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Abstract

Pre-trained models based on deep neural networks hold strong potential for cross-
domain adaptability. However, this potential is often impeded in online machine
learning (OML) settings, where the breakdown of the independent and identically
distributed (i.i.d.) assumption leads to unstable adaptation. While recent advances
in test-time adaptation (TTA) have addressed aspects of this challenge under
unsupervised learning, most existing methods focus exclusively on unsupervised
objectives and overlook the risks posed by non-i.i.d. environments and the resulting
dynamics of model parameters. In this work, we present a probabilistic framework
that models the adaptation process using stochastic differential equations, enabling
a principled analysis of parameter distribution dynamics over time. Within this
framework, we find that the log-variance of the parameter transition distribution
aligns closely with an inverse-gamma distribution under stable and high-performing
adaptation conditions. Motivated by this insight, we propose Structured Inverse-
Gamma Model Alignment (SIGMA), a novel algorithm that dynamically regulates
parameter evolution to preserve inverse-gamma alignment throughout adaptation.
Extensive experiments across diverse models, datasets, and adaptation scenarios
show that SIGMA consistently enhances the performance of state-of-the-art TTA
methods, highlighting the critical role of parameter dynamics in ensuring robust
adaptation.

1 Introduction

The rapid advancement of deep neural networks (DNNs) has given rise to powerful pre-trained models
capable of generalizing across a wide range of domains [[12, |37, 56l 3 4]. Despite their versatility,
deploying these models in dynamic, resource-constrained environments remains challenging. This
difficulty stems from their increasing computational demands and, more fundamentally, from the
breakdown of the independent and identically distributed (i.i.d.) assumption in real-world online
learning scenarios [16}50]]. Online machine learning (OML) [5] provides a paradigm for addressing
such challenges by enabling models to adapt incrementally to non-stationary data streams, where full
retraining on large, static datasets is impractical [18, 44]]. In OML settings, data arrive sequentially
from various domains, inherently violating the i.i.d. assumption that underpins conventional DNN
training. This sequential domain shift often induces a severe degradation in model performance and
generalization ability [21} 27, [19} 160} 9]. Consequently, a critical goal is to develop robust online
adaptation methods to prevent collapse while preserving the adaptability under non-i.i.d. conditions.

Test-time adaptation (TTA) has recently emerged as a promising direction, combining the challenges
of OML with unsupervised learning. TTA aims to adapt pre-trained models to unlabeled test data that
arrive sequentially during deployment. The early TTA approach focused on unsupervised learning
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objectives. For example, TENT [61]] replaces cross-entropy with entropy minimization over model
predictions. While such methods offer improvements in early stages, they are prone to collapse when
faced with extended domain shifts [[6,10}162}166} 51]. Recent efforts have addressed this instability by
introducing sample-filtering strategies that downweight or discard high-uncertainty predictions during
adaptation [45] 146, [29] 43]]. Despite their empirical success, these methods remain narrowly focused
on unsupervised objectives and do not explicitly address the fundamental instability introduced by
the non-i.i.d. nature of the data and the evolving dynamics of model parameters.

In this work, we take a fundamentally different perspective. Rather than focusing solely on the
loss function, we develop a probabilistic framework that explicitly models the dynamics of model
parameters during adaptation. Our framework leverages stochastic differential equation (SDE)
approximations of stochastic gradient descent (SGD) [33}135], treating SGD as a continuous-time
stochastic process. By discretizing the SDE, we derive a transition distribution that represents the
evolution of the parameter uncertainty over time during the adaptation process (Section [3). Within
this framework, we focus on the logarithmic variation (log-variance) of the transition distribution
as a diagnostic signal. Empirical analysis under both i.i.d. and non-i.i.d. conditions, in both
supervised (SL) and unsupervised (USL) settings, leads to three key findings (Section E]): (1) The
log-variance distribution follows an inverse-gamma (IG) distribution in stable, high-performing
adaptation scenarios. (2) Deviations from the IG distribution are strongly predictive of performance
degradation. (3) State-of-the-art TTA methods tend to implicitly promote IG alignment, suggesting
an unintentional but beneficial form of regularization.

These findings motivate our core hypothesis: explicitly maintaining IG alignment in the log-variance
dynamics is critical for stable and effective adaptation in non-i.i.d. environments. To realize
this principle, we introduce the Structured Inverse-Gamma Model Alignment (SIGMA) algorithm.
SIGMA dynamically estimates an appropriate IG distribution using derivative-free optimization and
adjusts the parameter update trajectory to preserve alignment throughout online adaptation. We
validate SIGMA through extensive experiments across multiple models, datasets, and adaptation
scenarios. Our results show that SIGMA consistently improves the performance of state-of-the-art
TTA methods, supporting our central claim: alignment of parameter dynamics via IG regularization
offers a robust and principled foundation under online adaptation settings.

2 Preliminaries

2.1 Test-Time Adaptation

TTA addresses the challenge of adapting a well-trained model, pretrained on large-scale labeled
source data, to a stream of unlabeled test data from evolving domains. The objective is to adapt
the model in real time to each new domain sample. Performance is measured by the average error
rate (AER) across the test stream. TTA methods, developed from domain adaptation and continual
learning research [10} 62, 66, |51], aim to handle changing data distributions. Recently, filtering
strategies have been introduced to exclude or downweight uncertain predictions, improving robustness
in multi-domain and non-i.i.d. environments [45] 46, 29, 43]]. While most existing TTA methods
focus on unsupervised loss design, our main contribution directly models and analyzes parameter
changes during adaptation. Specifically, we propose a probabilistic framework that interprets TTA as
an instance of online parameter evolution, offering a systematic method to understand the process.

2.2 The SDE Approximation

SGD lies at the heart of modern deep learning, and understanding its dynamics is fundamental to
advancing theoretical and practical training aspects. A growing body of research has leveraged
SDEs to approximate SGD from a continuous-time perspective, providing deeper insights into
learning behavior [33,[35, 140, [1]]. A key development is the use of stochastic modified equations to
approximate discrete-time SGD updates with continuous-time SDEs [33]]. This formulation captures
both the deterministic gradient flow and stochastic fluctuations arising from mini-batch sampling,
yielding a more complete description of the learning process. Later studies [35] have generalized
this approach to various optimizers and used it to analyze the link between learning dynamics and
generalization. This work builds upon this perspective and proposes a probabilistic framework that
captures parameter dynamics from discrete-time observations in online adaptation.



3 Parameter Dynamics and Log-Variance Portraits

In this section, we present a theorem establishing a statistically robust measurement, the log-variance
portrait, which tracks the evolution of the parameter distribution. Building on this, Section 4] reveals
empirical patterns that characterize stable adaptation, and Section [5| applies these findings to develop
our adaptation method.

3.1 Online Machine Learning Problem

We consider a DNN model f : X — ) parameterized by w € R?, which maps inputs € X
to labels y € ). The model defines a conditional distribution p(y|x, w), used for inference. Let
{(®n,yn) ~ Do : n =1: Ny} denote samples drawn from a source distribution Dy, used to pre-train
a source model f(-; Wwg). During online adaptation, the model encounters a stream of samples z
drawn from a sequence of target distributions Dy, # Dy at discrete time steps ¢ € {1,2,3,..., K}.
The adaptation objective is to minimize the expected risk:

G(ﬁ’a tk) =E..~D, [ﬂ (f(wlm ﬁ’(tkfl)))] ) (D

where zj, = (@, yx ) in SL settings and zj, = () in USL settings. The loss function ¢(+) corresponds
to cross-entropy in SL, and to entropy-based objectives in USL. At each time step, the model
parameters are updated to minimize the risk:

w(ty) = argmin G(w, ty,). 2)

)

The adaptation process is implemented using an SGD-based optimizer, producing a time series of
parameters {w (1), w(t2),...,w(t;)}. However, this trajectory is vulnerable to degradation in
non-i.i.d. environments or USL settings, where biased or noisy gradients can destabilize learning.
Our goal is to characterize and improve this trajectory by building a probabilistic framework that
captures the underlying stochasticity in the parameter evolution.

3.2 Probabilistic Framework for Parameter Dynamics

To model parameter evolution during adaptation, we approximate the discrete SGD updates using
a continuous-time SDE following Li et al. [33]. When the learning rate 7 is sufficiently small, the
parameter updates can be approximated by:

dw(t) = —g(w, t)dt + /Y2 (w, t)dW,, 3)

where dW; denotes a standard Brownian motion, g(w,t) = VG(w,t) denotes the gradient
of the risk, and X(w,t) is the empirical covariance of the gradients. Specifically, we define:
S(w,t) = 1/t (g(w,7) — 5w, 7)) (g(w, 7) — glw, 7)) with g(w,1) = 1/t _ glw,7)
as the mean gradient. Following [33], we treat the entries of w as independent and approximate the
full covariance matrix with a scalar multiple of the identity (w, t) ~ 021, where 07 = 1/d Tr(%;)
and Tr(.) is the trace. The parameter distribution p(w/(t)) under this SDE evolves according to the
Fokker—Planck—Kolmogorov (FPK) equation:

d d d
Op(w(t Op(w(t 1 O?p(w(t))
Ow®)) 5~ D) gy ), 4 23S LD sy @)
i1 =1 Qwiow
where [-]; and [-];; denote vector and matrix components, respectively. The following theorem
provides a tractable discrete-time approximation of the transition distribution implied by Eq. (3).

Theorem 1 (Discretization of the SDE approximation). Let (tx_1,t) be a sufficiently small discrete-
time interval, and assume that both the gradient g(w, ti) and the variance o} remain approximately
constant over this interval, denoted as gy, and oi. Then, the transition distribution of the SDE can be
approximated by:

pw(te)|w(tr—1)) = N(w(te) k-1, Zpjr-1); (%)
where At = ty, — tp_1 =, and the mean and covariance are given by:
fgi—1 = W(ti—1) — grAt, Spp_1 = op AL, (6)

with 02 = 1/d Tr{(g. — gx) (g1 — G&) ] Gk = 1/k S0, gr-
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Figure 1: Log-variance dynamics under SL and USL (TENT) settings in i.i.d. and non-i.i.d. environ-
ments. The blue line shows temporal evolution of log-variance. Orange boxes denote the empirical
distribution of log-variance. The green dash-dot line represents the fitted IG distribution, with red and
black dashed lines marking the IG mean and mode, respectively. The degradation in IG alignment
reflects increasing instability across scenarios.

The proof is provided in Appendix[A.T] This result allows us to use discrete-time gradient observations
g to approximate the evolution of the parameter distribution, which is originally defined in continuous
time. Importantly, it reveals the variance term o7 At?, often ignored in traditional SGD analysis. This
variance shows local uncertainty and variability in the direction of the gradient. It is an important
signal for assessing adaptation stability. While this variance term provides valuable insight, the raw
variance o3 has extremely heavy tails and is difficult to analyze directly, even in a stable environment
(See Appendix . To address this, we instead focus on its logarithm: v;, = log(c7 At?). The log-
variance portrait refers to the empirical distribution obtained by collecting values of vy, at each step
during adaptation. This portrait illustrates the evolving distribution of local logarithmic variances in
the gradients over time, allowing us to see fluctuations in gradient variability as adaptation progresses.
By summarizing these local variances, the log-variance portrait offers a compact and interpretable
way to visualize and quantify how parameter dynamics change throughout adaptation.

4 Relationship between Log-variance Portrait and Performance

We investigate how parameter dynamics evolve during adaptation by analyzing the behavior of the
log-variance portrait across different online adaptation settings. Our goal is to determine whether
the alignment between this distribution and an IG distribution is predictive of model performance,
particularly in non-i.i.d. environments. Through extensive empirical analysis, we show that the
goodness-of-fit (GoF) between the log-variance distribution and an IG distribution is a reliable
indicator of adaptation success. In particular, maintaining high IG-GoF is essential for preventing
performance degradation and enabling stable adaptation.

Analysis Setup. We evaluate model dynamics under both i.i.d. and non-i.i.d. environments, in both
SL and USL settings. For USL, we adopt TENT [61] as a representative baseline. Experiments are
conducted on ImageNet-C [21]], which includes 15 corruption-based domains grouped into four broad
categories. In the i.i.d. environment, domain samples are shuffled and presented randomly; in the
non-i.i.d. environment, domains are presented sequentially in a fixed order. To quantify IG-GoF, we
fit an IG distribution to the log-variance values using maximum likelihood estimation and assess fit
using the Kolmogorov—Smirnov test. We report the resulting p-value as the alignment score. The
performance improvement is measured using the relative average error rate (RAER), defined as:
RAER = (€source — €target) / €source * 100, Where egource is the AER of the source model and €y is the
AER after adaptation. A negative RAER indicates performance degradation. Additional experimental
details are provided in Section[6.1]
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Figure 3: Log-variance portraits for each domain in a non-i.i.d. environment. The top row shows
results under SL, and the bottom row under USL using TENT. The adaptation sequence follows four
target domain (i.e., Noise, Blur, Weather, and Digital) with each domain visualized separately.

Portraits Across All Domains. We first investigate how the log-variance portrait evolves when
varying one factor at a time from a stable baseline: SL under i.i.d. conditions. Figure[I](a) shows
that in this stable setting, the log-variance evolves smoothly over time and aligns closely with
the IG distribution. This behavior generalizes across different model architectures and datasets
(Appendix [C.T|and [C.6). When switching to a non-i.i.d. environment (Figure [I] (b)), the portrait
partially deviates from the IG shape, indicating destabilization. A similar effect is seen when moving
from SL to USL (Figure[T](c)). When both non-i.i.d. input and unsupervised adaptation are combined,
as in realistic TTA scenarios, Figure [1| (d) shows a significant breakdown in IG alignment, often
yielding multimodal distributions. Takeaway 1.1: Both non-i.i.d. input streams and unsupervised
objectives introduce instability into the adaptation process. 1G alignment in the log-variance portrait
is generally preserved only under stable learning conditions.

Performance Across All Domains. We next exam- 010

ine how IG-GoF relates to adaptation performance. In zt ;;;(-)‘;-}LL o F20
Figure E], lower p-values (weaker IG-GoF) consistently 0.084 USL (i.id)
correspond to lower RAER (worse performance), while o s Nondidd)
stronger alignment (higher p-values) correlates with perfor- ~ .06-

value

mance improvements. Notably, the most severe degrada-

tion occurs under the combined non-i.i.d. and USL setting, =04
highlighting the compounding effect of sequential domain

shifts and lack of supervision. Takeaway 1.2: High IG-  o.0:-
GoF is a strong predictor of adaptation success. The log-
variance portrait thus provides a statistically grounded 0.00-
diagnostic signal for evaluating adaptation quality. These
findings naturally lead to the next question: Can degrada-
tion in IG-GoF be traced to specific domains encountered
during online adaptation?
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Figure 2: RAERs and corresponding
p-values evaluated across all target do-
mains for each adaptation setting.

Portraits and Performance Across Individual Domains. To localize adaptation instability, we
examine IG-GoF across individual domain groups in ImageNet-C: Noise, Blur, Weather, and Digital.
The order reflects the temporal sequence in which the model encounters each group during online
adaptation. Figure [3| visualizes the log-variance portraits for each domain under SL (top row) and
USL (bottom row) settings in the non-i.i.d. environment. In the SL setting, the portrait initially aligns
well with the IG distribution in the Noise domain but progressively deteriorates, with a pronounced
collapse in the Weather domain, indicating growing instability in parameter dynamics. Under USL, a
similar trend is observed, with the Weather domain again showing the most severe deviation. Notably,
the portrait becomes multimodal in this case, diverging from the unimodal structure characteristic of
an IG distribution.
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Figure 5: Log-variance portraits (a—c) and corresponding RAER and p-value statistics (d) for different
TTA methods under the USL setting in a non-i.i.d. environment. Subfigures (a—c) show the empirical
log-variance distributions (orange boxes) and their alignment with the fitted IG distribution (green
dash-dot line) for TENT, DeYO, and ROID, respectively. Subfigure (d) summarizes the RAER and
IG-GoF (p-values) for each method.
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Figure 4: RAERS and corresponding p-values
Portraits and Performance of Sample-Filtering for each domain under a non-i.i.d. envi-
Methods. Recent sample-filtering TTA methods ronment. Domains with p-values below the
have demonstrated strong empirical success in miti- threshold (=0.01) tend to experience perfor-
gating the effects of non-i.i.d. environment. To better mance degradation.

understand this success, we examine how these meth-

ods influence the IG-GoF of the log-variance distribution. Figure [5] (a—) compares the log-variance
portraits of the baseline method TENT with two modern sample-filtering approaches: DeYO [29]
and ROID [43]]. Unlike TENT, which shows apparent deviation from the IG form, both DeYO
and ROID yield distributions that are more closely aligned with the IG shape, indicating greater
statistical stability. Figure[5](d) reports RAERs and the corresponding p-values for each method. Both
DeYO and ROID achieve substantially higher p-values and improved RAERs compared to TENT,
confirming that stronger IG-GoF is associated with better adaptation performance. Takeaway 3:
Sample-filtering methods implicitly encourage IG alignment in parameter dynamics. This alignment
underlie their robustness in challenging non-i.i.d. environments. Nevertheless, ROID, despite its
relatively strong IG-GoF, still exhibits minor deviations from the ideal IG distribution. This gap
suggests that adaptation performance could be further enhanced by explicitly regulating parameter
dynamics to maintain IG alignment throughout the learning process, rather than relying on implicit
regularization effects.

S Structured Inverse-Gamma Model Alignment

We introduce SIGMA, a principled algorithm designed to correct degraded parameter trajectories
under USL or non-i.i.d. conditions, thereby enabling stable and high-performing adaptation. Building
on our empirical insights from the previous section, SIGMA explicitly regulates the evolution of model
parameters to preserve statistical alignment with the IG distribution, a property closely associated with
successful adaptation. In the remainder of this section, we describe the algorithm’s components in
detail and analyze how it dynamically modulates parameter updates through time-varying adjustment
of the update interval.



5.1 Algorithm

As established in the previous section, a high GoF between the log-variance portrait and the IG
distribution is a key indicator of stable adaptation. Based on this observation, we hypothesize that
adaptation can be improved by (a) identifying an appropriate IG distribution in real time, and (b)
actively regulating the parameter dynamics to preserve alignment with it throughout the learning
process. SIGMA implements this principle via three core steps: (1) Estimate Step: online estimation
of an IG distribution that best fits the observed log-variance dynamics; (2) Align Step: computation
of correction coefficients to align the current log-variance with the estimated IG distribution; (3)
Conjugate Step: modification of the parameter update based on the aligned distribution. These steps
collectively produce a dynamic rescaling of the effective update interval At at each time step, thereby
inducing a statistically calibrated trajectory for parameter adaptation. We begin by reparameterizing
the log-variance vy, at each time step using two correction coefficients: a location shift ¢, < 0 and a
scale factor by, > 1. The corrected log-variance vy, is defined as:

where alignment strength A\ quantifies how closely the updated distribution should follow the real-time
reference distribution, which is assumed to follow the IG form.

Estimate Step. We aim to identify an distribution IG(v; cx—1, 1) that best explains the history of
calibrated log-variances v1.;—1. This strategy is framed as a KL divergence minimization:

q(v|01:—1; 1) = argmin Dgp (p(v[01:6-1) || ¢(v|D1:5-1; @)). (8)
q€IG

We solve this optimization using the Nelder—Mead simplex method [[14]], a derivative-free algorithm
well-suited for scalar-valued observations.

Align Step. Given the estimated IG distribution, we compute optimal correction coefficients (cj,, b))
that align the current log-variance v, with the target distribution by the simplex method. This
optimization is formulated as the negative log-likelihood minimization:

Cro by = a(rglgli)n—10%‘](17k|171:k—1;ak—1)~ ©)

Ck 0K

We impose constraints ¢;; < 0 and b, > 1 to ensure stable reparameterization, and clip the solution if
it falls outside the valid region. Applying these coefficients, the corrected log-variance becomes:

'l~)k = 210g|0k ()\T‘ka)AtI = QIOglUkAtk‘, (10)

———
Aty

where the adjusted time interval is defined as Aty = (ArypTy)At, with 1, = exp(—cj/2b;) and
T = (0, At)1=%)/%  The derivation is detailed in Appendix This yields the modified
transition distribution:

P (w(tr)|w(tr-1)) = N(w(te) | trjk—1, Skjr—1), (11)
where

ffh—1 = W(tg—1) — grAtr, Spp_1 = op AL (12)
The effective update interval Aty is shaped by two opposing influences: (1) 7 > 1, which enlarges
Aty to correct location misalignment; and (2) 7}, < 1, which reduces Aty in response to high gradient
variance. Together, these terms adjust the parameter trajectory to preserve IG conformity and enhance
adaptation stability.

Conjugate Step. We integrate the corrected dynamics into the parameter trajectory until ¢;. Using
the modified transition distribution, we recursively calculate the marginal distribution as follows:

p(w(t)) = /p*(w(tk)\w(ﬁk—1))p(w(fk—l))dw(tk—l) = N(w(te)|pe, Xk) (13)

where 1, = wo — Zle giAt; and &), = o + Zle o2 At?1 with ¥y = 0 and initial prior
p(w(to)) = N (Wwo, Xo). This resulting distribution over parameters is considered a conjugate prior
for the predictive distribution:

p(yler) = / Pyl w(t) p(w(te) duw(ty). (14)

To proceed, we apply the plug-in approximation [44], we evaluate the integral at the posterior mean
U, yielding the final prediction f(xy; i) used for risk computation in Eq. (I). The algorithm then
proceeds to the next time step 1, iterating the Estimate—Align—Conjugate cycle. Illustrations of
the algorithm and pseudocode are provided in Appendix
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Figure 6: Log-variance portraits under non-i.i.d. environments for SL and USL settings, before
(orange) and after (green) applying SIGMA. Green distributions exhibit closer alignment with the IG
reference, indicating improved parameter dynamics.

5.2 Effectiveness

We evaluate SIGMA in both SL and USL settings -

under non-i.i.d. environments. For the USL case, we v 0 S
integrate SIGMA with three representative TTA meth- 0.4 == o RAERwoSIOMA 125 8
ods: TENT, DeYO, and ROID. Figure[f]illustrates the —zog
qualitative effect of SIGMA on the log-variance por- 5 0.3+ E
traits. In all cases, SIGMA reshapes the distribution € "15e
to more closely follow the IG structure, validating ~ =0.2~ —10§
its mechanism of action. Even robust baselines such <
as ROID benefit from additional stabilization when 0.19 S 3
augmented with SIGMA. Figure [7] shows the quan- L Lo &
titative improvements in both RAER and 1G-GoF OO USL{ENT)  USL (bev0) USL(ROID)

(p-values). Across all tested methods and conditions, )

SIGMA consistently increases the p-value, indicating Figure 7: RAERs and corresponding p-values,
improved statistical alignment with the IG distribu- before (slash-pattern bars) and after (vertical
tion. This alignment is invariably accompanied by line-pattern bars) applying SIGMA.

a corresponding gain in RAER, demonstrating that

better IG-GoF leads directly to improved adaptation performance. These results support our central
hypothesis: preserving alignment with the IG distribution is key to preventing collapse and enabling
robust online adaptation. SIGMA functions as a distribution-aware mechanism that enhances both
statistical regularity and practical performance across diverse adaptation settings.

6 Comparison with State-of-the-art TTA Methods

In the previous sections, we demonstrated the effectiveness of SIGMA across a range of settings.
To further validate our approach, we follow the standardized TTA benchmark protocol [42] under
various scenarios. All reported results are averaged over four random seeds, and both AERs and
corresponding standard deviations are presented to ensure statistical reliability and reproducibility.
All experiments were conducted using a single NVIDIA GeForce RTX 4090 GPU.

6.1 Experimental Details

Datasets We evaluated SIGMA across both multi-domain and single-domain datasets. For multi-
domain adaptation, we used ImageNet-C and D109; for single-domain evaluation, we used Rendition
[22] and Sketch [21]. Multi-domain adaptation on ImageNet-C is the default dataset; other datasets
are used in Appendix [C] ImageNet-C extends the original ImageNet dataset, consisting of 1,281,167
training images and 50,000 test images, by applying 15 types of corruption (e.g., Gaussian noise,
shot noise, defocus blur, frost, JPEG compression) at five severity levels. Following standard practice
[45] 1291 43]], we used severity level 5 and treated each corruption type as a distinct domain. The
default domain order is Noise, Blur, Weather, and Digital. D109, derived from DomainNet [48],
consists of five natural domains (i.e., clipart, infograph, painting, real, and sketch) and contains 109
classes overlapping with ImageNet. This dataset enabled evaluation under real-world domain shifts.
To assess adaptation in single-domain settings, we adopted: Rendition, which comprises 30,000
stylized renderings of 200 ImageNet classes curated via Amazon Mechanical Turk; and Sketch, which
contains 50,000 black-and-white sketches across 1,000 ImageNet classes collected via Google Image
Search.



Table 1: AERs (%) and corresponding standard deviations in Correlated Input on ImageNet-C. The
bold number indicates the best result.
Noise Blur Weather Digital

Method AER

gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg
Source 43.9 43.3 434 69.7 78.3 59.6 69.1 40.1 443 363 26.5 50.6 67.6 60.6 43.4 51.8
RoTTA 439 433 433 69.7 778 59.4 687 398 425 359 262 49.8 66.6 60.2 434 51.4+0.02

SAR 44.1 43.8 43.7 69.7 77.3 57.1 66.8 413 415 423 263 50.2 64.1 57.2 42.0 51.2+0.30
TENT 439 43.1 433 69.4 76.5 579 67.1 405 447 511 273 47.1 64.5 58.6 432 51.9+0.08
+SIGMA 43.8 42.9 43.0 67.9 733 56.2 648 398 568 37.8 26.1 435 68.1 49.6 385  50.1+0.49
EATA 443 43.8 435 69.0 74.3 56.7 642 399 447 462 257 454 61.2 54.0 40.6  50.2+0.09
+SIGMA 43.7 42.6 42.1 63.8 64.7 51.8 578 375 371 323 239 40.8 53.8 44.7 359 44.8+0.04

DeYO 43.6 419 40.7 66.3 70.3 54.7 627 383 387 369 246 43.1 55.0 50.1 39.2  47.1+0.13
+SIGMA 43.6 423 41.8 65.4 68.1 535 653 393 379 322 246 412 58.4 46.2 369 46.5+0.23
ROID 42.8 40.5 39.8 63.0 63.3 49.8 56.6 36.8 363 314 248 39.6 56.6 47.2 36.5 44.3+0.14
+SIGMA 42.7 40.3 39.6 61.1 57.0 46.9 51.8 361 344 305 23.1 38.3 49.1 43.1 33.0 41.8+0.14

Scenarios. We considered two representative unsupervised online adaptation scenarios (i.e., contin-
ual TTA setup), each simulating different forms of real-world distribution shift. In the Correlated
Input setting, domain-wise data were presented to the model in a fixed sequence, simulating tempo-
rally evolving input distributions [6} 162, 166]]. In the Correlated Label setting, samples were drawn
from localized label distributions generated by a Dirichlet distribution with concentration parameter
~ 17,146} 168]. Lower values of v produced stronger label locality and non-stationarity, while v = oo
reduced to the Correlated Input scenario.

Methods. We compared SIGMA-augmented methods against a range of representative TTA
baselines: TENT [61]] minimizes entropy loss using the model’s own predictions to reduce uncertainty
during adaptation. RoTTA [66] employs a student-teacher architecture with cross-entropy loss and
data augmentation, training a student model to adapt while maintaining alignment with a stable
teacher. SAR [46] integrates sharpness-aware minimization to avoid sharp local optima and resets the
model to the source checkpoint when loss exceeds a predefined threshold. EATA [45] extends TENT
by filtering out high-entropy (i.e., low-confidence) samples based on a fixed threshold to prevent
collapse. DeYO [29] identifies reliable samples using entropy and pseudo-label consistency under
object-destructive transformations. ROID [43]] regularizes entropy to account for label distribution
diversity and filters low-confidence samples during training. To ensure a fair comparison, we disabled
ROID’s optional prior correction module in all experiments, as it is orthogonal and applicable to
other methods.

Implementation Details. Following prior works [45], 29 143]], we used the base version of Vision
Transformer (ViT) [[12] with the self-supervised D2V model [4] as our default backbone. We also
evaluated SIGMA using Swin Transformer (Swin) [37] to assess architectural generalization. All
source models were initialized using publicly available weights pre-trained on ImageNet to ensure fair
comparison and reproducibility. Consistent with previous studies [34} 45,146,143\ 31], we restricted
training to normalization layers, either batch normalization [24]] or layer normalization [2], depending
on the model architecture. We adopted official implementations and hyperparameters from each
method’s original paper and the standardized TTA benchmark suite [42]. When method-specific
settings were unavailable for a dataset or model, we defaulted to the best-performing configuration
reported for ROID. We used SGD with a momentum of 0.9 with the source-parameter averaging
[46, 43, 131] and a batch size of 64 as the base optimizer. Learning rates were set to 1.0 X 10—°
for D2V, 2.5 x 10~* for ViT and Swin, and 1.0 x 1073 for SAR (using the SAM optimizer [13]])
across both ViT and Swin models. The SIGMA alignment strength \ was fixed per method and held
constant across experiments unless otherwise noted: A = 5.0 x 10~° for TENT, 7.5 x 10~ for
EATA and ROID, and 5.0 x 10~5 for DeYO. We implemented the Kolmogorov—Smirnov test via the
scipy.stats.kstest and the Nelder—-Mead simplex method via the scipy.stats.fit.

6.2 Results

Correlated Input. Table[I] summarizes the results on the ImageNet-C dataset under the Correlated
Input setting, comparing baseline TTA methods with and without SIGMA. Among the baselines,
sample-filtering approaches such as EATA, DeYO, and ROID outperformed other strategies, including
student—teacher frameworks (i.e., ROTTA [66]]) and sharpness-aware minimization (i.e., SAR [46]).
ROID achieved the highest baseline accuracy. When we applied SIGMA, all methods showed further
improvements. Specifically, TENT, EATA, DeYO, and ROID improved by 1.8%, 5.4%, 0.6%, and
2.5%, respectively. These results demonstrate SIGMA'’s ability to enhance stability by regulating
parameter dynamics via IG alignment.



Table 2: AERSs (%) and standard deviations in Correlated Label (v = 0.1) on ImageNet-C. The bold
number indicates the best result.
Noise Blur Weather Digital

Method AER

gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg
Source 43.9 43.3 434 69.7 78.3 59.6 69.1 40.1 443 363 26.5 50.6 67.6 60.6 43.4 51.8
RoTTA 435 412 408 638.4 71.1 56.3 644 391 383 386 283 654 675 674 494 52.0+0.06
SAR 43.9 41.7 40.9 68.4 71.8 55.0 634 393 39.1 388 253 44.8 58.0 49.9 39.3  48.0+0.10
TENT 44.0 43.5 43.8 70.8 783 59.9 68.8 424 520 565 302 64.7 68.7 63.2 447 55.4+1.58
+SIGMA 434 41.8  41.6 66.9 754 560 685 41.6 609 333 254 43.0 69.3 50.1 39.6 50.5+0.16
EATA 43.5 40.5 39.6 61.7 62.0 48.1 56.0 36.7 36.0 329 23.0 37.1 532 44.5 34.7 43.3+0.03
+SIGMA 414 39.3 39.2 56.9 570 476 53.6 353 348 305 227 38.1 453 383 328 40.9+0.06
DeYO 41.3 38.8 38.8 60.8 61.0 523 706 425 403 408 26.1 64.3 66.4 48.1 429 49.0+2.83
+SIGMA 41.6 39.7 39.8 60.7 68.9 49.9 804 37.1 355 309 236 382 514 40.4 34.8 44.9+0.26
ROID 40.6 394 39.3 54.8 554 464 531 355 347 300 237 36.1 48.0 414 349 40.9+0.10
+SIGMA 40.2 384 384 51.6 495 422 469 331 32.8 288 22.0 35.5 39.7 355 309 37.7+0.01

Table 3: AERs (%) and standard deviations in Correlated Label (v = 0.0) on ImageNet-C. The bold
number indicates the best result.
Noise Blur Weather Digital

Method AER

gaussian  shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg

Source 439 433 43.4 69.7 78.3 59.6 69.1 40.1 443 363 265 50.6 67.6 60.6 43.4 51.8
RoTTA 43.8 42.0 42.0 69.9 74.5 59.3 674 403 395 402 290 74.5 72.4 72.8 51.5 54.6+0.04
SAR 44.2 41.8 41.0 67.6 71.7 54.8 635 392 390 382 256 67.5 66.0 579 39.0 50.5+1.38
TENT 44.1 43.7 44.0 71.1 79.2 61.6 69.8 432 531 559 308 48.7 69.4 69.1 589 56.240.98
+SIGMA 43.4 41.8 41.7 67.5 753 56.3 672 409 586 339 254 43.1 66.7 50.1 39.8  50.1+0.01
EATA 435 42.4 42.4 65.9 71.9 559 64.0 405 465 409 25.6 43.1 63.4 51.4 39.9  49.1+0.34
+SIGMA 429 424 42.8 70.1 71.2 575 649 405 417 368 264 58.7 52.6 473 38.6 48.9+0.17
DeYO 41.5 389 38.9 61.7 61.3 51.8 720 422 416 397 265 56.4 57.1 47.3 41.4  47.9+0.57
+SIGMA 41.7 39.9 40.0 61.2 66.7 50.8 823 374 358 312 237 39.5 51.6 40.8 35.6 45.2+0.19
ROID 41.1 39.5 39.6 58.5 57.6 47.8 557 359 353 306 239 38.0 48.9 42.0 35.6  42.0+0.15
+SIGMA 40.8 39.3 39.5 55.6 52.8 44.9 51.7 345 343 299 229 B7S 43.4 38.1 32.7  39.8+0.05

Correlated Label. We then evaluated SIGMA under more challenging scenarios involving shifts in
label distribution. Table 2] and Table [3] present the results for v = 0.1 and v = 0.0, which induced
increasingly localized label shifts. These settings exacerbated the risk of performance degradation,
particularly for methods such as TENT. Despite this, SIGMA consistently prevented degradation.
Despite this, SIGMA consistently prevented degradation. TENT’s performance improved by 6.1% and
4.9% under the two 7 settings, effectively reversing collapse. ROID also benefited from improvements
of 2.2% and 3.2%, reinforcing the method’s broad applicability.

Additional Results. We extended our experiments to test generalizability for diverse model
architectures, realistic scenarios, and datasets. The results in Appendix [C| showed that SIGMA
consistently improved performance across various experimental settings. These results supported our
central claim: enforcing IG alignment in parameter dynamics prevented collapse and led to consistent
performance improvements under online adaptation settings.

7 Conclusion

In this work, we proposed a probabilistic framework to model the dynamics of model parameters
during online adaptation using an SDE formulation. By discretizing the SDE, we derived a transition
distribution that captured the time-evolving behavior of parameters throughout the adaptation process.
Our empirical analysis revealed that the log-variance of this transition distribution served as a key
indicator of adaptation stability. We found that successful adaptation consistently coincided with
strong alignment between the log-variance portrait and the IG distribution. When this alignment
broke down, models experienced performance degradation or collapse. Motivated by these findings,
we introduced SIGMA, an algorithm that dynamically estimated the target IG distribution and
regularized parameter updates to preserve alignment. SIGMA achieved this by adaptively rescaling
the update interval based on variance dynamics. When applied to state-of-the-art TTA methods,
SIGMA consistently improved performance across architectures, datasets, and realistic scenarios.
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Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We use publicly available, open-access pre-trained models and datasets for
all of our experiments. Additionally, we provide pseudocode for the proposed algorithm in
Appendix B.1 to facilitate reproducibility and implementation.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All the experimental details are provided in Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run the experiment with four seeds and report the standard deviations and
average error rates.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We comment on the computer resources in Appendix C and discuss efficiency
in Appendix D.2.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read and conform to the code of ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: We focus on general and foundational machine learning research.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release pretrained models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: To the best of our knowledge, we adequately cite and mention all used assets
in this paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19


paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not provide new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: We do not involve crowdsourcing experiments or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve crowdsourcing experiments or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in our research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Parameter Dynamics and Log-Variance Portraits

In Appendix [A.T] we present the proof of Theorem [I] which characterizes the time-varying parameter
distribution during adaptation. Building on this theorem, in Appendix[A.3] we compare the dynamics
of the raw variance and its logarithmic counterpart (i.e., log-variance). Our empirical observations
show that the log-variance offers a more stationary and statistically tractable distribution, enabling
practical computation of distributional alignment during adaptation.

A.1 Proof of Theorem 1

Proof. Following Theorem 5.4 in Sirkki & Solin [533]], the evolution of the mean m(t) = E[w ()]
and the covariance S(t) = Cov[w(t)] for the FPK solution p(w, t) from Eq. @) is given by:

T = [ stw.tpw, aw,
% T /g(w,t)(w —m) " p(w, t)dw

— /(w - m)gT(w,t)p(w,t)dw

+/L(w,t)LT(w,t)p(w,t)dw,

where L(w,t) = /no1. Assuming a Gaussian approximation to the parameter distribution [28]], we
write:

p(w,t) = N(w|m(t), S(t)).
We linearize g(w,t) and L(w, t) around m(t) via first-order Taylor expansion:
g(w,t) = g(m,t) + G(m, )(w —m),
L(w,t) ~ L(m,1),
where G(m, t) is the Jacobian of g evaluated at . Substituting these into the FPK evolution yields:

Mean:
T = [latm.0) + glm.t)w — m)New
— —g(m,t) — G(m, 1) /(w — m)Ndw
0
= _g(ma t)'
Covariance:
G =~ [latm.) + gm0 w — m)lw - m) " New

- /(w —m)[g(m,t) + G(m,t)(w — m)] " Ndw

+ /L(m, LT (m, )N dw.
We compute each term separately:

- /[g(mﬂf) +G(m,t)(w — m)r)(w — m) Ndw = —g(m, 1) /(w —m) " Ndw

0

—G(m,t) /(w —m)(w —m) Ndw

S
= _g(mvt)s (a)
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- /(w —m)[g(m,t) + G(m,t)(w — m)r] T Ndw = — /(w —m)Ndw g(m,t)"

| —
0

- [(w=m)w - m) " Naw ¢ (m. 1)

S
= —S8GT (m,1). (b)

/L(m,t)LT(m,t)Ndw = L(m,t)L" (m,1t)

= no;l ©)
Summing Eqgs. (a-c), we obtain the covariance dynamics:

% = —8G" (m,t) — G(m,1)S + no’l

Discretization: The transition distribution p(w (¢ )|w(tx—1)) of the SDE is a Gaussian distribution
following Lemma A.9 in Sérkki & Svensson [54]]. We consider a sufficiently small interval (¢5_1, tx)
with At = ¢, —t—1 = 1, and assume that both the gradient g(m, t) and the variance term of L(m, t)
remain approximately constant over this interval, denoted by g and o7. Under the constant-gradient
assumption, we also take G(m, t) = 0. Solving the resulting ordinary differential equations yields
the mean and covariance of the transition distribution:

Pile—1 = M(tg|te—1)

tr—1+At
= w(tk_l) — / gk dt

te—1
= w(tk_l) — gkAt,
Skik—1 = S(txltr—1)

t_1+At
= / noil dt

th—1
= U,%Atgl,
where m(t;_1) = w(tx—1) and S(¢x—1) = 0.

A.2 Justification of Small Variance

Our derivation assumes the gradient and variance are approximately constant during each discretiza-
tion step. This is justified by the short time interval involved in transitioning from continuous to
discrete time.

The time interval is determined by the learning rate 7, and we adopt a learning rate in the range
of 107° to 107, which is about 100 times smaller than that used during source model training
(typically 1073 to 10~%). Empirically, as shown in Figure |6|(x-axis), the maximum observed variance
is around e~ !! and the minimum is approximately e~28. This result demonstrates that variance
remains extremely small on continual TTA settings. This behavior is consistent across multiple
datasets, as shown in Figure @

This consistency can be explained by the fact that TTA assumes a well-trained model as its starting
point (see Section 2.1), resulting in minimal model drift during adaptation. Consequently, the
assumption of approximately constant mean and variance is naturally satisfied in the TTA setting.
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A.3 Comparison of Variance and Log-variance
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Figure 8: Variance (left) and log-variance (right) dynamics under SL settings in i.i.d. environments.
The variance signal exhibits strong fluctuations and a heavy-tailed distribution, complicating statistical
modeling. In contrast, the log-variance shows more stationary behavior and aligns well with the IG
distribution, enabling stable estimation and interpretation.

B Structured Inverse-Gamma Model Alignment

B.1 Illustration of Algorithm

«— >
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Figure 9: Illustration of the SIGMA algorithm. The black crosses represent the model param-
eters at each discrete time step, and the gray curves depict their corresponding distributions
p(w(trr)) = N(w(trx)|puk, Xk). In Estimate Step, SIGMA estimates an IG distribution us-
ing the log-variance values wvi.;—1 derived from the covariance of the transition distribution
p(w(te)|w(te—1)) = N(w(te)|ftg|k—1, Lkjk—1) up to time t,_1. In Align Step, it computes the
optimal correction terms c;, and by, to align the current log-variance with the estimated IG distribution.
In Conjugate Step, these corrections adjust the update interval Aty, thereby controlling the parameter
dynamics at time step .

B.2 Derivation of Algorithm

In this section, we provide the derivation of Eq. (I0). Using Eq. (7) and the log-variance, we get

— 21 At) —
B = uwloghwwng
k
Substituting and simplifying, we get:
f)l _ log(O'kAt) — %Ck +log A,
2 b

Taking the exponential of both sides:

v 1 A
exp (U;) = dexp (—;;) exp <Og(zk )
k k

where exp (log(oxAt)/by) = (o, At) =Y/ (o), At) = Ty (o, At). Taking the logarithm of both
sides:

) = A\rpTLopAt,

ﬁk = 210g ‘O’k(/\’l"ka)Aﬂ.
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B.3 Pseudocode

Algorithm 1 Structured Inverse-Gamma Model Alignment

Require: Initial interval A¢, Source model f(.; @), Alignment Strength )\,
Initialization: Ho = ﬁ)o, EO = 0, go = O, ’l~11:1 = {}
for k =1to K do

gk < V5, Gug, tr) >Eq. @)
g < (gr + 9r—1)
gk < 1/k g

op + 1/d Tr[(gk — ) (gr — Gx) "]
vy < log(o2 At?)

Atk «— At

(ck, bf) < (0,1)

if |01.x| > 1 then

Estimate Step:

q(v]01:5—1; 1)  argmingerg Drr.(p(v|01:6—1) || ¢(v|D1:—-1; @) > Eq. B)
Align Step:

O + (v — k) /b + 2log A

(ck,by,) < argminge, p,) — log (| Vr:k—15 k1) >Eq. @)

T < exp(—cy/(2b5)r)
Ty + (ok At)(l—bi)/bi
Atk — ()\ TL Tk) At
end if
Conjugate Step:
(e, ) < (p—1 — g Atg, Sp—1 + 03 At 1) > Recursion of Eq. (13)
if £ > 1 then
Oy, < (log(of At?) — c;)/b; + 2log A
U1k 4 O1:p—1 U {Or}
end if
end for

C Extended Experiments
To evaluate the generality and practicality of our method, we conducted a broad set of extended

experiments. These include studies across diverse model architectures, runtime efficiency, domain
ordering, repeated datasets, various datasets, and the impact of alignment strength on performance.

C.1 Diverse Model Architectures

600 800 w00 0 1 2 ) 200 400 600 800 1000 0 1 2 o 200 400 600

(a) ViT (b) Swin (c) D2V

Figure 10: Log-variance dynamics for each backbone architecture under the stable adaptation setting
(i.e., SL in i.i.d. environments) on ImageNet-C. The blue line represents the evolution of log-variance
over time. Orange boxes show empirical distributions. The green dash-dot line denotes the fitted IG
distribution, with red and black dashed lines representing its mean and mode, respectively.

Justification of IG Alignment. To verify the robustness of IG alignment assumption, we measured
the log-variance under the stable adaptation setting (i.e., SL in i.i.d. environments) using three
different backbone architectures: ViT, Swin, and D2V. As shown in Figure@[, the temporal evolution
of log-variance (blue line) exhibited distinct patterns across models. However, in all cases, the
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resulting log-variance portraits (orange boxes) showed strong GoF with the IG distribution (green
dash-dot line). This consistency confirms that IG alignment is a model-agnostic property of stable
adaptation dynamics.

Table 4: AERs (%) and corresponding standard deviations for ViT in Correlated Input on ImageNet-C.
The bold number indicates the best result.

Noise Blur ‘Weather Digital
Method gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg AER
Source 65.8 67.2 65.4 68.8 744 64.3 66.6 569 453 487 293 81.8 57.1 60.8 50.2 60.2
RoTTA 65.8 67.1 64.9 68.9 733 62.8 652 556 441 457 2719 80.3 545 60.0 49.8  59.1+0.05
SAR 61.3 55.7 54.4 62.0 61.4 53.8 570 539 451 459 29.1 55.1 515 49.2 403  51.7+0.14

TENT 63.8 61.7 59.9 672 71.0 60.8 638 556 465 479 285 71.8 554 545 46.5 57.0£0.04
+SIGMA 63.8 61.7 59.3 63.9 64.2 53.9 577 539 446 404 274 59.1 52.9 47.6 41.0 52.840.07
EATA 61.8 57.1 56.2 61.5 62.5 54.4 572 51.8 450 425 280 56.8 51.7 48.4 424 51.8+0.10
+SIGMA 61.8 57.1 555 57.6 55.0 49.2 504 478 408 37.6 267 48.0 46.2 41.1 36.5 47.4+0.08
DeYO 60.8 56.4 55.6 60.5 61.0 52.4 579 517 429 391 272 53.1 51.6 46.8 412 50.5+0.11
+SIGMA 60.8 56.4 55.2 574 575 50.3 741 536 41.0 375 26.6 48.4 47.2 41.8 37.0 49.7+0.34
ROID 57.6 515 522 55.1 52.4 46.5 472 456 395 360 26.0 45.0 43.8 39.7 36.3  45.0+0.09
+SIGMA 57.9 51.7 52.1 54.4 50.5 45.3 444 443 394 355 261 453 39.6 37.5 352 43.9+0.13

Table 5: AERs (%) and corresponding standard deviations for Swin in Correlated Input on ImageNet-
C. The bold number indicates the best result.

Noise Blur Weather Digital
Method gaussian  shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg AER
Source 71.0 70.0 754 72.8 81.6 63.8 682 579 50.7 40.7 28.6 60.6 72.1 86.6 59.3 64.0
RoTTA 71.0 69.3 73.8 732 80.4 62.7 672 569 487 429 291 59.0 69.2 88.7 59.0 63.4+0.01
SAR 63.5 574 58.0 77.1 73.8 68.0 717 655 678 633 320 70.2 71.8 84.8 63.0 65.9+1.27

TENT 67.3 63.4 67.7 782 80.1 64.4 678 586 550 552 298 57.0 70.8 80.4 573 63.5+0.03
+SIGMA 67.3 63.4 66.4 77.9 75.9 62.7 645 61.6 555 512 267 50.4 69.3 759 51.7 61.4+0.25
EATA 63.0 56.8 57.6 68.4 66.8 54.6 557 523 467 421 259 48.8 57.1 64.8 49.7 54.0+0.13
+SIGMA 63.0 56.8 572 65.9 63.9 52.9 509 48.6 444 398 248 46.5 50.9 585 443  51.240.05
DeYO 62.6 56.8 57.3 72.7 68.9 58.3 624 528 467 765 26.7 483 58.2 64.4 49.6 57.8+1.66
+SIGMA 62.6 56.8 573 71.8 68.9 58.7 622 516 450 651 259 47.6 535 60.3 469 55.6+1.89
ROID 58.0 51.6 514 62.9 57.6 49.9 475 442 399 362 242 43.9 445 50.4 425 47.0£0.26
+SIGMA 58.7 52.0 52.0 64.3 57.6 49.1 458 422 387 344 251 43.8 41.9 46.6 39.8 46.1+0.17

Benchmark Results. Building on IG alignment principle, we applied SIGMA to both ViT and
Swin backbones across multiple TTA methods. Table ] reports results on ViT. SIGMA improved
performance by 4.2% with TENT, 4.4% with EATA, 0.8% with DeYO, and 1.1% with ROID. Similar
trends were observed in TableE]for Swin, with gains of 2.1% (TENT), 3.8% (EATA), 2.2% (DeYO),
and 0.9% (ROID), respectively. These consistent improvements reinforce the generality of IG
alignment principle and its effectiveness across different model architectures.

C.2 Runtime Efficiency

Efficiency is a critical factor in online adaptation
. . . TENT ROID+SIGMA
scenarios. To quantify runtime overhead, we use 2 (028 ms, 19.3%)

GPU wall time (in milliseconds per sample) as - : f)’:?é - A
our efficiency metric. Figure[TT]illustrates the 3 A ROID s 02070 5

) . 5 15 +SIG 24 ms, 145%)
wall time and RAER before and after applying £ Oalmeisse &
SIGMA for each sample-filtering method un-  : ya DEYO+SIGMA
der the Correlated Input scenario on ImageNet- %1 Pt T S
C. SIGMA introduced minimal additional over- ya ha
head (e.g., only 0.04 ms / sample for EATA and £ AT
ROID) while achieving substantial RAER im- £ ° @oii¥ig  0aine s

provements of 10.4% and 4.8%, respectively.
These results demonstrate the high efficiency of
SIGMA, which stems from its lightweight de- 016 018 020 02 o024 026 02
sign based on scalar variance observations and GrU eIl Time (mefsample)

derivative-free optimization. Overall, SIGMA Figure 11: RAERs and corresponding GPU wall

maintains a strong balance between computa- (ime for each method w/o and w/ SIGMA on
tional cost and adaptation effectiveness. TmageNet-C.

TENT
(0.16 ms, -0.2%}
0
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C.3 Various Domain Ordering

In real-world online adaptation scenarios, the ‘

sequence in which domains appear can vary sig- TENT ctinn mo¥0 oA
nificantly, and robustness to such variation is N oA D A
essential for practical deployment. To evalu-

ate this, we tested different permutations of the
four broader domain categories in ImageNet-C:
Noise (N), Blur (B), Weather (W), and Digital
(D). Specifically, we evaluated four domain or-
derings: the original order N - B — W — D,
along with three alternative sequences (i.e., B —
W—-D—-N,W—=D—-N-—B,andD —-N —
B — W). Figure[I2] presents the AERs for each . s . 4 45 1
TTA method with and without SIGMA across NeBWED BN rder e DeNeEeW
these sequences. In all cases, SIGMA consis-

tently improved performance, regardless of do- Figure 12: AERs in different domain orders for
main order. These results underscore SIGMA’s  each method w/o and w/ SIGMA on ImageNet-C.
robustness to domain sequence variation and

confirm its practical utility in dynamic and unpredictable real-world environments.

Average Error Rate (%)
- Y B <
IS o & S ¢) b

N
N

i
o

C.4 Impact of Alignment Strength on Performance

To examine the impact of alignment strength, we focused i

on ROID and systematically varied the value of the hy- 5 & denssw Point [/\[‘,R=53.6{);)
perparameter \ by introducing scaled perturbations. We ¢ poffeeste |
began with a base value of A\ = 7.5 x 10~° and added i
an increment of ne, where ¢ = 1078 and n increased EM
multiplicatively by a factor of 2. Figure[I3|presents the & }"}’“"{"}“}"I“{-‘f\}‘ .’
AERs and corresponding standard deviations for each A j:t’ ‘I"‘{“*{
setting. We observed that increasing alignment strength

from n = 2 to n = 8192 gradually reduced the AER R R R R
from approximately 41.7% to 40.8%, indicating improved n

performance. However, when n reached 16384, the AER
sharply increased to 53.6%, demonstrating that excessive
alignment strength impaired performance. These results
confirmed that moderate increases in alignment strength
enhanced adaptation, while overly aggressive regulariza-
tion degraded it. Consequently, SIGMA maintains robust performance across a broad range of A
values as long as overly aggressive regularization is avoided.

Figure 13: Effect of additional alignment
strength on AER. Green circle markers
denote mean AER; red bars indicate stan-
dard deviation.

C.5 Repeated Datasets

To assess practical applicability in real-world usage pat-
terns, we evaluated a repeated dataset scenario in which ~ _

the same sequence of domains was presented to the model 54 T A e e s e
multiple times. This setting mimics recurring distribution 435 At
patterns commonly observed in daily tasks or seasonal £ *° —= ROID
environmental cycles. We compared the performance of :ijo

ROID with and without SIGMA under repeated domain £,/ W
exposures. As shown in Figure @ ROID maintained sta- 110

ble adaptation performance across repetitions. Notably, % Ihe Number of Dataset Repetibens,
SIGMA consistently outperformed ROID throughout the

entire sequence, keeping the AER below 41.5% across all Figure 14: AERs over repeated
15 repetitions. These results suggest that SIGMA not only ImageNet-C. The maximum number of
prevents performance degradation during initial adaptation repetitions is 15.

but also sustains robust performance in long-term, cyclical

deployments, demonstrating strong potential for real-world online adaptation scenarios.

45.0
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C.6 Various Datasets

(a) Rendition (b) Sketch (c) D109

Figure 15: Log-variance dynamics under the stable adaptation setting (i.e., SL in i.i.d. environments)
on Rendition, Sketch, and D109. The blue line represents the evolution of log-variance over time.
Orange boxes show empirical distributions. The green dash-dot line denotes the fitted IG distribution,
with red and black dashed lines representing its mean and mode, respectively.

Justification of IG alignment. To validate the generality of IG alignment assumption, we
measured the log-variance distributions under the stable adaptation setting (i.e., SL in i.i.d. en-
vironments) across diverse datasets, including Rendition, Sketch, and D109. These datasets
span both single-domain (i.e., Rendition and Sketch) and multi-domain (i.e., D109) scenarios.
As shown in Figure the empirical distributions of log-

variance (orangfz:g boxg)1 across EH three datasets exhibite%l Table 6: AERs (%) z'md corresp On(.l'
strong alignment with the IG distribution (green dash-dot line). ng standard deviations on Rendi-
These findings confirms that IG alignment assumption holds e
across different domains and types of distribution shift.

Method Rendition Sketch

Single-Domain Settings. We evaluated SIGMA on the Ren- _ S0uree 46.6 604
. . . RoTTA  46.5+0.01 60.1+0.03
dition and Sketch datasets by applying it to ROID, which served
. > . SAR 45.9+0.05 60.2+0.07
as a strong baseline. As reported in Table [} SIGMA sig- TENT 4604003 60.3+0.06
nificantly improved AERs compared to ROID, achieving the  EATA  45.8+0.09 58.6+0.08
best results on both datasets. These findings demonstrate that DeYo  42.9+0.07 60.420.62
SIGMA remains effective even in specialized single-domain ROID  41.4+0.08 55.7+0.02
adaptation scenarios, further reinforcing the robustness of IG SIGMA  37.9+0.09 51.5+0.12

alignment principle.

Table 7: AERs (%) and corresponding standard  Table 8: AERs (%) and corresponding standard

deviations in Correlated Input on D109. deviations in Correlated Label on D109.
Method  clipart infograph painting real sketch AER Method  clipart infograph painting real sketch AER
Source 487 72.9 41.2 205  56.7 48.0 Source 487 72.9 41.2 205  56.7 48.0
RoTTA  48.6 72.6 40.7 199 539 47.2+0.01 RoTTA 487 727 409 202 554  47.6+0.03
SAR 48.3 74.3 429 203 565  48.5+0.10 SAR 484 74.6 435 203 564  48.6+0.02
TENT 49.1 78.8 56.4 40.3 89.5 62.8+0.20 TENT 49.1 774 51.3 317 797 57.8+0.06
EATA 479 71.6 39.9 19.7 541  46.6£0.04 EATA 47.8 71.5 39.9 19.8 537  46.5+0.06
DeYO 472 74.4 40.9 19.7 512 46.7+0.13 DeYO 473 74.4 40.6 19.7  51.0 46.6+0.40
ROID 434 68.5 37.6 19.3 504  43.8+0.03 ROID 434 68.0 37.7 194 505  43.8+0.06
SIGMA 429 64.8 36.2 18.3 44.6  41.4+0.03 SIGMA  43.1 65.0 36.5 18.9 455  41.8+0.06

Multi-Domain Settings. To evaluate SIGMA under natural multi-domain shifts, we used D109, a
dataset that features stylistic variation across domains rather than synthetic corruptions. In Table 7]
(Correlated Input) and Table [8| (Correlated Labels, v = 0.1), SIGMA consistently outperformed
ROID, confirming its effectiveness in realistic domain shift conditions. These results show that
SIGMA is robust to natural distribution changes and validate the broad applicability of the IG
alignment assumption beyond synthetic corruption-based benchmarks.

Table 9: AERs (%) and corresponding standard deviations on CIFAR10-C, CIFAR100-C and
ImageNet-C.
Dataset Source CoTTA PETAL (FIM) RMT ROID SIGMA

CIFAR10-C 43.5 16.5+0.16 16.0+0.03 17.0£0.34 16.3+0.17 15.7+0.06
CIFAR100-C 464  32.840.07 31.3+0.13 30.6+£0.11 31.7£0.11  29.6+0.07
ImageNet-C 64.0 59.3+1.23 58.3+0.14 52.6£1.00 47.0+£0.26 46.1+0.17

28



Small Multi-Domain Settings. We conducted experiments on CIFAR10-C and CIFAR100-C
for ResNet-based models [21]. For PETAL [7]], we adopted the FIM variant. Table E] presents a
comparison between student-teacher methods and SIGMA applied on top of the strongest entropy-
based baseline, ROID. These results show that ROID outperforms student-teacher approaches on
ImageNet-C, which involves a larger number of classes. In contrast, on CIFAR10-C and CIFAR100-
C, student-teacher methods such as PETAL and RMT [11] exhibit error rates lower than ROID.
Specifically, PETAL achieves better performance than ROID on both CIFAR datasets, and RMT
outperforms ROID on CIFAR100-C. However, SIGMA consistently improves ROID performance in
all datasets, achieving error rates lower than those of all student-teacher methods, including CoTTA,
PETAL, and RMT. These results demonstrate that SIGMA not only offers computational efficiency
but also delivers superior accuracy compared to student-teacher models.

C.7 Real-world Scenario

We evaluated several TTA methods in a real- Table 10: Average word error rates (WER, %) and

time speech recognition scenario using the  gtandard deviation on validation (VALID) and test
TEDLIUM3 date.lset (23] containing streamed (TEST) sets in the real-world speech recognition
TED talk recordings. The validation and test ¢ onario on TEDLIUMS3.

sets included speech from 8 and 11 speakers,

each covering different topics. Our experiments Method VALID TEST
used a speech-adapted version of the D2V model 1 74
pre-trained on LibriSpeech [47] as the backbone. Ps ei?lgrEZbel 12.7 :3_% 01 121 + 0.03
Following the experimental protocol of SUTA TENT 1254001 119 +0.02

[36], an established TTA method for speech SUTA 12.4+001 11.6+0.01
recognition, we simulated realistic speaker adap- SUTA+SIGMA 12.3 ; 001 114 ; 0.01
tation by measuring average word error rate
(WER) as new speakers sequentially entered the
stream. As shown in Table[I0] SUTA+SIGMA consistently outperformed all baselines, achieving the
lowest WER on both the validation and test sets. These results demonstrate that SIGMA enhances
real-time adaptation by effectively mitigating speaker shift, confirming its practical applicability to
real-world online adaptation tasks such as speech recognition.

D Related Works

D.1 Learning Dynamics

From the perspective of learning dynamics, a growing body of work demonstrates that the noise
introduced by SGD exhibits heavy-tailed behavior [58} 59, 20} I57]]. These studies establish that
the tail behavior of SGD noise is closely related to the flatness of loss minima and, by extension,
generalization performance [59,20]. This strong theoretical understanding underpins the empirical
observations reported in Appendix [A.3] and substantiates our approach of treating variance as a
random variable rather than a fixed value.

In parallel to these findings regarding learning dynamics and noise behavior, recent work has
reinterpreted SGD-like updates from a Bayesian perspective. For instance, the existing works [41} 8]
model SGD as an SDE where the stationary distribution approximates a Gaussian posterior. This
work offers a principled explanation for the implicit regularization effects of SGD. Based on this
view, Maddox et al. [38]] have proposed posterior approximations using the trajectory of SGD itself.
This work fits a Gaussian to the empirical mean and covariance of SGD iterates to enable practical
Bayesian ensembling. These studies mainly focus on training from scratch or in supervised learning
settings.

Distinct from prior work, we decisively extend the Bayesian viewpoint to the demanding setting of
sequential domain shifts and unsupervised online adaptation. Our empirical evidence establishes that
the log-variance of parameter transitions consistently aligns with the IG distribution under stable
conditions. Motivated by this observation, we propose SIGMA, an algorithm that leverages this
maintained alignment to deliver both stability and flexibility during online adaptation, setting it apart
from existing approaches.
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D.2 Bayesian Deep Learning

DNNss are highly flexible, allowing them to represent many functions with varying levels of general-
ization. Using this implicit capacity is key to improving adaptability to shifts in data distributions.
This concept is often applied in Bayesian deep learning, which treats model parameters as samples
from an underlying distribution [49} 63| 164, 126]]. Usually, the parameter distribution is approximated
as a Gaussian centered around the parameter mode [§]. With this assumption, repeated training
produces multiple models, which are then aggregated. Model averaging, based on this approach, has
shown strong robustness to distribution shifts [25} 1539} 167} 165} 152].

Recent studies have extended the Bayesian perspective to the TTA setting by analyzing changes
in parameter distributions during online adaptation [31} 32} |55, 30]. For example, Lee & Chang
[31,132]] adopts a continual learning viewpoint, applying Bayesian filtering while explicitly fixing
the transition distribution to balance information from past and present tasks. Other work [155]]
designs state-space models that are fundamental to Bayesian filtering and directly learn the transition
distribution from the data. More recently, Lee [30]] proposed modeling the transition distribution via
an SDE, incorporating Bayesian filtering where the posterior is forced to converge toward a fixed
value for stable adaptation. However, such approaches often overlook the natural dynamics of model
parameters during real-world online adaptation. Moreover, this work forced convergence excessively
suppresses heavy-tailed behavior, which degrades adaptability [58] 159, 20, 57].

In contrast, our work directly treats the variance of the transition distribution as a random variable
and explicitly analyzes its temporal evolution during online learning. As a result, we uncover a
key empirical law: the log-variance of parameter transitions aligns well with an IG distribution
under stable online conditions. Building on this observation, we introduce a principled algorithm
that estimates the IG distribution in real time and modulates the parameter dynamics accordingly.
Consequently, by modeling variance as a stochastic quantity, our method avoids oversuppressing
heavy-tailed behavior, thereby preserving adaptability. Furthermore, unlike conventional Bayesian
filtering approaches, our method introduces no latent variables, making it lightweight and memory
efficient.

E Limitation and Future Work

One limitation of our approach is the assumption that the parameter distribution follows a Gaussian
form. While this assumption enables analytical tractability, it may limit the expressiveness of the
underlying distribution. Nevertheless, our empirical results demonstrate that SIGMA, built upon this
approximation, consistently performs well across various realistic scenarios and model architectures.
We aim to extend our probabilistic framework for future work to account for more complex, non-
Gaussian parameter distributions. We anticipate that such generalizations will be necessary in
applications where greater distributional flexibility is critical. This direction may lead to more general
and consequential online adaptation techniques.
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