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Abstract

The core principle behind most collaborative filtering methods is to embed
users and items in latent spaces, where individual dimensions are learned
independently of any particular item attributes. It is thus difficult for users
to control their recommendations based on particular aspects (critiquing).
In this work, we propose Untangle: a recommendation model that gives
users control over the recommendation list with respect to specific item
attributes, (e.g.:less violent, funnier movies) that have a causal relationship
in user preferences. Untangle uses a refined training procedure by training
(i) a (partially) supervised β-VAE that disentangles the item representations
and (ii) a second phase which optimized to generate recommendations for
users. Untangle gives control on critiquing recommendations based on users
preferences, without sacrificing on recommendation accuracy. Moreover only
a tiny fraction of labeled items is needed to create disentangled preference
representations over attributes.

1 Introduction

Figure 1: Untangle model is trained in two
phases: Disentangling phase: Input to en-
coder is a one hot representation of an item
(green dotted line). Obtained representation
is disentangled across A attributes. Recom-
mendation phase: Input to encoder is the
items user interacted with (solid red line) and
recommends new items.

User and item representations form the basis
of typical collaborative filtering recommenda-
tion models. These representations can be
learned through various techniques such as
Matrix Factorization (1; 2), or are constructed
dynamically during inference e.g. the hidden
state of RNN’s in session-based recommenda-
tions (3; 4).

As most standard recommendation models
solely aim at increasing the performance of
the system, no special care is taken to en-
sure interpretability of the user and item rep-
resentations. These representations do not
explicitly encode user preferences over item
attributes. Hence, they cannot be easily used
by users to change a.k.a. critique (5) the
recommendations. For instance, a user in a
recipe recommendation system cannot ask for
recommendations for a set of less spicy recipes,
as the spiciness is not explicitly encoded in
the latent space. Moreover the explainability
of the recommendations that are provided by
such systems is very limited.

In this work, we enrich a state-of-the-art rec-
ommendation model to explicitly encode pref-
erences over item attributes in the user latent
space while simultaneously optimizing for rec-
ommendation’s performance. Our work is
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motivated by disentangled representations in other domains, e.g., manipulating generative
models of images with specific characteristics (6) or text with certain attributes (7). Varia-
tional Autoencoders (VAEs), particularly β-VAE’s (8) (which we adapt here), are generally
used to learn these disentangled representations. Intuitively, they optimize embeddings to
capture meaningful aspects of users and items independently. Consequently, such embeddings
will be more usable for critiquing.

There are two types of disentangling β-VAEs: unsupervised and supervised. In the former,
the representations are disentangled to explanatory factors of variation in an unsupervised
manner, i.e., without assuming additional information on the existence (or not) of specific
aspects. Used in the original β-VAE (8) approach, a lack of supervision often results in
inconsistency and instability in disentangled representations (9). In contrast, in supervised
disentangling, a small subset of data is assumed to have side-information (i.e. a label or
a tag). This small subset is then used to disentangle into meaningful factors (10; 9). As
critiquing requires user control using familiar terms/attributes, we incorporate supervised
disentanglement in a β-VAE architecture in this work.

To achieve the explicit encoding of preferences over item attributes in embedding space we
refine the training strategy of the untangle model. We essentially train in two phases: i)
Disentangling phase: We explicitly disentangle item representations, using very few supervised
labels. ii) Recommendation phase: We encode the user, using the bag-of-words representation
of the items interacted, and then generate the list of recommended items. Untangle gives
fine-grained control over the recommendations across various item attributes, as compared to
the baseline. We achieve this with a tiny fraction of attribute labels over items, and moreover
achieve comparable recommendation performance compared to state-of-the-art baselines.

2 Related Work

Deep learning based Autoencoder architectures are routinely used in collaborative filtering
and recommendation models (11; 12; 13). In particular (11; 12) adopt denoising autoencoder
architectures, whereas (13) uses variational autoencoders. The internal (hidden) representa-
tions generated by the encoders in these models are not interpretable and hence cannot be
used for critiquing or explanations in recommendations.

Recent work on Variational Autoencoders across domains have focused on the task of
generating disentangled representations. One of the first approaches used to that end was
β-VAE (8; 14; 15), which essentially enforced a stronger (multiplying that term with β > 1)
KL divergence constraint on the VAE objective. Such representations are more controllable
and interpretable as compared to VAEs.

One of the drawbacks of β-VAE is that the disentanglement of the factors cannot be controlled
and that they are relatively unstable and not easy to reproduce particularly when the factors
of variance are subtle (9; 8; 14; 16; 17). This has motivated methods that explicitly supervise
the disentangling (10), that rely either on selecting a good set of disentangling using multiple
runs and the label information (18), or by adding a supervised loss function in the β-VAE
objective function (10). As supervised disentangling methods are better in explainability and
could provide control over desired attributes, we motivate our model from (19) for better
critiquing in VAE based recommendation systems.

In recommender systems similar methods to utilize side information, have also been used
recently to allow for models that enable critiquing of recommendations. These models allow
users to tune the recommendations across some provided attributes/dimensions. Notable
examples are (20; 21), where the models are augmented with a classifier of the features over
which to control the recommendation. Adjusting the features at the output of the classifier
modifies the internal hidden state of the model and leads to recommendations that exhibit
or not the requested attribute. Note that this method of critiquing is quite different to our
approach which allows for a gradual adjustment of the attributtes. Moreover the models
in (20; 21) require a fully labeled dataset with respect to the attributes while our approach
only requires a small fraction of labeled data.
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Unsupervised disentanglement was also recently used to identify and potentially use factors
of variation from purely collaborative data i.e., data generated by user interactions with
items (22) note though that this method focus was mainly on performance of the recommen-
dations and that it does not allow for seamless critiquing as it is not clear what aspect of
the data get disentangled.

3 Untangle

The aim of the untangle model is to obtaining controllable user (and item) representations
for better critiquing along with optimizing for recommendation performance. To this end,
we incorporate a simple supervised disentanglement technique to disentangle across item
attributes/characteristics over which we want to provide explicit control to the users.

We index users with u ∈ {1, . . . , n}, and items with i ∈ {1, . . . ,m}. Xn×m is a matrix of
user-item interactions (xui = 1 if user u interacted with item i, and 0 otherwise). A subset
of items are assumed to have binary labels for attributes A.

Our model is a modified β-VAE architecture, with a feed forward network based encoder and
decoder. In Figure 1, user u is represented by [z : c]. Note that : stands for concatenation,
the z part of the representation is non-interpretable by default while on the c part of the
representation we map (through a refined learning step) the representation of the attributes
of the items over which we would like the user to have control. Each dimension in c is
mapped to only one attribute a. Across the paper, we refer the dimension associated with the
attribute a, as ca. The user representation is sampled from the distribution parameterized
by the encoder (qφ): qφ(xu∗) = N (µφ(xu∗), diag(σφ(xu∗)). The input to the encoder is the
bag of words representation of the items u interacted with, i.e. the uth row of matrix X,
xu∗. The decoder generates the probability distribution given user representation [z : c],
π(z) ∝ exp(fdecφ ([z : c])), over the m items. The likelihood function used in recommender
system settings (3; 23; 24; 25) is typically the multinomial likelihood:

pθ(xu|[z : c]) =
∑
i

xui log πi([z : c]))

3.1 Learning

Training is conducted in two phases: Recommendation and Disentangle phase, as mentioned
in Algorithm 1.

Recommendation Phase The objective in this phase is to optimize the encoder parame-
terized by (θ), and decoder parameterized by (ψ) to generate personalized recommendations.
We train our model with the following objective:

L(xu∗, θ, φ) ≡ Eqθ([z:c]|xu∗)[logpθ(xu∗|[z : c])]− βKL(qφ([z : c]|xu∗)|p([z : c])) (1)
Intuitively, this is the negative reconstruction error minus the Kullback-Leibler divergence
enforcing the posterior distribution of z to be close to the Gaussian distribution (prior) p(z).

The KL divergence in β-VAE is computed between the representation sampled from the
encoder and the normal distribution p(z) = N (0, Id). The diagonal co-variance matrix
enforces a degree of independence among the individual factors of the representation. Con-
sequently, increasing the weight of the KL divergence term with β > 1 boosts the feature
independence criteria, leading to disentangled representation. This ensures that even in the
recommendation phase, the learnt user representations are nudged towards disentanglement.

Disentanglement Phase Since the attribute information is commonly available across
the items. In this phase, we first obtain the item representation in the user latent space (as
depicted in the highlighted green box in Figure 1). We pass the one hot encoding of an item,
and obtain its representation in the latent user space. We then disentangle the obtained
representation using the following objective:

(2)L(1i, θ, φ) ≡ Eqθ([z:c]|1i)[logpθ(1i|[z : c])]

− βKL(qφ([z : c]|1i)|p([z : c])) + γEqθ(c|1i)l(qφ(c|1i),a)
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Algorithm 1: Untangle: Training
Data: X ∈ Rn×m containing user-item interactions, with a subset of items having labels

for A attributes
1 initialize model params.: Encoder(φ), Decoder(θ) ;
2 do
3 if is_disentangle then

// Disentangle representations
4 1i ← random mini batch from set of items that are labelled with A set.
5 [z : c]← sample from N (µφ(1i), diag(σφ(1i))
6 x̃i∗ ← Decoder([z : c])
7 compute gradients ∇Lφ, ∇Lθ using Objective 2
8 φ← φ+∇Lφ
9 θ ← θ +∇Lθ

10 end
11 if is_recommend then

// Recommend items
12 xu∗ ← random mini-batch from dataset
13 [z : c]← sample from N (µφ(xu∗), diag(σφ(xu∗))
14 x̃u∗ ← Decoder([z : c])
15 compute gradients ∇Lφ, ∇Lθ using Objective 1
16 φ← φ+∇Lφ
17 θ ← θ +∇Lθ
18 end
19 while model converges;

As in (10), we modify the β-VAE objective (Objective 1) in to incorporate a classification loss
over the factors c, over which we disentangle. This loss penalizes discrepancies between the
attribute label prediction for factor ca and the label a of interest, nudging the disentanglement
for each attribute to happen over the corresponding factor ca.

4 Datasets

Movielens Dataset: We use the Movielens-1m and Movielens-20m datasets (26), which
contain 1 million and 20 million user-movie interactions, respectively. For the latter, we
filter out movies with fewer than 5 ratings and users who rated ≤ 10 movies. We utilize
the relevance scores given in the Movielens dataset for 10,381 movies across 1,000 different
tags to select attributes for disentangling. E.g., Mission Impossible movie has high relevance
(0.79) for the action tag. We take the top 100 tags, based on the mean relevance score across
all movies. Among these 100 tags, some tag pairs, like (funny, and very funny), are by
definition entangled. Therefore, to identify distinct tags, we cluster these 100 tags (∈ R10381

movies) into 20 clusters using K-Means clustering. Finally, we select a subset from these 20
clusters, as given in Table 1 for disentangling. We assign the new-clustered tag (as given
in Table 1, Column 1) if the average-relevance score (the mean of relevance scores for tags
present in the corresponding cluster) is higher than 0.5.

Goodreads Dataset: The GoodReads dataset (27) contains user-book interactions for
different genres. We use the Children and Comics genres to evaluate our model. We filter
out items rated ≤ 5 and users who rated ≤ 10 books. The final statistics are given in
Appendix A. We extract the tags for disentangling from the user-generated shelf names, e.g.,
historical-fiction, to-read. We retrieve the top 100 shelf names. Some tags (like “books-i-have”)
are not useful to revise recommendations. Therefore, we only consider item attributes that
all the authors consider informative for critiquing recommendations. We select a subset for
disentangling from this set, as it still contains correlated attributes like historical-fiction,
fiction. We select attributes with the corresponding number of books where the attribute was
present {horror:1080, humor:9318, mystery:3589, and romance:1399} and {adventure:8162,
horror:5518, humor:8314, mystery:5194, romance:7508, sci-fi:7928}, for Goodreads-(Children
and Comics) respectively.
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Cluster Label Tagged Tags included in clustermovies
action 1,167 action, fight-scenes, special-effects
funny 1,219 comedy, funny, goofy, very funny

romantic 975 destiny, feel-good, love story, romantic
sad 1,488 bleak, intimate, loneliness, melancholic, reflective, sad

suspense 1,070 betrayal, murder, secrets, suspense, tense, twist-and-turns
violence 1,297 brutality, cult classic, vengeance, violence, violent

Table 1: Each cluster was manually assigned a human-readable label. Some of the tags
present in each cluster are listed in column 3. Column 2 lists the number of movies that had
high relevance score for tags in each cluster.

5 Evaluation Metrics

We evaluate Untangle on these criteria: i) quality of items recommended, ii) extent of
disentanglement, iii) control/critiquing based on the disentangled representations.

Ranking Based Metrics: We evaluate the quality of items recommended using two
ranking-based metrics: Recall@k and normalized discounted cumulative gain NDCG@k. The
latter is rank sensitive, whereas Recall@k considers each relevant item in the top-k equally.

Recall@k :=

∑k
i=1 I[item[i] ∈ S]
min(k, |S|)

DCG@k :=

k∑
i=1

2I[item[i]∈S] − 1

log(i+ 1)

NDCG is normalized DCG by dividing it by the largest possible DCG@k.

Disentanglement Metrics: We use the Disentanglement, and Completeness metrics
introduced in (28). Disentanglement measures the extent to which each dimension captures
at most one attribute. E.g., if a dimension captures all attributes, the Disentanglement score
will be 0. We compute importance paj of ath attribute on jth dimension of [z : c] ∈ Rd, with
Gradient Boosted Trees as given in (9). Using the paj scores, the disentanglement score is
defined as:

H|A|(Pj) = −
|A|−1∑
a=0

paj log|A|paj , Dj = (1−H|A|(Pj))

D =

d−1∑
j=0

ρjDj , ρj =

∑|A|−1
a=0 paj∑d−1

j=0

∑|A|−1
a=0 paj

We compute entropy H|A|(Pj)) for jth dimension. Disentanglement score for dimension j is
then 1− entropy. The final disentanglement score of the system is weighted average of Dj

across all the dimensions d, where ρj the dimension’s relative importance. Completeness:
Measures the extent to which one attribute a is encoded in a single dimension of [z : c]. For
a latent representation of 16 dimensions and 2 attributes, if 8 dimensions encode attribute
a1 and the other 8 encode a2, then the Disentanglement will be 1 but Completeness will be
0.25. Completeness is defined as:

Hd(Pa) = −
d−1∑
j=0

paj logdpaj , Ca = (1−Hd(Pa))

C =

|A|−1∑
a=0

ρaCa, ρa =

∑d−1
j=0 paj∑|A|−1

a=0

∑d−1
j=0 paj

Controller Metric: We propose a simple metric to quantify the extent of control disen-
tangled dimension ca has on recommendations by critiquing attribute a. With supervised-
disentanglement, the mapping between dimensions c in the latent representations, and the
attributes across which we disentangled is known. The features in these dimensions in c
allow the user to control/critique the respective attribute in the generated recommendations.
For instance, less violence can be achieved by reducing the corresponding dimension value
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Dataset Model Recommendation Performance Disentanglement Performance
N@100 R@20 R@50 Disent. Comp. Controller Metric

ML-1m

Multi-DAE 0.38782 0.31636 0.43404 0.317 0.214 0.961
Multi-VAE 0.39252 0.32515 0.44757 0.306 0.200 0.947
β-VAE 0.38658 0.31216 0.43032 0.313 0.0211 0.924
Untangle 0.37833 0.30079 0.42532 0.543 0.393 19.27

ML-20m

Multi-DAE 0.39738 0.37071 0.50847 0.265 0.182 0.88
Multi-VAE 0.39827 0.37212 0.50946 0.246 0.167 3.53
β-VAE 0.38724 0.35617 0.48976 0.211 0.142 3.27
Untangle 0.40320 0.37367 0.51303 0.677 0.529 75.11

GR-Comics

Multi-DAE 0.42593 0.42602 0.52610 0.243 0.175 0.963
Multi-VAE 0.45159 0.45697 0.55598 0.173 0.137 0.872
β-VAE 0.44366 0.44949 0.55226 0.192 0.146 0.847
Untangle 0.43597 0.43981 0.54218 0.733 0.536 73.41

GR-Children

Multi-DAE 0.40030 0.43240 0.56473 0.145 0.132 2.37
Multi-VAE 0.40219 0.43057 0.56695 0.164 0.132 0.86
β-VAE 0.40219 0.43057 0.56695 0.139 0.103 0.92
Untangle 0.41255 0.44490 0.58473 0.517 0.574 14.37

Table 2: Recommendation and Disentanglement performance on Movielens-(1m,20m) and
Goodreads-(Comics,Children) domain dataset on the corresponding test split.

(violence) in c. We evaluate this by probing if the items where the attribute is present (Sa)
are ranked higher when the dimension value ca is increased by a factor of g in the user
representation. We extract the items recommended from the decoder (Ia(g)), for the new
user representation where only ca is multiplied g × ca. We compare (Ia(g)) against (Sa)
using any ranking-based metric described above. We further vary g for a given range [−G,G],
and study if the ranking of (Sa) improves. The Controller-Metric is defined as follows:

Controller_Metric(k, g) :=
|Recall@k(Ia(G),Sa)−Recall@k(Ia(−G),Sa)|

Recall@k(Ia(−G),Sa)
(3)

To compute the Controller-Metric for a system, we take the median across all the attributes
disentangled in c. Note that the metric value depends on k and the range chosen.

6 Results and Discussions

Recommendation and Disentanglement Performance We train the Untangle model
with the parameter settings mentioned in Appendix B. We compare Untangle with the
MultiDAE, and MultiVAE models (13). We also compare our model with a stronger baseline
for disentanglement β-VAE, which disentangles the representation in an unsupervised way.
We present our results in Table 2. Note that supervised disentanglement for Table 2, has
been trained with 300 (1%), 1030 (5%), 1500 (5%), 1550 (5%) labelled items for Movielens-
(1m,20m) and Goodreads-(Children,Comics) respectively. We observe that our proposed
model’s performance on ranking-based metrics (Recall@k, and NDCG@k) is comparable to
the baselines across all datasets. Thus we show that disentangling the latent representation
does not impact the recommendation performance. We also quantify the disentanglement
using the Disentanglement and Completeness metrics discussed in Section 5. We infer from
Table 2 that the disentanglement achieved across all the mentioned strategies is significantly
higher than the baselines. Disentangling with a tiny fraction of labeled items leads to a
significant gain in disentanglement compared to β-VAE.

We evaluate the extent of the controllability of the disentangled representations. To this
end, we compute the Controller Metric, which measures the control over the attribute
dimension ca variation. We use the multiplicative range of [−150,+150] to amplify ca, and
measure the ranking performance using recall@10 across this range. Note that the rest of the
representation remains unchanged. We observe that we get significantly higher controllability
for the Untangle model compared to the baseline approaches, especially for Movielens-20m
and Goodreads-Comics dataset. By reducing ca we can diminish the existence of items
with attribute a from the recommendation list and by gradually increasing the magnitude
of ca increase the presence of items with this attribute in the recommendation list up to
saturation.
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(a) MultiVAE:Sad (b) MultiVAE:Romantic (c) MultiVAE:Suspense (d) MultiVAE:Violence

(e) Untangle:Sad (f) Untangle:Romantic (g) Untangle:Suspense (h) Untangle:Violence

Figure 2: Control over recommendations when factor-value ca, is adjusted by multiplicative
factor g ∈ [−150, 150]. Recommendation lists are evaluated by recall@(5,10,20). Relevance
is determined by the presence of attribute a in the retrieved items. We compare Multi-VAE
(top) with Untangle model (bottom) for sad, romantic, suspense and violence on ML-20m.

(a) MultiVAE:Adventure (b) MultiVAE:Sci-Fi (c) MultiVAE:Mystery (d) MultiVAE:Humor

(e) Untangle:Adventure (f) Untangle:Sci-Fi (g) Untangle:Mystery (h) Untangle:Humor

Figure 3: We compare Multi-VAE (top) with Untangle model (bottom) for adventure, sci-fi,
mystery and humor attributes for Goodreads-Comics for the same analysis done in Figure 2.

Critiquing Recommendations The primary aim of our model is to obtain controllable
representations for critiquing. With the Controller Metric, we quantify controllability, here we
further analyze the incremental impact of changing the attribute dimension. In this analysis,
we visualize the effect on the recommendations of the adjustment of the disentangled factor
ca for each attribute a. We multiply the factor with g in Figure 2 and Figure 3 for baseline
model MultiVAE and Untangle. Note that for the baseline (MultiVAE), we adjust the
dimension that has the highest feature importance score computed using Gradient Boosting
Classifier for attribute a.

For the movies domain (Figure 2), we observe that for MultiVAE (row 1) the variation in ca
has no clear correlation with the recommendation performance in terms of the presence or
absence of items with this attribute. In contrast to MultiVAE, in the Untangle model, we
consistently observe a significant and gradual variation across all the explicitly disentangled
attributesA. Even for subtle attributes like suspense, we obtain a complete range of recall@10
from 0.0 to 1.0 We observe similar results for Goodreads comics dataset (Figure 3), where
we again get gradual and significant change (approximately 1) across all the disentangled
attributes.

7



Under review as a conference paper at ICLR 2021

Figure 4: Correlation between learnt dimension value
ca to the true relevance score across 500 movies for
Movielens-20m

Correlation between Relevance
Scores and ca : We observe that
disentangling across item representa-
tions leads to a fine-grained control
for critiquing. We further verify, if the
achieved controllability is an outcome
of high correlation between factor ca,
and the true relevance score across
movies for attribute a for Movielens-
20m dataset. We randomly sample
500 movies, and obtain their latent
representation from the encoder. In
Figure 4, we plot the obtained ca

value to and the true relevance score for attribute action. We can infer from the Fig-
ure 4 that the representations obtained from Untangle have a high Pearson correlation of
0.53 as compared to MultiVAE model (Pearson Correlation: -0.03). The graphs for other
attributes/tags are presented in Appendix C.

Figure 5: Variation in Disentanglement and Com-
pleteness metrics when model is trained with lesser
labels for Movielens-20m and GoodReads-Comics.

Fewer Labels for Disentangle-
ment One of the advantages of Un-
tangle is that it disentangles with very
few labels. We train Untangle with
fewer labeled items. Each point in in
Figure 5 is an average across 5 differ-
ent runs with different random seeds.
For Movielens-20m just 1% attribute
labels yields a disentanglement score
of 0.51, which gradually increases up
to 0.92 when trained with all labels.
For Goodreads-Comics, with 1% la-
belled books we are able to achieve

0.52 disentanglement, which gradually increases to 0.93 when the model is trained with all
the labels. Note that even with 1% labelled items, the disentanglement and completeness
scores obtained are significantly higher than β-VAE model:0.21 and 0.19 on Movielens-20m
and Goodreads-Comics and respectively.

Controllable Attributes With the above analysis, we have established that Untangle
leads to controllable representations. In this experiment, we identify if the controllability
is restricted to the chosen set of attributes. Therefore, we apply Untangle to a larger set
of tags for Movielens-20m dataset. We cluster all the 1181 tags present in the dataset,
using K-Means clustering into 50 clusters. The clustering strategy is similar to the one
mentioned in Section 4. We then evaluate the controllability for each of the clustered-tag, b.
We explicitly encode the corresponding clustered-tag b using Untangle, using 5% of labelled
items. The controller metric score is obtained for each tag, across 5 runs. In each run, we
sub-sample four clustered tags out of 40 to be disentangled along with the corresponding
clustered tag b. This is done to model the impact of disentangling a given attribute alongside
with other attributes present in the dataset. We identify that across 40 clustered-tags, we
obtain a controller-metric score of > 11.0 for over 21 tags. Some of the attributes which
do not have a higher controller-metric score includes:80s, crappy, philosophical, etc. These
attributes are also unlikely to be critiqued by user. Some of the most controllable and least
controllable tags have been listed in Appendix D.

7 Conclusion

Untangle archives the goals we set, it provides control and critiquing over the user recommen-
dations over a set of predefined item attributes. It does so without sacrificing recommendation
quality and only needs a small fraction of labeled items.
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A Dataset Statistics

We have mentioned the number of interactions, users, and items for Movielens and Goodreads
Dataset in Table 3.

Dataset Number of In-
teractions

Number of
Users

Number of
Items

Sparsity
Rate

Movielens-1m 1,000,209 6,040 3,706 4.468 %
Movielens-20m 9,990,682 136, 677 20, 720 0.353 %
Goodreads-
Children

3,371,518 92,993 33,635 0.108 %

Goodreads-
Comics

2,705,538 57,405 32,541 0.145 %

Table 3: Dataset statistics (after performing all filtering). The sparsity rate indicates the
fraction of cells in the complete user-item matrix with a known value.

B Implementation Details

We divide the set of users into train, validation and test splits. Validation and test splits
consist of 10% of the users, across all datasets. For each user in the validation and test split,
we use only 80% of the items rated by them to learn the user representation. The remaining
20% is used to evaluate the model’s performance. This strategy is similar to the one used
by (13). For all the experiments, user’s latent representation is restricted to 32 dimensions.
The encoder and decoder consists of two layers with [600, 200] and [200, 600] hidden units
respectively, each with ReLu activation. We conduct hyper-parameter tuning to identify β
and γ values from [5, 10, 50] and [5, 10, 50, 500] respectively. The threshold M to identify
movies where the attribute is present for Movielens-20m , and MovieLens-1m is taken as
0.5 and 0.4 respectively. All the models are run up to 50 epochs. We select the best model,
based on its performance on validation dataset for both NDCG@100 and Disentanglement
score. We select less than 5% of items for supervised β-VAE using stratified sampling.

C Correlation between dimension value ca and true relevance
scores across items

We compare the dimension value ca associated with an attribut a, to the true relevance
scores present in the Movielens-20m dataset. We show in Figure 6 that across all the tags,
the correlation is consistently higher for Untangle, when compared to MultiVAE.

D Controllable Attributes

Using Untangle, we identify the clustered-tags, which are more controllable for revising user
recommendations. We have listed some of the most controllable and least controllable tags
in Table 4. We also list the absolute recall difference obtained across each cluster.
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Recall Difference Tags in the cluster:
10 Most Controllable Attributes

0.75933 action packed, adventure, big budget, cool, dynamic cgi action, exciting,
fast paced, fighting, franchise, plot holes, series

0.75924 atmospheric, bleak, character study, downbeat, forceful, grim, master-
piece, movielens top pick, powerful ending, tense, visceral

0.75461 corruption, intense, murder, police investigation, secrets, suspense, sus-
penseful, thriller, twists & turns

0.75246 beautiful scenery, betrayal, childhood, earnest, excellent, excellent script,
exceptional acting, friendship, good acting, great movie, honest, idealism,
justice, light, moral ambiguity, original plot, oscar, oscar winner, sacrifice,
unlikely friendships, very good, witty

0.72529 classic, cult classic, gunfight, highly quotable, quotable
0.72285 comedy, funny, hilarious, humorous, very funny
0.7144 afi 100 (movie quotes), oscar (best actor), oscar (best cinematography),

oscar (best picture), oscar (best supporting actor)
0.70965 adapted from:book, based on a book, based on book, books
0.61973 future, futuristic, sci fi, sci-fi, science fiction, scifi, special effects, technol-

ogy
0.59895 goofy, silly, silly fun

10 Least Controllable Attributes
0.24986 erotic, sex, sexual, sexuality
0.24014 adolescence, bullying, coming of age, coming-of-age, high school, school,

teacher, teen, teen movie, teenager, teenagers, teens
0.23056 anti-semitism, anti-war, best war films, bombs, civil war, fascism, geno-

cide, german, germany, historical, history, holocaust, jewish, jews, mili-
tary, nazi, nazis, poland, russian, war, war movie, wartime, world war i,
world war ii, wwii

0.17843 broadway, dance, dancing, great music, hip hop, lyrical, music, music
business, musical, musicians, rock and roll

0.17675 adapted from:comic, based on a comic, based on comic, comic, comic
book, comics, graphic novel, mutants, super hero, super-hero, superhero,
superheroes, vigilante

0.1112 business, capitalism, controversial, documentary, factual, freedom, islam,
journalism, oil, political, politics, propaganda, revolution, us history,
world politics

0.08376 1970s, anti-hero, awesome soundtrack, california, crime, drugs, gangs,
good music, great soundtrack, gritty, nostalgic, small town

0.06328 assassination, black comedy, brainwashing, censorship, cynical, distopia,
fighting the system, guilt, hotel, identity, intellectual, intelligent, ironic,
manipulation, morality, off-beat comedy, oscar (best writing - screenplay
written directly for the screen), paranoid, philosophical, philosophy,
surveillance, thought-provoking

0.0432 mentor, original
0.00691 80s, awful, bad, bad acting, bad cgi, boring, camp, campy, cheesy, disaster,

dumb, dumb but funny, horrible, idiotic, lame, mad scientist, nudity
(topless), remake, ridiculous, stupid, stupid as hell, stupidity

Table 4: Most controllable and least controllable tags obtained from Untangle
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(a) MultiVAE:Romantic (b) MultiVAE:Sad (c) MultiVAE:Suspense (d) MultiVAE:Violence

(e) Untangle:Romantic (f) Untangle:Sad (g) Untangle:Suspense (h) Untangle:Violence

Figure 6: We compare Multi-VAE (top) with Untangle model (bottom) for the correlation
between factor ca and true relevance scores.
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