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Abstract

Recent years have seen an increasing trend in001
the volume of personal media captured by users,002
thanks to the advent of smartphones and smart003
glasses, resulting in large media collections.004
Despite conversation being an intuitive human-005
computer interface, current efforts focus mostly006
on single-shot natural language based media re-007
trieval to aid users query their media and re-live008
their memories. This severely limits the search009
functionality as users can neither ask follow-010
up queries nor obtain information without first011
formulating a single-turn query.012

In this work, we propose dialogs for connected013
memories as a powerful tool to empower users014
to search their media collection through a multi-015
turn, interactive conversation. Towards this,016
we collect a new task-oriented dialog dataset017
COMET, which contains 11.5k user↔assistant018
dialogs (totalling 103k utterances), grounded019
in simulated personal memory graphs. We em-020
ploy a resource-efficient, two-phase data collec-021
tion pipeline that uses: (1) a novel multimodal022
dialog simulator that generates synthetic dia-023
log flows grounded in memory graphs, and, (2)024
manual paraphrasing to obtain natural language025
utterances. We analyze COMET, formulate four026
main tasks to benchmark meaningful progress,027
and adopt state-of-the-art language models as028
strong baselines, in order to highlight the multi-029
modal challenges captured by our dataset. Our030
code & data will be made publicly available.031

1 Introduction032

The rise of smartphones and smart glasses has con-033

tributed to a surge in the amount of personal media034

(photos, videos, montages, etc.) captured by users035

on a day-to-day basis in the past decade. For in-036

stance, it is estimated that about 1.5 trillion photos037

would be clicked in the year 2022 (Pantic, 2021).038

As a result, personal media collections typically039

grow at an alarming rate, making it cumbersome040

for users to manually search, retrieve, and re-live041

Figure 1: Illustration of COMET: COnnected MEmories
with a Task-oriented Dialog. (a) Each dialog turn is fully
annotated with dialog acts and multimodal coreference
labels, accompanied with photos associated with the re-
quest. (b) These media are from the underlying memory
graph, a structured collection of personal media.

their captured memories1. 042

To alleviate this situation, solutions that perform 043

natural language query-based media retrieval (Tan 044

et al., 2019; Vo et al., 2019; Tellex and Roy, 2009; 045

Barbu et al., 2013; Li et al., 2017; Guo et al., 2018a; 046

Saha et al., 2018) have been proposed. However, 047

such approaches exhibit two drawbacks. First, they 048

are single-shot interactions without any context 049

carry-over, e.g., Show me some photos from the 050

beach last week.. This limits the functionality and 051

does not let users ask any follow-up queries like 052

1Memories and media files are used interchangeably.
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‘Display photos from the first time I was here?’,053

since understanding here requires the query history.054

Second, users cannot seek information without ac-055

tually formulating the query to retrieve the corre-056

sponding memory. For instance, there is no easy057

query to know the first time a user visited the beach058

in the memory they are reviewing.059

In order to overcome these limitations, we pro-060

pose dialogs for connected memories as a powerful061

interface where users can interactively query their062

memory collections. By design, a conversational063

agent can handle multi-turn interactions enabling064

several additional queries that require context car-065

ryover, e.g., ‘When was the first time I was at this066

beach?’. Though prior efforts have explored the067

use of dialogs in media retrieval (Wu et al., 2021;068

Guo et al., 2018b) in other domains (e.g., fashion),069

there is no existing work focusing on interactive070

search and query of personal media collections to071

the best of our knowledge.072

More concretely, we propose COMET, a new073

multimodal task-oriented dialog dataset aimed at074

developing conversational assistants that can en-075

able users to interactively search and query their076

collection of memories. Working with personal me-077

dia collections presents two main obstacles: (a)078

There are no readily available public datasets that079

contain personal media along with associated me-080

dia attributes that we could leverage, and, (b) Per-081

sonal memories constitute sensitive information,082

thus resulting in privacy and safety concerns. To083

circumvent these roadblocks, we devise a novel084

memory graph simulator that can leverage publicly085

available media datasets and help create several086

synthetic memory collections. We represent these087

collections as memory graphs to capture useful088

relationships between the constituent memories,089

e.g., memories taken at the same place. We then090

collect 11.5k user↔assistant task-oriented dialogs091

(totalling 103k utterances), grounded in 1.1k mem-092

ory graphs. An example dialog is shown in Fig. 1.093

094

Our dataset is challenging as it requires rea-095

soning through both the dialog history and mul-096

timodal context (memory graphs) to resolve coref-097

erences, track the dialog state, predict the right098

API, and generate a meaningful natural language099

assistant response. As an example, consider the100

query ‘When was the first time I was here?’. First,101

the model needs to resolve here using the dialog102

history and previously viewed memories. Next, it103

needs to understand that the query is seeking in-104

formation about a connected memory, and predict 105

the right API get_time(resolve(here), first 106

time). Finally, it should produce a response like 107

‘The first time you were here was on August 2, 2019 108

with Jean’, potentially including some chit-chat. 109

To capture these challenges and benchmark 110

progress towards assistants that can interactively 111

handle dialogs for connected memories, we formu- 112

late four main tasks: Assistant API Call Prediction, 113

Multimodal Coreference Resolution (MM-Coref), 114

Multimodel Dialog State Tracking (MM-DST), and 115

Response Generation. We train baseline models for 116

these tasks, and discuss future research directions. 117

2 Related Work 118

Task-oriented Dialogs: The goal of a task-oriented 119

dialog system is to understand user queries and ac- 120

complish a pre-defined set of tasks (e.g. booking ho- 121

tels), which is a popular setting in consumer-facing 122

virtual assistants. Our work addresses similar chal- 123

lenges often found in other task-oriented dialogs, 124

such as natural language understanding (NLU), di- 125

alog state tracking (DST) (Henderson et al., 2014), 126

etc. Compared to the conventional task-oriented di- 127

alog datasets (e.g. MultiWoZ (Budzianowski et al., 128

2018; Eric et al., 2019; Rastogi et al., 2019)), how- 129

ever, our work involves a unique multimodal setting 130

where dialogs are grounded on a memory graph 131

composed of several media files, introducing novel 132

challenges such as multimodal dialog state track- 133

ing and multimodal coreference resolution given 134

personal photo collections. 135

The most notable modeling approaches for task- 136

oriented dialog systems include casting the DST 137

task as a joint causal language modeling problem 138

(Hosseini-Asl et al., 2020; Peng et al., 2020; Gao 139

et al., 2019), by fine-tuning a large pre-trained trans- 140

formers such as GPT-2 (Radford et al., 2019). We 141

follow this recent trend and provide baselines by ex- 142

tending it accommodate for the unique multimodal 143

contexts that our dataset brings. 144

Memory QA: Our work is also similar to the Mem- 145

ory QA tasks (Jiang et al., 2018; Moon et al., 2019), 146

where the main task is to answer user QA queries 147

upon a collection of images, extending the Visual 148

QA tas (Antol et al., 2015) which operates on a 149

single image. However, the existing literature is 150

limited to a simple single-turn QA interaction, and 151

focuses on the identification of an evidential im- 152

age to answer a question. While our dataset does 153

include QA queries, we extend the problem do- 154
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Figure 2: Two-stage pipeline to collect dialogs for
COMET. See Sec. 3 for more details.

main to the conversational settings which support155

complex scenarios (e.g. searching for related mem-156

ories), allowing for rich multimodal interactions.157

3 The COMET Dataset158

The aim of COMET is to enable assistant systems159

that can process interactive queries from users and160

help navigate their collection of memories through161

a natural language conversation. Towards this, we162

collect the COMET dataset using a two-phase ap-163

proach (shown in Fig. 2): (a) Generating synthetic164

dialog flows between a user and an assistant that165

are conditioned on memory graphs, using a novel166

multimodal dialog simulator (Sec. 3.1), and, (b)167

Manually paraphrasing the above flows to obtain168

dialogs with natural language utterances (Sec. 3.2),169

thus moving closer to real-world application. This170

approach is resource-efficient as it reduces the an-171

notation overheads when compared to collecting172

human↔human dialogs, both in terms of cost and173

time. In what follows, we describe these two phases174

in detail and analyze our COMET dataset. See the175

supplementary (Fig. 7) for an example dialog.176

3.1 Multimodal Dialog Self-play177

We first leverage a multimodal dialog simulator178

(Sec. 3.1.2) to generate synthetic dialog flows be-179

tween a user and an assistant. Each of these flows180

is grounded in a graph connecting the memories of181

a user from their collection. The memory graphs in182

our work are simulated by a novel graph simulator183

(Sec. 3.1.1) and are designed to capture several hi-184

erarchical relationships between the user memories.185

186

Figure 3: Memory subgraph with constituent memo-
ries and their hierarchical relationships. Each memory
contains activity (orange), people (green), time, and
place (not shown) attributes. Memories are grouped into
events (purple box), then days (green box), and finally
trips (shown subgraph). Each memory graph contains
multiple trips, though only one is shown here for brevity.

3.1.1 Memory Graph Simulator 187

Graphs have been ubiquitously used in various 188

fields to effectively represent a set of entities and 189

relationships between them. Following this trend, 190

we use a graph structure to represent a collection 191

of memories (see Fig. 3 for an example). As men- 192

tioned in Sec. 1, to circumvent the lack of read- 193

ily available datasets for personal photo collec- 194

tions and surrounding privacy issues, we construct 195

a novel graph simulator to synthetically generate 196

memories graphs using public datasets. These mem- 197

ory graphs are then used as an input to the multi- 198

modal dialog simulator to generate dialog flows. 199

200

Memories and Attributes. Memories consti- 201

tute the atomic units of the graph simulator, and 202

can cover a wide variety of media including pho- 203

tographs, videos, and user-created montages. We 204

limit the scope of memories to represent static im- 205

ages in this work, although most components of our 206

proposed framework readily extend to the broader 207

definition. As photo collection of individuals is sen- 208

sitive information, we use publicly available image 209

dataset as a proxy to mitigate the risk. Specifically, 210

we use Creative Commons images from MS COCO 211

(Lin et al., 2014) that contains objects and people 212

in everyday contexts as memories. 213

We then assign four attributes to each of the im- 214

ages as follows: (a) Activity: Each image in MS 215

COCO has 5 associated captions. We use sentence- 216

BERT (Reimers and Gurevych, 2019) to find the 217

closest activity label from the taxonomy of the Ac- 218

tivityNet dataset (Heilbron et al., 2015), using aver- 219
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age text-similarity to the captions. To ensure a good220

representation, we only keep those with at least 20221

memories resulting in about 138 labels covering222

wide variety of activities. (b) Place: For each activ-223

ity, we first manually map it to a place type, which224

then is randomly mapped to an actual place from225

a manually curated list. For instance, playing fris-226

bee → park → Cal Anderson Park, Seattle, USA.227

(c) People: We use the associated bounding box228

annotations for MS COCO images and map those229

labeled as ‘person’, above a threshold size, to a230

random name from a curated list of 200 names.231

(d) Time attribute is sampled randomly from a con-232

strained time range, depending on the relationship233

shared with other memories in the graph.234

Hierarchical Relationships. To closely emulate235

scenarios in a personal photo collection, we devise236

the following hierarchy of relations amongst the237

memories: memories → events → days → trips.238

Using heuristic rules, we sample and group mem-239

ories into events that are then grouped into days,240

which are finally grouped into trips. These group-241

ings impose constraints on the attributes of the con-242

stituent memories, which can be used to generate243

interesting conversational flows to query connected244

memories. For instance, memories from the same245

event need to happen at the same place type, while246

those in a day need to happen in the same city. Sim-247

ilar restrictions arise for the time attribute as well,248

which would be used to sample reasonable times249

for the corresponding memories, e.g., memories250

from the same event cannot be separated by more251

than few hours. These hierarchical relationships en-252

able connected queries like ‘What did we do after253

this?’, ‘Show other pictures with Jane on this trip’,254

or ‘Where did we go the next day?’.255

Memory Graphs. Putting everything together, we256

construct a memory graph for each collection:257

• nodes: memory, event, day, trip, person, activity258

• edges: memory attributes, hierarchical relations259

Note that each memory graph can contain multiple260

trips. Fig. 3 illustrates a memory subgraph, visu-261

alizing only one trip for brevity. We synthetically262

generate multiple memory graphs which form the263

input to the dialog flow simulator.264

3.1.2 Multimodal Dialog Simulator265

The multimodal dialog simulator takes the gener-266

ated memory graphs along with the meta informa-267

tion of each node to create user↔assistant dialog268

flows, following the agenda-based dialog simulator269

approach (Schatzmann et al., 2007). 270

Dialog Flow Generation via Self-play. The dia- 271

log simulator comprises three main components: 272

the goal generator, the user simulator, and the 273

assistant simulator. The goal generator randomly 274

samples an agenda for each dialog, which defines 275

a sequence of high-level goals for the scenario 276

(e.g., SEARCH → GET_RELATED_PHOTOS → 277

GET_INFO). Given a goal, the user simulator 278

draws an acceptable dialog action based on a prob- 279

ability distribution, which is defined with NLU in- 280

tents (e.g., REQUEST:GET, CONFIRM:SHARE), 281

slots (e.g., location, time), and memory references. 282

The assistant simulator then takes the output of the 283

user simulator, retrieves the multimodal contexts 284

via the simulation API (e.g. obtaining the informa- 285

tion of a memory node from the graph, retrieving 286

related memories), and generates natural language 287

generation (NLG) intents, slots and new memory 288

references. The process is repeated until the simu- 289

lator exhausts every goal in the agenda. 290

Multimodal Dialog Ontology. Following other 291

task-oriented dialog datasets (Eric et al., 2019; 292

Rastogi et al., 2019; Moon et al., 2020), for 293

COMET we provide the standard dialog anno- 294

tations such as the intent (NLU & NLG) and 295

slot labels. To accommodate for the complex 296

multimodal nature of the scenarios, we extend 297

the dialog ontology to include memory refer- 298

ence annotations as their corresponding node IDs, 299

which seamlessly annotates both multimodal con- 300

texts and language (e.g. ‘When was our trip to 301

Whistler?’ → INFORM:GET_INFO.time, mem- 302

ories: [8]). The same notation can be used to re- 303

fer the memories that are carried over in the di- 304

alog context (e.g. ‘Where did we go after that?’ 305

→ INFORM:GET_RELATED.location, mem- 306

ories: [8]). This proposed fine-grained and unified 307

ontology will allow a systematic approach to study 308

diverse referring expressions in multimodal dialogs. 309

310

3.2 Manual Paraphrase 311

Once the memory graph conditioned dialog flows 312

have been generated, we paraphrase utterances in 313

the dialog flow with the help of human annotators. 314

This allows us to draw utterances from the natural 315

language distribution, thus moving closer to the ap- 316

plication. We build an interactive user interface to 317

aid annotators paraphrase utterances from COMET 318

dataset. Specifically, the interface shows the im- 319

ages corresponding to the memories along with the 320
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(a) (b) (c)

(d) (e)
Figure 4: Distribution of (a) utterance lengths with dialog turns, (b) number of memory mentions in each dialog, (c)
API calls across the dialogs, (d) dialog acts and activities, and (e) referent candidates (L) and coreference distance
(R) between memory mentions.

Total # dialogs 11.5k
Total # utterances 103.4k
Total # memory graphs 1.1k
Avg # words (user turns) 10.7± 4.4
Avg # words (assistant turns) 15.4± 9.8
Avg # utterances / dialog 8.8
Avg # memories mentioned / dialog 3.5
Avg # memories in graph / dialog 100

Table 1: COMET Dataset Statistics

dialog flow and instructs annotators to paraphrase321

without losing key information such as objects and322

attributes. See appendix for an example dialog. As323

paraphrasing utterances is faster, cheaper, and re-324

quires little to no domain knowledge on the anno-325

tator‘s part, our two-phase pipeline is much more326

resource-effective, when compared to collecting327

multimodal human↔human dialogs and collecting328

dialog annotations on top (Moon et al., 2020).329

3.3 COMET Dataset Analysis330

We now analyze the COMET dataset, which con-331

tains 11.4k dialogs totalling 103.4k utterances,332

grounded in 1.1k memory graphs. Tab. 1 presents333

the overall dataset statistics.334

Analyzing Dialogs. Dialogs in COMET use a total335

of 1.1k memory graphs with each containing 100336

memories. For every dialog, there are about 3.5337

connected memory mentions with the distribution338

given in Fig. 4b. User and assistant turns average339

about 10.7 and 15.4 words respectively (distribu- 340

tion in Fig. 4a). It is interesting to note that the 341

assistant responses are significantly longer than the 342

user. As an example, consider the following user 343

utterance ‘U: Are there any similar photos from 344

2020?’ and the corresponding assistant response ‘A: 345

Here‘s one of Laura and Virginia cooking sausages 346

at home, the afternoon of August 26, 2020. It looks 347

like a fun time!’. This illustrates that the annota- 348

tors paraphrasing the dialog flows included: (a) 349

details about the retrieved memories to give addi- 350

tional context to the user, thus invoking subsequent 351

connected memory queries (e.g., ‘What did we do 352

that evening?’), (b) chitchat about the memories to 353

make the conversational natural sounding. 354

Analyzing Dialog Annotations. Our COMET 355

come with annotations at dialog level for dialog 356

state tracking (NLU intents and slots), necessary 357

API calls for assistant, and multimodal coreference 358

resolution. Following Kottur et al. (2021), our in- 359

tents follow a hierarchy of dialog acts (4: ASK, 360

CONFIRM, INFORM, REQUEST) and activities (4: 361

DISAMBIGUATE, GET, REFINE, SHARE). See 362

Fig. 4d for a breakdown distribution over dialog 363

acts and activities. Due to the retrieval nature of our 364

assistant (either memories or associated attributes), 365

a major chunk of the activities are GET. Similarly, 366

there are 5 APIs in our dataset (Fig. 4c): 367

• SEARCH: Search using input parameters, 368
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Figure 5: Transition of dialogs acts in COMET for the first 4 turns, for dialog flows generated by our novel multimodal
dialog simulator for connected memories. Each block is of the form ACT:ACTIVITY:[A|U][turn], to denote
dialog act, activity, user or assistant turn, and turn number, respectively. See text for more details.

• REFINE_SEARCH: Build on top of search car-369

rying over existing parameters,370

• GET_INFO: Seek information about current or371

previouly viewed memories,372

• GET_RELATED: Explore other memories simi-373

lar to the current/prior memories, and,374

• SHARE: Share it to friends or family,375

As expected, SEARCH is the most dominant API376

call in the dataset. Note that the turns with GET377

and REFINE_SEARCH API calls elevate the need378

for conversation in retrieving connected memories,379

where the user requests for memories similar to380

the ones already viewed or with additional speci-381

fications, respectively. Finally, Fig. 4e visualizes382

the distribution of number of candidates and utter-383

ance difference between the current and the one384

with referent memory (coreference distance). For385

turns requiring coreference resolution, the average386

number of candidates is 2.7 at a distance of 2.9387

utterances. Though a majority of referents are natu-388

rally 1 utterance away (previous turn), the long tail389

(even up to 10+ utterances) indicates the presence390

of challenging multimodal coreferences.391

Analyzing Dialog Flows. As mentioned earlier,392

the multimodal dialog simulator generates the dia-393

log flows during the first phase of our data genera-394

tion. We visualize these dialogs flows in Fig. 5 for395

the first four dialog turns, where each block denotes396

an intent at a particular turn and the grey stripes397

denote NLU intent transitions in subsequent turns.398

The width of the stripe is proportional to the fre-399

quency of the transition. For brevity, each block is400

label as ACT:ACTIVITY:[A|U][turn]. The401

high branch-off factors for these intents capture the402

diversity of the dialogs flows in our dataset, which403

is desirable in building a robust dialog system.404

4 Task Formulation405

To benchmark progress of conversational models 406

towards the goal of assisting users in interactively 407

querying connected memories in a meaningful way, 408

we propose four main tasks for COMET. Tab. 2 409

outlines the task formulations along with the corre- 410

sponding evaluation metrics. 411

4.1 Assistant API Call Prediction 412

The first step in executing any query on connected 413

memories successfully is to understand the user ut- 414

terance in the context of the dialog history and mul- 415

timodal information, and predict the right API call. 416

For instance, a query like ‘When was the last time 417

I was here?’ should result in a GET_INFO API 418

prediction. Note that errors in API call prediction 419

cascade through the model pipeline resulting in an 420

incorrect or unrelated response from the assistant. 421

Thus, this task tests the ability of the conversational 422

agent to predict the right API call. Evaluation is 423

done per each turn through API call accuracy. 424

4.2 Multimodal Coreference Resolution 425

Recall that one of our motivations to use conver- 426

sations for querying connected memories is the 427

ability to support multi-turn queries. In such sce- 428

narios, humans often use short-hands or references 429

when the underlying referred entity (referent) can 430

be usually deduced without any ambiguity. As an 431

example, when looking at a particular memory, a 432

follow-up ‘When was the last time I was here?’ is 433

intuitive and natural, whereas ‘When was the last 434

time I was at Waikiki Beach, Hawaii?’ requires the 435

user to remember the name and use it in the query, 436

making it cumbersome. 437

Therefore, the model must be able to handle mul- 438

timodal coreferences in order to field such queries 439

effectively. The input for this task includes the dia- 440

log history, multimodal context, and all the memo- 441
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Task Name Goal Evaluation

1. Assistant API Call Prediction Given user utterances, predict the right API call necessary to
execute the query.

Classification accuracy

2. Multimodal Coreference
Resolution (MM-Coref)

Given user utterances, resolve referent memories to their
canonical ID(s) as defined by the memory graph.

Coref Precision / Recall / F1

3. Multimodal Dialog State Tracking
(MM-DST)

Given user utterances, track user belief states across multiple
turns.

Slot Precision / Recall / F1

4. Assistant Response Generation Given user utterances, ground-truth APIs and ground-truth
object IDs, generate Assistant responses or retrieve from a
candidate pool.

Generation: BLEU;
Retrieval: Accuracy@k, mean re-
ciprocal rank, mean rank

Table 2: Proposed tasks and descriptions on our COMET dataset. Please see Sec. 4 for more details.

ries mentioned so far (as coreference candidates).442

The models needs to thus resolve the reference to443

one or more of the candidates. We use coreference444

precision, recall, and F1 to measure performance.445

4.3 Multimodal Dialog State Tracking446

Due to the multimodal nature of COMET, we adopt447

multimodal dialog state tracking (MM-DST) used448

in (Kottur et al., 2021) as one of our tasks. To elab-449

orate, slots in our dataset can be grounded in the450

multimodal context information and requires rea-451

soning through the current or previously viewed452

memories. For instance, a query like ‘Where did453

we go from here?’ requires the slot value to be the454

currently viewing memory. This implies that the455

dialog states can contain non-textual tokens (e.g.,456

memories), thus making it multimodal. In order to457

measure the performance in this task, we use slot458

recall, precision, and F1 scores. Note that unlike459

(Kottur et al., 2021), we drop evaluating for dia-460

log act prediction since GET has an overwhelming461

majority due to the nature of the problem.462

4.4 Assistant Response Generation463

This task evaluates the ability of the model to ei-464

ther generate a response or retrieve from a pool of465

candidates, given dialog history, ground-truth APIs466

& results, belief states, and multimodal contexts.467

Though the model has access to API results, pro-468

ducing a natural language utterance to describe it469

within the flow of the dialog is still a difficult task.470

We evaluate this task in two different ways: (a)471

Generative, where the model produces the response472

similar to a conditional language model. We use473

BLEU-4 (Papineni et al., 2002) to measure perfor-474

mance by comparing the generated response to the475

ground truth, and (b) Retrieval, where the model476

ranks a list of randomly pooled candidate responses477

(unique to a turn) along with the ground truth.478

Retrieval metrics like recall@k (k = {1, 5, 10}),479

mean rank, and mean reciprocal rank are used.480

Model 1. API Call 2. MM-Coref 3. DST 4. Gen.

Acc↑ Coref F1↑ Slot F1↑ BLEU↑

GPT2-Text 87.6±0.8 72.2±1.5 89.5±0.8 0.346±0.007

GPT2-MM 83.3±0.9 80.3±1.3 68.4±1.3 0.397±0.009

Table 3: Baseline performances for GPT-2 models: text-
only (text) and multimodal image features (MM). (1)
API Call Prediction (API Call), via classification
accuracy, (2) Multimodal Coreference Resolution
(MM-Coref), via coref prediction F1, (3) Dialog State
Tracking (DST), via slot F1, (4) Response Generation
via BLEU. ↑: higher is better.

5 Modeling & Empirical Analysis 481

We now perform preliminary empirical evaluation 482

and analysis for the proposed tasks by training base- 483

lines. Detailed modeling work is left as future work. 484

485

Dataset Split. The dataset is randomly divided 486

into: train (70%), val (15%), and test (15%). For 487

our experiments, models are trained using train 488

split and performance is reported on test, while val 489

is used to pick the model hyper-parameters. 490

Notations. We follow the notation established 491

in (Kottur et al., 2021), where each dialog 492

of length Nr rounds is represented as D = 493

{(Ui, Ai,Mi, Bi)}Nr
i=1 with: 494

• Ui: User utterance at turn i 495

• Ai: Assistant utterance at turn i 496

• Mi: Multimodal context, i.e., memory graph and 497

memories retrieved in the previous turns, 498

• Bi: Multimodal belief state, a semantic parse of 499

Ui (intent, slot, memory references). 500

Therefore, given the current user utterance (Ut), di- 501

alog history Ht = (Ui, Ai)
t−1
i=1, and the multimodal 502

context (Mt), a COMET agent should predict the 503

user belief state Bt and the natural language re- 504

sponse At for every dialog turn t. 505

Baselines. Causal language models pretrained on 506

large datasets have shown a lot of promise in multi- 507

modal and text-only task-oriented dialog modeling, 508
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Figure 6: Baseline GPT-2 models for COMET. (1) Given
the dialog history, multimodal context, and current user
utterance, the model predicts the API call and belief
state at the current turn, (2) The API call is executed and
(3) the results are fed back into the model, (4) Finally,
model produces a natural language response. As shown,
GPT2-text uses attribute strings to represent memories,
while GPT2-MM use image features.

when finetuned on the downstream task (Hosseini-509

Asl et al., 2020; Peng et al., 2020; Kottur et al.,510

2021; Moon et al., 2020). Following this popular511

approach, we adopt the transformer-based GPT-2512

(Radford et al., 2019) model and jointly train it513

for API prediction, MM-Coref, DST, and response514

generation tasks, as shown in Fig. 6. In particular,515

we use the 12-layer GPT-2 (117M ) model and fine-516

tune it on dialogs from COMET dataset, using early517

stopping based on token perplexity (<3 GPU hrs).518

We use two approaches to capture Mi:519

(a) text-only (GPT2-text), where previously viewed520

memories and their attributes are represented as flat-521

tened strings. Note that this baseline uses ground-522

truth activities from the memory graph.523

(b) multimodal (GPT2-MM), where bottom-up and524

top-down (BUTD) (Anderson et al., 2018) image525

features are extracted for previous viewed mem-526

ories. In essence, BUTD features are a collection527

of K vectors each representing a salient objects in528

the image that have been detecting using a Faster-529

RCNN backend (Ren et al., 2015). We project these530

K = 10 features and feed them as ‘visual tokens’531

while finetuning the GPT-2 model.532

Analysis. Tab. 3 summarizes the performance of533

our baselines on the four proposed tasks. A key534

observation is that multimodal model GPT2-MM535

outperforms its text-only variance in MM-Coref536

and response generation significantly. This is intu-537

itive as multimodal coreference resolution requires538

understanding the memories beyond the obvious539

activity label in order to rightly resolve the ref-540

erence. Consider the query: ‘When was the last541

time I played with my dog here?’. To resolve to 542

the right memory, the system needs to understand 543

which memory is about playing with the dog to- 544

wards which a mere activity label throwing frisbee 545

might be insufficient. For a similar reason, addi- 546

tional multimodal features improve response gener- 547

ation, especially to include chit-chat. On the other 548

side, GPT-Text does better on API call prediction 549

and capturing the dialog state suggesting comple- 550

mentary benefits offered by each of these models. 551

552

6 Conclusion 553

We present a novel dataset for the dialogs for 554

connected memories, COMET, with 11.5K 555

user↔assistant dialogs (103K utterances) 556

grounded on the memory graphs. We present 557

a novel multimodal dialog simulator, which 558

generates simulated dialogs grounded on diverse 559

memory graphs that are automatically configured. 560

Our empirical analysis demonstrates many 561

new challenges that our COMET dataset brings, 562

highlighting new directions of research in this area. 563

564

Limitations. The generalizability of COMET is 565

naturally bounded by the underlying graph simu- 566

lator, especially around memory attribute labels of 567

place, people, and time. However, we justify this as 568

follows: (a) Recall that the focus of our work is to 569

enable an assistant that can understand and execute 570

user queries about connected memories through an 571

interactive dialog. Even with the simulated dialog 572

flows, COMET captures several interesting chal- 573

lenges related to multimodal dialog, for instance, 574

coreference resolution and dialog state tracking (as 575

seen in Sec. 3.3 and Sec. 5). This opens the door 576

to new research directions in multimodal conversa- 577

tion, especially in the absence of a readily available 578

large-scale personal photo collection dataset (along 579

with attributes and metadata). (b) Due to the two- 580

stage data collection pipeline, COMET is amenable 581

to data augmentation techniques that can increase 582

the robustness of the downstream dialog model. For 583

instance, the dataset can be easily augmented by 584

replacing named entities in the memory graph and 585

utterances, without changing the flow. 586

Ethical Considerations. All identifiable faces 587

from the COCO images are blurred using a CV 588

algorithm, mitigating privacy risks. Annotators for 589

our task were employed as full-time and contracted 590

via a leading NLP/linguistics annotation platform. 591
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7 Supplementary Materials744

Figure 7: Dataset Example. Dialog labels include intent, slots, and multimodal coreferences.
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Figure 8: The annotation tool UI. Annotators are shown the templated utterances, and a set of photos that
dynamically get updated for each turn, based on the pre-generated dialog flows.

Figure 9: Disclaimers shown to the annotators, detailing the escalation path.
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