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Abstract

Pre-trained models based on deep neural networks hold strong potential for cross-
domain adaptability. However, this potential is often impeded in online machine
learning (OML) settings, where the breakdown of the independent and identically
distributed (i.i.d.) assumption leads to unstable adaptation. While recent advances
in test-time adaptation (TTA) have addressed aspects of this challenge under
unsupervised learning, most existing methods focus exclusively on unsupervised
objectives and overlook the risks posed by non-i.i.d. environments and the resulting
dynamics of model parameters. In this work, we present a probabilistic framework
that models the adaptation process using stochastic differential equations, enabling
a principled analysis of parameter distribution dynamics over time. Within this
framework, we find that the log-variance of the parameter transition distribution
aligns closely with an inverse-gamma distribution under stable and high-performing
adaptation conditions. Motivated by this insight, we propose Structured Inverse-
Gamma Model Alignment (SIGMA), a novel algorithm that dynamically regulates
parameter evolution to preserve inverse-gamma alignment throughout adaptation.
Extensive experiments across diverse models, datasets, and adaptation scenarios
show that SIGMA consistently enhances the performance of state-of-the-art TTA
methods, highlighting the critical role of parameter dynamics in ensuring robust
adaptation.

1 Introduction

The rapid advancement of deep neural networks (DNNs) has given rise to powerful pre-trained models
capable of generalizing across a wide range of domains [12, 37, 56, 3, 4]. Despite their versatility,
deploying these models in dynamic, resource-constrained environments remains challenging. This
difficulty stems from their increasing computational demands and, more fundamentally, from the
breakdown of the independent and identically distributed (i.i.d.) assumption in real-world online
learning scenarios [16, 50]. Online machine learning (OML) [5] provides a paradigm for addressing
such challenges by enabling models to adapt incrementally to non-stationary data streams, where full
retraining on large, static datasets is impractical [18, 44]. In OML settings, data arrive sequentially
from various domains, inherently violating the i.i.d. assumption that underpins conventional DNN
training. This sequential domain shift often induces a severe degradation in model performance and
generalization ability [21, 27, 19, 60, 9]. Consequently, a critical goal is to develop robust online
adaptation methods to prevent collapse while preserving the adaptability under non-i.i.d. conditions.

Test-time adaptation (TTA) has recently emerged as a promising direction, combining the challenges
of OML with unsupervised learning. TTA aims to adapt pre-trained models to unlabeled test data that
arrive sequentially during deployment. The early TTA approach focused on unsupervised learning
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objectives. For example, TENT [61] replaces cross-entropy with entropy minimization over model
predictions. While such methods offer improvements in early stages, they are prone to collapse when
faced with extended domain shifts [6, 10, 62, 66, 51]. Recent efforts have addressed this instability by
introducing sample-filtering strategies that downweight or discard high-uncertainty predictions during
adaptation [45, 46, 29, 43]. Despite their empirical success, these methods remain narrowly focused
on unsupervised objectives and do not explicitly address the fundamental instability introduced by
the non-i.i.d. nature of the data and the evolving dynamics of model parameters.

In this work, we take a fundamentally different perspective. Rather than focusing solely on the
loss function, we develop a probabilistic framework that explicitly models the dynamics of model
parameters during adaptation. Our framework leverages stochastic differential equation (SDE)
approximations of stochastic gradient descent (SGD) [33, 35], treating SGD as a continuous-time
stochastic process. By discretizing the SDE, we derive a transition distribution that represents the
evolution of the parameter uncertainty over time during the adaptation process (Section 3). Within
this framework, we focus on the logarithmic variation (log-variance) of the transition distribution
as a diagnostic signal. Empirical analysis under both i.i.d. and non-i.i.d. conditions, in both
supervised (SL) and unsupervised (USL) settings, leads to three key findings (Section 4): (1) The
log-variance distribution follows an inverse-gamma (IG) distribution in stable, high-performing
adaptation scenarios. (2) Deviations from the IG distribution are strongly predictive of performance
degradation. (3) State-of-the-art TTA methods tend to implicitly promote IG alignment, suggesting
an unintentional but beneficial form of regularization.

These findings motivate our core hypothesis: explicitly maintaining IG alignment in the log-variance
dynamics is critical for stable and effective adaptation in non-i.i.d. environments. To realize
this principle, we introduce the Structured Inverse-Gamma Model Alignment (SIGMA) algorithm.
SIGMA dynamically estimates an appropriate IG distribution using derivative-free optimization and
adjusts the parameter update trajectory to preserve alignment throughout online adaptation. We
validate SIGMA through extensive experiments across multiple models, datasets, and adaptation
scenarios. Our results show that SIGMA consistently improves the performance of state-of-the-art
TTA methods, supporting our central claim: alignment of parameter dynamics via IG regularization
offers a robust and principled foundation under online adaptation settings.

2 Preliminaries

2.1 Test-Time Adaptation

TTA addresses the challenge of adapting a well-trained model, pretrained on large-scale labeled
source data, to a stream of unlabeled test data from evolving domains. The objective is to adapt
the model in real time to each new domain sample. Performance is measured by the average error
rate (AER) across the test stream. TTA methods, developed from domain adaptation and continual
learning research [10, 62, 66, 51], aim to handle changing data distributions. Recently, filtering
strategies have been introduced to exclude or downweight uncertain predictions, improving robustness
in multi-domain and non-i.i.d. environments [45, 46, 29, 43]. While most existing TTA methods
focus on unsupervised loss design, our main contribution directly models and analyzes parameter
changes during adaptation. Specifically, we propose a probabilistic framework that interprets TTA as
an instance of online parameter evolution, offering a systematic method to understand the process.

2.2 The SDE Approximation

SGD lies at the heart of modern deep learning, and understanding its dynamics is fundamental to
advancing theoretical and practical training aspects. A growing body of research has leveraged
SDEs to approximate SGD from a continuous-time perspective, providing deeper insights into
learning behavior [33, 35, 40, 1]. A key development is the use of stochastic modified equations to
approximate discrete-time SGD updates with continuous-time SDEs [33]. This formulation captures
both the deterministic gradient flow and stochastic fluctuations arising from mini-batch sampling,
yielding a more complete description of the learning process. Later studies [35] have generalized
this approach to various optimizers and used it to analyze the link between learning dynamics and
generalization. This work builds upon this perspective and proposes a probabilistic framework that
captures parameter dynamics from discrete-time observations in online adaptation.
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3 Parameter Dynamics and Log-Variance Portraits

In this section, we present a theorem establishing a statistically robust measurement, the log-variance
portrait, which tracks the evolution of the parameter distribution. Building on this, Section 4 reveals
empirical patterns that characterize stable adaptation, and Section 5 applies these findings to develop
our adaptation method.

3.1 Online Machine Learning Problem

We consider a DNN model f : X → Y parameterized by w ∈ Rd, which maps inputs x ∈ X
to labels y ∈ Y . The model defines a conditional distribution p(y|x,w), used for inference. Let
{(xn, yn) ∼ D0 : n = 1 : N0} denote samples drawn from a source distribution D0, used to pre-train
a source model f(·; ŵ0). During online adaptation, the model encounters a stream of samples zk
drawn from a sequence of target distributions Dk ̸= D0 at discrete time steps tk ∈ {1, 2, 3, . . . ,K}.
The adaptation objective is to minimize the expected risk:

G(ŵ, tk) = Ezk∼Dk
[ℓ (f(xk; ŵ(tk−1)))] , (1)

where zk = (xk, yk) in SL settings and zk = (xk) in USL settings. The loss function ℓ(·) corresponds
to cross-entropy in SL, and to entropy-based objectives in USL. At each time step, the model
parameters are updated to minimize the risk:

ŵ(tk) = argmin
ŵ

G(ŵ, tk). (2)

The adaptation process is implemented using an SGD-based optimizer, producing a time series of
parameters {ŵ(t1), ŵ(t2), . . . , ŵ(tk)}. However, this trajectory is vulnerable to degradation in
non-i.i.d. environments or USL settings, where biased or noisy gradients can destabilize learning.
Our goal is to characterize and improve this trajectory by building a probabilistic framework that
captures the underlying stochasticity in the parameter evolution.

3.2 Probabilistic Framework for Parameter Dynamics

To model parameter evolution during adaptation, we approximate the discrete SGD updates using
a continuous-time SDE following Li et al. [33]. When the learning rate η is sufficiently small, the
parameter updates can be approximated by:

dw(t) = −g(w, t)dt+
√
ηΣ1/2(w, t)dWt, (3)

where dWt denotes a standard Brownian motion, g(w, t) = ∇G(w, t) denotes the gradient
of the risk, and Σ(w, t) is the empirical covariance of the gradients. Specifically, we define:
Σ(w, t) = 1/t

∑t
τ=1(g(w, τ)− ḡ(w, τ))(g(w, τ)− ḡ(w, τ))⊤ with ḡ(w, t) = 1/t

∑t
τ=1 g(w, τ)

as the mean gradient. Following [33], we treat the entries of w as independent and approximate the
full covariance matrix with a scalar multiple of the identity Σ(w, t) ≈ σ2

t I, where σ2
t = 1/d Tr(Σt)

and Tr(.) is the trace. The parameter distribution p(w(t)) under this SDE evolves according to the
Fokker–Planck–Kolmogorov (FPK) equation:

∂p(w(t))

∂t
=

d∑
i=1

∂p(w(t))

∂wi
t

[g(w, t)]i +
1

2

d∑
i=1

d∑
j=1

∂2p(w(t))

∂wi
t∂w

j
t

η[Σ(w, t)]ij , (4)

where [·]i and [·]ij denote vector and matrix components, respectively. The following theorem
provides a tractable discrete-time approximation of the transition distribution implied by Eq. (3).
Theorem 1 (Discretization of the SDE approximation). Let (tk−1, tk) be a sufficiently small discrete-
time interval, and assume that both the gradient g(w, tk) and the variance σ2

t remain approximately
constant over this interval, denoted as gk and σ2

k. Then, the transition distribution of the SDE can be
approximated by:

p(w(tk)|w(tk−1)) ≈ N (w(tk)|µk|k−1,Σk|k−1), (5)
where ∆t = tk − tk−1 = η, and the mean and covariance are given by:

µk|k−1 = w(tk−1)− gk∆t, Σk|k−1 = σ2
k∆t2I, (6)

with σ2
k = 1/d Tr[(gk − ḡk)(gk − ḡk)

⊤], ḡk = 1/k
∑k

τ=1 gτ .
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(a) Most Stable: SL, i.i.d. (b) SL, non-i.i.d.

(c) USL, i.i.d. (d) Most Unstable: USL, non-i.i.d.

Figure 1: Log-variance dynamics under SL and USL (TENT) settings in i.i.d. and non-i.i.d. environ-
ments. The blue line shows temporal evolution of log-variance. Orange boxes denote the empirical
distribution of log-variance. The green dash-dot line represents the fitted IG distribution, with red and
black dashed lines marking the IG mean and mode, respectively. The degradation in IG alignment
reflects increasing instability across scenarios.

The proof is provided in Appendix A.1. This result allows us to use discrete-time gradient observations
gk to approximate the evolution of the parameter distribution, which is originally defined in continuous
time. Importantly, it reveals the variance term σ2

k∆t2, often ignored in traditional SGD analysis. This
variance shows local uncertainty and variability in the direction of the gradient. It is an important
signal for assessing adaptation stability. While this variance term provides valuable insight, the raw
variance σ2

k has extremely heavy tails and is difficult to analyze directly, even in a stable environment
(See Appendix A.3). To address this, we instead focus on its logarithm: vk = log(σ2

k∆t2). The log-
variance portrait refers to the empirical distribution obtained by collecting values of vk at each step
during adaptation. This portrait illustrates the evolving distribution of local logarithmic variances in
the gradients over time, allowing us to see fluctuations in gradient variability as adaptation progresses.
By summarizing these local variances, the log-variance portrait offers a compact and interpretable
way to visualize and quantify how parameter dynamics change throughout adaptation.

4 Relationship between Log-variance Portrait and Performance

We investigate how parameter dynamics evolve during adaptation by analyzing the behavior of the
log-variance portrait across different online adaptation settings. Our goal is to determine whether
the alignment between this distribution and an IG distribution is predictive of model performance,
particularly in non-i.i.d. environments. Through extensive empirical analysis, we show that the
goodness-of-fit (GoF) between the log-variance distribution and an IG distribution is a reliable
indicator of adaptation success. In particular, maintaining high IG-GoF is essential for preventing
performance degradation and enabling stable adaptation.

Analysis Setup. We evaluate model dynamics under both i.i.d. and non-i.i.d. environments, in both
SL and USL settings. For USL, we adopt TENT [61] as a representative baseline. Experiments are
conducted on ImageNet-C [21], which includes 15 corruption-based domains grouped into four broad
categories. In the i.i.d. environment, domain samples are shuffled and presented randomly; in the
non-i.i.d. environment, domains are presented sequentially in a fixed order. To quantify IG-GoF, we
fit an IG distribution to the log-variance values using maximum likelihood estimation and assess fit
using the Kolmogorov–Smirnov test. We report the resulting p-value as the alignment score. The
performance improvement is measured using the relative average error rate (RAER), defined as:
RAER = (esource− etarget)/esource ∗ 100, where esource is the AER of the source model and etarget is the
AER after adaptation. A negative RAER indicates performance degradation. Additional experimental
details are provided in Section 6.1.
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(a) Noise (SL) (b) Blur (SL) (c) Weather (SL) (d) Digital (SL)

(e) Noise (USL) (f) Blur (USL) (g) Weather (USL) (h) Digital (USL)

Figure 3: Log-variance portraits for each domain in a non-i.i.d. environment. The top row shows
results under SL, and the bottom row under USL using TENT. The adaptation sequence follows four
target domain (i.e., Noise, Blur, Weather, and Digital) with each domain visualized separately.

Portraits Across All Domains. We first investigate how the log-variance portrait evolves when
varying one factor at a time from a stable baseline: SL under i.i.d. conditions. Figure 1 (a) shows
that in this stable setting, the log-variance evolves smoothly over time and aligns closely with
the IG distribution. This behavior generalizes across different model architectures and datasets
(Appendix C.1 and C.6). When switching to a non-i.i.d. environment (Figure 1 (b)), the portrait
partially deviates from the IG shape, indicating destabilization. A similar effect is seen when moving
from SL to USL (Figure 1 (c)). When both non-i.i.d. input and unsupervised adaptation are combined,
as in realistic TTA scenarios, Figure 1 (d) shows a significant breakdown in IG alignment, often
yielding multimodal distributions. Takeaway 1.1: Both non-i.i.d. input streams and unsupervised
objectives introduce instability into the adaptation process. IG alignment in the log-variance portrait
is generally preserved only under stable learning conditions.

Figure 2: RAERs and corresponding
p-values evaluated across all target do-
mains for each adaptation setting.

Performance Across All Domains. We next exam-
ine how IG-GoF relates to adaptation performance. In
Figure 2, lower p-values (weaker IG-GoF) consistently
correspond to lower RAER (worse performance), while
stronger alignment (higher p-values) correlates with perfor-
mance improvements. Notably, the most severe degrada-
tion occurs under the combined non-i.i.d. and USL setting,
highlighting the compounding effect of sequential domain
shifts and lack of supervision. Takeaway 1.2: High IG-
GoF is a strong predictor of adaptation success. The log-
variance portrait thus provides a statistically grounded
diagnostic signal for evaluating adaptation quality. These
findings naturally lead to the next question: Can degrada-
tion in IG-GoF be traced to specific domains encountered
during online adaptation?

Portraits and Performance Across Individual Domains. To localize adaptation instability, we
examine IG-GoF across individual domain groups in ImageNet-C: Noise, Blur, Weather, and Digital.
The order reflects the temporal sequence in which the model encounters each group during online
adaptation. Figure 3 visualizes the log-variance portraits for each domain under SL (top row) and
USL (bottom row) settings in the non-i.i.d. environment. In the SL setting, the portrait initially aligns
well with the IG distribution in the Noise domain but progressively deteriorates, with a pronounced
collapse in the Weather domain, indicating growing instability in parameter dynamics. Under USL, a
similar trend is observed, with the Weather domain again showing the most severe deviation. Notably,
the portrait becomes multimodal in this case, diverging from the unimodal structure characteristic of
an IG distribution.
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(a) TENT (b) DeYO (c) ROID (d) RAER and p-value

Figure 5: Log-variance portraits (a–c) and corresponding RAER and p-value statistics (d) for different
TTA methods under the USL setting in a non-i.i.d. environment. Subfigures (a–c) show the empirical
log-variance distributions (orange boxes) and their alignment with the fitted IG distribution (green
dash-dot line) for TENT, DeYO, and ROID, respectively. Subfigure (d) summarizes the RAER and
IG-GoF (p-values) for each method.

Figure 4: RAERs and corresponding p-values
for each domain under a non-i.i.d. envi-
ronment. Domains with p-values below the
threshold (≈0.01) tend to experience perfor-
mance degradation.

Figure 4 quantitatively summarizes this trend, show-
ing the RAER and p-values per domain. We observe
that domains with p-values above approximately 0.01
exhibit positive RAER, indicating successful adapta-
tion, whereas domains below this threshold experi-
ence performance degradation (RAER < 0), indicat-
ing performance degradation. Takeaway 2: Maintain-
ing sufficiently high IG-GoF is essential for avoiding
performance degradation. Deviation from the IG dis-
tribution is tightly coupled with adaptation failure,
reinforcing the importance of preserving statistical
structure in parameter dynamics throughout the adap-
tation process.

Portraits and Performance of Sample-Filtering
Methods. Recent sample-filtering TTA methods
have demonstrated strong empirical success in miti-
gating the effects of non-i.i.d. environment. To better
understand this success, we examine how these meth-
ods influence the IG-GoF of the log-variance distribution. Figure 5 (a–c) compares the log-variance
portraits of the baseline method TENT with two modern sample-filtering approaches: DeYO [29]
and ROID [43]. Unlike TENT, which shows apparent deviation from the IG form, both DeYO
and ROID yield distributions that are more closely aligned with the IG shape, indicating greater
statistical stability. Figure 5 (d) reports RAERs and the corresponding p-values for each method. Both
DeYO and ROID achieve substantially higher p-values and improved RAERs compared to TENT,
confirming that stronger IG-GoF is associated with better adaptation performance. Takeaway 3:
Sample-filtering methods implicitly encourage IG alignment in parameter dynamics. This alignment
underlie their robustness in challenging non-i.i.d. environments. Nevertheless, ROID, despite its
relatively strong IG-GoF, still exhibits minor deviations from the ideal IG distribution. This gap
suggests that adaptation performance could be further enhanced by explicitly regulating parameter
dynamics to maintain IG alignment throughout the learning process, rather than relying on implicit
regularization effects.

5 Structured Inverse-Gamma Model Alignment

We introduce SIGMA, a principled algorithm designed to correct degraded parameter trajectories
under USL or non-i.i.d. conditions, thereby enabling stable and high-performing adaptation. Building
on our empirical insights from the previous section, SIGMA explicitly regulates the evolution of model
parameters to preserve statistical alignment with the IG distribution, a property closely associated with
successful adaptation. In the remainder of this section, we describe the algorithm’s components in
detail and analyze how it dynamically modulates parameter updates through time-varying adjustment
of the update interval.
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5.1 Algorithm

As established in the previous section, a high GoF between the log-variance portrait and the IG
distribution is a key indicator of stable adaptation. Based on this observation, we hypothesize that
adaptation can be improved by (a) identifying an appropriate IG distribution in real time, and (b)
actively regulating the parameter dynamics to preserve alignment with it throughout the learning
process. SIGMA implements this principle via three core steps: (1) Estimate Step: online estimation
of an IG distribution that best fits the observed log-variance dynamics; (2) Align Step: computation
of correction coefficients to align the current log-variance with the estimated IG distribution; (3)
Conjugate Step: modification of the parameter update based on the aligned distribution. These steps
collectively produce a dynamic rescaling of the effective update interval ∆t at each time step, thereby
inducing a statistically calibrated trajectory for parameter adaptation. We begin by reparameterizing
the log-variance vk at each time step using two correction coefficients: a location shift ck ≤ 0 and a
scale factor bk > 1. The corrected log-variance ṽk is defined as:

ṽk = (vk − ck)/bk + 2 log λ, (7)
where alignment strength λ quantifies how closely the updated distribution should follow the real-time
reference distribution, which is assumed to follow the IG form.

Estimate Step. We aim to identify an distribution IG(v;αk−1, 1) that best explains the history of
calibrated log-variances ṽ1:k−1. This strategy is framed as a KL divergence minimization:

q(v|ṽ1:k−1;αk−1) = argmin
q∈IG

DKL(p(v|ṽ1:k−1) || q(v|ṽ1:k−1;α)). (8)

We solve this optimization using the Nelder–Mead simplex method [14], a derivative-free algorithm
well-suited for scalar-valued observations.

Align Step. Given the estimated IG distribution, we compute optimal correction coefficients (c∗k, b
∗
k)

that align the current log-variance vk with the target distribution by the simplex method. This
optimization is formulated as the negative log-likelihood minimization:

c∗k, b
∗
k = argmin

(ck,bk)

− log q(ṽk|ṽ1:k−1;αk−1). (9)

We impose constraints c∗k ≤ 0 and b∗k > 1 to ensure stable reparameterization, and clip the solution if
it falls outside the valid region. Applying these coefficients, the corrected log-variance becomes:

ṽk = 2 log |σk (λrkTk)∆t︸ ︷︷ ︸
∆tk

| = 2 log |σk∆tk|, (10)

where the adjusted time interval is defined as ∆tk = (λrkTk)∆t, with rk = exp(−c∗k/2b∗k) and
Tk = (σk∆t)(1−b∗k)/b

∗
k . The derivation is detailed in Appendix B.2. This yields the modified

transition distribution:
p∗(w(tk)|w(tk−1)) = N (w(tk)|µk|k−1,Σk|k−1), (11)

where
µk|k−1 = w(tk−1)− gk∆tk, Σk|k−1 = σ2

k∆t2kI. (12)
The effective update interval ∆tk is shaped by two opposing influences: (1) rk > 1, which enlarges
∆tk to correct location misalignment; and (2) Tk < 1, which reduces ∆tk in response to high gradient
variance. Together, these terms adjust the parameter trajectory to preserve IG conformity and enhance
adaptation stability.

Conjugate Step. We integrate the corrected dynamics into the parameter trajectory until tk. Using
the modified transition distribution, we recursively calculate the marginal distribution as follows:

p(w(tk)) =

∫
p∗(w(tk)|w(tk−1))p(w(tk−1))dw(tk−1) = N (w(tk)|µk,Σk) (13)

where µk = ŵ0 −
∑k

i=1 gi∆ti and Σk = Σ0 +
∑k

i=1 σ
2
i∆t2i I with Σ0 = 0 and initial prior

p(w(t0)) = N (ŵ0,Σ0). This resulting distribution over parameters is considered a conjugate prior
for the predictive distribution:

p(y|xk) =

∫
p(y|xk,w(tk))p(w(tk))dw(tk). (14)

To proceed, we apply the plug-in approximation [44], we evaluate the integral at the posterior mean
µk, yielding the final prediction f(xk;µk) used for risk computation in Eq. (1). The algorithm then
proceeds to the next time step tk+1, iterating the Estimate–Align–Conjugate cycle. Illustrations of
the algorithm and pseudocode are provided in Appendix B.
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(a) SL (b) USL, TENT (c) USL, DeYO (d) USL, ROID

Figure 6: Log-variance portraits under non-i.i.d. environments for SL and USL settings, before
(orange) and after (green) applying SIGMA. Green distributions exhibit closer alignment with the IG
reference, indicating improved parameter dynamics.

5.2 Effectiveness

Figure 7: RAERs and corresponding p-values,
before (slash-pattern bars) and after (vertical
line-pattern bars) applying SIGMA.

We evaluate SIGMA in both SL and USL settings
under non-i.i.d. environments. For the USL case, we
integrate SIGMA with three representative TTA meth-
ods: TENT, DeYO, and ROID. Figure 6 illustrates the
qualitative effect of SIGMA on the log-variance por-
traits. In all cases, SIGMA reshapes the distribution
to more closely follow the IG structure, validating
its mechanism of action. Even robust baselines such
as ROID benefit from additional stabilization when
augmented with SIGMA. Figure 7 shows the quan-
titative improvements in both RAER and IG-GoF
(p-values). Across all tested methods and conditions,
SIGMA consistently increases the p-value, indicating
improved statistical alignment with the IG distribu-
tion. This alignment is invariably accompanied by
a corresponding gain in RAER, demonstrating that
better IG-GoF leads directly to improved adaptation performance. These results support our central
hypothesis: preserving alignment with the IG distribution is key to preventing collapse and enabling
robust online adaptation. SIGMA functions as a distribution-aware mechanism that enhances both
statistical regularity and practical performance across diverse adaptation settings.

6 Comparison with State-of-the-art TTA Methods

In the previous sections, we demonstrated the effectiveness of SIGMA across a range of settings.
To further validate our approach, we follow the standardized TTA benchmark protocol [42] under
various scenarios. All reported results are averaged over four random seeds, and both AERs and
corresponding standard deviations are presented to ensure statistical reliability and reproducibility.
All experiments were conducted using a single NVIDIA GeForce RTX 4090 GPU.

6.1 Experimental Details

Datasets We evaluated SIGMA across both multi-domain and single-domain datasets. For multi-
domain adaptation, we used ImageNet-C and D109; for single-domain evaluation, we used Rendition
[22] and Sketch [21]. Multi-domain adaptation on ImageNet-C is the default dataset; other datasets
are used in Appendix C. ImageNet-C extends the original ImageNet dataset, consisting of 1,281,167
training images and 50,000 test images, by applying 15 types of corruption (e.g., Gaussian noise,
shot noise, defocus blur, frost, JPEG compression) at five severity levels. Following standard practice
[45, 29, 43], we used severity level 5 and treated each corruption type as a distinct domain. The
default domain order is Noise, Blur, Weather, and Digital. D109, derived from DomainNet [48],
consists of five natural domains (i.e., clipart, infograph, painting, real, and sketch) and contains 109
classes overlapping with ImageNet. This dataset enabled evaluation under real-world domain shifts.
To assess adaptation in single-domain settings, we adopted: Rendition, which comprises 30,000
stylized renderings of 200 ImageNet classes curated via Amazon Mechanical Turk; and Sketch, which
contains 50,000 black-and-white sketches across 1,000 ImageNet classes collected via Google Image
Search.
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Table 1: AERs (%) and corresponding standard deviations in Correlated Input on ImageNet-C. The
bold number indicates the best result.

Noise Blur Weather Digital
Method gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg AER

Source 43.9 43.3 43.4 69.7 78.3 59.6 69.1 40.1 44.3 36.3 26.5 50.6 67.6 60.6 43.4 51.8
RoTTA 43.9 43.3 43.3 69.7 77.8 59.4 68.7 39.8 42.5 35.9 26.2 49.8 66.6 60.2 43.4 51.4±0.02

SAR 44.1 43.8 43.7 69.7 77.3 57.1 66.8 41.3 41.5 42.3 26.3 50.2 64.1 57.2 42.0 51.2±0.30
TENT 43.9 43.1 43.3 69.4 76.5 57.9 67.1 40.5 44.7 51.1 27.3 47.1 64.5 58.6 43.2 51.9±0.08

+SIGMA 43.8 42.9 43.0 67.9 73.3 56.2 64.8 39.8 56.8 37.8 26.1 43.5 68.1 49.6 38.5 50.1±0.49
EATA 44.3 43.8 43.5 69.0 74.3 56.7 64.2 39.9 44.7 46.2 25.7 45.4 61.2 54.0 40.6 50.2±0.09

+SIGMA 43.7 42.6 42.1 63.8 64.7 51.8 57.8 37.5 37.1 32.3 23.9 40.8 53.8 44.7 35.9 44.8±0.04
DeYO 43.6 41.9 40.7 66.3 70.3 54.7 62.7 38.3 38.7 36.9 24.6 43.1 55.0 50.1 39.2 47.1±0.13

+SIGMA 43.6 42.3 41.8 65.4 68.1 53.5 65.3 39.3 37.9 32.2 24.6 41.2 58.4 46.2 36.9 46.5±0.23
ROID 42.8 40.5 39.8 63.0 63.3 49.8 56.6 36.8 36.3 31.4 24.8 39.6 56.6 47.2 36.5 44.3±0.14

+SIGMA 42.7 40.3 39.6 61.1 57.0 46.9 51.8 36.1 34.4 30.5 23.1 38.3 49.1 43.1 33.0 41.8±0.14

Scenarios. We considered two representative unsupervised online adaptation scenarios (i.e., contin-
ual TTA setup), each simulating different forms of real-world distribution shift. In the Correlated
Input setting, domain-wise data were presented to the model in a fixed sequence, simulating tempo-
rally evolving input distributions [6, 62, 66]. In the Correlated Label setting, samples were drawn
from localized label distributions generated by a Dirichlet distribution with concentration parameter
γ [17, 46, 68]. Lower values of γ produced stronger label locality and non-stationarity, while γ =∞
reduced to the Correlated Input scenario.

Methods. We compared SIGMA-augmented methods against a range of representative TTA
baselines: TENT [61] minimizes entropy loss using the model’s own predictions to reduce uncertainty
during adaptation. RoTTA [66] employs a student-teacher architecture with cross-entropy loss and
data augmentation, training a student model to adapt while maintaining alignment with a stable
teacher. SAR [46] integrates sharpness-aware minimization to avoid sharp local optima and resets the
model to the source checkpoint when loss exceeds a predefined threshold. EATA [45] extends TENT
by filtering out high-entropy (i.e., low-confidence) samples based on a fixed threshold to prevent
collapse. DeYO [29] identifies reliable samples using entropy and pseudo-label consistency under
object-destructive transformations. ROID [43] regularizes entropy to account for label distribution
diversity and filters low-confidence samples during training. To ensure a fair comparison, we disabled
ROID’s optional prior correction module in all experiments, as it is orthogonal and applicable to
other methods.

Implementation Details. Following prior works [45, 29, 43], we used the base version of Vision
Transformer (ViT) [12] with the self-supervised D2V model [4] as our default backbone. We also
evaluated SIGMA using Swin Transformer (Swin) [37] to assess architectural generalization. All
source models were initialized using publicly available weights pre-trained on ImageNet to ensure fair
comparison and reproducibility. Consistent with previous studies [34, 45, 46, 43, 31], we restricted
training to normalization layers, either batch normalization [24] or layer normalization [2], depending
on the model architecture. We adopted official implementations and hyperparameters from each
method’s original paper and the standardized TTA benchmark suite [42]. When method-specific
settings were unavailable for a dataset or model, we defaulted to the best-performing configuration
reported for ROID. We used SGD with a momentum of 0.9 with the source-parameter averaging
[46, 43, 31] and a batch size of 64 as the base optimizer. Learning rates were set to 1.0 × 10−5

for D2V, 2.5 × 10−4 for ViT and Swin, and 1.0 × 10−3 for SAR (using the SAM optimizer [13])
across both ViT and Swin models. The SIGMA alignment strength λ was fixed per method and held
constant across experiments unless otherwise noted: λ = 5.0 × 10−5 for TENT, 7.5 × 10−5 for
EATA and ROID, and 5.0× 10−5 for DeYO. We implemented the Kolmogorov–Smirnov test via the
scipy.stats.kstest and the Nelder–Mead simplex method via the scipy.stats.fit.

6.2 Results

Correlated Input. Table 1 summarizes the results on the ImageNet-C dataset under the Correlated
Input setting, comparing baseline TTA methods with and without SIGMA. Among the baselines,
sample-filtering approaches such as EATA, DeYO, and ROID outperformed other strategies, including
student–teacher frameworks (i.e., RoTTA [66]) and sharpness-aware minimization (i.e., SAR [46]).
ROID achieved the highest baseline accuracy. When we applied SIGMA, all methods showed further
improvements. Specifically, TENT, EATA, DeYO, and ROID improved by 1.8%, 5.4%, 0.6%, and
2.5%, respectively. These results demonstrate SIGMA’s ability to enhance stability by regulating
parameter dynamics via IG alignment.
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Table 2: AERs (%) and standard deviations in Correlated Label (γ = 0.1) on ImageNet-C. The bold
number indicates the best result.

Noise Blur Weather Digital
Method gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg AER

Source 43.9 43.3 43.4 69.7 78.3 59.6 69.1 40.1 44.3 36.3 26.5 50.6 67.6 60.6 43.4 51.8
RoTTA 43.5 41.2 40.8 68.4 71.1 56.3 64.4 39.1 38.3 38.6 28.3 65.4 67.5 67.4 49.4 52.0±0.06

SAR 43.9 41.7 40.9 68.4 71.8 55.0 63.4 39.3 39.1 38.8 25.3 44.8 58.0 49.9 39.3 48.0±0.10
TENT 44.0 43.5 43.8 70.8 78.3 59.9 68.8 42.4 52.0 56.5 30.2 64.7 68.7 63.2 44.7 55.4±1.58

+SIGMA 43.4 41.8 41.6 66.9 75.4 56.0 68.5 41.6 60.9 33.3 25.4 43.0 69.3 50.1 39.6 50.5±0.16
EATA 43.5 40.5 39.6 61.7 62.0 48.1 56.0 36.7 36.0 32.9 23.0 37.1 53.2 44.5 34.7 43.3±0.03

+SIGMA 41.4 39.3 39.2 56.9 57.0 47.6 53.6 35.3 34.8 30.5 22.7 38.1 45.3 38.3 32.8 40.9±0.06
DeYO 41.3 38.8 38.8 60.8 61.0 52.3 70.6 42.5 40.3 40.8 26.1 64.3 66.4 48.1 42.9 49.0±2.83

+SIGMA 41.6 39.7 39.8 60.7 68.9 49.9 80.4 37.1 35.5 30.9 23.6 38.2 51.4 40.4 34.8 44.9±0.26
ROID 40.6 39.4 39.3 54.8 55.4 46.4 53.1 35.5 34.7 30.0 23.7 36.1 48.0 41.4 34.9 40.9±0.10

+SIGMA 40.2 38.4 38.4 51.6 49.5 42.2 46.9 33.1 32.8 28.8 22.0 35.5 39.7 35.5 30.9 37.7±0.01

Table 3: AERs (%) and standard deviations in Correlated Label (γ = 0.0) on ImageNet-C. The bold
number indicates the best result.

Noise Blur Weather Digital
Method gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg AER

Source 43.9 43.3 43.4 69.7 78.3 59.6 69.1 40.1 44.3 36.3 26.5 50.6 67.6 60.6 43.4 51.8
RoTTA 43.8 42.0 42.0 69.9 74.5 59.3 67.4 40.3 39.5 40.2 29.0 74.5 72.4 72.8 51.5 54.6±0.04

SAR 44.2 41.8 41.0 67.6 71.7 54.8 63.5 39.2 39.0 38.2 25.6 67.5 66.0 57.9 39.0 50.5±1.38
TENT 44.1 43.7 44.0 71.1 79.2 61.6 69.8 43.2 53.1 55.9 30.8 48.7 69.4 69.1 58.9 56.2±0.98

+SIGMA 43.4 41.8 41.7 67.5 75.3 56.3 67.2 40.9 58.6 33.9 25.4 43.1 66.7 50.1 39.8 50.1±0.01
EATA 43.5 42.4 42.4 65.9 71.9 55.9 64.0 40.5 46.5 40.9 25.6 43.1 63.4 51.4 39.9 49.1±0.34

+SIGMA 42.9 42.4 42.8 70.1 71.2 57.5 64.9 40.5 41.7 36.8 26.4 58.7 52.6 47.3 38.6 48.9±0.17
DeYO 41.5 38.9 38.9 61.7 61.3 51.8 72.0 42.2 41.6 39.7 26.5 56.4 57.1 47.3 41.4 47.9±0.57

+SIGMA 41.7 39.9 40.0 61.2 66.7 50.8 82.3 37.4 35.8 31.2 23.7 39.5 51.6 40.8 35.6 45.2±0.19
ROID 41.1 39.5 39.6 58.5 57.6 47.8 55.7 35.9 35.3 30.6 23.9 38.0 48.9 42.0 35.6 42.0±0.15

+SIGMA 40.8 39.3 39.5 55.6 52.8 44.9 51.7 34.5 34.3 29.9 22.9 37.3 43.4 38.1 32.7 39.8±0.05

Correlated Label. We then evaluated SIGMA under more challenging scenarios involving shifts in
label distribution. Table 2 and Table 3 present the results for γ = 0.1 and γ = 0.0, which induced
increasingly localized label shifts. These settings exacerbated the risk of performance degradation,
particularly for methods such as TENT. Despite this, SIGMA consistently prevented degradation.
Despite this, SIGMA consistently prevented degradation. TENT’s performance improved by 6.1% and
4.9% under the two γ settings, effectively reversing collapse. ROID also benefited from improvements
of 2.2% and 3.2%, reinforcing the method’s broad applicability.

Additional Results. We extended our experiments to test generalizability for diverse model
architectures, realistic scenarios, and datasets. The results in Appendix C showed that SIGMA
consistently improved performance across various experimental settings. These results supported our
central claim: enforcing IG alignment in parameter dynamics prevented collapse and led to consistent
performance improvements under online adaptation settings.

7 Conclusion

In this work, we proposed a probabilistic framework to model the dynamics of model parameters
during online adaptation using an SDE formulation. By discretizing the SDE, we derived a transition
distribution that captured the time-evolving behavior of parameters throughout the adaptation process.
Our empirical analysis revealed that the log-variance of this transition distribution served as a key
indicator of adaptation stability. We found that successful adaptation consistently coincided with
strong alignment between the log-variance portrait and the IG distribution. When this alignment
broke down, models experienced performance degradation or collapse. Motivated by these findings,
we introduced SIGMA, an algorithm that dynamically estimated the target IG distribution and
regularized parameter updates to preserve alignment. SIGMA achieved this by adaptively rescaling
the update interval based on variance dynamics. When applied to state-of-the-art TTA methods,
SIGMA consistently improved performance across architectures, datasets, and realistic scenarios.

Acknowledgement This work was supported by the Ministry of Education of the Republic of
Korea and the National Research Foundation of Korea (NRF-2025S1A5C3A01008166)

References
[1] Ansari, A. F., Heng, A., Lim, A., and Soh, H. Neural continuous-discrete state space models for

irregularly-sampled time series. arXiv preprint arXiv:2301.11308, 2023.

10



[2] Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[3] Baevski, A., Zhou, Y., Mohamed, A., and Auli, M. wav2vec 2.0: A framework for self-
supervised learning of speech representations. In Advances in Neural Information Processing
Systems, pp. 12449–12460, 2020.

[4] Baevski, A., Hsu, W.-N., Xu, Q., Babu, A., Gu, J., and Auli, M. data2vec: A general framework
for self-supervised learning in speech, vision and language. International Conference on
Machine Learning, pp. 1298–1312, 2022.

[5] Bottou, L. Online algorithms and stochastic approximations. Online learning in neural networks,
1998.

[6] Boudiaf, M., Mueller, R., Ben Ayed, I., and Bertinetto, L. Parameter-free online test-time
adaptation. IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8344–8353,
2022.

[7] Brahma, D. and Rai, P. A probabilistic framework for lifelong test-time adaptation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3582–3591, 2023.

[8] Chaudhari, P. and Soatto, S. Stochastic gradient descent performs variational inference, con-
verges to limit cycles for deep networks. In 2018 Information Theory and Applications Workshop
(ITA), pp. 1–10. IEEE, 2018.

[9] Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P. K., Torr, P. H., and
Ranzato, M. On tiny episodic memories in continual learning. arXiv preprint arXiv:1902.10486,
2019.

[10] Chen, D., Wang, D., Darrell, T., and Ebrahimi, S. Contrastive test-time adaptation. IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 295–305, 2022.

[11] Döbler, M., Marsden, R. A., and Yang, B. Robust mean teacher for continual and gradual
test-time adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7704–7714, 2023.

[12] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[13] Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B. Sharpness-aware minimization for
efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

[14] Gao, F. and Han, L. Implementing the nelder-mead simplex algorithm with adaptive parameters.
Computational Optimization and Applications, 51(1):259–277, 2012.

[15] Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., and Wilson, A. G. Loss surfaces, mode
connectivity, and fast ensembling of dnns. Advances in Neural Information Processing Systems,
31, 2018.

[16] Ghunaim, Y., Bibi, A., Alhamoud, K., Alfarra, M., Al Kader Hammoud, H. A., Prabhu, A.,
Torr, P. H., and Ghanem, B. Real-time evaluation in online continual learning: A new hope.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
11888–11897, 2023.

[17] Gong, T., Jeong, J., Kim, T., Kim, Y., et al. Note: Robust continual test-time adaptation against
temporal correlation. Neural Information Processing Systems, 2022.

[18] Goodfellow, I., Bengio, Y., and Courville, A. Deep learning, volume 1. MIT Press, 2016.

[19] Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and Bengio, Y. An empirical investigation
of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

11



[20] Gurbuzbalaban, M., Simsekli, U., and Zhu, L. The heavy-tail phenomenon in sgd. In Interna-
tional Conference on Machine Learning, pp. 3964–3975. PMLR, 2021.

[21] Hendrycks, D. and Dietterich, T. Benchmarking neural network robustness to common corrup-
tions and perturbations. International Conference on Learning Representations, 2019.

[22] Hendrycks, D., Basart, S., Mu, N., Kadavath, S., et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. International Conference on Computer Vision,
2021.

[23] Hernandez, F., Nguyen, V., Ghannay, S., Tomashenko, N., and Esteve, Y. Ted-lium 3: Twice
as much data and corpus repartition for experiments on speaker adaptation. In Speech and
Computer: 20th International Conference, SPECOM 2018, Leipzig, Germany, September 18–22,
2018, Proceedings 20, pp. 198–208. Springer, 2018.

[24] Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. International Conference on Machine Learning, pp. 448–456, 2015.

[25] Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and Wilson, A. G. Averaging weights
leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407, 2018.

[26] Khan, M. E. Deep learning with bayesian principles. Tutorial on Advances in Neural Information
Processing Systems, 2019.

[27] Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., et al. Wilds: A benchmark of in-the-wild
distribution shifts. International Conference on Machine Learning, pp. 5637–5664, 2021.

[28] Kushner, H. Approximations to optimal nonlinear filters. IEEE Transactions on Automatic
Control, 12(5):546–556, 1967.

[29] Lee, J., Jung, D., Lee, S., Park, J., Shin, J., Hwang, U., and Yoon, S. Entropy is not
enough for test-time adaptation: From the perspective of disentangled factors. arXiv preprint
arXiv:2403.07366, 2024.

[30] Lee, J.-H. Bayesian weight enhancement with steady-state adaptation for test-time adaptation in
dynamic environments. In Forty-second International Conference on Machine Learning, 2025.

[31] Lee, J.-H. and Chang, J.-H. Continual momentum filtering on parameter space for online
test-time adaptation. In The Twelfth International Conference on Learning Representations,
2024.

[32] Lee, J.-H. and Chang, J.-H. Stationary latent weight inference for unreliable observations from
online test-time adaptation. In Forty-first International Conference on Machine Learning, 2024.

[33] Li, Q., Tai, C., and Weinan, E. Stochastic modified equations and dynamics of stochastic
gradient algorithms i: Mathematical foundations. Journal of Machine Learning Research, 20
(40):1–47, 2019.

[34] Li, Y., Wang, N., Shi, J., Hou, X., and Liu, J. Adaptive batch normalization for practical domain
adaptation. Pattern Recognition, 80:109–117, 2018.

[35] Li, Z., Malladi, S., and Arora, S. On the validity of modeling sgd with stochastic differential
equations (sdes). Advances in Neural Information Processing Systems, 34:12712–12725, 2021.

[36] Lin, G.-T., Li, S.-W., and yi Lee, H. Listen, adapt, better wer: Source-free single-utterance
test-time adaptation for automatic speech recognition. In Proc. Interspeech, 2022.

[37] Liu, Z., Lin, Y., Cao, Y., Hu, H., et al. Swin transformer: Hierarchical vision transformer using
shifted windows. IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10012–10022, 2021.

[38] Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P., and Wilson, A. G. A simple baseline for
bayesian uncertainty in deep learning. Advances in neural information processing systems, 32,
2019.

12



[39] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models
resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[40] Malladi, S., Lyu, K., Panigrahi, A., and Arora, S. On the sdes and scaling rules for adaptive
gradient algorithms. Advances in Neural Information Processing Systems, 35:7697–7711, 2022.

[41] Mandt, S., Hoffman, M. D., and Blei, D. M. Stochastic gradient descent as approximate
bayesian inference. Journal of Machine Learning Research, 18(134):1–35, 2017.

[42] Marsden, R. A. and Döbler, M. test-time-adaptation. https://github.com/mariodoebler/test-time-
adaptation, 2022.

[43] Marsden, R. A., Döbler, M., and Yang, B. Universal test-time adaptation through weight
ensembling, diversity weighting, and prior correction. arXiv preprint arXiv:2306.00650, 2023.

[44] Murphy, K. P. Probabilistic machine learning: Advanced topics. MIT press, 2023.

[45] Niu, S., Wu, J., Zhang, Y., Chen, Y., et al. Efficient test-time model adaptation without forgetting.
International Conference on Machine Learning, pp. 16888–16905, 2022.

[46] Niu, S., Wu, J., Zhang, Y., Wen, Z., et al. Towards stable test-time adaptation in dynamic wild
world. ArXiv, abs/2302.12400, 2023.

[47] Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. Librispeech: an asr corpus based on
public domain audio books. In IEEE international conference on acoustics, speech and signal
processing, pp. 5206–5210. IEEE, 2015.

[48] Peng, X., Bai, Q., Xia, X., Huang, Z., et al. Moment matching for multi-source domain
adaptation. IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1406–
1415, 2019.

[49] Polson, N. G. and Sokolov, V. Deep learning: A bayesian perspective. Bayesian Anal, 12(4):
1275–1304, 2017.

[50] Prabhu, A., Al Kader Hammoud, H. A., Dokania, P. K., Torr, P. H., Lim, S.-N., Ghanem, B., and
Bibi, A. Computationally budgeted continual learning: What does matter? In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3698–3707, 2023.

[51] Press, O., Schneider, S., Kümmerer, M., and Bethge, M. Rdumb: A simple approach that
questions our progress in continual test-time adaptation. Advances in Neural Information
Processing Systems, 36, 2024.

[52] Rame, A., Kirchmeyer, M., Rahier, T., Rakotomamonjy, A., et al. Diverse weight averaging
for out-of-distribution generalization. Advances in Neural Information Processing Systems, 35:
10821–10836, 2022.

[53] Särkkä, S. and Solin, A. Applied stochastic differential equations, volume 10. Cambridge
University Press, 2019.

[54] Särkkä, S. and Svensson, L. Bayesian filtering and smoothing, volume 17. Cambridge university
press, 2023.

[55] Schirmer, M., Zhang, D., and Nalisnick, E. Test-time adaptation with state-space models. In
ICML 2024 Workshop on Structured Probabilistic Inference {\&} Generative Modeling, 2024.

[56] Schneider, S., Baevski, A., Collobert, R., and Auli, M. wav2vec: Unsupervised pre-training for
speech recognition. In Proc. Interspeech, 2019.
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We use publicly available, open-access pre-trained models and datasets for
all of our experiments. Additionally, we provide pseudocode for the proposed algorithm in
Appendix B.1 to facilitate reproducibility and implementation.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the experimental details are provided in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We run the experiment with four seeds and report the standard deviations and
average error rates.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We comment on the computer resources in Appendix C and discuss efficiency
in Appendix D.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and conform to the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We focus on general and foundational machine learning research.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release pretrained models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: To the best of our knowledge, we adequately cite and mention all used assets
in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not provide new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: We do not involve crowdsourcing experiments or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing experiments or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in our research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Parameter Dynamics and Log-Variance Portraits

In Appendix A.1, we present the proof of Theorem 1, which characterizes the time-varying parameter
distribution during adaptation. Building on this theorem, in Appendix A.3, we compare the dynamics
of the raw variance and its logarithmic counterpart (i.e., log-variance). Our empirical observations
show that the log-variance offers a more stationary and statistically tractable distribution, enabling
practical computation of distributional alignment during adaptation.

A.1 Proof of Theorem 1

Proof. Following Theorem 5.4 in Särkkä & Solin [53], the evolution of the mean m(t) = E[w(t)]
and the covariance S(t) = Cov[w(t)] for the FPK solution p(w, t) from Eq. (4) is given by:

dm
dt

= −
∫

g(w, t)p(w, t)dw,

dS
dt

= −
∫

g(w, t)(w −m)⊤p(w, t)dw

−
∫

(w −m)g⊤(w, t)p(w, t)dw

+

∫
L(w, t)L⊤(w, t)p(w, t)dw,

where L(w, t) =
√
ησtI. Assuming a Gaussian approximation to the parameter distribution [28], we

write:
p(w, t) ≈ N (w|m(t),S(t)).

We linearize g(w, t) and L(w, t) around m(t) via first-order Taylor expansion:

g(w, t) ≈ g(m, t) + G(m, t)(w −m),

L(w, t) ≈ L(m, t),

where G(m, t) is the Jacobian of g evaluated at m. Substituting these into the FPK evolution yields:

Mean:
dm
dt

= −
∫
[g(m, t) + G(m, t)(w −m)]Ndw

= −g(m, t)− G(m, t)

∫
(w −m)Ndw︸ ︷︷ ︸

0

= −g(m, t).

Covariance:
dS
dt

= −
∫
[g(m, t) + G(m, t)(w −m)](w −m)⊤Ndw

−
∫
(w −m)[g(m, t) + G(m, t)(w −m)]⊤Ndw

+

∫
L(m, t)L⊤(m, t)Ndw.

We compute each term separately:

−
∫
[g(m, t) + G(m, t)(w −m)r](w −m)⊤Ndw = −g(m, t)

∫
(w −m)⊤Ndw︸ ︷︷ ︸

0

− G(m, t)

∫
(w −m)(w −m)⊤Ndw︸ ︷︷ ︸

S

= −G(m, t)S. (a)
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−
∫
(w −m)[g(m, t) + G(m, t)(w −m)r]⊤Ndw = −

∫
(w −m)Ndw︸ ︷︷ ︸

0

g(m, t)⊤

−
∫

(w −m)(w −m)⊤Ndw︸ ︷︷ ︸
S

G⊤(m, t)

= −SG⊤(m, t). (b)∫
L(m, t)L⊤(m, t)Ndw = L(m, t)L⊤(m, t)

= ησ2
t I. (c)

Summing Eqs. (a-c), we obtain the covariance dynamics:

dS
dt

= −SG⊤(m, t)− G(m, t)S + ησ2
t I.

Discretization: The transition distribution p(w(tk)|w(tk−1)) of the SDE is a Gaussian distribution
following Lemma A.9 in Särkkä & Svensson [54]. We consider a sufficiently small interval (tk−1, tk)
with ∆t = tk−tk−1 = η, and assume that both the gradient g(m, t) and the variance term of L(m, t)
remain approximately constant over this interval, denoted by gk and σ2

k. Under the constant-gradient
assumption, we also take G(m, t) = 0. Solving the resulting ordinary differential equations yields
the mean and covariance of the transition distribution:

µk|k−1 = m(tk|tk−1)

= w(tk−1)−
∫ tk−1+∆t

tk−1

gk dt

= w(tk−1)− gk∆t,

Σk|k−1 = S(tk|tk−1)

=

∫ tk−1+∆t

tk−1

ησ2
kI dt

= σ2
k∆t2I,

where m(tk−1) = w(tk−1) and S(tk−1) = 0.

A.2 Justification of Small Variance

Our derivation assumes the gradient and variance are approximately constant during each discretiza-
tion step. This is justified by the short time interval involved in transitioning from continuous to
discrete time.

The time interval is determined by the learning rate η, and we adopt a learning rate in the range
of 10−5 to 10−6, which is about 100 times smaller than that used during source model training
(typically 10−3 to 10−4). Empirically, as shown in Figure 6 (x-axis), the maximum observed variance
is around e−11 and the minimum is approximately e−28. This result demonstrates that variance
remains extremely small on continual TTA settings. This behavior is consistent across multiple
datasets, as shown in Figure 8.

This consistency can be explained by the fact that TTA assumes a well-trained model as its starting
point (see Section 2.1), resulting in minimal model drift during adaptation. Consequently, the
assumption of approximately constant mean and variance is naturally satisfied in the TTA setting.
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A.3 Comparison of Variance and Log-variance

(a) Variance (b) Log-variance

Figure 8: Variance (left) and log-variance (right) dynamics under SL settings in i.i.d. environments.
The variance signal exhibits strong fluctuations and a heavy-tailed distribution, complicating statistical
modeling. In contrast, the log-variance shows more stationary behavior and aligns well with the IG
distribution, enabling stable estimation and interpretation.

B Structured Inverse-Gamma Model Alignment

B.1 Illustration of Algorithm

Figure 9: Illustration of the SIGMA algorithm. The black crosses represent the model param-
eters at each discrete time step, and the gray curves depict their corresponding distributions
p(w(t1:k)) = N (w(t1:k)|µk,Σk). In Estimate Step, SIGMA estimates an IG distribution us-
ing the log-variance values v1:k−1 derived from the covariance of the transition distribution
p(w(tk)|w(tk−1)) = N (w(tk)|µk|k−1,Σk|k−1) up to time tk−1. In Align Step, it computes the
optimal correction terms c∗k and b∗k to align the current log-variance with the estimated IG distribution.
In Conjugate Step, these corrections adjust the update interval ∆tk, thereby controlling the parameter
dynamics at time step tk.

B.2 Derivation of Algorithm

In this section, we provide the derivation of Eq. (10). Using Eq. (7) and the log-variance, we get

ṽk =
vk − ck

bk
+ 2 log λ =

2 log(σk∆t)− ck
bk

+ 2 log λ.

Substituting and simplifying, we get:
ṽk
2

=
log(σk∆t)− 1

2ck

bk
+ log λ.

Taking the exponential of both sides:

exp

(
ṽk
2

)
= λ exp

(
− ck
2bk

)
exp

(
log(σk∆t)

bk

)
= λrkTkσk∆t,

where exp (log(σk∆t)/bk) = (σk∆t)1−bk/bk(σk∆t) = Tk(σk∆t). Taking the logarithm of both
sides:

ṽk = 2 log |σk(λrkTk)∆t|.
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B.3 Pseudocode

Algorithm 1 Structured Inverse-Gamma Model Alignment

Require: Initial interval ∆t, Source model f(.; ŵ0), Alignment Strength λ,
Initialization: µ0 = ŵ0,Σ0 = 0, ĝ0 = 0, ṽ1:1 = {}
for k = 1 to K do
gk ← ∇µk

G(µk, tk) ▷ Eq. (2)
ĝk ← (gk + ĝk−1)
ḡk ← 1/k ĝk

σ2
k ← 1/d Tr[(gk − ḡk)(gk − ḡk)

⊤]
vk ← log(σ2

k∆t2)
∆tk ← ∆t
(c∗k, b

∗
k)← (0, 1)

if |ṽ1:k| > 1 then
Estimate Step:
q(v|ṽ1:k−1;αk−1)← argminq∈IG DKL(p(v|ṽ1:k−1) ∥ q(v|ṽ1:k−1;α)) ▷ Eq. (8)
Align Step:
ṽk ← (vk − ck)/bk + 2 log λ
(c∗k, b

∗
k)← argmin(ck,bk)− log q(ṽk|ṽ1:k−1;αk−1) ▷ Eq. (9)

rk ← exp(−c∗k/(2b∗k)r)
Tk ← (σk ∆t)(1−b∗k)/b

∗
k

∆tk ← (λ rk Tk)∆t
end if
Conjugate Step:
(µk,Σk)← (µk−1 − gk ∆tk,Σk−1 + σ2

k ∆t2k I) ▷ Recursion of Eq. (13)
if k > 1 then

ṽk ← (log(σ2
k ∆t2)− c∗k)/b

∗
k + 2 log λ

ṽ1:k ← ṽ1:k−1 ∪ {ṽk}
end if

end for

C Extended Experiments

To evaluate the generality and practicality of our method, we conducted a broad set of extended
experiments. These include studies across diverse model architectures, runtime efficiency, domain
ordering, repeated datasets, various datasets, and the impact of alignment strength on performance.

C.1 Diverse Model Architectures

(a) ViT (b) Swin (c) D2V

Figure 10: Log-variance dynamics for each backbone architecture under the stable adaptation setting
(i.e., SL in i.i.d. environments) on ImageNet-C. The blue line represents the evolution of log-variance
over time. Orange boxes show empirical distributions. The green dash-dot line denotes the fitted IG
distribution, with red and black dashed lines representing its mean and mode, respectively.

Justification of IG Alignment. To verify the robustness of IG alignment assumption, we measured
the log-variance under the stable adaptation setting (i.e., SL in i.i.d. environments) using three
different backbone architectures: ViT, Swin, and D2V. As shown in Figure 10, the temporal evolution
of log-variance (blue line) exhibited distinct patterns across models. However, in all cases, the
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resulting log-variance portraits (orange boxes) showed strong GoF with the IG distribution (green
dash-dot line). This consistency confirms that IG alignment is a model-agnostic property of stable
adaptation dynamics.

Table 4: AERs (%) and corresponding standard deviations for ViT in Correlated Input on ImageNet-C.
The bold number indicates the best result.

Noise Blur Weather Digital
Method gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg AER

Source 65.8 67.2 65.4 68.8 74.4 64.3 66.6 56.9 45.3 48.7 29.3 81.8 57.1 60.8 50.2 60.2
RoTTA 65.8 67.1 64.9 68.9 73.3 62.8 65.2 55.6 44.1 45.7 27.9 80.3 54.5 60.0 49.8 59.1±0.05

SAR 61.3 55.7 54.4 62.0 61.4 53.8 57.0 53.9 45.1 45.9 29.1 55.1 51.5 49.2 40.3 51.7±0.14
TENT 63.8 61.7 59.9 67.2 71.0 60.8 63.8 55.6 46.5 47.9 28.5 71.8 55.4 54.5 46.5 57.0±0.04

+SIGMA 63.8 61.7 59.3 63.9 64.2 53.9 57.7 53.9 44.6 40.4 27.4 59.1 52.9 47.6 41.0 52.8±0.07
EATA 61.8 57.1 56.2 61.5 62.5 54.4 57.2 51.8 45.0 42.5 28.0 56.8 51.7 48.4 42.4 51.8±0.10

+SIGMA 61.8 57.1 55.5 57.6 55.0 49.2 50.4 47.8 40.8 37.6 26.7 48.0 46.2 41.1 36.5 47.4±0.08
DeYO 60.8 56.4 55.6 60.5 61.0 52.4 57.9 51.7 42.9 39.1 27.2 53.1 51.6 46.8 41.2 50.5±0.11

+SIGMA 60.8 56.4 55.2 57.4 57.5 50.3 74.1 53.6 41.0 37.5 26.6 48.4 47.2 41.8 37.0 49.7±0.34
ROID 57.6 51.5 52.2 55.1 52.4 46.5 47.2 45.6 39.5 36.0 26.0 45.0 43.8 39.7 36.3 45.0±0.09

+SIGMA 57.9 51.7 52.1 54.4 50.5 45.3 44.4 44.3 39.4 35.5 26.1 45.3 39.6 37.5 35.2 43.9±0.13

Table 5: AERs (%) and corresponding standard deviations for Swin in Correlated Input on ImageNet-
C. The bold number indicates the best result.

Noise Blur Weather Digital
Method gaussian shot impulse defocus glass motion zoom snow frost fog bright contrast elastic pixelate jpeg AER

Source 71.0 70.0 75.4 72.8 81.6 63.8 68.2 57.9 50.7 40.7 28.6 60.6 72.1 86.6 59.3 64.0
RoTTA 71.0 69.3 73.8 73.2 80.4 62.7 67.2 56.9 48.7 42.9 29.1 59.0 69.2 88.7 59.0 63.4±0.01

SAR 63.5 57.4 58.0 77.1 73.8 68.0 71.7 65.5 67.8 63.3 32.0 70.2 71.8 84.8 63.0 65.9±1.27
TENT 67.3 63.4 67.7 78.2 80.1 64.4 67.8 58.6 55.0 55.2 29.8 57.0 70.8 80.4 57.3 63.5±0.03

+SIGMA 67.3 63.4 66.4 77.9 75.9 62.7 64.5 61.6 55.5 51.2 26.7 50.4 69.3 75.9 51.7 61.4±0.25
EATA 63.0 56.8 57.6 68.4 66.8 54.6 55.7 52.3 46.7 42.1 25.9 48.8 57.1 64.8 49.7 54.0±0.13

+SIGMA 63.0 56.8 57.2 65.9 63.9 52.9 50.9 48.6 44.4 39.8 24.8 46.5 50.9 58.5 44.3 51.2±0.05
DeYO 62.6 56.8 57.3 72.7 68.9 58.3 62.4 52.8 46.7 76.5 26.7 48.3 58.2 64.4 49.6 57.8±1.66

+SIGMA 62.6 56.8 57.3 71.8 68.9 58.7 62.2 51.6 45.0 65.1 25.9 47.6 53.5 60.3 46.9 55.6±1.89
ROID 58.0 51.6 51.4 62.9 57.6 49.9 47.5 44.2 39.9 36.2 24.2 43.9 44.5 50.4 42.5 47.0±0.26

+SIGMA 58.7 52.0 52.0 64.3 57.6 49.1 45.8 42.2 38.7 34.4 25.1 43.8 41.9 46.6 39.8 46.1±0.17

Benchmark Results. Building on IG alignment principle, we applied SIGMA to both ViT and
Swin backbones across multiple TTA methods. Table 4 reports results on ViT. SIGMA improved
performance by 4.2% with TENT, 4.4% with EATA, 0.8% with DeYO, and 1.1% with ROID. Similar
trends were observed in Table 5 for Swin, with gains of 2.1% (TENT), 3.8% (EATA), 2.2% (DeYO),
and 0.9% (ROID), respectively. These consistent improvements reinforce the generality of IG
alignment principle and its effectiveness across different model architectures.

C.2 Runtime Efficiency

Figure 11: RAERs and corresponding GPU wall
time for each method w/o and w/ SIGMA on
ImageNet-C.

Efficiency is a critical factor in online adaptation
scenarios. To quantify runtime overhead, we use
GPU wall time (in milliseconds per sample) as
our efficiency metric. Figure 11 illustrates the
wall time and RAER before and after applying
SIGMA for each sample-filtering method un-
der the Correlated Input scenario on ImageNet-
C. SIGMA introduced minimal additional over-
head (e.g., only 0.04 ms / sample for EATA and
ROID) while achieving substantial RAER im-
provements of 10.4% and 4.8%, respectively.
These results demonstrate the high efficiency of
SIGMA, which stems from its lightweight de-
sign based on scalar variance observations and
derivative-free optimization. Overall, SIGMA
maintains a strong balance between computa-
tional cost and adaptation effectiveness.
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C.3 Various Domain Ordering

Figure 12: AERs in different domain orders for
each method w/o and w/ SIGMA on ImageNet-C.

In real-world online adaptation scenarios, the
sequence in which domains appear can vary sig-
nificantly, and robustness to such variation is
essential for practical deployment. To evalu-
ate this, we tested different permutations of the
four broader domain categories in ImageNet-C:
Noise (N), Blur (B), Weather (W), and Digital
(D). Specifically, we evaluated four domain or-
derings: the original order N→ B→W→ D,
along with three alternative sequences (i.e., B→
W→D→N, W→D→N→ B, and D→N→
B→W). Figure 12 presents the AERs for each
TTA method with and without SIGMA across
these sequences. In all cases, SIGMA consis-
tently improved performance, regardless of do-
main order. These results underscore SIGMA’s
robustness to domain sequence variation and
confirm its practical utility in dynamic and unpredictable real-world environments.

C.4 Impact of Alignment Strength on Performance

Figure 13: Effect of additional alignment
strength on AER. Green circle markers
denote mean AER; red bars indicate stan-
dard deviation.

To examine the impact of alignment strength, we focused
on ROID and systematically varied the value of the hy-
perparameter λ by introducing scaled perturbations. We
began with a base value of λ = 7.5 × 10−5 and added
an increment of nϵ, where ϵ = 10−8 and n increased
multiplicatively by a factor of 2. Figure 13 presents the
AERs and corresponding standard deviations for each λ
setting. We observed that increasing alignment strength
from n = 2 to n = 8192 gradually reduced the AER
from approximately 41.7% to 40.8%, indicating improved
performance. However, when n reached 16384, the AER
sharply increased to 53.6%, demonstrating that excessive
alignment strength impaired performance. These results
confirmed that moderate increases in alignment strength
enhanced adaptation, while overly aggressive regulariza-
tion degraded it. Consequently, SIGMA maintains robust performance across a broad range of λ
values as long as overly aggressive regularization is avoided.

C.5 Repeated Datasets

Figure 14: AERs over repeated
ImageNet-C. The maximum number of
repetitions is 15.

To assess practical applicability in real-world usage pat-
terns, we evaluated a repeated dataset scenario in which
the same sequence of domains was presented to the model
multiple times. This setting mimics recurring distribution
patterns commonly observed in daily tasks or seasonal
environmental cycles. We compared the performance of
ROID with and without SIGMA under repeated domain
exposures. As shown in Figure 14, ROID maintained sta-
ble adaptation performance across repetitions. Notably,
SIGMA consistently outperformed ROID throughout the
entire sequence, keeping the AER below 41.5% across all
15 repetitions. These results suggest that SIGMA not only
prevents performance degradation during initial adaptation
but also sustains robust performance in long-term, cyclical
deployments, demonstrating strong potential for real-world online adaptation scenarios.
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C.6 Various Datasets

(a) Rendition (b) Sketch (c) D109

Figure 15: Log-variance dynamics under the stable adaptation setting (i.e., SL in i.i.d. environments)
on Rendition, Sketch, and D109. The blue line represents the evolution of log-variance over time.
Orange boxes show empirical distributions. The green dash-dot line denotes the fitted IG distribution,
with red and black dashed lines representing its mean and mode, respectively.

Justification of IG alignment. To validate the generality of IG alignment assumption, we
measured the log-variance distributions under the stable adaptation setting (i.e., SL in i.i.d. en-
vironments) across diverse datasets, including Rendition, Sketch, and D109. These datasets
span both single-domain (i.e., Rendition and Sketch) and multi-domain (i.e., D109) scenarios.

Table 6: AERs (%) and correspond-
ing standard deviations on Rendi-
tion and Sketch.

Method Rendition Sketch
Source 46.6 60.4
RoTTA 46.5±0.01 60.1±0.03

SAR 45.9±0.05 60.2±0.07
TENT 46.0±0.03 60.3±0.06
EATA 45.8±0.09 58.6±0.08
DeYo 42.9±0.07 60.4±0.62
ROID 41.4±0.08 55.7±0.02

SIGMA 37.9±0.09 51.5±0.12

As shown in Figure 15, the empirical distributions of log-
variance (orange boxes) across all three datasets exhibited
strong alignment with the IG distribution (green dash-dot line).
These findings confirms that IG alignment assumption holds
across different domains and types of distribution shift.

Single-Domain Settings. We evaluated SIGMA on the Ren-
dition and Sketch datasets by applying it to ROID, which served
as a strong baseline. As reported in Table 6, SIGMA sig-
nificantly improved AERs compared to ROID, achieving the
best results on both datasets. These findings demonstrate that
SIGMA remains effective even in specialized single-domain
adaptation scenarios, further reinforcing the robustness of IG
alignment principle.

Table 7: AERs (%) and corresponding standard
deviations in Correlated Input on D109.

Method clipart infograph painting real sketch AER
Source 48.7 72.9 41.2 20.5 56.7 48.0
RoTTA 48.6 72.6 40.7 19.9 53.9 47.2±0.01

SAR 48.3 74.3 42.9 20.3 56.5 48.5±0.10
TENT 49.1 78.8 56.4 40.3 89.5 62.8±0.20
EATA 47.9 71.6 39.9 19.7 54.1 46.6±0.04
DeYO 47.2 74.4 40.9 19.7 51.2 46.7±0.13
ROID 43.4 68.5 37.6 19.3 50.4 43.8±0.03

SIGMA 42.9 64.8 36.2 18.3 44.6 41.4±0.03

Table 8: AERs (%) and corresponding standard
deviations in Correlated Label on D109.

Method clipart infograph painting real sketch AER
Source 48.7 72.9 41.2 20.5 56.7 48.0
RoTTA 48.7 72.7 40.9 20.2 55.4 47.6±0.03

SAR 48.4 74.6 43.5 20.3 56.4 48.6±0.02
TENT 49.1 77.4 51.3 31.7 79.7 57.8±0.06
EATA 47.8 71.5 39.9 19.8 53.7 46.5±0.06
DeYO 47.3 74.4 40.6 19.7 51.0 46.6±0.40
ROID 43.4 68.0 37.7 19.4 50.5 43.8±0.06

SIGMA 43.1 65.0 36.5 18.9 45.5 41.8±0.06

Multi-Domain Settings. To evaluate SIGMA under natural multi-domain shifts, we used D109, a
dataset that features stylistic variation across domains rather than synthetic corruptions. In Table 7
(Correlated Input) and Table 8 (Correlated Labels, γ = 0.1), SIGMA consistently outperformed
ROID, confirming its effectiveness in realistic domain shift conditions. These results show that
SIGMA is robust to natural distribution changes and validate the broad applicability of the IG
alignment assumption beyond synthetic corruption-based benchmarks.

Table 9: AERs (%) and corresponding standard deviations on CIFAR10-C, CIFAR100-C and
ImageNet-C.

Dataset Source CoTTA PETAL (FIM) RMT ROID SIGMA
CIFAR10-C 43.5 16.5±0.16 16.0±0.03 17.0±0.34 16.3±0.17 15.7±0.06
CIFAR100-C 46.4 32.8±0.07 31.3±0.13 30.6±0.11 31.7±0.11 29.6±0.07
ImageNet-C 64.0 59.3±1.23 58.3±0.14 52.6±1.00 47.0±0.26 46.1±0.17
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Small Multi-Domain Settings. We conducted experiments on CIFAR10-C and CIFAR100-C
for ResNet-based models [21]. For PETAL [7], we adopted the FIM variant. Table 9 presents a
comparison between student-teacher methods and SIGMA applied on top of the strongest entropy-
based baseline, ROID. These results show that ROID outperforms student-teacher approaches on
ImageNet-C, which involves a larger number of classes. In contrast, on CIFAR10-C and CIFAR100-
C, student-teacher methods such as PETAL and RMT [11] exhibit error rates lower than ROID.
Specifically, PETAL achieves better performance than ROID on both CIFAR datasets, and RMT
outperforms ROID on CIFAR100-C. However, SIGMA consistently improves ROID performance in
all datasets, achieving error rates lower than those of all student-teacher methods, including CoTTA,
PETAL, and RMT. These results demonstrate that SIGMA not only offers computational efficiency
but also delivers superior accuracy compared to student-teacher models.

C.7 Real-world Scenario

Table 10: Average word error rates (WER, %) and
standard deviation on validation (VALID) and test
(TEST) sets in the real-world speech recognition
scenario on TEDLIUM3.

Method VALID TEST
Source 13.0 12.4

Pseudo Label 12.7 ± 0.01 12.1 ± 0.03
TENT 12.5 ± 0.01 11.9 ± 0.02
SUTA 12.4 ± 0.01 11.6 ± 0.01

SUTA+SIGMA 12.3 ± 0.01 11.4 ± 0.01

We evaluated several TTA methods in a real-
time speech recognition scenario using the
TEDLIUM3 dataset [23] containing streamed
TED talk recordings. The validation and test
sets included speech from 8 and 11 speakers,
each covering different topics. Our experiments
used a speech-adapted version of the D2V model
pre-trained on LibriSpeech [47] as the backbone.
Following the experimental protocol of SUTA
[36], an established TTA method for speech
recognition, we simulated realistic speaker adap-
tation by measuring average word error rate
(WER) as new speakers sequentially entered the
stream. As shown in Table 10, SUTA+SIGMA consistently outperformed all baselines, achieving the
lowest WER on both the validation and test sets. These results demonstrate that SIGMA enhances
real-time adaptation by effectively mitigating speaker shift, confirming its practical applicability to
real-world online adaptation tasks such as speech recognition.

D Related Works

D.1 Learning Dynamics

From the perspective of learning dynamics, a growing body of work demonstrates that the noise
introduced by SGD exhibits heavy-tailed behavior [58, 59, 20, 57]. These studies establish that
the tail behavior of SGD noise is closely related to the flatness of loss minima and, by extension,
generalization performance [59, 20]. This strong theoretical understanding underpins the empirical
observations reported in Appendix A.3 and substantiates our approach of treating variance as a
random variable rather than a fixed value.

In parallel to these findings regarding learning dynamics and noise behavior, recent work has
reinterpreted SGD-like updates from a Bayesian perspective. For instance, the existing works [41, 8]
model SGD as an SDE where the stationary distribution approximates a Gaussian posterior. This
work offers a principled explanation for the implicit regularization effects of SGD. Based on this
view, Maddox et al. [38] have proposed posterior approximations using the trajectory of SGD itself.
This work fits a Gaussian to the empirical mean and covariance of SGD iterates to enable practical
Bayesian ensembling. These studies mainly focus on training from scratch or in supervised learning
settings.

Distinct from prior work, we decisively extend the Bayesian viewpoint to the demanding setting of
sequential domain shifts and unsupervised online adaptation. Our empirical evidence establishes that
the log-variance of parameter transitions consistently aligns with the IG distribution under stable
conditions. Motivated by this observation, we propose SIGMA, an algorithm that leverages this
maintained alignment to deliver both stability and flexibility during online adaptation, setting it apart
from existing approaches.
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D.2 Bayesian Deep Learning

DNNs are highly flexible, allowing them to represent many functions with varying levels of general-
ization. Using this implicit capacity is key to improving adaptability to shifts in data distributions.
This concept is often applied in Bayesian deep learning, which treats model parameters as samples
from an underlying distribution [49, 63, 64, 26]. Usually, the parameter distribution is approximated
as a Gaussian centered around the parameter mode [8]. With this assumption, repeated training
produces multiple models, which are then aggregated. Model averaging, based on this approach, has
shown strong robustness to distribution shifts [25, 15, 39, 67, 65, 52].

Recent studies have extended the Bayesian perspective to the TTA setting by analyzing changes
in parameter distributions during online adaptation [31, 32, 55, 30]. For example, Lee & Chang
[31, 32] adopts a continual learning viewpoint, applying Bayesian filtering while explicitly fixing
the transition distribution to balance information from past and present tasks. Other work [55]
designs state-space models that are fundamental to Bayesian filtering and directly learn the transition
distribution from the data. More recently, Lee [30] proposed modeling the transition distribution via
an SDE, incorporating Bayesian filtering where the posterior is forced to converge toward a fixed
value for stable adaptation. However, such approaches often overlook the natural dynamics of model
parameters during real-world online adaptation. Moreover, this work forced convergence excessively
suppresses heavy-tailed behavior, which degrades adaptability [58, 59, 20, 57].

In contrast, our work directly treats the variance of the transition distribution as a random variable
and explicitly analyzes its temporal evolution during online learning. As a result, we uncover a
key empirical law: the log-variance of parameter transitions aligns well with an IG distribution
under stable online conditions. Building on this observation, we introduce a principled algorithm
that estimates the IG distribution in real time and modulates the parameter dynamics accordingly.
Consequently, by modeling variance as a stochastic quantity, our method avoids oversuppressing
heavy-tailed behavior, thereby preserving adaptability. Furthermore, unlike conventional Bayesian
filtering approaches, our method introduces no latent variables, making it lightweight and memory
efficient.

E Limitation and Future Work

One limitation of our approach is the assumption that the parameter distribution follows a Gaussian
form. While this assumption enables analytical tractability, it may limit the expressiveness of the
underlying distribution. Nevertheless, our empirical results demonstrate that SIGMA, built upon this
approximation, consistently performs well across various realistic scenarios and model architectures.
We aim to extend our probabilistic framework for future work to account for more complex, non-
Gaussian parameter distributions. We anticipate that such generalizations will be necessary in
applications where greater distributional flexibility is critical. This direction may lead to more general
and consequential online adaptation techniques.
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