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Abstract
We introduce the first probabilistic framework for sequential random projection, an approach rooted
in the challenges of sequential decision-making under uncertainty. The analysis is complicated
by the sequential dependence and high-dimensional nature of random variables, a byproduct of
the adaptive mechanisms inherent in sequential decision processes. This analytical difficulty is
resolved by a construction of a stopped process that interconnect a series of concentration events
in a sequential manner. By employing the method of mixtures within a self-normalized process,
derived from the stopped process, we achieve a desired non-asymptotic probability bound. This
bound represents a non-trivial martingale extension of the Johnson-Lindenstrauss (JL) lemma.

1. Introduction

The evolution of random projection from a dimensionality reduction technique to a cornerstone
of sequential decision-making processes marks a significant leap in computational mathematics
and machine learning. Random projection traditionally employs a matrix Π = (z1, . . . , zd) ∈
RM×d to transform a high-dimensional vector x = (x1, . . . , xd)

⊤ ∈ Rd into a lower-dimensional
space, preserving the Euclidean geometry within a bounded error as guaranteed by the Johnson-
Lindenstrauss (JL) lemma. This preservation of geometric relationships, crucial for the efficacy of
data compression and analysis techniques, is foundational to the lemma’s broad applicability, such
as computer science [7, 15], signal processing [2, 3] and numerical linear algebra [19].

1.1. Sequential random projection

Recent advancements, especially in reinforcement learning, underscore the pressing need for com-
putational models that not only accommodate but thrive on the epistemic uncertainties of sequential
decision-making [12, 13]. In these dynamic environments, the application of random projection
must navigate the added complexity of decisions (xt)t≥1 that are influenced by a history of previ-
ous decisions and projection vectors (z0, x1, z1, . . . , xt−1, zt−1), introducing a layer of sequential
dependence absent in static models. More precisely, the sequential relationship among the random
variables is

xt = ft(x1, z1, . . . , xt−1, zt−1), t ≥ 1, (1)

where ft describes the relationship at time t, and zt is sampled from a distribution over RM with
independent source of randomness. This sequential relationships can be also described in fig. 1
using graphical model.

* The author would like to acknowledge Professor Zhi-Quan (Tom) Luo for advising this project.
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Figure 1: Sequential dependence of high-dimensional random variables due to the adaptive nature
of sequential decision-making.

Unpacking the Challenges. This sequential dependence introduces significant analytical hurdles,
diverging sharply from the assumptions that underpin classical random projection methods:

• Traditional analysis of random projections assumes the data vector x = (x1, . . . , xd) is fixed
before the generation of the projection matrix Π = (z1, . . . , zd). All existing analysis for
Johnson-Lindenstrauss or the studies for extreme singular values of random matrices [18] rely
on some specific distributional properties of the random matrix Π. For example, conditions
on independent entries across Π [1, 8, 14, 18], independent rows or columns across Π [4, 9,
11, 18] are required to facilitate the concentration inequalities underlying the analysis.

• Analytical difficulties in sequential settings: In the sequential setups, the decisions xt and pro-
jection vectors zt are evolved together with sequential dependence described in eq. (1). Con-
ditioned on the decision at time t, the data xt, the preceding projection vectors (z0, . . . , zt−1)
lose their independence and identical distribution characteristics. This departure from inde-
pendence directly challenges the foundational assumptions of analytical methods in random
projection, complicating the task of maintaining accurate dimensionality reduction over se-
quential decisions. Specifically, without a clear understanding of the conditional distribution
P(zt′ )t′<t|xt

, traditional methods that rely on the specific distributional properties of projec-
tions cannot be straightforwardly applied. This limitation underscores a critical gap in our
ability to predict and control the behavior of sequential random projections.

Innovations and Contributions. In addressing the challenges inherent in sequential random pro-
jection, this research inaugurates an analytic tool, specifically designed to tackle the intricacies of
sequential dependencies. Our work is distinguished by two principal innovations:

1. Technical innovations in stopped martingale: Central to our contributions is the construc-
tion of a stopped process, meticulously engineered to manage deviation behaviors within se-
quential processes. This construction crucially facilitates the precise control of concentration
events over time, thereby enabling the analysis of the error bound in sequential setting.

2. Sequential extension of the Johnson–Lindenstrauss: Through the employment of the method
of mixtures, integrated with a self-normalized process derived from the stopped process,
we obtained a non-asymptotic probability bounds This bound represent a non-trivial exten-
sion of the Johnson–Lindenstrauss lemma into the realm of sequential analysis, equipping
researchers and practitioners with a powerful analytical tool for the exploration of high-
dimensional data in sequentially adpative processes.
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The contributions of this research serve to bridge significant gaps in existing methodological frame-
works, furnishing novel insights and methodologies for the application of random projection in
sequential settings. By laying a robust foundation for the analysis of dependencies among projec-
tion vectors in sequential contexts, our work not only surmounts the immediate challenges posed
by sequential random projection but also forges a path for future investigations and applications in
this critical intersection of mathematics and computational science. In doing so, it heralds a new
paradigm in the analysis and application of random projection techniques for sequential, adaptive,
high-dimensional data processing.

2. Probabilistic formalism & statements

2.1. Probabilistic formalism

One of the difficulties in the analysis is to deal with the sequential dependence structure among
the random variables generated from the sequential-decision making problem such as bandit and
reinforcement learning problems. We define some important concept that would be useful in the
analysis. Let (Ω,F ,F = (Ft)t∈N,P) be a complete filtered probability space. We first consider the
measurable properties within the filtered probability space.

Definition 1 (Adapted process) For an index set I of the form {t ∈ N : t ≥ t0} for some t0 ∈ N,
we say a stochastic process (Xt)t∈I is adapted to the filtration (Ft)t∈I if each Xt is Ft-measurable.

Definition 2 ((Conditionally) σ-sub-Gaussian) A random variable X ∈ R is σ-sub-Gaussian if

E[exp(λX)] ≤ exp

(
λ2σ2

2

)
, ∀λ ∈ R.

Let (Xt)t≥1 ⊂ R be a stochastic process adapted to filtration (Ft)t≥1. Let σ = (σt)t≥0 be a
stochastic process adapted to filtration (Ft)t≥0. We say the process is (Xt)t≥1 is conditionally

σ-sub-Gaussian if E[exp(λXt) | Ft−1] ≤ exp
(
λ2σ2

t−1

2

)
, a.s.,∀λ ∈ R. Specifically for the index

t + 1, we can say Xt+1 is (Ft-conditionally) σt-sub-Gaussian. If σt is a constant σ for all t ≥ 0,
then we just say (conditionally) σ-sub-Gaussian.

For a random vector X ∈ RM or vector process (Xt)t≥1 ⊂ RM in high-dimension, we say it
is σ-sub-Gaussian is for every fixed v ∈ SM−1 if the random variable ⟨v,X⟩ , or the scalarized
process (⟨v,Xt⟩)t≥1 is σ-sub-Gaussian.

Definition 3 (Almost sure unit-norm) We say a random variable X is almost sure unit-norm if
∥X∥2 = 1 almost surely.

Here, we give an example of distribution in RM in example 1 that fits the above mentioned
definitions: the uniform distribution U(SM−1) over unit sphere SM−1. The following recent result
for the moment generating function (MGF) of Beta distribution is useful for the characterization of
the sub-Gaussian property of the uniform distribution over the sphere.

Lemma 4 (MGF of Beta distribution [11]) For any α, β ∈ R+ with α ≥ β, random variable
X ∼ Beta(α, β) has variance Var (X) = αβ

(α+β)2(α+β+1)
and the centered MGF E[exp(λ(X −

E[X]))] ≤ exp(λ
2Var(X)

2 ).
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For completeness, we provide the proof of lemma 4 in section C.

Example 1 (Uniform distribution over sphere U(SM−1)) The random variable z ∼ U(SM−1) is
obviously unit-norm as by definition of the unit sphere SM−1. Also, according to lemma 17, the inner
product between the random variable z and any unit vector v ∈ SM−1 follows a Beta distribution,
i.e., ⟨z, v⟩ ∼ 2Beta

(
M−1
2 , M−1

2

)
− 1. Then, from lemma 4, we could confirm z ∼ U(SM−1) is√

1/M -sub-Gaussian.

Additionally, we characterize the boundedness on the stochastic processes.

Definition 5 (Square-bounded process) For an index set I of the form {t ∈ N : t ≥ t0} for some
t0 ∈ N, the stochastic process (Xt)t∈I is c-square-bounded if X2

t ≤ c almost surely for all t ∈ I .

2.2. Probability tools for sequential random projection

In this section, we introduce the first probability tool for addressing sequential random projection,
inspired by the challenges of sequential decision-making under uncertainty. The analysis is compli-
cated by the sequential dependence and high-dimensionality of random variables, a consequence of
the adaptive nature of sequential decision-making. Our approach leverages a novel and meticulously
constructed stopped process that manages the behavior of a sequence of concentration events. By
employing the method of mixtures as outlined by [6] within a self-normalized process framework,
we derive a non-asymptotic probability bound in theorem 6. This bound represents a non-trivial
and significant martingale-based extension of the Johnson–Lindenstrauss (JL) lemma, marking a
novel contribution to the fields of random projection and sequential analysis alike. Our technical
innovation offers a probability statement for sequential random projection that is unparalleled in the
literature, potentially sparking independent interest in both domains.

We use short notation for [n] = {1, 2, . . . , n} and T = {0, 1, . . . , T} = {0} ∪ [T ].

Theorem 6 (Sequential random projection in adaptive process) Let ε ∈ (0, 1) be fixed and (Ft)t≥0

be a filtration. Let z0 ∈ RM be an F0-measurable random vector satisfies E[∥z0∥2] = 1 and
|∥z0∥2 − 1| ≤ (ε/2). Let (zt)t≥1 ⊂ RM be a stochastic process adapted to filtration (Ft)t≥1 such
that it is

√
c0/M -sub-Gaussian and each zt is unit-norm. Let (xt)t≥1 ⊂ R be a stochastic process

adapted to filtration (Ft−1)t≥1 such that it is cx-square-bounded. Here, c0 and cx are absolute
constants. For any fixed x0 ∈ R, if the following condition is satisfied

M ≥ 16c0(1 + ε)

ε2

(
log

(
1

δ

)
+ log

(
1 +

cxT

x20

))
, (2)

we have, with probability at least 1− δ

∀t ∈ T , (1− ε)

(
t∑

i=0

x2i

)
≤ ∥

t∑
i=0

xizi∥2 ≤ (1 + ε)

(
t∑

i=0

x2i

)
. (3)

Remark 7 We say this is an “sequential random projection” argument because one can relate
theorem 6 to the traditional random projection setting where Πt = (z0, . . . , zt) ∈ RM×t+1 is
a random projection matrix and xt = (x0, . . . , xt)

⊤ ∈ Rt+1 is the vector to be projected. The
argument in eq. (3) translates to

∀t ∈ T , (1− ε)∥xt∥2 ≤ ∥Πtxt∥2 ≤ (1 + ε)∥xt∥2. (4)
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When assuming independence between xt and Πt for all t ∈ T , by simply applying union bound
over time index t ∈ T with existing JL analysis, we can derive that the required dimension M =
O(ε−2 log(T/δ)) is of the same order in eq. (2). However, as discussed in section 1, existing
JL analytical techniques are not able to handle the sequential dependence in our setup as xt is
statistically dependent with Πt for t ∈ T . Therefore, theorem 6 is also an innovation in the literature
of both random projection and sequential analysis.

Remark 8 The unit-norm condition in the theorem 6 can be removed. Then, more distribution of
random vectors can be covered in our analytical framework. For example, the Gaussian random
vector z ∼ N(0, 1

M I) is not unit-norm but we could rely on the centered moment generating func-
tion of ∥z∥2 by exploiting the properties of Chi-square distribution. We leave it for the future work.

Example 2 (Stylized stochastic process satisfying the condition in theorem 6.) Let (zt)t≥0 are
mutually independent random variables, each sampled from U(SM−1). Let x0 be fixed and (xt)t≥1

be the stochastic process with the following dependence structure, interleaved with the process
(zt)t≥0: (1) xt is dependent on x0, z0, x1, z1, . . . , xt−1, zt−1 as described in eq. (1). (2) zt is inde-
pendent of x0, z0, x1, z1, . . . , xt−1, zt−1, xt. This sequential dependence structure is also described
in fig. 1. Define the filtration (Ft)t≥0 where Ft = σ(z0, x1, z1, . . . , xt, zt, xt+1). From example 1,
we notice the process (zt)t≥1 adapted to (Ft)t≥1 is

√
1/M -sub-Gaussian and unit-norm.

3. Conclusions

This research has successfully established the first probabilistic framework specifically conceived
for the domain of sequential random projection, addressing the complexities and challenges in-
troduced by sequential dependencies and the high-dimensional nature of variables within sequen-
tial decision-making processes. By innovating a stopped process construction and extending the
method of mixtures to include a self-normalized process, we have derived non-asymptotic probabil-
ity bounds that significantly extend the Johnson–Lindenstrauss lemma into the realm of sequential
analysis. These methodological advancements not only provide a robust foundation for accurately
controlling concentration events and analyzing error bounds in a sequential context but also repre-
sent a seminal contribution to the intersection of computational mathematics and machine learning.

Our contributions offer a comprehensive solution to the analytical hurdles posed by the se-
quential dependence inherent in dynamic environments, specifically the loss of independence and
identical distribution characteristics among projection vectors conditioned on sequential decisions.
By addressing these challenges with precise technical innovations and extending foundational an-
alytical tools to sequential settings, our work paves the way for future research and practical ap-
plications of random projection in sequential decision-making settings. In doing so, it heralds a
paradigm shift towards a more nuanced understanding and application of random projection tech-
niques in adaptive, high-dimensional data processing, promising to significantly influence future
research directions and applications across related disciplines.
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Appendix A. Technical ideas & details

Before digging into the proof, we identify some important sequential structure and also clarity our
proof idea in a intuitive level. For each time t ∈ T , let the short notation for the centered variable
be

Yt = ∥
t∑

i=0

xizi∥2 −
t∑

i=0

x2i and St =

t∑
i=0

x2i . (5)

Our key observation is that for any t ∈ [T ]

∥
t∑

i=0

xizi∥2 = ∥
t−1∑
i=0

xizi + xtzt∥2

= ∥
t−1∑
i=0

xizi∥2 + 2

(
t−1∑
i=0

xizi

)⊤

xtzt + x2t ∥zt∥2 (6)

and thus we have the following relationship between Yt and Yt−1 derived from eq. (6),

Yt − Yt−1 = 2xtz
⊤
t (

t−1∑
i=0

xizi) + x2t
(
∥zt∥2 − 1

)
.

Since zt is unit-norm, we can further simplify the exposition

Yt − Yt−1 = 2xtz
⊤
t (

t−1∑
i=0

xizi). (7)

Another key observation is that the difference term in eq. (7) is a function of on the (
∑t−1

i=0 xizi)
that is Ft−1-measurable. This implies, the difference term (Yt − Yt−1) can be controlled according
to information in the history-dependent term

t−1∑
i=0

xizi = Yt−1 + St−1.

Intuitively, once the concentration behavior is bad, i.e., Yt−1 has large deviation, it is highly possible
to exhibit large deviation for Yt′ in the later time index t′ ≥ t.

A.1. Stopped process and exponential supermartingale

To mathematically formalize this intuition, we introduce a definition of good event for concentration
behavior and stopping time for analysis.

Definition 9 (Good event) For each time t ∈ T , we introduce the good event Et under which the
strongly concentration behavior is guaranteed, suppose ε ∈ (0, 1),

Et(ε) =

{
(1− ε)

(
t∑

i=0

x2i

)
≤ ∥

t∑
i=0

xizi∥2 ≤ (1 + ε)

(
t∑

i=0

x2i

)}
. (8)

With short notation defined in eq. (5),

Et(ε) = {|Yt| ≤ εSt} .
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We also define the stopping time as the first time the bad event happens, i.e. the good event Et(ε)
defined in eq. (8) violates.

Definition 10 (Stopping time) For any fixed ε, we define the stopping time

τ(ε) = min{t ∈ T : ¬Et(ε)}. (9)

Based on the stopping time, we construct a stopped process to interconnect the sequence of good
concentration event. For t ∈ [T ], define the stopped difference term

Xτ
t = (Yt − Yt−1)1t≤τ (10)

such that the process (Xτ
t )t≥1 is adapted to the filtration (Ft)t≥1.

Claim 11 Let τ be the stopping time τ(ε) defined in eq. (9). Let (Xτ
t )t≥1 be the stochastic process

defined in eq. (10) which is adapted to the filtration (Ft)t≥1. Let Aτ
t =

∑t
i=1X

τ
i . Further denote

(Bτ
t )

2 =
∑t

i=1(C
τ
i )

2 with

(Cτ
t )

2 :=
4c0
M

x2t (1 + ε)St−11t≤τ .

If the (Ft)t≥1-adapted process (zt)t≥1 is
√
c0/M -sub-Gaussian and each zt is unit-norm, then for

any fixed λ ∈ R {
M τ

t (λ) = exp

(
λAτ

t −
λ2

2
(Bτ

t )
2

)
,Ft, t ≥ 1

}
is a supermartingale with mean ≤ 1.

Proof [Proof of theorem 11] Note 1t≤τ = 1−1τ≤t−1 is Ft−1-measurable. Thus, the random vector

(

t−1∑
i=0

xizi)1t≤τxt is Ft−1-measurable.

By the condition that the process (zt)t≥1 is
√
c0/M -sub-Gaussian, we conclude from the definition

of conditionally sub-Gaussian in definition 2,

E[exp(λXτ
t ) | Ft−1] = E[exp(2λxt⟨zt,

t−1∑
i=0

xizi⟩1t≤τ ) | Ft−1]

≤ exp

(
λ2

2
(4c0/M)x2t ∥

t−1∑
i=0

xizi∥21t≤τ

)

≤ exp

(
λ2

2
(4c0/M)x2t (1 + ε)St−11t≤τ

)
= exp

(
λ2

2
(Cτ

t )
2

)
(11)

where the last inequality is because of the stopping time argument. Thus, the claim holds as

E[M τ
t (λ) | Ft−1] = M τ

t−1(λ)E[exp(λXτ
t − λ2

2
(Cτ

t )
2) | Ft−1] ≤ M τ

t−1(λ),

7
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where the inequality is due to eq. (11).

The following de la Peña et al. [6]-type self-normalized bound would be useful to prove our
main theoretical contribution of sequential random projection in theorem 6.

Theorem 12 (Any-time self-normalized concentration bound)
Let (Ft)t≥0 be a filtration and {(At, Bt), t ≥ 1} be a sequence of pairs of random variables

satisfying that for all λ ∈ R{
exp

(
λAt −

λ2

2
B2

t

)
,Ft, t ≥ 1

}
is a supermartingale with mean ≤ 1.

Then, for any fixed positive sequence (Lt)t≥1, with probability at least 1− δ

∀t ≥ 1, |At| ≤

√√√√2
(
B2

t + Lt

)
log

(
1

δ

(
B2

t + Lt

)1/2
L
1/2
t

)

The proof of theorem 12 can be found in section B.
We also need the following trigger lemma for the initial preparation of the proof in theorem 6.

Lemma 13 (Trigger lemma) For any sequence of event (Et, t ∈ T ), define the stopping time τ as
the first time t the event Et is violated, i.e.

τ = min{t ∈ T : ¬Et}.

Then, the following equality holds for all t ∈ T ,

{τ ≤ t} = ¬Et∧τ .

A.2. Proof of theorem 6

Now we are ready to provide the details of the proof, completing the intuition and mathematical
construction.
Proof [Proof of theorem 6] We apply lemma 13 for Et = Et(ε) and it follows

P (∃t ∈ T ,¬Et(ε)) = P(τ ≤ T )

= P (¬ET∧τ (ε))

= P (|YT∧τ | ≥ εST∧τ )

= P

(
|Y0 +

T∑
t=1

(Yt − Yt−1)1t≤τ | ≥ εST∧τ

)
(12)

By the construction of stopped process YT∧τ − Y0 =
∑T

t=1X
τ
t = Aτ

T . Then, our goal, from
eq. (12), becomes to upper bound the RHS of eq. (13),

P (∃t ∈ T , (¬Et)) = P (|Y0 +Aτ
T | ≥ εST∧τ ) (13)

8
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By theorem 11, the pair of processes (Aτ
t , B

τ
t )t≥1 with

Aτ
t =

t∑
i=1

Xτ
i =

t∑
i=1

(Yt − Yt−1)1t≤τ

and

(Bτ
t )

2 =
t∑

i=1

(4c0/M)x2t (1 + ε)St−11t≤τ

satisfies the conditions in theorem 12. Then applying the theorem 12 on the pair of processes
(Aτ

t , B
τ
t )t≥1 yields that, with probability at least 1− δ,

∀t ≥ 1, |Aτ
t | ≤

√√√√2 ((Bτ
t )

2 + Lt) log

(
1

δ

((Bτ
t )

2 + Lt)
1/2

L
1/2
t

)

Since by the condition in theorem 6, we have |Y0| ≤ (ε/2)x20. Now we want to argue that for any
fixed ε ∈ (0, 1), with suitable choice of LT and M , we have with probability at least 1− δ

|Y0 +Aτ
T | ≤

√√√√2
(
(Bτ

T )
2 + LT

)
log

(
1

δ

(
(Bτ

T )
2 + LT

)1/2
L
1/2
T

)
+ (ε/2)x20︸ ︷︷ ︸

(I)

≤ εST∧τ . (14)

Claim 14 The following configuration suffices for eq. (14):

LT ≤ 2c0(1 + ε)x40
M

and M ≥ (16c0(1 + ε)/ε2)

(
log

(
1

δ

)
+ log

(
1 +

cxT

x20

))
.

Proof [Proof of theorem 14] Recall the definition St =
∑t

t=0 x
2
i . We first calculate the term (Bτ

T )
2

by our construction,

(Bτ
T )

2 ≤ 4c0
M

T∧τ∑
t=1

x2t ((1 + ε)St−1) (15)

=
4c0(1 + ε)

M

T∧τ∑
t=1

x2t

ST∧τ − (ST∧τ − St−1)︸ ︷︷ ︸
≥0


≤ 4c0(1 + ε)

M
(ST∧τ − x20)ST∧τ . (16)

From eq. (15), the almost sure upper bound of (Bτ
T )

2 assuming x2t ≤ cx is

(Bτ
T )

2 ≤ 4c0(1 + ε)

M

T∑
t=1

cx(x
2
0 + (t− 1)cx) ≤

4c0(1 + ε)

M
(cxx

2
0T + c2xT

2/2)

9
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Since (a+ b)2 ≤ (1 + λ)(a2 + (1/λ)b2) for all fixed λ ≥ 0, the term (I) from eq. (14) becomes

(I)2 ≤ (1 + λ)

(
2
(
(Bτ

T )
2 + LT

)
log

(
1

δ

(
(Bτ

T )
2 + LT

)1/2
L
1/2
T

)
+

ε2x40
4λ

)

Let LT ≤ 4c0(1 + ε)ℓ/M and ℓ to be determined.

(I)2 ≤ (1 + λ)

(
2
(
B2

T + LT

)
log

(
1

δ

(
B2

T + LT

)1/2
L
1/2
T

)
+

ε2x40
4λ

)

≤ (1 + λ)

8c0(1 + ε)

M

(
(ST∧τ − x20)ST∧τ + ℓ

)
log

1

δ

√(
cxx20T + c2xT

2/2 + ℓ
)

ℓ

+
ε2x40
4λ


Let M ≥ (8c0(1 + ε)/m) log

(
1
δ

√
cxx2

0T+c2xT
2/2+ℓ

ℓ

)
and m to be determined, we can simplify

(I)2 ≤ (1 + λ)

(
m((ST∧τ − x20)ST∧τ + ℓ) +

ε2x40
4λ

)
Let ℓ = x40/2, m = ε2/(1 + λ) and λ = 1, we have

(I)2 ≤ ε2((ST∧τ − x20)ST∧τ + x40/2 + x40/2) ≤ ε2S2
T∧τ

where the last inequality is due to x20 = S0 ≤ ST∧τ and x40 ≤ x20ST∧τ . The conclusion is that we
could select

M ≥ (16c0(1 + ε)/ε2) log

(
1

δ

√
2cxx20T + c2xT

2 + x40
x40

)

= (16c0(1 + ε)/ε2) log

(
1

δ

√
(cxT + x20)

2

x40

)

= (16c0(1 + ε)/ε2)

(
log

(
1

δ

)
+ log

(
1 +

cxT

x20

))
and the auxiliary variable

LT ≤ 2c0(1 + ε)x40
M

.
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Appendix B. Proof of theorem 12: Method of mixtures

Robbins-Siegmund method of mixtures [16] originally is developed to evaluate boundary crossing
probabilities for Brownian motion. The method was further developed in the general theory for
self-normalized process [5, 6, 10].

Remark 15 (Essential idea of Laplace approximation) If we integrate the exponential of a func-
tion that has a pronounced maximum, then we can expect that the integral will be close to the
exponential function of the maximum. In our case, let

Mt(λ) = exp

(
λAt −

λ2

2
B2

t

)
Informally, with this principle of Laplace approximation, we would have

max
λ

Mt(λ) ≈
∫
Ω
Mt(λ)dh(λ)

where h is some measure on Ω.

The main benefit of replacing the maximum maxλMt(λ) with an integral M̄t :=
∫
ΩMt(λ)dh(λ)

is that we can handle the expectation E[M̄t] easier while we don’t know the upper bound on
E[maxλMt(λ)]. This is formalized in the following lemma.

Lemma 16 Let (ht) be a sequence of probability measures on Ω. If (Mt(λ),Ft, t ≥ 1) is a
supermartingale with E[M1(λ)] ≤ 1 for all λ ∈ Ω, then for any t ≥ 1, the integrated random
variable M̄t =

∫
ΩMt(λ)dht(λ) has expectation E[M̄t] ≤ 1.

Further, let τ be a stopping time with respect to filtration (Ft)t≥0, i.e. {τ ≤ t} ∈ Ft,∀t ≥ 0.
Then Mτ (λ) is almost surely well-defined with expectation E[Mτ (λ)] ≤ 1 as well as E[M̄τ ] ≤ 1.

Proof Using Fubini’s theorem and the fact that Mt(λ) is a supermartingale with E[Mt(λ)] ≤
E[M1(λ)] = 1, we have

E[M̄t] =

∫
Ω
E[Mt(λ)]dht(λ) ≤ 1.

For the expectation of stopped version Mτ (λ) and M̄τ , we apply (supermartingale) optional sam-
pling theorem.

Finally, we are comfortable to drive the proof of the self-normalized concentration bounds.
Proof [Proof of theorem 12] Let Λ = (Λt) be a sequence of independent Gaussian random variable
with densities

fΛt(λ) = c(Lt) exp(−
1

2
Ltλ

2)

11
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where c(A) =
√

A/2π is a normalizing constant. We explicitly calculate M̄t for any t ≥ 1,

M̄t =

∫
R
exp

(
λAt −

λ2

2
B2

t

)
fΛt(λ)dλ

=

∫
R
exp

(
−1

2

(
λ− At

B2
t

)2

B2
t +

1

2

A2
t

B2
t

)
fΛt(λ)dλ

= exp

(
1

2

A2
t

B2
t

)∫
R
exp

(
−1

2

(
λ− At

B2
t

)2

B2
t

)
fΛt(λ)dλ

= c (Lt) exp

(
1

2

A2
t

B2
t

)∫
R
exp

(
−1

2

((
λ−At/B

2
t

)2
B2

t + λ2Lt

))
dλ.

Completing the square yields(
λ− At

B2
t

)2

B2
t + λ2Lt =

(
λ− At

Lt +B2
t

)2 (
Lt +B2

t

)
+

A2
t

B2
t

− A2
t

Lt +B2
t

.

By the change of variables λ′ = λ−At/(Lt +B2
t ) in the following (i),

M̄t = c (Lt) exp

(
1

2

A2
t

Lt +B2
t

)∫
R
exp

(
−1

2

(
λ− At

Lt +B2
t

)2 (
Lt +B2

t

))
dλ

(i)
= c (Lt) exp

(
1

2

A2
t

Lt +B2
t

)∫
R
exp

(
−1

2

(
λ2
(
Lt +B2

t

)))
dλ

=
c (Lt)

c
(
Lt +B2

t

) exp(1

2

A2
t

Lt +B2
t

)
.

A final application of Markov’s inequality yields

P

|Aτ | ≥

√√√√2 (Lτ +B2
τ ) log

(
1

δ

(Lτ +B2
τ )

1/2

L
1/2
τ

)
= P

[
c (Lτ )

c (Lτ +B2
τ )

exp

(
1

2

A2
τ

Lτ +B2
τ

)
≥ 1

δ

]
≤ δ · E

[
c (Lτ )

c (Lτ +B2
τ )

exp

(
1

2

A2
τ

Lτ +B2
τ

)]
i)
≤ δ · E

[
M̄τ

] (ii)
≤ δ,

where (i) uses the inequality for M̄τ derived above, and (ii) follows from lemma 16.
To get the anytime result in theorem 12, we define the stopping time

τ = min

t ≥ 1 : |At| ≥

√√√√2
(
Lt +B2

t

)
log

(
1

δ

(
Lt +B2

t

)1/2
L
1/2
t

)
12
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With an application of extended version of lemma 13, and applying the previous inequality yields

P

∃t ≥ 1, |At| ≥

√√√√2
(
Lt +B2

t

)
log

(
1

δ

(
Lt +B2

t

)1/2
L
1/2
t

)
= P

τ < ∞, |Aτ | ≥

√√√√2 (Lτ +B2
τ ) log

(
1

δ

(Lτ +B2
τ )

1/2

L
1/2
τ

)
≤ P

|Aτ | ≥

√√√√2 (Lτ +B2
τ ) log

(
1

δ

(Lτ +B2
τ )

1/2

L
1/2
τ

)
≤ δ.

This completes the proof.

Appendix C. Additional lemmas

For the completeness, we provide the full details of lemma 4, which is adapted from [11].
Proof We utilize the order-2 recurrence for central moments [17]: for a beta random varaiable
X ∼ Beta(α, β), we have

E [(X − E[X])p] =
(p− 1)(β − α)

(α+ β)(α+ β + p− 1)
· E
[
(X − E[X])p−1

]
+

(p− 1)αβ

(α+ β)2(α+ β + p− 1)
· E
[
(X − E[X])p−2

]
Let mp := E[(X−E[X])p]

p! , when α ≥ β, it follows that mp is non-negative when p is even, and
negative otherwise. Thus, for even p,

mp ≤
1

p
· αβ

(α+ β)2(α+ β + p− 1)
mp−2 ≤

Var (X)

p
·mp−2.

After repeating the above recursive equation for p/2 times and combining with mp ⩽ 0 for odd p,
it yields the following relationships

mp ⩽

{
Var(X)

p
2

p!! p even

0 p odd
.

With the application of p!! = 2p/2(p/2)! for even p, for t ⩾ 0 we obtain

E[exp(λ[X − E[X]])] ⩽ 1 +
+∞∑
p=2

mpλ
p = 1 +

+∞∑
p=1

(λ2Var (X)/2)p/p! = exp

(
λ2Var (X)

2

)

13
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Lemma 17 For any fixed unit vector u ∈ Sn−1, for any random vector v ∼ U(Sn−1), the inner
product u⊤v is distributed as 2Beta

(
n−1
2 , n−1

2

)
− 1.

Proof By rotational invariance of Uniform(Sn−1), the distribution of u⊤v should be identical
∀u ∈ Sn−1. WLOG, let us look at u = e1 = (1, 0, . . . , 0) that would project v to the first coordinate,
i.e., the value of v⊤e1 = v1. Let v1 be defined as X , which is a random variable. Probability density
that X = x ∈ [−1, 1] is proportional to the surface area occupied between x and x + dx occupied
by the other coordinates. The surface area is a frustum of a cone with base as a n − 1 dimension
shell of radius as

√
1− x2 and a height of dx with slope of the cone as 1/

√
1− x2. Hence, the

probability density is

fX(x) ∝
√
1− x2

n−2

√
1− x2

∝ (1− x)
n−3
2 (1 + x)

n−3
2

We examine the transformed random variable Y = (X + 1)/2, i.e. X = 2Y − 1. By the Change-
of-Variable Technique,

fY (y) = 2fX(2y − 1) ∝ (2− 2y)
n−3
2 (2y)

n−3
2 ∝ (1− y)

n−3
2 y

n−3
2

Thus,

Y ∼ Beta

(
n− 1

2
,
n− 1

2

)
.

Then, by the fact X = 2Y − 1,

X ∼ 2Beta

(
n− 1

2
,
n− 1

2

)
− 1.

14
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