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ABSTRACT

Test Time Optimisation is a setting where a model is made to learn new parame-
ters on-the-fly during inference with the help of those very samples it is supposed
to be tested on. Learning prompts at test time to improve the performance of Vi-
sion Language Models(VLMs) in downstream tasks has become a popular setting
in recent times. In this paper, we propose a new framework for the Test Time
Prompt Tuning in Pre-trained VLMs which incorporates actively sampled labels
in the learning process to improve the performance of the model in downstream
test-time settings. Our problem setting is underexplored yet well-motivated by
considerations such as performance, efficiency and real-life applicability. Active
Learning can be especially beneficial in the test-time setting in providing the op-
tion to query the true label when the model is uncertain in a real-life scenario and
Prompt Tuning provides the advantage due to parameter efficiency. Our method
is guided by these two principles and successfully combines the two to come up
with a test-time optimisation scheme that is evaluated to be an improvement over
existing methods under a fair evaluation protocol. We conduct experiments across
10 cross-dataset transfer datasets and 4 domain-generalisation datasets to show
consistent improvement over the state-of-the-art.

1 INTRODUCTION

The development of large Vision Language Models (VLMs) (Radford et al., 2021; Li et al., 2022;
2019; Fini et al., 2023) has led to a paradigm shift in visual scene understanding that has traditionally
been limited by a closed set of concepts seen during training. Through large-scale vision-language
pre-training, these models learn to align language and vision modalities and show remarkable zero-
shot transferability to unseen downstream tasks. A natural language description of the new class,
known as prompt, (e.g., ‘a photo of a class’) is fed to the text encoder of the VLM which is compared
with the visual features generated by the vision encoder. However, finding the best hand-crafted
prompt is non-trivial and calls for a lot of domain-specific heuristics. Prompt learning (Zhou et al.,
2022b;a; Wang et al., 2023) has emerged as an alternative where a few soft prompts are learned for
downstream tasks after freezing the entire VLM.

Traditionally, prompt learning has been supervised (Zhou et al., 2022a;b; Khattak et al., 2023) where
prompts are trained on a labelled training dataset. Such approaches are naturally constrained by the
availability of training data with annotations. Although pre-trained models are easily available nowa-
days, training data may not be available due to privacy, storage, or financial constraints. Moreover,
in the case of a quick deployment scenario, it may not be possible to wait long to collect and anno-
tate data for the downstream task as inference must continue. To address this challenge, Test-Time
Transfer (TTT) (Liang et al., 2024; Wang et al., 2020; Yuan et al., 2023) has emerged as a promising
approach. In the absence of the labelled data, the model is updated using an unsupervised objective.
For example, (Shu et al., 2022) updates the prompts so that the average entropy of the logits from a
set of augmentations of a single test example is minimized. However, the lack of labelled examples
may not quite bridge the performance gap between the test time and fully supervised learning. In
order to address this shortcoming, active learning (Ren et al., 2021; Zhan et al., 2022) algorithms
can be used to incrementally select samples for annotation that improves performance with non-zero
but low labelling cost.
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We explore a new take on generalization at test time that takes a step back when the model is not
quite certain about its decision and queries a human annotator for the true label of the uncertain test
examples. Once queried, our framework optimizes the prompts using the examples with true labels
in addition to the unlabelled test examples.

Comparison with prior works. A contemporary work ATTA (Gui et al., 2024) shows the impact
of active learning in the standard TTA setting. Their analysis established more generalization ability
in the model than standard TTA setting. However, their methodology and framework cannot be
directly applied to large VLMs like CLIP (Radford et al., 2021) because they do not focus on the
adaptation of a specific parameter group in a large model, while ours does so by incorporating
the parameter-efficient Prompt Tuning. Further, they assumed a batch setting whereas we have a
single test sample at a time and they also did multiple gradient updates per minibatch while we
have only one gradient update per sample. As our approach updates and improves the model after
encountering a single test example without waiting for additional examples to arrive, it is more
flexible in continuous data streaming scenarios (Zhang et al., 2022). There is another recent work
(Bang et al., 2024) which has used Prompt Learning and Active Learning together, but that was not
in a test-time setting (which makes our problem more challenging), and they also did not try on
adaptation tasks. For more details on related work check section B of supplementary material.

Motivation. All of the above facts strongly motivate our problem-setting. Foundation models are
natural candidates to be used in a test time setting, and there are multiple use cases in daily life
where a model could be so uncertain about something that instead of making a wrong prediction, it
is better to query an expert whom we can abstract as an oracle (Zhu & Nowak, 2022; Shekhar et al.,
2021). Examples include autopilot systems and medical applications. In such use cases, the extra
cost and latency incurred in consulting the oracle is often worth it owing to greater generalisability
and accuracy (supplementary section C). We have further motivated our approach by demonstrating
a shortcoming of the existing TPT methodology through an experiment in section 3.

Challenges and Novelty. Prior work (Gui et al., 2024) had a batch setting and thus could simply
actively sample a fixed proportion of the batch. However, in our case we only have a single sam-
ple at a time and have to make the decision of whether to sample it or not without knowing how
uncertain the future samples would be. So we choose to dynamically adjust our threshold which
would determine whether or not to actively label a sample. We also store the actively labelled sam-
ples in a fixed size buffer which would enable us to fully extract information from the samples,
which would not be possible in a single time step. When the buffer is full, non-informative samples
from over-represented classes are evicted from them. In adaptation tasks we follow (Abdul Samadh
et al., 2024) to introduce distribution alignment, except that we align active samples to source data
statistics of the particular class they belong to instead of the overall source data. As this is a novel
problem setting, we have to make the effort to define an evaluation protocol which is sensible and
fair. We do so, and it is shown that the evaluation protocol allows us to compare with previous arts
without any unfairness.

In summary, our contributions are the following-

1. We propose a novel approach in the test-time optimisation of Vision Language models
where we are equipped with the ability to query for the true labels to mitigate risk and
improve generalisation capacity of the model. To the best of our knowledge, this is a novel
setting and we are the first to apply Active Learning in a Test Time setting for VLMs.

2. We use the innovative idea of using a dynamically adjusted threshold to decide which test
time samples have to be queried. We also incorporate the idea of class balancing in the
annotation buffer and the replacement of non-informative samples which ablative studies
reveal to be crucial to our performance.

3. For adaptation tasks, we also use the novel idea of class aware distribution alignment which
makes effective use of the actively labelled samples to achieve more fine-grained distribu-
tion alignment.

4. The proposed algorithm performs better than many other methods under a low annotation
budget and a limited buffer capacity. The evaluation protocol under which it was evaluated
is demonstrably fair.
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Figure 1: Overview of our method. We query uncertain samples at test time and put them in a buffer
of limited size. We decide to query a sample if its entropy is above a certain threshold (τhigh) which
is dynamically adjusted. The old samples of a disproportionately represented class in the buffer are
removed when they are not informative anymore.

2 PRELIMINARIES

2.1 ACTIVE LEARNING

In active learning, we have an unlabelled dataset Du. The typical setting is that of multi-class
classification, having K classes. The training happens in an iterative way where, in each iteration,
the model selects some samples from Du, which it then passes on to the oracle to get the correct
annotations. At each iteration, labelled samples are added to the labelled dataset Dl. The labelled
dataset is used to train the model before the next query phase, after which the size of Dl further
increases. There is typically also a budget constraint that the model has to maintain. That is, the
total number of queried samples cannot exceed a budget of B.

2.2 VISION LANGUAGE MODELS AND PROMPT LEARNING

In Vision Language Models (VLMs) like CLIP (Radford et al., 2021), training is performed by
pairing an image and the corresponding caption. There are two encoders - an image encoder Ev and
a text encoder Et. The image and text are passed through the encoders where the image encoder is
either ViT (Dosovitskiy et al., 2020) or ResNet (He et al., 2016) architectures while the text encoder
uses the Transformer (Vaswani et al., 2017; Devlin et al., 2018) architecture.

Once the image x and text input ti (which is typically a classname out of the K classnames) are
mapped into the embedding space, which can be represented as

ev = Ev(x) eit = Et({ti; p})
where p is a handcrafted prompt prepended to the text input. Next, cosine similarity is computed
between the visual embedding ev and textual embedding et. The objective of contrastive training is
to reduce the distance between correct pairings and increase that between incorrect ones. That also
achieves the objective of ensuring that the following prediction probability distribution

P (c = i|x) = exp(cos(ev, e
i
t)/τ)∑K

j=1 exp(cos(ev, e
j
t )/τ)

concentrates more of the density towards the correct class. Here cos denotes the cosine similarity.
Prompt Learning essentially makes the optimisation of a pre-trained VLM easier by only optimis-
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ing a small parameter group known as prompts which are auxiliary to the original VLM. Instead of
handcrafted prompts, which may require a lot of manual tuning, prompts are used as learnable vec-
tors. The prompts are concatenated to the text input which is then passed through the text encoder
to be mapped into the embedding space. There also exists a variant of prompting known as Mul-
timodal Prompt Learning (Khattak et al., 2023) where learnable vectors are attached to both visual
and textual tokens. In this paper, we use multimodal prompt learning.

2.3 TEST TIME PROMPT TUNING

In TPT (Shu et al., 2022), they have the same prompt tuning setting except that the prompt tuning
has to be done on the fly on a single test sample xt at a time t. They then use a set of augmentation
functions A to make n augmentations x̃t = A(xt). x̃t is then passed through Ev to get the logits
corresponding probability distribution over classes for each augmentation. The entropy for each of
the n logits is found, and only the top ρ logits with the least entropy are retained. The logits are
averaged and the entropy of the average logit is computed. The marginal entropy of this average
logit is the training objective at each time step t. This is called Marginal Entropy Minimisation
(MEM) as we try to minimise this objective.

Lentropy = −
C∑
i=1

p̃p(yi|Xtest) log p̃p(yi|Xtest), (1)

where p are the learnable prompts and p̃p(yi|Xtest) represents the mean of vector class probabilities
produced by the model across the different augmented views preserved after the confidence selection
filter.

2.4 DISTRIBUTION ALIGNMENT USING MULTIMODAL PROMPTING

In (Abdul Samadh et al., 2024), they use ImageNet (Deng et al., 2009) as the proxy source dataset.
They generate N random views of the test samples using a set of augmentations H. They compute
the mean and variance statistics of the token embeddings of the test samples at the output of each
transformer layer of the CLIP model’s visual encoder across the N views. Similarly, the source data
statistics from the proxy source dataset were pre-computed in an offline manner. The test sample
distribution is represented by (T ) and the source distribution by (D). Specifically, the token means
and variances for the alignment are computed as follows.

µl(T ;p) =
1

N

∑
x∈H(X)

X̃p
l,x , (2)

σ2
l (T ;p) =

1

N

∑
x∈H(X)

(
X̃p

l,x − µl(T ;p)
)2

, (3)

where µl(T ;p) and σ2
l (T ;p) are the vector means and variances of the test sample tokens at the

layer l in the visual encoder and X̃p
l,x represents the prompted token embeddings at layer l for the

augmented view input x. Similarly, for each layer l in the visual encoder, the source data statistics
are pre-computed as,

µ̂l = µl(D, θv) and σ̂2
l = σ2

l (D, θv) , (4)

where θv denotes the parameters of the visual encoder from the pre-trained CLIP model. The token
distribution alignment loss between the mean and variances of the test sample and the source dataset
statistics is computed using the following,

Lalign =
1

L

L∑
l=1

(
∥µl(T ;p)− µ̂l∥1 + ∥σ2

l (T ;p)− σ̂2
l ∥1

)
. (5)

As shown above, L1 loss is used to enforce the distribution alignment of the test sample with the
source distribution.
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3 METHOD

One shortcoming with the approach in TPT is that in trying to increase the certainty and consistency
of a test sample across views, it potentially learns spurious representations. This is due to the
presence of samples for which it is generally uncertain, and imposing consistency and certainty on
such samples will potentially make the model predict wrong labels with certainty. We confirm this
hypothesis by doing an experiment where we do not update on those samples with high entropy and
instead just evaluate on them and let them pass. The results are given in Table 1. To mitigate the
learning of spurious representation via updation on highly uncertain samples and also to not waste
the information that could be provided by them by removing them from the training scheme, we
propose to actively query some samples for which the model is generally uncertain. We formalise
this notion of general uncertainty by selecting those samples for which the entropy of the average
logit is more than a certain threshold which is dynamically adjusted. Our approach is visualised in
Figure 1. We tried a fair evaluation protocol, which we have described in section 4.2. The most
crucial detail in an evaluation protocol is the point in time at which we solicit the true label from the
oracle. In particular, when we solicit the label before evaluating the sample, we cannot have a fair
evaluation. Thus, our evaluation makes sure we are not using the ground truth label from the oracle
and still keeping the sample for evaluation. In samples that are not queried, we apply the standard
unsupervised loss as marginal entropy of the average logit.

Table 1: Motivating findings of not updating on low confidence samples

Dataset CLIP+TPT CLIP+TPT, not updating on top 2%
DTD 47.75 47.80

Stanford Cars 66.87 66.93
Oxford Pets 87.79 87.85

Food101 84.67 84.70

3.1 FORMALISATION

We have a buffer Dl, which is initially empty and is used to store queried samples. The buffer size
is assumed to be limited to ensure that the framework is realistic. Let Du denote the entire dataset.
At time t, a test sample xt ∈ Du arrives to be evaluated. The test sample is augmented N times to
produce a batch of augmentations x̃t. Like TPT, we find the logits for each of them and calculate
the marginal entropy. The noisy augmentations are thus discarded. The average of the remaining
logits is computed and the entropy corresponding to that is found. We denote that entropy as H(xt).
If H(xt) > τh, then we choose to query it.

Dynamic Threshold Selection. τh is dynamically adjusted. Let us denote the threshold at time step
t as τ th.

τ th = µ̂t + zσ̂t (6)
Where µ̂t and σ̂t denote the estimated mean and standard deviation of H(xt) upto time step t. For
the first t̃ time steps, we keep the threshold static. That is, τ th = τ ∀t ∈ [t̃]. Since we also want to be
within our budget and not exhaust it too early in the test stream, we adjust the value of z depending
on the proportion of samples queried in the test stream up to that point. Our approach is summarised
in Algorithm 1 in section D of the supplementary material.

Class Balanced Replacement Policy. As our buffer size is limited, we came up with a replacement
policy which would help us choose which sample to remove from the buffer in favour of an incoming
sample. In evicting samples from the buffer, we adopt a notion of diversity achieved via class
balancing. That is, we ensure that all classes are well represented in Dl. We remove the sample
with the lowest cross-entropy loss in the class with the most number of samples. The rationale is -
the class with the most number of samples is over-represented, and the sample with the least cross-
entropy loss is not that informative anymore. Our approach is summarised in Algorithm 2 in section
D of the supplementary material.

Our loss function is of the form

L = Lentropy + αLcross-entropy + βLalign + γLclass-align (7)

5
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Where Lentropy is expressed in equation 1 and Lalign is expressed in equation 5 while Lcross-entropy is
the standard supervised cross-entropy loss applied on actively labelled samples. It is also important
to note that except for domain generalisation tasks, we make β = 0 and γ = 0; that is, we do not use
explicit domain alignment. In the domain generalisation task, we do a finer-grained version of do-
main alignment for actively labelled samples wherein we don’t just align them to the statistics of the
entire source dataset but the class statistics of the particular class to which they belong. We denote
the corresponding loss by Lclass-align. On other samples, we do vanilla distribution alignment with
general source data statistics. The Lclass-align expression would be similar to the one in equation 5
except that in the place of µ̂l and σ̂2

l we will have µ̂l,c and σ̂2
l,c which would denote the mean and

variance of representations of datapoints in the class c in the proxy source dataset.

4 EXPERIMENT

Table 2: Results on cross-dataset transfer - the Top-1 accuracy is reported
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CLIP 93.35 88.25 65.48 67.44 83.65 23.67 62.59 44.27 42.01 65.13 63.58
CLIP+TPT 94.16 87.79 66.87 68.98 84.67 24.78 65.50 47.75 42.44 68.04 65.10

CoOp 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoCoOp 93.79 90.46 64.90 70.85 83.97 22.29 66.89 45.45 39.23 68.44 64.63
ProDA 86.70 88.20 60.10 71.50 80.80 22.20 - 50.90 58.50 - 65.62
MaPLe 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30

MaPLe+TPT 93.59 90.72 66.50 72.37 86.64 24.70 67.54 45.87 47.80 69.19 66.50
PromptAlign 94.01 90.76 68.50 72.39 86.65 24.80 67.54 47.24 47.86 69.47 66.92

ours 94.27 90.65 67.86 72.36 86.77 24.85 67.51 48.23 49.88 70.23 67.26

Table 3: Results on adaptation datasets - the zero-shot Top-1 accuracy is reported

Imagenet-V2 ImageNet-Sketch ImageNet-A Imagenet-R OOD Avg.
CLIP 60.86 46.09 47.87 73.98 57.20

CLIP+TPT 64.35 47.94 54.77 77.06 60.81
CoOP 64.20 47.99 49.71 75.21 59.28

CoOp+TPT 66.83 49.29 57.95 77.27 62.84
Co-CoOp 64.07 48.75 50.63 76.18 59.91

Co-Coop+TPT 64.85 48.27 58.47 78.65 62.61
PromptAlign 65.29 50.23 59.15 79.02 63.42

ours 65.60 50.14 59.31 79.51 63.64

4.1 EXPERIMENTAL SETUP

Datasets. In domain generalization, we evaluate on four out-of-distribution (OOD) variants of
ImageNet (Deng et al., 2009); ImageNet-Sketch (Wang et al., 2019),ImageNet-A (Hendrycks
et al., 2021b), ImageNet-V2 (Recht et al., 2019) and ImageNet-R (Hendrycks et al., 2021a). For
cross-dataset transfer, we try on 10 image classification datasets which cover a wide variety of
visual recognition tasks. Among these Caltech101 (Fei-Fei et al., 2004); five datasets which are
fine-grained StanfordCars (Krause et al., 2013),Flowers102 (Nilsback & Zisserman, 2008),Oxford-
Pets (Parkhi et al., 2012),Food101 (Bossard et al., 2014) and FGVC-Aircraft (Maji et al., 2013),
which contain images of transportation, flowers and animals; and four datasets of textures, satellite
imagery, scenes and human actions which are DTD (Cimpoi et al., 2014), EUROSAT (Helber et al.,

6
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2019), SUN397 (Sun et al., 2020) and UCF101 (Soomro et al., 2012) respectively.

Implementation Details. Following PromptAlign (Abdul Samadh et al., 2024), using a single test
sample we optimize the prompts on both the text and vision branches. Our models were implemented
on a single NVIDIA A40 48GB GPU using the PyTorch framework. Refer to section 2.3, we take
n = 63 and ρ = 10%. Then we compute the token distribution alignment loss between the tokens
of all the 64 images(equation 5). A learning rate of 5e−4 was used for the fine-grained datasets
Flowers102, OxfordPets, Food101, SUN397, FGVCAircraft, and EuroSAT and a learning rate of
0.004 for the rest of the datasets. We use an annotation budget of 5% and a buffer size of 150 for all
datasets except Imagenet-v2 and Imagenet-Sketch where we use a buffer size of 75 due to memory
constraints. The static threshold τ for selecting samples to be queried for labeling was fixed at 2, till
t̃ = 30 time steps. All the results were obtained by taking the average performance over 3 seeds for
each dataset. Refer to equation 7. All the results in Table 2 are produced by taking α = 1, β = 0
and γ = 0. On the other hand, in Table 3, the values of α are 1 in Imagenet-R and Imagenet-V2,
and 0.15 and 0.5 in Imagenet-A and Imagenet-Sketch respectively, β = 1 and γ = α for all. We
hypothesize that the lower value of α suited for these datasets is due to a greater number of outlier
samples present in them.

Baselines. We evaluate our method with existing few-shot prompt learning methods for adapting
CLIP including CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al., 2022a), TPT (Shu et al.,
2022) and PromptAlign (Abdul Samadh et al., 2024) method. MaPLe (Khattak et al., 2023) is a
multi-modal prompt learning baseline, which adapts CLIP by learning deep prompts on both the
text and vision branches. TPT is a test-time prompt tuning method that tunes the prompt at test
time per input sample, which achieved strong performance in prompt learning when combined with
CoOp. It is important to note that whenever we have appended +TPT to a method, it means that the
corresponding supervised counterpart has been taken and executed with TPT loss.

4.2 EVALUATION PROTOCOL

In the standard TPT setting, with the MEM (Section 2.3) framework, there is an update on the
unsupervised loss before the evaluation. In our setting, we also update on the unsupervised loss
before evaluation, but we can’t use a sample to calculate the supervised loss before evaluation since
it doesn’t make sense to evaluate a sample after already knowing its true label. In our evaluation
protocol, we update on the unsupervised loss before evaluating on the sample, but actively label
it only after the evaluation. After active labelling, the sample is put in the buffer and can be used
in calculating the Lcross-entropy in equation 7 for the successive time steps. This ensures fairness
in evaluation since we are using the true label to update the model only after a sample has been
evaluated. This also means that we can evaluate prior arts with their usual evaluation scheme.

4.3 RESULTS

The results of fine-grained classification are given in Table 2 while those of domain generalisation
are given in Table 3. It can be seen that in nearly all of the datasets in fine-grained classification we
are exceeding the state-of-the-art PromptAlign(Abdul Samadh et al., 2024) in terms of performance.
Our average performance exceeds that of PromptAlign by 0.34%. In domain generalisation, our
average performance exceeds that of the SOTA PromptAlign by 0.22%. While in ImageNet R and
ImageNet A we show better performance than the SOTA, in ImageNet Sketch our performance is
marginally worse while in ImageNet-v2 our performance is better than PromptAlign but worse than
the method CoOp+TPT. In (Abdul Samadh et al., 2024) they explain this disparity by hypothesizing
this is due to the extensive training of CoOp on ImageNet which has a very similar distribution to
ImageNet-V2.

4.4 ABLATION STUDIES

4.4.1 CLASS BALANCED VS UNBALANCED (RANDOM DELETION FROM Dl)

For class balancing we used Algorithm 2, for a description of the class balancing method refer to
section 3.1.
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Figure 2: Class balanced vs random deletion from Dl, our class balanced deletion policy performed
better in all of the datasets

(a) Varying active samples query percentage (b) Changing the loss coefficient in loss function

Figure 3: (a) 5% active query percentage was found to be optimum (b) The optimum value was
found to be 1. The performance in both cases seemed to be quite robust to the change of the query
percentage and change of loss coefficient respectively

For random deletion from Dl, we randomly selected a class ck among all the classes such that
|ck| ≥ 1, i.e. a non empty class, and then randomly deleted a sample from it.
It is evaluated on Caltech101, DTD, Stanford Cars, UCF101 and the results shown in Figure 2

4.4.2 ACTIVE SAMPLES QUERIED PERCENTAGE 1%,5%,10%:

Increasing the number of samples actively queried increases the model’s robustness and hence helps
improve its performance, especially for more challenging datasets. But that comes at a cost of
the annotation budget, since the annotation budget is quite limited. We tried our experiments for
different annotation budgets of 1%,5%,10%. The results of using different annotation budgets are
given in Figure 3a which were obtained by taking the average performance over Caltech101, DTD,
Stanford Cars and UCF101 datasets. The results show that increasing the annotation budget does not
necessarily increase gains - there is an optimum annotation budget, which we found to be around
5%. We hypothesise that this is because of our limited buffer capacity which implies that with
greater annotation budget, samples have to be replaced more often before all the information has
been extracted from them. In any case, the performance is robust to change in query percentage
as well - perhaps pointing to the fact that most of the information is contained in the top 1% (by
entropy) of samples.

4.4.3 CHANGING THE LOSS COEFFICIENT IN LOSS FUNCTION

When we increase the value of α in equation 7, it means giving more importance to the unsupervised
loss so we change the value of α in this range, the results are given in Figure 3b which were obtained
by taking the average performance over Caltech101, DTD, Stanford Cars and UCF101 datasets. The
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results show that on average, the value α = 1 is the optimum value. However, the performance didn’t
seem to be very sensitive the value of the coefficient.

4.4.4 CHANGING THE SIZE OF Dl(BUFFER) FOR VALUES 25,50,100,150:

Now the size of the buffer was varied and the corresponding performance was checked. We can
not arbitrarily have a very large buffer size i.e. storing all the actively queried samples since for
datasets like Food101, 5% of the total test samples is around 1500 images. Storing all those images
in the buffer would increase the latency. So the maximum buffer size was set to 150. The results in
Figure 4a were obtained by changing the buffer size to the values mentioned above, while 5% of the
test samples were queried and taking the average performance for the datasets Caltech101, DTD,
Stanford Cars, UCF101.

(a) Varying the size of the buffer (b) Selecting random images vs our selection policy

Figure 4: (a) Increasing the buffer size leads to increase in average performance (b) Our image
selection policy outperforms random image selection

4.4.5 SELECTING RANDOM IMAGES FOR THE BUFFER VS OUR SELECTION POLICY

Our selection policy of selecting informative samples from the test images for the buffer was now
compared to selecting random images from the buffer. This was performed with maximum buffer
size of 150, query of 5% test samples, and is the average of the performance in the Caltech101, DTD,
Stanford Cars and UCF101 datasets. The results in Figure 4b indicate that our selection policy is
indeed shows better performance.

5 CONCLUSION

In this paper, we tackle the problem of Active Learning of VLM prompts in a Test Time setting.
Building on prior work which demonstrated the relevance of Active Learning in a Test Time setting,
we extend that to Prompt Learning in VLMs. We further demonstrate the relevance by showing
that marginal entropy minimisation on uncertain samples reinforces errors in the model. This makes
knowing the true label even more relevant. Ours is the first work to deal with the problem of Active
Test Time Optimisation with a single test sample at a time. We use a dynamically adjusted threshold
for entropy based on which we select the samples which will be chosen for active labelling and we
do so in such a manner that our annotation budget is not exceeded or exhausted too early into the
data streaming process. Our method uses a replacement policy which prioritises class balancing
and informativeness of samples to make intelligent use of the limited-size buffer. We propose a
fair evaluation protocol which shows that Active Learning is indeed an effective strategy in the Test
Time Prompt Learning of VLMs. Future works can extend this by using pseudo labels alongside
active labels and effectively combining their information for even better results.

9
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Active Test-Time Prompt Learning in VLMs
Supplementary Material

A BROADER IMPACT

The goal of deep learning is to learn discriminative invariant feature representations. One roadblock
in that goal is that models which are trained on a particular dataset often develop a bias towards it via
overfitting which is essentially the emergence of spurious correlations. These spurious correlations
pose both technical and ethical concerns that have to be mitigated so that deep learning models can
be widely used. In the most common scenario, domain generalization helps us in eliminating these
spurious correlations by applying certain techniques before the model’s deployment. However, it is
not always possible to gather data before the model’s deployment, and thus, it becomes imperative
to instead adapt the model during inference. We do not see any immediate ethical concerns which
are raised by this paper as it does not release any specific dataset nor does it use any human as a
subject. However, as with any scientific work, it has the potential for misuse, and thus, we support
a continued assessment of methods like ours, which advocate test-time adaptation of large models
using expert advice.

B RELATED WORK

B.1 ACTIVE LEARNING

Active Learning promotes label efficiency by imposing a label budget. It can be used in a variety of
settings to gain knowledge about some aspect that is not already known and the model is uncertain
about via an oracle. The queried samples are then sent to an oracle who returns the true label. Other
than choosing on the basis of uncertainty (Lewis & Catlett, 1994; Yang & Loog, 2016; Roth & Small,
2006; Holub et al., 2008), in latest works, the model also tries to maintain diversity (Parvaneh et al.,
2022; Sener & Savarese, 2017) in its choice of samples to query. There is typically a dynamic
buffer that is maintained by the Active Learning algorithm wherein the annotated samples are put.
The buffer is enlarged as more samples which are both diverse and informative are added to it.
There have been incorporations of Active Learning into Domain Adaptation as well (Prabhu et al.,
2021). In (Wang et al., 2022; Kothandaraman et al., 2022) incorporated Active Learning into Source
Free Domain Adaptation which, while not directly dependent on the sourced data, are also not
suited for continuous data streams, unlike our TTA setting. In (Saran et al., 2023), they take up
the task of actively labelling samples in a streaming setting. However, their work significantly
differs from ours as they don’t continuously adapt their parameters as the data stream progresses.
Instead, they reinitialise their parameters to the original parameters after each new data point is
acquired. A contemporary work that is more closely related to ours is (Gui et al., 2024), where
they provide some foundational theoretical work on Active Test Time Adaptation. However, their
work is also significantly different from ours because they assume a batch setting wherein at each
timestep, a minibatch comes for inference while we only assume a single sample. They also do
multiple gradient updates in each time step while we do only one. Their labelling is also not done
in real-time but effectively postponed by placing the unlabelled samples in a buffer from which they
have to be selected for active labelling later. This may not always be possible due to privacy and
storage concerns where it may not be feasible to postpone the decision of sending a sample to an
oracle and instead retaining it. On the other hand, we make the active labelling decision in real-time
based on our dynamically adjusted threshold.

B.2 TEST TIME ADAPTATION

Adaptation of pre-trained models is necessary so that they can be used optimally for the given task at
hand. Fully Test Time Adaptation (Nado et al., 2020; Schneider et al., 2020; Sun et al., 2023; Liang
et al., 2023) is the highly realistic and practical setting wherein a pre-trained model has to optimise
and adapt its parameters to a situation that it faces during inference, that is, amidst real-time use.
A prominent example includes that of a self-driving car where the car has to adapt to unforeseen
conditions while it is being used. A popular way to achieve fully test time adaptation has been
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to update the statistics of the Batch Normalisation layer during inference. In TENT (Wang et al.,
2020), the Batch Normalisation parameters are updated using a self-entropy objective. However,
TENT makes the batched input assumption. In MEMO (Zhang et al., 2022), they use the more
general case of a single test input by taking multiple augmentations of a single image. TPT (Shu
et al., 2022) essentially extends the MEMO philosophy to prompt tuning to make VLMs adapt at
test-time by updating prompts. Especially relevant to this paper is the newly introduced paradigm
of Active Test Time Adaptation Gui et al. (2024), where the model has the option of querying a
few samples during test time adaptation. It was found that at a some latency cost as compared to
FTTA methods, the ATTA framework provides much superior results, and thus, its use-case may not
completely overlap with that of FTTA.

B.3 PROMPT LEARNING IN VLMS

Prompt Learning has been proposed as a method of fine-tuning VLMs in compute-constrained sce-
narios due to its parameter efficiency. In CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al.,
2022a), the prompts are appended to the textual tokens and help provide context to the input of
the VLM instead of finetuning the entire VLM model. Learning good prompts has been shown to
dramatically improve the performance of the CLIP (Radford et al., 2021) model. Maple (Khattak
et al., 2023)introduced Multimodal Prompt learning where, along with the text encoder, prompts are
also learnt for the vision encoder. PromptAlign(Abdul Samadh et al., 2024) extends the multimodal
framework of MaPle to a test time setting, and adds Distribution Alignment to this by considering
Imagenet to be the proxy source dataset and calculating the alignment loss between different layers
of the encoders for each image and precomputed statistics. Prompt Learning has been extended as
a transfer learning and adaptation method in various ways and settings. Of special interest to us
is the Test Time setting (Shu et al., 2022). The Test Time scenario is highly practical given that
foundation models like VLMs are becoming more mainstream and adapting them at test time by
optimising a small parameter group like prompts is likely to be the way forward. More recently, in
(Bang et al., 2024) they introduce Active Learning to Vision Language models where it is noted that
diversity in the form of class-balancing is important for non-trivial gains in VLM performance via
Active Learning. However, our method is significantly different from theirs because it is in a test
time scenario, whereas theirs was in a supervised learning setting.

C POTENTIAL APPLICATIONS

For the sake of fair comparison with previous arts, we actively label our samples only after
evaluating them. However, it is important to note that, when it comes to practical application, we
can also reverse the order. That is, we can ask the expert for their advice and take that as the ground
truth. This is especially true because we are not restricted by our methodology to postpone the
active labelling decision but instead do so in real-time, unlike (Gui et al., 2024) where they collect
the unlabelled samples in a buffer and select which ones to query later. Our single test sample in a
time-step assumption makes our setting even more practical.

Ideal scenarios for practical application are high-risk ones like autopilot systems and medical
diagnosis, where the extra cost and latency in consulting an expert is justified by the potential
avoidance of hazards. In autopilot systems, when the system is uncertain, it can hand over control
to the pilot, who then demonstrates the correct way of handling that particular scenario. The system
then stores the pilot’s actions in memory and uses them to learn the correct way so that it does not
need human intervention in a similar scenario in future. In medical diagnosis, whenever the system
is uncertain, instead of making a wrong diagnosis, it sends the sample over to a medical practitioner
who then provides his expert opinion.

Our average inference latency per sample, when the buffer size is at its maximum, is around
0.63s, which is about 50% more than that of PromptAlign (Abdul Samadh et al., 2024), whose
latency we found to be 0.41s when averaged over all 14 datasets. However, these figures must be
contextualized in comparison to those from (Gui et al., 2024), where they observed up to almost
10x increase in latency compared to their baselines.
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D ALGORITHMS

Algorithm 1 Dynamic Threshold Selection

Require: t,Nqueried, µ̂t, σ̂t

if t < Tmin then
# Initially select a static threshold till Tmin number of test samples
Output:τ0

else
# α is the query selection percentile
if Nqueried

t ≥ α then

# Select higher value of z (zhigh) if currently over-querying

τt = µ̂+ zhighσ̂

else
Select standard value of z with respect to α otherwise τt = µ̂+ zselectionσ̂

end if
Output:τt

end if

Algorithm 2 Class Balanced Eviction from Buffer

Require: Unlabeled Dataset Du, Oracle(.) Nqueried = 0, µ̂0 = 0, σ̂0 = 0
for t = 1, 2, 3, ..., |Du| do

µ̂t, σ̂t ← µ̂t−1, σ̂t−1

τt = Dynamic Threshold Selection(t,Nqueried, µ̂t, σ̂t)
if H(x̂t) > τt then

yt = Oracle(xt)
Nqueried ← Nqueried + 1
if the buffer is full then

# Select class k, the class with the most samples in Dl

m = argmax
k∈{1,2,...,K}

|ck|

if |m| = 1 then
# Select sample with lowest CE loss in max class
j = argmin

i∈{1,2,...J}
LCE(xi, yi)|yi = cm

Remove (xj , yj) from Dl

else if |m| > 1 then
# Select the max class with least avg CE loss

l = argmin
k∈m

L̄CE(xi, yi)|yi = ck

# Select sample with lowest CE loss in the max class

j = argmin
i∈(1,2,...J)

LCE(xi, yi)|yi = cl

Remove (xj , yj) from Dl

end if
end if
Add (xt, yt) to Dl

end if
end for
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