Li et al.,
2024; Lu et al., 2021). Moreover, Kossen et al. (2024) highlight ICL’s biases rooted in pre-training
data, revealing that models do not always uniformly leverage in-context information.

Disentaglement of latent shifts. Research into the inner workings of ICL has revealed how trans-
formers process demonstrations to form task representations. Hendel et al. (2023) and Liu et al.
(2023) show that transformers can compress demonstration examples into a task vector, which effi-
ciently directs the model to generate context-appropriate outputs for queries. These task vectors are
created during a forward pass, capturing the latent shift induced by the demonstrations. Building
on this, Dai et al. (2023) explore using linear attention to compute virtual gradients, simulating the
effect of gradient-based learning within the model. Similarly, Todd et al. (2024) use causal media-
tion analysis to highlight the role of specific attention heads in forming robust task representations
in ICL, termed function vectors.

Self-training and weak-to-strong generalization. Wei et al. (2021) provide a theoretical foun-
dation for self-training, showing that under the assumption of coverage expansion, the minimizers
of population objectives based on self-training and local consistency regularization achieve high ac-
curacy. Lang et al. (2024) further develop the principle of pseudo-label correction, which occurs
when the student model demonstrates strong local consistency. Several works have extended these
ideas in the context of LLMs. For instance, Huang et al. (2023) demonstrate that LLMs can enhance
their reasoning abilities through self-training without the need for labeled data by generating high-
confidence, rationale-augmented answers, which are then used for fine-tuning, leading to improved
performance across various tasks. In the same vein, Qu et al. (2024) propose recursive introspection
for self-improvement, and Wang et al. (2024) introduce self-taught evaluators, showing how LLMs
can autonomously refine and improve their outputs over time.

6 CONCLUSION

We tackled the challenges of stability and long-context handling that arise when processing multiple
demonstrations in ICL within LLMs. To address these issues, we introduced STICL (Self-Training
ICL), a method that disentangles the latent shifts induced by demonstrations from those of the query,
leveraging a teacher-student framework. STICL encodes these latent shifts into an adapter module,
enabling the student model to handle queries without requiring demonstrations in the input. More-
over, STICL allows efficient handling of large demonstration sets by chunking them into manageable
subsets, each processed through separate adapter modules. This not only reduces the instability
caused by demonstration selection and ordering but also alleviates the context window limitations
inherent in transformer-based models. We demonstrated that STICL exhibits weak-to-strong gen-
eralization by refining pseudo-labels through progressive corrections, expanding from local consis-
tency to a more comprehensive coverage across the representation space. Our empirical evaluation
of STICL showed that it consistently outperforms traditional ICL methods, significantly improving
generalization and stability across diverse datasets. These findings underscore the effectiveness of
self-training as a promising strategy for improving ICL performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, and Harkirat Behl et al. Phi-3 technical report:
A highly capable language model locally on your phone, 2024. URL https://arxiv.org/
abs/2404.14219.

A Aizerman. Theoretical foundations of the potential function method in pattern recognition learn-
ing. Automation and remote control, 25:821–837, 1964.

Massih-Reza Amini, Vasilii Feofanov, Loic Pauletto, Lies Hadjadj, Emilie Devijver, and Yury Max-
imov. Self-training: A survey. arXiv preprint arXiv:2202.12040, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Rajas Chitale, Ankit Vaidya, Aditya Kane, and Archana Santosh Ghotkar. Task arithmetic with
LoRA for continual learning. In Workshop on Advancing Neural Network Training: Computa-
tional Efficiency, Scalability, and Resource Optimization (WANT@NeurIPS 2023), 2023. URL
https://openreview.net/forum?id=4CLNFKi12w.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can
GPT learn in-context? language models secretly perform gradient descent as meta-optimizers.
In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pp. 4005–4019, Toronto, Canada, July 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.247. URL
https://aclanthology.org/2023.findings-acl.247.

Benoit Dherin, Michael Munn, Mihaela Rosca, and David Barrett. Why neural networks find sim-
ple solutions: The many regularizers of geometric complexity. Advances in Neural Information
Processing Systems, 35:2333–2349, 2022.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A survey on in-context learning,
2024a. URL https://arxiv.org/abs/2301.00234.

Zican Dong, Junyi Li, Xin Men, Wayne Xin Zhao, Bingbing Wang, Zhen Tian, Weipeng Chen, and
Ji-Rong Wen. Exploring context window of large language models via decomposed positional
vectors. arXiv preprint arXiv:2405.18009, 2024b.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, and Angela Fan et al. The Llama 3 herd of
models, 2024. URL https://arxiv.org/abs/2407.21783.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Compu-
tational Linguistics: EMNLP 2023, pp. 9318–9333, Singapore, December 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.624. URL https:
//aclanthology.org/2023.findings-emnlp.624.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
d7KBjmI3GmQ.

11

https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=4CLNFKi12w
https://aclanthology.org/2023.findings-acl.247
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2407.21783
https://aclanthology.org/2023.findings-emnlp.624
https://aclanthology.org/2023.findings-emnlp.624
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jesse Hoogland, George Wang, Matthew Farrugia-Roberts, Liam Carroll, Susan Wei, and Daniel
Murfet. The developmental landscape of in-context learning. arXiv preprint arXiv:2402.02364,
2024.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP, 2019. URL https://arxiv.org/abs/1902.00751.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han.
Large language models can self-improve. In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 1051–1068, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.67. URL https://aclanthology.org/2023.
emnlp-main.67.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
6t0Kwf8-jrj.

Kazuki Irie, Róbert Csordás, and Jürgen Schmidhuber. The dual form of neural networks revisited:
Connecting test time predictions to training patterns via spotlights of attention. In International
Conference on Machine Learning, pp. 9639–9659. PMLR, 2022.

Grigory Khromov and Sidak Pal Singh. Some intriguing aspects about Lipschitz continuity of neural
networks. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=5jWsW08zUh.

Jannik Kossen, Yarin Gal, and Tom Rainforth. In-context learning learns label relationships but is
not conventional learning. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=YPIA7bgd5y.

Hunter Lang, David Sontag, and Aravindan Vijayaraghavan. Theoretical analysis of weak-to-strong
generalization. arXiv preprint arXiv:2405.16043, 2024.

Fabian Latorre, Paul Rolland, and Volkan Cevher. Lipschitz constant estimation of neural networks
via sparse polynomial optimization. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=rJe4_xSFDB.

Lvxue Li, Jiaqi Chen, Xinyu Lu, Yaojie Lu, Hongyu Lin, Shuheng Zhou, Huijia Zhu, Weiqiang
Wang, Zhongyi Liu, Xianpei Han, et al. Debiasing in-context learning by instructing LLMs how
to follow demonstrations. In Findings of the Association for Computational Linguistics ACL 2024,
pp. 7203–7215, 2024.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, pp. 19565–19594. PMLR, 2023.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the Middle: How Language Models Use Long Contexts. Transactions of
the Association for Computational Linguistics, 12:157–173, 02 2024. ISSN 2307-387X. doi:
10.1162/tacl a 00638. URL https://doi.org/10.1162/tacl_a_00638.

Sheng Liu, Lei Xing, and James Zou. In-context vectors: Making in context learning more effective
and controllable through latent space steering. arXiv preprint arXiv:2311.06668, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

12

https://arxiv.org/abs/1902.00751
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2023.emnlp-main.67
https://aclanthology.org/2023.emnlp-main.67
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=5jWsW08zUh
https://openreview.net/forum?id=YPIA7bgd5y
https://openreview.net/forum?id=rJe4_xSFDB
https://doi.org/10.1162/tacl_a_00638

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786, 2021.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. MetaICL: Learning to learn
in context. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz
(eds.), Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2791–2809, Seattle, United
States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.
201. URL https://aclanthology.org/2022.naacl-main.201.

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tan-
gent space: Improved editing of pre-trained models. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023. URL https://openreview.net/forum?id=
0A9f2jZDGW.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
foundation model agents how to self-improve. In Automated Reinforcement Learning: Exploring
Meta-Learning, AutoML, and LLMs, 2024. URL https://openreview.net/forum?id=
qDXdmdBLhR.

Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification and
natural language inference. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), Proceed-
ings of the 16th Conference of the European Chapter of the Association for Computational Lin-
guistics: Main Volume, pp. 255–269, Online, April 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.eacl-main.20. URL https://aclanthology.org/2021.
eacl-main.20.

Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
Function vectors in large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=AwyxtyMwaG.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, and Shruti Bhosale et al. Llama 2: Open foun-
dation and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge fusion
of large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=jiDsk12qcz.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Tal Linzen,
Grzegorz Chrupała, and Afra Alishahi (eds.), Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 353–355, Brussels, Belgium,
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
https://aclanthology.org/W18-5446.

Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-Yu,
Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, and Xian Li. Self-taught eval-
uators. arXiv preprint arXiv:2408.02666, 2024.

Colin Wei, Kendrick Shen, Yining Chen, and Tengyu Ma. Theoretical analysis of self-training
with deep networks on unlabeled data. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=rC8sJ4i6kaH.

13

https://aclanthology.org/2022.naacl-main.201
https://openreview.net/forum?id=0A9f2jZDGW
https://openreview.net/forum?id=0A9f2jZDGW
https://openreview.net/forum?id=qDXdmdBLhR
https://openreview.net/forum?id=qDXdmdBLhR
https://aclanthology.org/2021.eacl-main.20
https://aclanthology.org/2021.eacl-main.20
https://openreview.net/forum?id=AwyxtyMwaG
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=jiDsk12qcz
https://aclanthology.org/W18-5446
https://openreview.net/forum?id=rC8sJ4i6kaH

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=f3JNQd7CHM.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Qun Liu and David Schlangen (eds.), Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–
45, Online, October 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-demos.6. URL https://aclanthology.org/2020.emnlp-demos.6.

Kaiyi Zhang, Ang Lv, Yuhan Chen, Hansen Ha, Tao Xu, and Rui Yan. Batch-ICL: Effective, effi-
cient, and order-agnostic in-context learning. arXiv preprint arXiv:2401.06469, 2024.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. BERTScore: Eval-
uating text generation with bert. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=SkeHuCVFDr.

14

https://openreview.net/forum?id=f3JNQd7CHM
https://openreview.net/forum?id=f3JNQd7CHM
https://aclanthology.org/2020.emnlp-demos.6
https://openreview.net/forum?id=SkeHuCVFDr

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DUAL FORM OF ICL

We offer a detailed derivation of (5), originally introduced by Dai et al. (2023), expanding on the key
intermediate steps for clarity, which were not explicitly covered in the original work. The goal is to
decompose the attention head output into separate components corresponding to the demonstrations
and the query, thereby disentangling the latent shifts induced by ICL.

A.1 STARTING POINT

We begin with the approximation of the attention head’s output using linear attention:

fAH(x
(t)
q) ≈ WV [Xd;Xq] (WK [Xd;Xq])

⊤
q(t), (9)

where:

• WV ∈ Rdh×dmodel is the value weight matrix;

• WK ∈ Rdh×dmodel is the key weight matrix;

• Xd ∈ Rdmodel×Nd is the matrix of demonstration token representations;

• Xq ∈ Rdmodel×Nq is the matrix of previous query token representations up to time t− 1;

• q(t) = WQx
(t)
q ∈ Rdh is the query vector at time t, with WQ ∈ Rdh×dmodel being the

query weight matrix;

• [Xd;Xq] is the concatenation of Xd and Xq along the sequence dimension.

A.2 EXPANDING THE CONCATENATED MATRICES

We can expand the concatenated matrices as follows:

WV [Xd;Xq] = [WV Xd;WV Xq] = [Vd;Vq], (10)
WK [Xd;Xq] = [WKXd;WKXq] = [Kd;Kq], (11)

where:

• Vd = WV Xd is the value matrix for the demonstrations;

• Vq = WV Xq is the value matrix for the previous queries;

• Kd = WKXd is the key matrix for the demonstrations;

• Kq = WKXq is the key matrix for the previous queries.

The transpose of the concatenated key matrix is:

(WK [Xd;Xq])
⊤
=
[
K⊤

d ;K
⊤
q

]
. (12)

A.3 PERFORMING THE MATRIX MULTIPLICATION

Substituting the expanded forms into Equation (9) using rules for block matrix multiplication, we
have:

fAH(x
(t)
q) ≈ [Vd;Vq]

[
K⊤

d ;K
⊤
q

]
q(t) =

(
VdK

⊤
d +VqK

⊤
q

)
q(t). (13)

This separates the contributions from the demonstrations and the query sequences.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.4 DEFINING THE COMPONENTS

We define:
WZS = VqK

⊤
q = WV Xq (WKXq)

⊤
, (14)

∆WICL = VdK
⊤
d = WV Xd (WKXd)

⊤
. (15)

Here:

• WZS represents the zero-shot component, capturing the model’s behavior based on the
query sequence alone;

• ∆WICL represents the latent shift induced by the demonstrations, capturing the effect of
in-context learning.

A.5 FINAL EXPRESSION

Substituting (14) and (15) back into the expression, we obtain:

fAH(x
(t)
q) ≈ (WZS +∆WICL)q

(t) = WZSq
(t) +∆WICLq

(t). (16)

A.6 INTERPRETATION

The decomposition shows that the attention head output can be viewed as the sum of:

1. The zero-shot component (WZSq
(t)): the model’s output when only the query sequence

is considered, without any influence from the demonstrations;

2. The latent shift due to ICL (∆WICLq
(t)): the additional contribution from the demon-

strations, representing the knowledge introduced via in-context learning.

This separation aligns with the theoretical motivation to disentangle the latent shifts induced by the
demonstrations from those induced by the query, allowing for more efficient and stable processing
of queries independently of demonstrations.

B LIPSCHITZ CONTINUITY IN NEURAL NETWORKS

Lipschitz continuity is a fundamental concept in the analysis of neural networks as it provides a
bound on how much the output of a function can change with respect to its input. Formally, a
function f : Rn → Rm is said to be Lipschitz continuous with constant L ≥ 0 if for any two inputs
x,x′ ∈ Rn the following inequality holds:

∥f(x)− f(x′)∥ ≤ L∥x− x′∥.
This property ensures that the function f behaves smoothly, meaning small changes in the input lead
to small changes in the output, which is crucial for robustness in neural networks, particularly for
predictive models (Khromov & Singh, 2024).

B.1 RELATIONSHIP BETWEEN THE LIPSCHITZ CONSTANT AND THE JACOBIAN MATRIX

In neural networks, the Lipschitz constant can be bounded by the spectral norm of the Jacobian
matrix, which quantifies the sensitivity of a function’s output to changes in the input. The Jacobian
matrix Jf (x) ∈ Rm×n of a function f is defined as the matrix of all partial derivatives:

[Jf (x)]i,j =
∂fi(x)

∂xj
.

The spectral norm of the Jacobian matrix, denoted ∥Jf (x)∥2, provides an upper bound on the Lips-
chitz constant L (Latorre et al., 2020):

∥Jf (x)∥2 ≤ L,∀x ∈ Rn.

The spectral norm represents the greatest possible rate of change in the function’s output for any
input variation. However, calculating the exact spectral norm can be computationally expensive,
especially for deep neural networks, so the Frobenius norm is often used as an efficient alternative.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.2 FROBENIUS NORM AS A SURROGATE FOR THE LIPSCHITZ CONSTANT

The Frobenius norm of the Jacobian matrix is often used as a surrogate for estimating the Lipschitz
constant to avoid the computational complexity of calculating the spectral norm. The Frobenius
norm, denoted ∥A∥F , is easier to compute and relates to the spectral norm through the following
inequality:

∥A∥2 ≤ ∥A∥F ≤
√
r∥A∥2,

where r is the rank of the matrix A. The Frobenius norm provides an upper bound on the spectral
norm and thus serves as a useful proxy for estimating the Lipschitz constant. This approximation
is particularly useful in large-scale models, such as LLMs, where direct computation of the spectral
norm is infeasible.

B.3 EMPIRICAL EVALUATION OF LIPSCHITZ CONTINUITY

In our experiments, we approximate the Lipschitz constant by computing the Frobenius norm of the
input-output Jacobian matrix, where the embeddings are the inputs and the penultimate layer pro-
duces the outputs. As shown in Figure 2a, STICL demonstrates a significantly lower approximated
Lipschitz constant compared to PBFT and ICL. This lower value suggests that STICL is more robust
to input perturbations, which is a critical property for correcting pseudo-labels.

C LIMITATIONS

Computational cost. STICL introduces additional computational overhead due to the fine-tuning
of adapters during the self-training process. While this fine-tuning is more lightweight compared
to full model fine-tuning, it remains more expensive than standard in-context learning (ICL), which
avoids weight updates entirely. However, STICL offsets some of this cost by removing demonstra-
tions from the input during inference. For instance, with Llama 3 (8B) processing 16 demonstrations
from GLUE datasets, inference takes approximately 120 times longer than a 0-shot setup (process-
ing only the query). This increased cost scales quadratically with the number of tokens, highlighting
the self-attention mechanism as the primary bottleneck when handling 16 demonstrations. Based on
our measurements, self-training with 100 unlabeled instances and 16 demonstrations using a single
adapter corresponds to the computational cost of approximately 2100 inferences in a 16-shot setup.
This implies that after about 2100 inferences, the time spent on fine-tuning is effectively balanced
by the reduction in per-inference computational cost.

Applicability. STICL may be less suitable for scenarios with extremely limited resources, as it re-
lies on access to a supply of unlabeled data. In our experiments with {4, 8, 16, 32} demonstrations,
we typically used 100 unlabeled instances, which proved sufficient to achieve strong performance.
While unlabeled data is generally easier to acquire than labeled data, there may be scenarios where
obtaining even a modest amount of unlabeled data is challenging, potentially limiting the applica-
bility of STICL.

Large demonstration sets. Although STICL efficiently encodes demonstrations into adapters to
overcome context length limitations, the method has not been extensively tested with very large
demonstration sets. From our findings, as the total number of demonstrations increases, using mul-
tiple adapters with manageable demonstration sizes tends to be more effective. For instance, we suc-
cessfully employed 8 adapters with 16 demonstrations each (totaling 128 demonstrations). While
this approach theoretically allows for an indefinite increase in the number of demonstrations, its
effectiveness with significantly larger sets remains unexplored. Moreover, using additional adapters
increases computational costs, introducing a tradeoff between scalability and efficiency.

D ADDITIONAL RESULTS

D.1 SUPPLEMENTARY TABLES

Here, we present additional results that supplement those in the main paper.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: ID generalization scores for the 16-shot scenario and |Dunlab| = 100 for LLama 2 (7B). The
standard deviations of 10 runs are shown as subscripts.

GLUE MMLU
Model Method RTE SST QNLI MNLI COLA MRPC QQP MATH MISC

L
la

m
a

2
(7

B
)

0-shot 57.8 75.4 59.3 55.7 40.7 59.4 58.7 29.0 59.0
n-shot 69.24.3 89.82.1 74.25.9 63.32.8 54.33.5 66.92.4 64.71.5 37.54.8 80.05.3

PBFT 69.02.7 89.70.4 73.35.0 64.44.7 51.22.9 67.92.0 64.61.6 40.03.2 79.52.1

ICV 68.04.6 87.82.6 71.26.7 60.94.0 53.12.4 68.81.7 65.01.9 39.52.7 62.50.6

Batch-ICL 75.20.8 91.21.9 74.00.8 66.53.3 55.92.1 70.30.8 69.11.8 34.52.3 77.04.1

STICL-F 77.20.7 90.20.7 76.84.2 66.52.4 60.11.2 71.60.2 68.80.8 43.01.6 82.52.5

STICL-S 81.92.5 92.10.3 77.30.9 70.41.8 62.83.4 72.32.6 68.20.5 46.51.5 82.51.7

STICL-R 81.11.9 93.62.0 74.73.6 69.62.9 57.92.9 73.12.0 66.82.3 41.52.6 82.03.7

Table 6: ID generalization scores for n-shot scenarios (n = 4, 8, 32, with Dunlab = 100) for Llama
3 (8B). The standard deviations of 10 runs are shown as subscripts.

GLUE MMLU
Model n Method RTE SST QNLI MNLI COLA MRPC QQP MATH MISC

L
la

m
a

3
(8

B
)

4
n-shot 71.35.4 84.54.4 70.12.9 62.42.7 54.63.5 69.24.1 62.02.3 37.03.9 76.52.5

STICL-S 80.31.5 90.90.9 76.31.4 70.11.8 61.42.0 72.91.5 70.31.2 43.01.3 77.51.8

8
n-shot 72.72.1 89.42.6 73.52.5 64.73.1 55.82.8 71.22.4 64.32.9 37.01.3 77.52.1

STICL-S 82.11.1 93.21.0 78.31.3 72.21.6 63.71.8 73.91.3 72.10.4 47.50.5 84.01.4

32
n-shot 75.33.2 93.21.9 77.72.9 69.11.9 58.31.5 76.42.2 74.21.9 43.01.5 84.52.1

STICL-S 87.90.6 97.90.4 83.10.9 74.01.1 64.61.2 79.40.6 74.81.5 56.50.2 89.00.4

Table 7: ID generalization scores of STICL-S for n = 16 shots and |Dunlab| = 200, 500 for Llama
3 (8B). Results are shown for GLUE datasets with n-shot and STICL-S methods. The standard
deviations of 10 runs are shown as subscripts.

GLUE
Model |Dunlab| RTE SST QNLI MNLI COLA MRPC QQP

Llama 3 (8B) 200 86.20.4 97.20.4 81.61.0 73.91.3 64.71.1 78.90.7 74.00.5
500 86.90.3 97.10.5 81.90.7 74.81.0 64.60.8 81.40.8 75.20.3

Table 8: OOD generalization scores for Phi 3 and Llama 2 in a 16-shot scenario with Dunlab = 100
over 10 runs with standard deviations shown as subscripts. In each dataset pair, demonstrations are
taken from the left dataset, and the model is tested on the right dataset. The columns correspond to
the results on the right datasets.

Model Method QNLI → RTE RTE → QNLI QQP → MRPC MRPC → QQP

Phi 3 (mini 4k)
n-shot 64.32.5 67.21.5 63.72.3 59.42.2
PBFT 64.11.8 66.91.6 64.72.0 60.11.4
STICL-S 67.40.6 69.20.9 66.32.4 64.41.3

Llama 2 (7B)
n-shot 62.92.3 66.31.2 64.51.9 61.12.2
PBFT 62.81.3 68.11.4 65.91.8 61.31.2
STICL-S 64.80.4 70.30.6 67.82.1 65.01.1

D.2 COMPARISON OF STICL AND METAICL

MetaICL (Min et al., 2022) shares conceptual similarities with STICL, as both methods aim to
improve task generalization of ICL. However, the two approaches differ significantly in their training
paradigms and mechanisms for handling task-specific information.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

MetaICL updates the entire model through supervised fine-tuning across multiple tasks during meta-
training, leveraging labeled data to condition the model on diverse task examples. This approach
works well for smaller models, where full model fine-tuning is computationally feasible. However,
MetaICL does not explicitly address latent shifts between demonstrations and queries, which can
impact performance in certain settings.

In contrast, STICL employs a teacher-student framework within a self-training setup, where the
teacher generates pseudo-labels for both demonstrations and queries. This enables task adaptation
without additional labeled data, relying instead on unlabeled data for self-training. STICL updates
only adapter modules, making it computationally efficient and scalable to larger models. Addi-
tionally, STICL explicitly disentangles latent shifts between demonstrations and queries, enhancing
stability and generalization, particularly in OOD and low-resource scenarios.

We conducted experiments with MetaICL, adapting it to align with the STICL-S setup. When the
same number of labeled instances was used, MetaICL effectively reduced to PBFT, where all la-
beled instances are combined into a single prompt. In contrast, STICL-S benefits from leveraging
additional unlabeled data during its self-training phase. To address this difference, we modified
MetaICL to include unlabeled instances with their true labels as part of its supervised fine-tuning
process.

The experiments were conducted using Llama 3 (8B) under two configurations: 16 labeled and 100
unlabeled instances for STICL-S and 116 labeled instances for MetaICL. For MetaICL, we used
batches of 16 labeled instances in individual prompts, requiring 8 iterations to fine-tune on all 116
instances. The results, averaged over 10 runs, are summarized in Table 9.

Table 9: Performance comparison of MetaICL and STICL-S across GLUE and MATH/MISC bench-
marks.

Method RTE SST QNLI MNLI COLA MRPC QQP MATH MISC

MetaICL 82.1 95.3 79.7 71.9 62.1 75.4 72.6 45.0 84.5
STICL-S 86.0 96.1 81.4 73.1 64.3 77.7 73.1 49.5 88.0

The results demonstrate that STICL-S consistently outperforms MetaICL across all datasets, even
while utilizing fewer labeled instances during training. This improvement can be attributed to the
weak-to-strong generalization mechanism in STICL-S, where the inclusion of additional unlabeled
data enhances performance. Conversely, the marginal benefit observed from using more labeled data
in MetaICL highlights the limitations of its supervised fine-tuning approach in this setup.

D.3 FEW-SHOT STICL

STICL is primarily designed for 0-shot operation during the self-training phase, leveraging unlabeled
data to encode task-specific information within the adapter. To examine its performance in few-shot
setups, we evaluated STICL-S using Llama 3 (8B) in a 16-shot configuration, where 16 additional
demonstrations were encoded into the adapter, resulting in a total of 32 labeled instances. This setup
was compared against standard 32-shot ICL, as well as two STICL-S variants utilizing 32 labeled
instances in a 0-shot configuration. Additionally, we included a baseline for a 0-shot setup with only
16 encoded demonstrations.

STICL is primarily designed to operate in a 0-shot setup during the self-training phase, leveraging
unlabeled data to encode task-specific information in the adapter. To explore its performance in few-
shot setups, we evaluated STICL-S with Llama 3 (8B) in a 16-shot configuration, where 16 additional
demonstrations were encoded in the adapter, resulting in 32 labeled instances in total (16+16). This
configuration was compared to standard 32-shot ICL, as well as two STICL-S variants that use 32
labeled instances in a 0-shot setup. Additionally, we included results for a 0-shot configuration
where only 16 demonstrations were encoded in the adapter.

To standardize comparisons, we denote each STICL variant using the format n/d, where n represents
the number of shots (n-shot) and d indicates the number of demonstrations encoded in the adapter.
The results, averaged over 10 runs, are shown in Table 10.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 10: Performance comparison of STICL-S configurations and standard 32-shot ICL averaged
over 10 runs.

Method RTE SST QNLI MNLI COLA MRPC QQP MATH MISC

32-shot ICL 75.3 93.2 77.7 69.1 58.3 76.4 74.2 43.0 84.5
STICL-S (0/32) 87.9 97.9 83.1 74.0 64.6 79.4 74.8 56.5 89.0
STICL-S (0/16) 86.0 96.1 81.4 73.1 64.3 77.7 73.1 49.5 88.0
STICL-S (16/16) 87.3 96.4 82.2 74.6 65.4 78.2 74.5 51.0 89.0

The results demonstrate that STICL-S in the 16-shot configuration with 16 encoded demonstrations
(16/16) outperforms both standard 32-shot ICL and STICL-S (0/16) across all datasets, showcas-
ing its ability to utilize additional context during inference. However, it slightly underperforms
compared to the 0-shot STICL-S variant with 32 encoded demonstrations (0/32), likely due to the
self-training process that is exclusive to the 0-shot setup. Nevertheless, the strong performance in
n-shot setups (n > 0) highlights the flexibility and efficacy of STICL-S in leveraging additional
context provided within the prompt.

D.4 FAITHFUL ENCODING AND RETRIEVAL OF DEMONSTRATIONS

To evaluate whether demonstrations are faithfully encoded and disentangled, we conducted an ex-
periment by encoding a single demonstration into the adapter and assessing the student model’s
ability to capture this information. Specifically, we utilized 1000 examples per dataset across the
GLUE benchmark using Llama 3 (8B).

For each dataset, the student model was prompted with a simple instruction: “Repeat the demon-
stration word for word.” During the self-training phase, the teacher model processed input exam-
ples using the following template: “Demonstration: {demonstration}. Answer: ({answer}).” The
adapter learned to encode demonstration-specific information indirectly by aligning its outputs with
the teacher’s responses, without explicitly seeing the demonstration itself. After training, the simi-
larity between the student model’s response and the original demonstration was computed. Table 11
shows the average BERTScore similarity (Zhang et al., 2020) between the original demonstrations
and the student’s reconstructed response.

Table 11: Average BERTScore (F1) similarity across GLUE datasets. Higher scores indicate better
fidelity in recalling the encoded demonstration.

RTE SST QNLI MNLI COLA MRPC QQP

BERTScore 0.84 0.91 0.80 0.83 0.86 0.82 0.81

The consistently high BERTScore values across all datasets indicate that the student model can re-
liably retrieve the encoded demonstration from the adapter. This suggests that STICL effectively
disentangles and stores task-specific information within the adapter’s weights. Notably, when com-
pared to standard ICL, STICL often produced different outputs for certain queries, particularly in
instances where it corrected “corrupted” labels provided by the teacher. Despite these differences,
the student model maintained a high degree of semantic similarity in reproducing the demonstra-
tions. This suggests that the adapter weights capture not only the demonstration itself but also
additional latent information that contributes to improved generalization.

We present below a pair of examples from SST and RTE, chosen to represent reconstructed demon-
strations with similarity scores close to the dataset averages.

SST examples

• Example 1
– Original: Proves once again he hasn’t lost his touch, delivering a superb performance

in an admittedly middling film.
Answer: (Positive)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

– Reconstructed: He demonstrates once more that he hasn’t missed a beat, delivering
a remarkable performance in what is admittedly an average film. Answer: (Positive)

• Example 2

– Original: Though many of the actors spark briefly when they first appear, they can’t
generate enough heat in this cold vacuum of a comedy to ignite a reaction.
Answer: (Negative)

– Reconstructed: Although some actors manage to show a hint of energy early on, they
fail to create any real warmth or spark within this lifeless and chilly comedy. Answer:
(Negative)

RTE examples

• Example 1

– Original: Premise: The source added that the investigation proved that the bases of
the genocide crime “were completed with a series of illegal arrests followed in some
cases with assassinations or cases of disappearances and were preceded, according
to information attached to the file, by cases of torture.”
Hypothesis: Investigators discovered that a series of illicit arrests were often followed
by disappearances or murders and were preceded by torture.
Answer: (True)

– Reconstructed: Premise: The investigation confirmed that genocide involved illegal
arrests followed by disappearances or murders, often preceded by torture. Hypothe-
sis: Investigators found that unlawful arrests frequently resulted in disappearances or
murders, often preceded by acts of torture. Answer: (True)

• Example 2

– Original: Premise: American tobacco companies were showing a profit most quarters
due to export sales of cigarettes and diversification of products sold, including food.
Hypothesis: PM often entered markets with both cigarettes and food.
Answer: (False)

– Reconstructed: Premise: Profitability was often maintained by American tobacco
companies through diversification into food products and successful cigarette exports.
Hypothesis: Philip Morris International offered food items and cigarettes. Answer:
(False)

E EXPERIMENTAL DETAILS

E.1 MODELS

For all three models – Llama 3, Llama 2, and Phi 3 – we utilize the bfloat16 half-precision format
for parameters. A summary of the models is provided in Table 12.

E.2 HYPERPARAMETERS

We employ the AdamW optimizer (Loshchilov & Hutter, 2019) for both PBFT and STICL variants,
with a learning rate of 10−4. For ICV (Liu et al., 2023) and Batch-ICL (Zhang et al., 2024), we
follow the implementations provided in the original papers and adapt them to our codebase, using
their default parameters where specified. In the case of Batch-ICL, we utilize attention heads from
the last 20 layers (k = 20) and fine-tune the model for 10 epochs.

LoRA adapter configuration.

• r = 8
The rank of the low-rank matrices used to decompose the original weight matrix in LoRA.
A smaller r reduces the parameter count while retaining essential information.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• α = 32:
A scaling factor applied to the low-rank updates, balancing the influence of the original
weights and the low-rank matrices.

• Dropout: 0.1
The dropout rate applied to the low-rank updates.

• Target modules:
q proj, k proj, v proj, o proj, gate proj, up proj, down proj

E.3 COMPUTING INFRASTRUCTURE

We conducted our experiments on AMD Ryzen Threadripper 3970X 32-Core Processors and 4×
NVIDIA GeForce RTX 3090 GPUs with 24GB of RAM.

Table 12: Summary of the models used in the experiments, including their Hugging Face IDs,
parameter counts, context window sizes, training token volumes, and adapter sizes.

Model Hugging Face ID Parameters Context window size Training tokens Adapter size
Llama 3 Meta-Llama-3-8Bb 8B 8k 15T 21M
Llama 2 Llama-2-7b 7B 4k 2T 20M
Phi 3 Phi-3-mini-4k-instruct 3.8B 4k 3.3T 4.5M

F PROMPT TEMPLATES

F.1 GLUE PROMPT STRUCTURE

Generic prompt template for GLUE tasks

Demonstrations:
{Sentence 1}
{Sentence 2 (if applicable)}
Answer: ({Correct answer})

Query:
{Sentence 1}
{Sentence 2 (if applicable)}
Question: {Task-specific question}
Answer: (

The prompts for GLUE tasks typically consist of two sentences (or one in certain cases) followed
by a task-specific question and the corresponding answer. The model is expected to choose from
predefined labels like Yes/No, True/False, or specific class names based on the dataset. The phrasing
of the question preceding each answer in the demonstrations is specific to the task. Below is a list of
the questions used for each GLUE dataset. To encourage the model to select from predefined labels,
we prepend the phrase “answer with one word” before each question, and we append clarifying
options such as Yes or No? to prompt a more targeted response:

• RTE: {hypothesis} True or False?

• SST: What is the sentiment? Positive or Negative?

• QNLI: Does the sentence answer the question? Yes or No?

• MNLI: Is the second sentence an Entailment, Contradiction, or
Neutral?

• COLA: Is this sentence linguistically acceptable? Yes or No?

• MRPC: Do both sentences say the same thing? Yes or No?

• QQP: Do both questions ask the same thing? Yes or No?

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

F.2 MMLU PROMPT STRUCTURE

Generic prompt template for MMLU sub-datasets

Demonstrations:
Question: {Previous Question 1}
Answer choices:
(A: {Choice A1}),
(B: {Choice B1}),
(C: {Choice C1}),
(D: {Choice D1})

Answer: (Correct Answer 1)

Question: {Previous Question 2}
Answer choices:
(A: {Choice A2}),
(B: {Choice B2}),
(C: {Choice C2}),
(D: {Choice D2})
Answer: (Correct Answer 2)
...

Query:
Question: {Current Question}
Answer choices:
(A: {Choice A}),
(B: {Choice B}),
(C: {Choice C}),
(D: {Choice D})
Answer: (

Example for MMLU elementary math (MATH)

Demonstrations:
Question: Ms. Perez drove a total of 40 miles in 5 days.
She drove the same number of miles each day.
How many miles did Ms. Perez drive each day?
Answer choices: (A: 5), (B: 7), (C: 8), (D: 9)
Answer: (C: 8)

Question: Find the median in the set of data
23, 13, 18, 29, 32, 25.
Answer choices: (A: 18), (B: 24), (C: 25), (D: 29)
Answer: (B: 24)

Query:
Q: A worker on an assembly line takes 7 hours to produce
22 parts. At that rate how many parts can she produce
in 35 hours?
Answer choices:
(A: 220 parts),
(B: 770 parts),
(C: 4 parts),
(D: 110 parts)
Answer: (

23

	Introduction
	Method
	Disentangling Latent Shifts
	Self-Training ICL

	Experiments
	Generalization and Stability
	Adapter Arithmetic

	Analysis of Weak-to-Strong Generalization
	Local Consistency
	Pseudo-Label Correction and Coverage Expansion

	Related Work
	Conclusion
	Dual Form of ICL
	Starting Point
	Expanding the Concatenated Matrices
	Performing the Matrix Multiplication
	Defining the Components
	Final Expression
	Interpretation

	Lipschitz Continuity in Neural Networks
	Relationship Between the Lipschitz Constant and the Jacobian Matrix
	Frobenius Norm as a Surrogate for the Lipschitz Constant
	Empirical Evaluation of Lipschitz Continuity

	Limitations
	Additional Results
	Supplementary Tables
	Comparison of sticl and MetaICL
	Few-shot sticl
	Faithful Encoding and Retrieval of Demonstrations

	Experimental Details
	Models
	Hyperparameters
	Computing Infrastructure

	Prompt Templates
	GLUE Prompt Structure
	MMLU prompt structure

