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Fitting Into Any Shape: A Flexible LLM-Based Re-Ranker With
Configurable Depth and Width

Anonymous Author(s)

Abstract
Large language models (LLMs) provide powerful foundations to

perform fine-grained text re-ranking. However, they are often pro-

hibitive in reality due to constraints on computation bandwidth. In

this work, we propose a flexible architecture called Matroyshka
Re-Ranker, which is designed to facilitate runtime customiza-
tion of model layers and sequence lengths at each layer based on

users’ configurations. Consequently, the LLM-based re-rankers can

be made applicable across various real-world situations.

The increased flexibilitymay come at the cost of precision loss. To

address this problem, we introduce a suite of techniques to optimize

the performance. First, we propose cascaded self-distillation,
where each sub-architecture learns to preserve a precise re-ranking

performance from its super components, whose predictions can be

exploited as smooth and informative teacher signals. Second, we

design a factorized compensation mechanism, where two col-

laborative Low-Rank Adaptation modules, vertical and horizontal,

are jointly employed to compensate for the precision loss resulted

from arbitrary combinations of layer and sequence compression.

We perform comprehensive experiments based on the passage

and document retrieval datasets from MSMARCO, along with all

public datasets from BEIR benchmark. In our experiments, Ma-

tryoshka Re-Ranker substantially outperforms the existing meth-

ods, while effectively preserving its superior performance across

various forms of compression and different application scenarios.

Our source code has been uploaded to this anonymous repository.
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Text Retrieval, LLM-based Re-rankers, Lightweighting, Flexibility

1 Introduction
Text retrieval is crucial for many real-world applications, like web

search, question answering, and retrieval-augmented generation

[2, 19, 20, 31]. To retrieve relevant documents from a vast database,

text retrieval typically employs a multi-stage process. Initially, it

uses a combination of hybrid first-stage retrieval methods, such as

embedding models [3, 18, 30, 53] and sparse retrievers [6, 26, 35, 41],

to gather a comprehensive set of candidate documents for the query.

Subsequently, a re-ranking model performs a fine-grained selection

to identify the most relevant documents. Although the re-ranking
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step is applied only to the candidates, it determines the final doc-

ument order and thus significantly impacts the retrieval quality.

Compared to first-stage retrieval methods, re-ranking models are

computationally expensive but more precise in assessing the rele-

vance between query and document. In the last few years, cross-

encoders built on top of pre-trained models, e.g., monoBERT [34],

monoT5 [34], and rank-T5 [57], have been widely used for this pur-

pose. Meanwhile, same-period research shows that the re-ranking

performance can be improved consistently with the expanded size

of cross-encoders [55, 57]. Consequently, large language models

(e.g., GPT, Llama, Mistral) are further leveraged as the backbone

for a new generation of re-rankers [28, 37, 38, 42], leading to state-

of-the-art performance across various text retrieval benchmarks.

1.1 Existing Challenges
Despite higher precision, LLM-based re-rankers come with much

larger computational costs compared to conventional methods. No-

tably, their time latency can be prohibitive for many real-time

applications, and their memory demands may exceed the GPU ca-

pacity in production environments. Therefore, it is imperative to

slim down these models properly before deploying them in prac-

tice. In general, lightweight LLM-based re-rankers can be realized

in two ways. One is to directly finetune a smaller LLM, such as

Phi-3 (3.8B) [1], as the re-ranking model. While straightforward,

this approach is limited by the size of the available LLMs. The other

one is to prune a small sub-structure of a customized size from a

larger LLM, e.g., Llama-3 (70B) [9], and fine-tune the pruned back-

bone for re-ranking model [27, 52]. However, this ad-hoc pruning

and finetuning is limited to one-time use. When handling different

application scenarios, the pruning-and-finetuning operations may

need to repeat, which leads to significant training overhead.

1.2 Our contributions
1.2.1 Flexible Architecture. Wepropose an novel architecture called

Matryoshka Re-Ranker1, which features for its flexibility and

runtime adaptability (Figure 1). It is built on top of a full-scale

LLM, which offers the highest re-ranking precision but is computa-

tionally intensive. Meanwhile, it enables lightening the full-scale

model based on user configuration. In particular, it allows users

to specify their needed depth 𝑛 and width 𝑤𝑖 . It then extracts the
first-n layers of the model and compressed the 𝑖-th layer’s length to𝑤𝑖

based on each token’s estimated importance in re-ranking. With such

an architecture, users can flexibly customize their re-rankers for

the optimal cost-effectiveness. In particular, users can begin with

the full-scale re-ranker, gradually reduce the model size along both

the height and width dimensions, while continuously measuring

re-ranking quality on the test set. Ultimately, they will arrive at the

lightest model that maintains acceptable re-ranking performance.

1
Matryoshka, or stacking dolls, nesting dolls, et al., are dolls of decreasing size placed

one inside another. It’s used to describe the flexible nature of our model architecture.

1

https://anonymous.4open.science/r/Matroyshka-5D5F
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Figure 1: Matryoshka re-ranker (A) can be directly customized into arbitrary shapes based on users’ configurations. In contrast,
the conventional method (B) needs to perform ad-hoc pruning of the full-scale model and fine-tune it for each specific scenario.

1.2.2 Optimized Performance. While the increased flexibility facil-

itates people’s usage, it may lead to a sub-optimal precision com-

pared to the specially pruned-and-finetuned models. To address this

problem, we innovate both training and post-training techniques to

optimize Matryoshka Re-Ranker’s performance.

•Cascaded self-distillation. In Matryoshka Re-ranker, the full-

scale model delivers the highest precision, while each sub-structure

is dominated by its super networks (i.e., those with more layers

and greater lengths) in re-ranking capacity. The full-scale model’s

re-ranking performance is expected to be preserved by arbitrary

lightweight models. Therefore, we innovate the training method

as cascaded self-distillation. Starting with the full-scale model, we

iteratively sample a series of sub-structures and make each sam-

pled sub-structure learn to preserve its super networks’ outputs

via knowledge distillation. Since a model’s outputs can provide

informative and smooth training signals for its sub-structures, this

approach facilitates the fine-grained training of the Matryoshka Re-

Ranker. Besides, there is no need to introduce any external teachers,

and all teacher scores can be computed in one feed-forward pass,

which enables the training process to be time-efficient.

• Factorized compensation mechanism. We explore post-

training to further compensate for remaining loss. Traditionally, a

pruned or quantized model can restore its performance by learn-

ing a specialized LoRA compensator [7, 22, 27]. However, this ap-

proach is impractical for Matryoshka Re-ranker as it is prohibitive

to train a specialized compensator for every possible sub-structure.

To address this, we design a factorized compensation mechanism,

featuring its collaborative LoRA compensators. It introduces two

groups of LoRA modules: V-LoRA and H-LoRA, which are used to

compensate for losses due to depth and width compression, respec-

tively. Meanwhile, the compensator for an arbitrary sub-structure

is created as the linear addition of corresponding modules from

V-LoRA and H-LoRA. In this way, LoRA compensation is made

available for Matryoshka Re-ranker at a feasible training expanse.

We conduct comprehensive experiments using the passage and

doc retrieval tasks from MSMARCO [31], along with the 14 public

datasets from BEIR [43]. In our experiments, Matryoshka Re-ranker

effectively preserves superior precision across various light-weight

structures and application scenarios. Meanwhile, it significantly

outperforms the existing public re-ranking models, leading to state-

of-the-art performances on corresponding benchmarks. Our model

and source code will be publicly released, which can facilitate both

direct usage and distillation of embedding models.

In summary, our contributions are threefold: 1) the proposal
of Matryoshka Re-Ranker, which is the first re-ranking model to

support flexible depth and width customization at runtime; 2) the

design of cascaded self-distillation and factorized compensation,

which effectively optimize the performance; 3) the empirically veri-

fied effectiveness and the value as a broadly beneficial resource.

2 Related Work
2.1 Pre-trained Models For Text Retrieval
Pre-trained language models have been widely applied for text re-

trieval [13, 55]. Based on the way of how query and document are

interacted, the applications can be partitioned into two paradigms:

bi-encoder and cross-encoder. The bi-encoder is to represent query

and document independently. Therefore, it can well-support the

first-stage retrieval, which calls for time-efficient processing. One

typical application form of bi-encoder is dense retrieval, where

relevant documents to the query can be identified based on their

embedding similarities [18, 40]. In recent years, numerous text em-

beddingmodels have been continually developed by the community,

e.g., Contriever [15], GTR [33], E5 [48, 50], BGE [3, 53], and OpenAI

text embedding [30]. Such embedding models have substantially

improved the precision and generality of dense retrieval, making it

a major retrieval strategy for real-world applications. Besides, the

pre-trained language models can also be used to estimate the term

importance [6, 10, 24], which contributes to the precision of lexical

retrieval. Different from bi-encoder, the cross-encoder seek to estab-

lish the in-depth interaction between query and document, which

facilitates fine-grained modeling of relevance. As such, it is widely
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applied for the re-ranking step. In this paradigm, the pre-trained

models can be directly fine-tuned to regress the classification logit

of re-ranking [36]. Meanwhile, it can also leverage the generation

likelihood on top of sequence-to-sequence learning [34, 57], which

leads to more flexible computation of re-ranking scores.

While substantial progress was made by preliminary pre-trained

models like BERT [8] and T5 [39], previous research indicated that

text retrieval quality can be consistently improved when the model

size continues to expand [30, 33, 57]. Following this empirical prin-

ciple, people start make active use of large language models (LLMs)

for text retrieval applications, and such a trend becomes signifi-

cantly pronounced after the popularity of ChatGPT. Thanks to their

instruction-following capabilities, LLMs can be directly prompted

to perform various text retrieval tasks, such as re-ranking [37, 42]

and query expansion [11, 51]. Additionally, LLMs can be fine-tuned

specifically for text retrieval, leading to even better performance

with smaller model sizes [21, 28, 38, 56]. The application of LLMs

has led to significant improvements in text retrieval quality across

many popular evaluation benchmarks. Notably, the top performers

on MTEB [29] are all powered by LLM backbones. Furthermore, the

re-ranking performances on MSMARCO [31] and BEIR benchmark

[43] have also been dramatically improved by fine-tuned LLMs,

such as RankLlama [28] and RankGemma [53].

2.2 Lightweight Re-Rankers
While using large models can enhance the precision of text retrieval,

it also incurs substantial computational costs, which are prohib-

itive for many real-world applications. Traditionally, LLM-based

re-rankers can be accelerated from two directions. One is to directly

finetune smaller-scale LLM backbones. Recently, a number of pow-

erful lightweight LLMs were developed by different organizations,

such as the Phi-series LLMs from Microsoft [1], Llama-3-series

LLMs from Meta [9], and Qwen-2-series from Alibaba [54]. How-

ever, this approach is still constrained by the size and architecture

of the available models. The other one is to rely on ad-hoc pruning

and finetuning [27, 52]. In particular, people can either prune an

initial LLM backbone into their needed architectures and finetune

the pruned model for re-ranking; alternatively, they can also prune

a well-trained re-ranker and then restore its re-ranking capacity

via continual fine-tuning. While this method allows for customized

lightweight re-rankers, each generated model can only be used for a

single specific task. When a new user requirement is presented, the

pruning and fine-tuning processes must be repeated, which leads to

significant training costs due to this limitation. In contrast, our pro-

posed method allows for the production of customized lightweight

re-rankers at runtime, i.e., after the full-scale model has been well

trained and deployed for service, which eliminates the need for

continual fine-tuning. To the best of our knowledge, this is the first

text re-ranker of its kind, providing significant convenience for

practical applications.

3 Matryoshka Re-Ranker
3.1 Preliminaries
The re-ranking model is used to perform fine-grained analysis for

the relevance between query𝑞 and candidate documents {𝑑1, ..., 𝑑𝑛}.
Following the typical setting of pointwise learning-to-rank, the

model will generate an explicit re-ranking score for each query-

doc pair, denoted as 𝜎 (𝑞, 𝑑). The re-ranking score is expected to

precisely reflect the relevance, i.e. 𝜎 (𝑞, 𝑑𝑖 ) > 𝜎 (𝑞, 𝑑 𝑗 ) if 𝑞 is more

relevant with 𝑑𝑖 than 𝑑 𝑗 . With superior semantic representation

capabilities, the LLMs are applied in the form of cross-encoder for

the re-ranking operation. Under this architecture, the query 𝑞 and

document 𝑑 are concatenated as the following input template:

Input← “A:{𝑞}. B:{𝑑}.{𝑝𝑟𝑜𝑚𝑝𝑡}”. (1)

The above input is processed by LLM, e.g., Llama [44, 45], using the

prompt “Predict whether passage B contains an answer to query A?”.
The last hidden state is linearly projected by the decoding head to

predict the logit of “Yes”, which is used as the re-ranking score:

𝜎 (𝑞, 𝑑) ← Head(LLM(Input) .𝑙𝑎𝑠𝑡_ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑡𝑎𝑡𝑒) [“Yes”] (2)

The re-ranking model is typically trained through contrastive learn-

ing [36, 57], where the discrimination likelihood is optimized for

the ground-truth document 𝑑∗ (given all candidate docs: 𝐷):

min . − log exp(𝜎 (𝑞, 𝑑∗)/𝜏)∑
𝑑∈𝐷 exp(𝜎 (𝑞, 𝑑)/𝜏) . (3)

3.2 Flexible Architecture
The running cost of a re-ranker can be adjusted from two per-

spectives: 1) model’s depth, 2) sequence length. Given a full-scale

re-ranker, we can obtain a customized lightweight model by either

removing the top layers from the full-scale model (depth customiza-

tion), or gradually compressing the sequence at each layer (width

customization). In this work, we propose Matryoshka re-ranker,

which enables flexible customization from both perspectives.

3.2.1 Depth customization. Suppose the full-scale re-ranker is based
on a LLM of N transformer layers, denoted as LLM1,...,𝑁 . Unlike

the traditional methods where the re-ranking score can only be

computed from the last layer, we propose to learn the following

depth-adaptive architecture, which enables the re-ranking score to

be computed based on the intermediate hidden-states of each layer:

H𝑖 ← LLM≤𝑖 (Input).ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑡𝑎𝑡𝑒𝑠, (4)

𝜎𝑖 (𝑞, 𝑑) ← Head𝑖 (H𝑖 [−1]) [“Yes”] . (5)

In this place, LLM≤𝑖 is the first 𝑖 layers of the LLM and H𝑖 is the

hidden-states at the 𝑖-th layer. A layerwise decoding head Headi is

introduced, which transforms H𝑖 [−1], the last hidden state of the

input, into the logit of “Yes” as the re-ranking score 𝜎𝑖 (𝑞, 𝑑).

3.2.2 Width customization. Suppose the 𝑖-th layer of the re-ranker

produces a sequence of hidden states of length 𝐿: H𝑖 [1], ..., H𝑖 [𝐿].
Instead of passing these hidden states directly to the next layer,

they are compressed using weighted average pooling. Given an

aggregation factor 𝑘 (an integer greater than 1), the 𝐿 hidden states

in the 𝑖-th layer are grouped into consecutive intervals as follows:

H𝑖 [1] ... H𝑖 [𝑘]︸            ︷︷            ︸
group 1

, H𝑖 [𝑘 + 1] ... H𝑖 [2𝑘]︸                   ︷︷                   ︸
group 2

, H𝑖 [𝐿 − 𝑘] ... H𝑖 [𝐿]︸                  ︷︷                  ︸
group 𝐿/𝑘

. (6)

Considering that different hidden-states have distinct impacts to

the re-ranking result, we perform importance-aware merging to
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compress the sequence. For each interval, the included hidden

states are merged through the following pooling operation:

H′𝑖 [ 𝑗] ←
∑︁

𝑙=1...𝑘

𝛼𝑙 ∗ H𝑖 [ 𝑗 + 𝑙], where
∑︁

𝑙=1...𝑘

𝛼𝑙 = 1. (7)

Knowing that the re-ranking score is computed based on H𝑖 [−1],
we can use the attention weight with the last token as an indicator

of importance for each hidden state. Therefore, we can derive the

pooling weight with the following computation:

𝛼𝑙 ←
exp(𝑎−1, 𝑗+𝑙 )∑

𝑙=1...𝑘 exp(𝑎−1, 𝑗+𝑙 )
, (8)

where 𝑎−1, 𝑗+𝑙 stands for the attention weight of the last token

towards H𝑖 [ 𝑗 + 𝑙] (using the average weight of all attention heads).

Note that the above pooling operation can be selectively applied to a

subset of the intervals, particularly those with the lowest combined

attention weights. Thus, it allows for compressing the sequence

into an arbitrary length based on user’s requirement.

3.2.3 User Configuration. Users’ may flexibly customize the archi-

tecture of their re-ranker by configuring the depth (the number of

layers) and width (the sequence length of each layer) of LLM:

layer_1: sequence length L1,
layer_2: sequence length L2,
...
layer_n: sequence length Ln

Note that the total number of layers and the sequence length must

not exceed the depth and width of the full-scale re-ranker: 𝑛 ≤ 𝑁 ,

𝐿𝑖 ≤ 𝐿. Additionally, the layerwise depth must be monotonically

decreasing, that is, 𝐿𝑖 ≤ 𝐿𝑖+1. The compression factor at each layer

is a hyper-parameter that can be determined by the user.

3.2.4 Usage method. The adjustment of the two dimensions, depth

and width, will have varying effects on efficiency and precision,

depending on the specific use case. For instance, reducing width

may yield higher acceleration with minimal precision loss, while

reducing depth may be more suitable for shorter inputs. In practice,

Users can begin with the full-scale model, gradually reduce its

size in both dimensions, and continuously measure the re-ranking

precision on the validation dataset. Ultimately, the lightest sub-

structure that maintains acceptable precision will offer the optimal

trade-off between cost and effectiveness.

3.3 Cascaded Self-Distillation
While re-rankers can be directly trained by learning to discriminate

the ground-truth documents from the first-stage candidates, the

sub-structures within the full-scale model are likely to generate

sub-optimal results due to the relatively lower capacity. To address

this problem, we propose training the sub-structures to minimize

precision loss relative to an upper-bound re-ranking model through

knowledge distillation (KD) [23]. Typical KD methods involve train-

ing a specialized teacher and minimizing the prediction difference

between teacher and student. Unfortunately, this paradigm is not

well-suited for the Matryoshka re-ranker because the performance

gap between the teacher and the student must be properly con-

trolled: a too small gap provides little meaningful guidance, while
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&	Self-Distillation

Students

Teacher	Committee

Input

Output

𝑊!×!

𝐴!×#
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H-LoRA

+

Figure 2: Cascaded Self-Distillation. Upper: full-width layer-
wise predictions are used as the teacher committee. Lower:
students make selective use of teachers to distill knowledge.
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Figure 3: Factorized compensation mechanism. The vertical
(V-LoRA) and horizontal (H-LoRA) compensation modules
are selected and added up to make up the precision loss.

a too large gap makes it difficult to mimic the teacher’s predictions.

Since the Matryoshka re-ranker needs to learn various lightweight

re-rankers of highly different sizes, it is impossible to find a univer-

sally appropriate teacher, nor is it feasible to introduce a specialized

teacher for each individual lightweight re-ranker.

In this work, we design a novel training method based on the

unique architecture of Matryoshka re-ranker. Before presenting its

workflow, we present the following property as prior knowledge.

Theorem 3.1. A sub-structureN of Matryoshka re-ranker is domi-
nated by its super-architectureN ′ in re-ranking precision: 𝜎N′ ≻ 𝜎N .

A super-architecture of 𝑁 refers to other networks within the

full-scale model that have more layers and a larger width at each

layer. We use the I(·) to illustrate this relationship: I(N ′ |N) = 1 if

N ′ is a close super-architecture of N ; otherwise, it is 0.

On top of the above property, we propose to leverage the predic-

tions from Matryoshka re-ranker itself for knowledge distillation,

called Cascaded Self-Distillation (Figure 2). Specifically, we em-

ploy the whole full-width sub-structures (w/o. width compression)
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as teacher committeeT : {𝑡 = LLM𝜃 |𝜃 : pre-defined teacher layers}.
During training, we sample sub-structures from the LLM as the

students S: {𝑠 = LLM𝜙 |𝜙 : all layers with sampled widths}. The
students make selective use of the teachers by filtering their super

architectures from the committee, where knowledge distillation is

performed. The knowledge distillation process can be formulated

by the following optimization problem:

min . −
∑︁
S

∑︁
T
I(𝑡 |𝑠) ∗ 𝑒𝜎𝑡 (𝑞,𝑑

∗ )∑
𝑑∈𝐷 𝑒𝜎𝑡 (𝑞,𝑑 )

log

𝑒𝜎𝑠 (𝑞,𝑑
∗ )∑

𝑑∈𝐷 𝑒𝜎𝑠 (𝑞,𝑑 )
. (9)

In this place, 𝜎𝑠 (𝑞, 𝑑) and 𝜎𝑡 (𝑞, 𝑑) represent student’s and teacher’s
predictions of the relevance between query and document, and 𝐷

refers to the whole candidate documents.

Comments. Cascaded self-distillation provides diverse teacher

signals, facilitating fine-grained training of student models. Be-

sides, the training is time-efficient. Since teachers are full-width

sub-structures and the students are sampled in a step-like manner

(shallower students have larger widths), the re-ranking scores can

be computed in a single feed-forward pass for both teacher and

student. Thus, the cost is equivalent to traditional KD methods,

which involve one student and one specialized teacher model.

3.4 Factorized Compensation
The directly trained Matryoshka Re-Ranker is further improved by

post-training. For pruned or quantizedmodels from a full-scale LLM,

it is common to perform continual PEFT fine-tuning [28, 52], where

an extra LoRA module is employed to compensate the potential

performance loss [7, 14]. Despite its straightforward nature, the

tradition method is applied for the compensation of one specific

model. Therefore, it is not unsuitable for Matryoshka Re-Ranker

because compensations need to bemade for arbitrary sub-structures

extracted from the full-scale model.

In this work, we propose the factorized compensation mecha-

nism, where two collaborative adapter lists: V-LoRA (vertical) and

H-LoRA (horizontal), are employed (shown as Figure 3). Particu-

larly, V-LoRA contains a list of LoRA adapters, each of which is

corresponding to a specific layer. While H-LoRA is composed of an-

other list of LoRA adapters, each one is corresponding to a specific

width compression factor 𝑘 (see Eq. 6):

V-LoRA : {𝜽 𝑣𝑖 |𝑖 = 1, ..., 𝑁 }, H-LoRA : {𝜽ℎ
𝑘
|𝑘 = 2, ..., 𝑀} (10)

For an arbitrary sub-structure (with layerwise projection matrix

denoted as {𝑊𝑙 }𝐿), the LoRA adapter is created as the linear addition

of corresponding V-LoRA and H-LoRA adapters: 𝜽 𝑙 ← 𝜽 𝑣
𝑙
+ 𝜽ℎ

𝑘
,

where 𝑘 is the compression factor at the 𝑙-th layer. As a result,

layerwise projection matrix is updated as:𝑊𝑙 ←𝑊𝑙 + 𝜽 𝑙 .𝐴𝑇 𝜽 𝑙 .𝐵
(𝐴 and 𝐵 stand for the low-rank matrices of 𝜽 𝑙 [14]).

Compared to the standard LoRA adapter of a full-scale LLM,

the proposed formulation introduces only H-LoRA as additional

parameters. As a result, the compensationmodules can be efficiently

trained through continual fine-tuning. For each sampled module,

the adapters are generated based on its substructure, followed by

learning to optimize the re-ranking objective. Given that there are

minimal number of new parameters and the backbone LLM has

been well-trained in prior stage, the training process can converge

quickly to a competitive performance.

4 Experiments
In this section, empirical studies are performed to explore the fol-

lowing research questions regarding the effectiveness and efficiency

of Matryoshka re-ranker.RQ 1.Whether it can achieve high-quality

performances for lightweight sub-structures extracted from the full-

scale re-ranker. RQ 2. Can it maintain strong performances across

diverse evaluation scenarios. RQ 3. Can it flexibly support various

forms of compression? RQ 4. How do different working conditions

and technical factors influence the re-ranker’s performance.

4.1 Settings
4.1.1 Datasets. Matryoshka re-rankers are trained respectively

with two datasets fromMSMARCO [32]: 1) passage, and 2) docu-

ment. Specifically, MSMARCO-passage contains 500,000 training

queries, 6,980 dev queries, and a corpus of 8.8 million passages;

while MARCO-document contains 300,000 training queries, 5,193

dev queries, and a corpus of 3.2 million documents.

Following the previous studies, the fine-tuned re-rankers are

evaluated for their passage and document retrieval performance

leveraging the dev queries provided by MSMARCO. Besides, the

models are evaluated based on the testing queries released byDL’19
[5] and DL’20 [4]. Finally, Matryoshka re-ranker is also evaluated

for its general text-retrieval performance using BEIR [43]. It is

a miscellaneous benchmark of 18 text-retrieval datasets (the 14

public ones are used in our experiment), covering different types of

domains (such asWikipedia, bio-medical, finance, social-media) and

tasks (e.g., passage retrieval, question retrieval, argument retrieval).

4.1.2 Evaluations. We focus on two types of methods in our evalu-

ation. One is the existing baseline re-rankers, including 1) the
classic BERT-like re-rankers, like MonoBERT [36], MonoT5 [34], and

BGE [3, 53], where pre-trained models, e.g., BERT and T5, are fine-

tuned as the re-rankers; 2) the fine-tuned LLM-based re-rankers, like
RankLlama [28], RankVicuna [37], in which open-sourced LLMs are

fine-tuned as the re-rankers; 3) the prompted LLM-based re-rankers,
such as RankGPT-gpt-4 [42], where proprietary LLMs, like Chat-

GPT, are prompted for re-ranking. The other one are the full-scale

and specially pruned-and-finetuned re-rankers, which present the

performance upperbound (called specialized upperbound).
The re-ranking is primarilymade based on the top-100 candidates

returned by BGE-EN-v1.5 large [53]. Additional analysis is also

conducted with various first-stage retrievers and different numbers

of first-stage candidates. The performance is measured by classic

re-ranking metrics, like MRR [46] and NDCG [16], as required by

each specific benchmark.

4.1.3 Implementations. Matryoshka re-ranker is primary trained

based on the Mistral-7B model [17] which comprises 32 layers in

total. Meanwhile, extended study is conducted with other popular

LLM backbones, including Llama-3-8B [25] and Gemma-2-9B [12].

For passage ranking, the maximum input length is 224, the batch

size is 128, the number of negative samples is 15; while for document

ranking, the maximum input length is 2048, the batch size is 128, the

number of negative samples is 7. The model is trained by LoRA [14]

with a rank of 32 and an alpha of 64, while the learning rate is 1e
−4

.

The training process undergoes one epoch using Cascaded Self-

Distillation, followed by another epoch of Factorized Compensation.

5



Passage Re-Ranking Document Re-Ranking

Dev DL’19 DL’20 Dev DL’19 DL’20

Method MRR@10 NDCG@10 NDCG@10 NDCG@10 MRR@100 NDCG@100 NDCG@10 NDCG@10

MonoBERT [36] 38.02 44.82 68.61 67.70 35.14 43.31 65.50 62.29

MonoT5-3B [34] 38.99 47.00 71.29 70.42 37.07 44.90 66.90 67.75

SimLM-Rank [47] 43.41 49.93 73.34 72.67 40.38 51.18 65.70 63.74

RankLLaMA [28] 44.69 51.30 73.73 76.92 48.29 57.81 68.90 67.43

RankVicuna [37] - - 69.13 66.50 - - 64.23 61.64

RankGPT-gpt-3.5 [42] - - 71.11 66.50 - - 60.25 56.74

RankGPT-gpt-4o [42] - - 73.36 73.52 - - 66.12 63.99

Matryoshka lightweight 44.85 51.50 74.65 75.45 49.66 58.97 70.40 68.10
Specialized upperbound (light) 44.86 51.53 74.24 75.54 49.64 58.95 70.48 67.35

Matryoshka full-scale 44.95 51.63 75.42 76.37 49.67 58.99 71.39 67.96

Specialized upperbound (full-scale) 44.93 51.64 74.97 75.67 49.70 59.19 69.77 67.53

Table 1: Re-ranking performances on MSMARCO. Specialized upperbounds are finetuned for light and full architectures.

4.2 Experiment Analysis
4.2.1 MSMARCO Performance. The passage and document re-

trieval performance on MSMARCO is shown in Table 1, where the

top 100 candidates returned by BGE-EN-v1.5-large are re-ranked

by all the included methods. There are two alternatives of our own

approach. 1)Matryoshka full-scale, where the entire re-ranker is
directly used without compression. 2) Matryoshka lightweight,
in which the sequence length (i.e. width compression) is compressed

by 50% at the 8th layer and the re-ranking score is computed from

the 16-th layer’s output (i.e. height compression). As such, it saves

more than 60% of FLOPs with the lightweight model, and it saves

more than 50% in inference time (achieving a 2× speedup compared

to the full-scale model) with a sequence length of 1024.

In our experiments, the full-scale Matryoshka achieves the high-

est precision in the overall results, while the lightweightMatryoshka

maintained similar performance at much lower costs. Notably, the

relative gap between the lightweight and full-scale Matryoshka

re-rankers is within 1h across most of the evaluation scenar-

ios, despite that the computation cost has been reduced by more

than 60%. This observation preliminarily indicates that strong cost-

effectiveness of re-ranking can be realized by our proposed method,

and subsequent experiments will further validate this point.

Additionally, it’s noteworthy that both full-scale and lightweight

models achieve very close performances compared with their spe-

cialized upperbounds, indicating that potential precision loss is

effectively controlled while enhancing the model’s flexibility. Our

methods also exhibits notable advantages over the existing baseline,

re-rankers, e.g., RankLlama, which leverages a same-szie LLM back-

bone, and RankGPT-gpt-4o, which is powered by a highly advanced

proprietary LLM. The empirical advantage is even greater when

compared to other popular re-rankers based on smaller models,

such as MonoT5-3B and SimLM-Ranker. As a result, Matryoshka

Re-Ranker can serve as a valuable resource for the community,

offering precise and flexible re-ranking capabilities and acting as a

superior teacher model for distilling other retrievers.

4.2.2 BEIR Performance. The retrieval performance on BEIR is

shown in Table 2, where the included methods are used to re-rank

the top-100 candidates returned BGE-EN-v1.5-large. Apart from the

previous baselines on MSMARCO, we also introduce Jina-Rank-v2
2

and BGE Re-Ranker-M3
3
, which are popular general-purpose re-

rankers trained from diverse datasets. We continue to employ two

alternative configurations: Matryoshka lightweight (M lightweight)

and full-scale (M full-scale) for comparison, following the same

setting as the previous experiment.

According to the experimental results, our approach continues to

demonstrate strong retrieval quality. Notably, both M lightweight

and M full-scale can achieve significant advantages over a wide

variety of competitive baselines, such as RankLlama, RankGPT

(powered by GPT-4), and BGE Rank-M3 (one of the most widely ap-

plied re-rankers for general text retrieval tasks). The two methods

also outperform the baselines in most individual scenarios, reflect-

ing their strong generality. Besides, M lightweight maintains very

close performance to M full-scale despite a reduction of over 60%

in computation cost. In some specific tasks, M lightweight even

slightly surpasses the full-scale alternative, which further highlights

the effectiveness of our approach.

4.2.3 Flexible Compression. After the preliminary validation of

effectiveness under the default form of compression, we continue

to explore Matryoshka re-ranker’s flexibility in supporting ad-hoc

compression requirements.

We begin with the exploration of height compression, where the

re-ranking score is computed at different layers of the model. There-

fore, it will give rise to “wide-shallow” variations of the full-scale

re-ranker. In our experiment, the re-ranker’s height is gradually

reduced from 32 to 6 in increments of 4 layers (i.e. 32, 28, 24 ... 8, 6),

which results in growing reductions in FLOPs by 0%, 12.5%, 25%, ...

81.25% and leads to gradual reductions in inference time from 0%,

12%, 22%, to 78%. As illustrated in Figure 4 (red line), Matryoshka

2
https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual

3
https://huggingface.co/BAAI/bge-reranker-v2-m3
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Model MonoBERT MonoT5-3B SimLM RankGPT* RankLLaMA BGE-Rank-M3 Jina-Rank-v2 M lightweight M full-scale

NFCorpus 36.16 40.91 33.91 38.47 29.36 34.85 37.73 41.96 41.50

FIQA 40.37 53.64 40.27 - 47.39 44.51 45.88 58.39 59.16
SCIDOCS 17.02 20.77 16.38 - 18.48 18.25 20.21 22.39 22.43
FEVER 83.48 85.91 84.13 - 86.30 90.15 92.44 94.79 94.76

Arguana 52.46 39.91 33.02 - 56.18 37.70 52.23 65.29 65.80
Scifact 72.37 76.88 68.00 74.95 72.17 73.08 76.93 79.87 80.25
TREC-COVID 76.51 82.52 77.98 85.51 84.26 83.39 80.89 84.88 85.54
Climate-FEVER 27.12 31.90 23.15 - 28.00 37.99 34.65 46.45 47.10
HotpotQA 75.27 77.99 74.81 - 78.83 84.51 81.81 87.80 87.87
NQ 59.15 65.66 60.74 - 66.13 69.37 67.35 74.69 75.08
Quora 72.84 83.75 53.03 - 85.58 89.13 87.81 90.74 91.02
Touche 26.96 29.14 38.01 38.57 36.73 33.22 32.45 30.20 30.96

DBPedia 45.33 49.45 46.15 47.12 48.74 48.15 49.31 52.55 52.30

CQA 37.84 45.74 33.65 - 39.46 38.24 40.21 48.02 48.46

Average 51.63 56.01 48.80 - 55.55 55.90 57.14 62.72 63.02

Table 2: Text re-ranking performance on BEIR (measured by NDCG@10). The results marked with * are from reports, while the
remaining results are reproduced by ourselves using the publicly released checkpoints.

re-ranker stays robust to height compression: the impact on per-

formance is almost ignorable until the model’s height is reduced

to 20, and it well-maintains its retrieval quality until the model’s

height is reduced to 12. Even only 6 layers left, the model remains

effective, delivering substantial improvements over the first-stage

retriever (as indicated by the purple dash line).

We also make exploration of width compression, where the re-

ranking score is computed based on compressed input sequence.

This approach results in "deep-narrow" variations of the full-scale

re-ranker. We evaluate various compression settings, in which the

sequence length is compressed at the 20th, 12th, and 4th layer

respectively, meanwhile three compression factors: 2×, 4×, 8×, are
applied (a factor 𝛼 will compress the input to 1/𝛼 of its original

length). As such, it results in gradual reductions in FLOPs from 0%,

16%, 24%, to 71%, and leads to gradual reductions in inference time

from 0%, 7%, 23%, to 73%. The experiment results, shown in Figure 4

(green line), demonstrate that Matryoshka re-ranker remains robust

to width compression as well. Notably, the retrieval precision can

be effectively preserved across different compression factors and

starting layer of width compression.

We continue to explore more flexible forms by jointly applying

height and width compression, in which the input sequence is

compressed and the re-ranking score is computed at different layers.

We still employ three factors: 2×, 4×, and 8×, meanwhile, width

compression can repetitively take place all the way to the output

layer. Therefore, it progressively reduces the FLOPs by 0%, 12.5%,

25% ... up to 80% and leads to gradual reductions in inference time

by 0%, 12%, 22%, ... up to 74%. As illustrated by Figure 4 (blue line),

the re-ranker’s performance is still robust to the reduction of FLOPs,

which is consistent with our previous observations in height and

width-only scenarios. Additionally, this approach delivers even

better preservation of retrieval performance compared to using

height and width compression alone.
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Figure 4: Re-ranking performance (MRR@10) vs. FLOPs / in-
ference time saving based on different forms of compression.

The above results validate Matroyshka re-ranker’s flexibility in

supporting ad-hoc compression requirements. Such a flexibility

enables users to best trade-off the retrieval quality and running cost

in their individual application scenarios (as discussed in Sec 3.2.4).

4.2.4 Ablation Studies. The ablation studies are dedicated for two

main purposes: 1) the exploration of Matryoshka re-ranker’s ef-

fectiveness beyond its default setting in the main experiment, and
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Size of 1st-stage candidates

Method Top-50 Top-100 Top-200

BM25 21.01 21.01 21.01

BM25 + M-light 39.08 40.56 41.89

BM25 + M-full 39.09 40.61 41.91

BGE-small-en-v1.5 [53] 36.08 36.08 36.08

BGE-small-en-v1.5 + M-light 44.44 44.82 44.94

BGE-small-en-v1.5 + M-full 44.45 44.87 45.04

BGE-large-en-v1.5 [53] 37.62 37.62 37.62

BGE-large-en-v1.5 + M-light 44.63 44.85 44.90

BGE-large-en-v1.5 + M-full 44.77 44.95 45.02

E5-large-v2 [48] 38.29 38.29 38.29

E5-large-v2 + M-light 44.73 44.88 44.93

E5-large-v2 + M-full 44.78 44.95 45.07

E5-Mistral [49] 37.67 37.67 37.67

E5-Mistral + M-light 44.74 44.91 44.99

E5-Mistral + M-full 44.91 45.07 45.15

Table 3: Re-ranking performance (measured by MRR@10 on
MSMARCO passage) based on diverse first-stage retrievers
with different sizes of first-stage candidates (top 50, 100, 200).

2) the analysis of each technical factor’s impact in optimizing Ma-

tryoshka re-ranker’s performance.

In the first place, we introduce a variety of first-stage retriev-

ers of different types (embedding models and sparse method) and

scales (small, large, and LLM-based), which include BM25, BGE-

small, BGE-large, E5-large, and E5-Mistral. Additionally, we present

different numbers of first-stage candidates for re-ranking, including

the top-50, top-100, and top-200 candidates returned by various

retrievers. The experimental results, shown in Table 3, demonstrate

that both M-light and M-full significantly improve performance

over all first-stage retrievers. Moreover, M-light fully maintains the

performance of M-full, which is consistent with our observations

in the previous experiments. As a result, these results indicate our

effectiveness in dealing with diverse candidates of different quality

quantity, and distributions.

Secondly, we employ three different LLM backbones to imple-

ment the re-ranking models: Mistral-7B [17], Llama-3-8B [25], and

Gemma-2-9B [12]. Despite having similar scales, these LLM back-

bones take different model architectures and undergo varied pre-

training, fine-tuning, and alignment processing. The experimental

results, shown in Table 4, demonstrate competitive re-ranking per-

formance across all implementations. Although Llama-3-8B and

Gemma-2-9B are slightly larger thanMistral-7B, their performances

are no better than the default option. This result can likely be at-

tributed to the fact that the increased parameters for Llama-3-8B

and Gemma-2-9B are mostly in the embedding layers and decoding

heads: Llama-3-8B and Gemma-2-9B have 1.05B and 1.84B parame-

ters, respectively, whereas Mistral-7B has only 0.26B. The increased

token embeddings may benefit multi-lingual settings, but since our

evaluation focuses on English, little benefit is observed.

Lightweight Full-scale

MRR@10 rel perf. MRR@10 rel perf.

Default 44.85 99.7% 44.95 100.3%

w/o Compensation 44.35 93.0% 44.55 94.8%

w/o Self-Distillation 43.89 86.6% 44.25 90.7%

Fist-stage retrieval 37.62 0.0% 37.62 0.0%

Specialized upperbound 44.86 100.0% 44.93 100.0%

Mistral-7B 44.85 – 44.95 –

Llama-3-8B 44.52 – 44.82 –

Gemma-2-9B 44.76 – 44.91 –

Table 4: Ablation studies based on MSMARCO-passage; rel
perf. (%) measures the improvement over the first-stage re-
trieval baseline compared to the specialized upperbounds.

Finally, we perform detailed analysis for each technical factor,

with the following methods included for comparison. 1) Without

Factorized Compensation, which eliminates post-training and only

adopts cascaded self-distillation to fine-tune the model. 2) Without

Self-Distillation, which learns Matryoshka Re-Ranker directly from

the labeled data, instead of performing cascaded self-distillation.

The experiment results are shown in Table 4, where the relative

performance (rel perf.) is measured based on the improvements over

the first-stage retrieval baseline compared to the specialized upper-

bounds. As we can observe, the re-ranking precision is effectively

preserved only when both techniques are jointly applied. Otherwise,

the re-ranker’ performances gradually decline with the removal of

each technique, and this trend is more clearly highlighted from the

relative performance perspective.

4.2.5 Summary. The following experiment insights can be made

in response to our research questions.

• Along with its high flexibility, our approach achieves supe-

rior re-ranking results compared to the upperbound meth-

ods and popular baselines.

• Our method maintains strong performances across various

benchmarks, with different sub-structure configurations,

under diverse first-stage retrieval conditions, and using

different backbone LLMs.

• Both optimization techniques make substantial contribu-

tions to the empirical performance.

5 Conclusion
In this paper, we introduce Matryoshka Re-Ranker, a method de-

signed to facilitate the creation of lightweight LLM-based text re-

ranking models. Our approach enables users to customize the re-

ranker into arbitrary architectures by configuring its width and

depth at runtime, which brings forth significant flexibility for peo-

ple’s usage. In addition, the model’s performance is effectively

optimized through cascaded self-distillation and factorized com-

pensation during both training and post-training stages. Through

comprehensive experimental analysis across various benchmarks

and settings, Matryoshka Re-Ranker is verified as a precise and

flexible method for real-world scenarios.
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