
Safe Crossover of Neural Networks Through Neuron Alignment
Thomas Uriot

European Space Agency
Noordwijk, The Netherlands

thomas.uriot@esa.int

Dario Izzo
European Space Agency

Noordwijk, The Netherlands
dario.izzo@esa.int

ABSTRACT
One of the main and largely unexplored challenges in evolving
the weights of neural networks using genetic algorithms is to find
a sensible crossover operation between parent networks. Indeed,
naive crossover leads to functionally damaged offspring that do
not retain information from the parents. This is because neural
networks are invariant to permutations of neurons, giving rise
to multiple ways of representing the same solution. This is often
referred to as the competing conventions problem. In this paper, we
propose a two-step safe crossover (SC) operator. First, the neurons
of the parents are functionally aligned by computing how well they
correlate, and only then are the parents recombined. We compare
two ways of measuring relationships between neurons: Pairwise
Correlation (PwC) and Canonical Correlation Analysis (CCA). We
test our safe crossover operators (SC-PwC and SC-CCA) on MNIST
and CIFAR-10 by performing arithmetic crossover on the weights
of feed-forward neural network pairs. We show that it effectively
transmits information from parents to offspring and significantly
improves upon naive crossover. Our method is computationally fast,
can serve as a way to explore the fitness landscape more efficiently
and makes safe crossover a potentially promising operator in future
neuroevolution research and applications.

CCS CONCEPTS
•Computingmethodologies→ Continuous space search; Genetic
algorithms; Neural networks;

KEYWORDS
Canonical correlation analysis, competing conventions, crossover,
genetic algorithms, neuroevolution
ACM Reference Format:
Thomas Uriot and Dario Izzo. 2020. Safe Crossover of Neural Networks
Through Neuron Alignment. In Genetic and Evolutionary Computation Con-
ference (GECCO ’20), July 8–12, 2020, CancÃžn, Mexico. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3377930.3390197

1 INTRODUCTION
Neuroevolution [36] (NE) is concerned with the evolution of neu-
ral network topology, weights and learning rules. Historically, the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’20, July 8–12, 2020, CancÃžn, Mexico
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-7128-5/20/07. . . $15.00
https://doi.org/10.1145/3377930.3390197

first attempts at evolving neural networks made use of a particular
type of neuroevolution technique called genetic algorithms [12,
17] (GAs). Genetic algorithms are population-based and aimed at
loosely replicating the process of natural selection by having bio-
inspired operators such as mutation, crossover (recombination) and
selection, acting on the population individuals. In particular, the
crossover operator picks a number of high performing parents to
create offspring which share some common genotype (e.g. topology,
weights, hyperparameters) with the parents. The use of crossover in
neuroevolution assumes that one can find a sensible way to mix in-
formation from the parent networks, in order to create a promising
offspring. However, we cannot naively recombine neural networks
in a structural way by simply matching their topologies. This is due
to the fact that neural networks can encode the same solution while
having different representations (e.g. permuted neurons) or even
different topologies. The aforementioned problem of one pheno-
type having multiple genotypes is often referred to as the competing
conventions problem, or the permutation problem [28, 31, 34], where
a convention corresponds to a particular network representation.
If the competing conventions problem is not addressed, crossover
essentially becomes an inefficient and even detrimental operator
which produces dysfunctional offspring. In addition, the competing
conventions problem means that a unimodal fitness landscape to
a local gradient-based algorithm can become multimodal to GAs,
with each mode corresponding to a unique convention [34]. This
is due to the fact that local optimization such as gradient descent
only looks at the direct neighborhood of the current solution point,
while global optimization algorithms such as GAs explore the whole
search space. Thus, the resulting search space for GAs is bigger by
a factor of (n!)D for a network with D hidden layers of size n, than
it really ought to be [39]. The challenge to transmit information
efficiently from parents to offspring, is to solve the competing con-
ventions problem. This is done by finding a non-redundant [31, 39]
(i.e. unique) representation of the set of functionally equivalent
neural networks, by permuting neurons in order to functionally
align the parent networks [24].

While a lot of early work had relative success in applying GAs
with naive crossover to evolve small neural networks on simple
reinforcement learning (RL) tasks [13, 14, 30, 42, 43], two main
approaches to evolve neural networks arose. The first one con-
cluded that crossover is harming the evolutionary process and thus
that classical GAs [12, 17] are not well suited to evolve neural net-
works [1, 45]. This neuroevolution paradigm is called evolutionary
programming, where a population of neural networks is evolved by
solely relying on mutations and selection. On the other hand, the
second approach continued using crossover and attempted to tackle
the competing conventions problem [28, 37, 39]. Thierens [39], ad-
dresses the representation redundancy by defining a mapping for
which any networks from the same symmetry group is transformed

ar
X

iv
:2

00
3.

10
30

6v
3

 [
cs

.N
E

]
 4

 M
ay

 2
02

0

https://doi.org/10.1145/3377930.3390197
https://doi.org/10.1145/3377930.3390197

GECCO ’20, July 8–12, 2020, CancÃžn, Mexico Thomas Uriot and Dario Izzo

to a unique representation. The mapping consists in permuting the
neurons by ranking them according to their bias values in ascending
order. This mapping, however, does not take into account neuron
functionalities, which are key for the offspring to retain information
from the parents. More related to our work, Montana and Davis [28],
attempt to crossover networks by matching neurons functionalities
by comparing their responses to inputs. Another approach, the
NeuroEvolution of Augmenting Topologies (NEAT) algorithm [37]
aims at incrementally growing networks fromminimal structure. In
order to perform crossover between different networks, the authors
match neuron functionalities by using markers which keep track
of the neuron origins (parents). Only neurons sharing the same
origins are allowed to be recombined together. Recently, Gangwani
and Peng [9] worked around the competing conventions problem
by introducing crossover directly in state space (in an RL context),
using imitation learning to learn a child policy which combines the
strength of the two parent policies.

In our work, we use the neuron representation introduced in
Li et al. [24], which defines a neuron by its activation values over
a batch of inputs (see Section 3.1). With this representation, we
consider two ways of characterizing the relationships between neu-
rons: Canonical Correlation Analysis [19, 29, 32, 40] and simple
pairwise correlation [24]. We then propose two safe crossover op-
erators: SC-CCA and SC-PwC, depending on whether the neurons
are mapped using CCA or pairwise correlation, respectively. Our
safe crossovers proceed in two steps: first the neurons of the parent
networks are functionally aligned, and only then are the parents
allowed to be recombined. By functional alignment, we mean that
neurons located at the same position in the parent networks should
have learned the same internal representation of the data, which
is measured by how well they correlate (using CCA or pairwise
correlation). However, it is not always possible to align neurons
as a particular network may have learned unique internal repre-
sentations that other networks have not [24]. Furthermore, many
neurons simply capture noise in the data and do not have clear
counterparts.

To the best of our knowledge, this is the first attempt at defin-
ing a safe crossover operator acting directly in parameter space.
Interestingly, this process is analogous to meiotic division found in
nature, where homologous chromosomes are first aligned before
being recombined [5, 7], taking the parallel between GAs and natu-
ral evolution a step further. To summarise, our contributions are as
follows:

• In Section 2, we review some of the relevant literature, in
the context of our work. In addition, we argue that it is an
important research question with the potential to further
enhance the use of GAs in neuroevolution applied to RL
tasks, as well as improving direct exploration in parameter
space.

• In Section 3 and 4, we build on the work from [24, 29, 32]
and use Canonical Correlation Analysis as well as pairwise
cross-correlation in order to find mappings between neurons
of neural network pairs. This allows us to permute neurons
in order to functionally align the networks.

• In Section 5, we perform a full (i.e. zero-point) arithmetic
crossover on each pair of aligned networks. We compare our

two safe crossover operators on MNIST and CIFAR-10 and
show that the produced offspring preserve functions from
the parents, as opposed to naive crossover. Furthermore, we
show that the offspring produced via safe crossover outper-
form the parents by achieving a better validation loss.

• Finally, in Section 6, we reflect on our findings and discuss
further improvements as well as potential applications of
safe crossover.

2 MOTIVATION
2.1 Evolutionary Algorithms in Reinforcement

Learning
Recently, with the increase of computational power available, and
due to their highly parallelizable nature, evolutionary algorithms
were successfully applied to modern reinforcement learning bench-
marks [9, 21, 23, 25, 33, 38], rivaling gradient-based methods such
as Trust Region Policy Optimization [35], Deep-Q learning [27]
and A3C [26]. Evolutionary Strategies [33, 44] (ES) and Augmented
Random Search [25] (ARS) aim to approximate the gradient us-
ing finite-differences, and to perform exploration directly in the
parameter space by injecting noise, as opposed to exploring in
the action space. Later, Fortunato et al. [8] found that introduc-
ing noise directly to the parameters greatly increased performance
when compared to heuristics such as ϵ-greedy policy or entropy
regularization. However, all the aforementioned methods rely on
computing gradients, either directly or by approximating it, which
as a result limits exploration to local neighbourhoods. The first
work to successfully apply a non-gradient based method, was able
to successfully evolve a 4M+ parameter neural network [38] using
a genetic algorithm strictly based on mutations and obtain com-
petitive results on modern RL benchmarks. Indeed, the authors
found that the GA-evolved network was the only policy not to
be beaten by pure Random Search (RS) on a subset of Atari 2600
games, hinting that following the gradient may be more harmful
than beneficial in some cases. In Lehman et al. [23], a safe mutation
operator is introduced in order to efficiently explore the parameter
space using GAs while avoiding to dramatically alter the network
functionalities (i.e. behaviour). The authors showed that the safe
mutation operator allows to evolve neural networks with up to 100
hidden layers and argue that their method could be readily used to
improve upon the deep GA in Such et al. [38]. Finally, they advocate
for an homologous and similarly motivated safe crossover operator
to explore different directions and regions of the parameter space,
in a safe and principled manner.

2.2 Neural Network Representations
In addition to GAs and parameter space exploration, two other
areas of research motivated our paper. The first one is concerned
with neural network interpretation and finding common learned
representations between networks trained on the same data, from
different initializations [24, 29, 32]. The second is related to fitness
landscape exploration such as stochastic weight averaging [2, 20],
cyclical gradient descent [46] and finding potential low-error paths
between local minima [10, 15].

In particular, it was found in Li et al. [24] that networks trained on
the same dataset, starting from different initializations, largely learn

Safe Crossover of Neural Networks Through Neuron Alignment GECCO ’20, July 8–12, 2020, CancÃžn, Mexico

the same internal representations. Similarly to ourwork, the authors
investigate the relationships between neurons of two networks
in order to find a mapping between them, but do not attempt to
recombine neural network weights. They do so by computing cross-
correlation of neuron pairs coming from different networks (see
Section 3.3). They also seek many-to-one mappings by training a
L1 penalized regression model using the neurons in one network
as input to predict the activation of a single neuron in the other
network. However, this method fails to take into account many-to-
many relationships (i.e. colinearity in both the input and output
neurons) and requires training of an auxiliary network for each
neuron, rendering the method computationally prohibitive. In a
later work, Raghu et al. [32] proposed to use Canonical Correlation
Analysis in order to find many-to-many relationships between the
neurons of two networks, without having to train any additional
regression models.

Finally, Goodfellow et al. [15] studied the loss landscape by lin-
early interpolating between two networks trained on the same
dataset, starting from different initializations and evaluated the loss
at evenly spaced intervals. They found that the loss dramatically
increases when linearly interpolating between two local minima.
However, this is because they perform a naive crossover and do not
attempt to solve the competing conventions problem by matching
the neurons according to their functionalities.

3 CORRELATION ANALYSIS OF NEURONS
3.1 Neuron’s Activation Vector
In order to find a mapping between the hidden layers of two feed-
forward neural networks (i.e. a correspondence between the neu-
rons of the two layers) trained on the same dataset, we first have
to define how to represent a layer. To do so, we define the repre-
sentation of a neuron by a vector containing the neuron’s activa-
tion values for a fixed batch of data points. Formally, we have a
dataset X = {x1, . . . ,xn }, where xi ∈ Rm denotes the ith observa-
tion. Then, a neuron would output a scalar value for each of the
data points, which means that it can be represented as a vector
h = (д(x1), . . . ,д(xn)), where д(·) denotes the neuron’s activation
function. Now, it is straightforward to extend this representation
to that of a hidden layer, since a layer is made of several neurons.
A hidden layer L is simply represented by a matrix in Rn×p where
each of its columns is the vector representation of a neuron, and p
is the number of neurons in the layer. In this work, we will consider
several pairs of hidden layers La ∈ Rn×p and Lb ∈ Rn×q coming
from two neural networks θa and θb , trained on the same dataset
but with different random initializations.

3.2 Canonical Correlation Analysis on Hidden
Layers

Canonical Correlation Analysis is a multivariate statistical tech-
nique which seeks to find maximally correlated linear relationships
between two sets of observations, under orthogonality and norm
constraints. In the CCA literature, the two sets of observations are
often referred to as views. In this work, we apply CCA to pairs of
hidden layers La and Lb , and use the coefficients of the canonical
vectors (see Equation (1)), in order to construct a mapping between

the neurons of the two layers. Note that for CCA to work, the num-
ber of neurons in each layer does not need to be equal and that
CCA is invariant to affine transformations. These two properties
make it an ideal tool to be applied to neural networks, since we can
compare networks with different topologies and layers at different
depths. Furthermore, CCA can be applied to the main types of neu-
ral architectures: feed-forward, convolutional and recurrent neural
networks [29, 32].

In this paper, however, we aim at providing a proof-of-concept
and thus focus our efforts on fully-connected, feed-forward neural
networks, and leave the application of safe crossover to more types
of architectures as future work. Next, we give an overview of the
formulation of CCA, and its basic interpretation in the context of
our work. A more detailed account of CCA and its modern variants
is given in Uurtio et al. [40].

Let us consider the two views La ∈ Rn×p and Lb ∈ Rn×q , which
are both standardized with columns having zero mean and unit
variance. The row vectors x ia ∈ Rp and x ib ∈ Rq denote the ith mul-
tivariate observation of La and Lb respectively, for i = 1, . . . ,n. Fur-
thermore, the column vectors hja ∈ Rn , j = 1, . . . ,p, and hjb ∈ Rn ,
j = 1, . . . ,q denote the vector representation of the jth neuron, of
La and Lb respectively. Formally, CCA seeks to find linear trans-
formations za = Lawa and zb = Lbwb , where wa ∈ Rp , za ∈ Rn ,
wb ∈ Rq and zb ∈ Rn , such that the correlation (or equivalently,
the cosine of the angle) between za and zb is maximized, subject
to orthonormality. Mathematically, CCA can be framed as an opti-
mization problem, where the objective is to sequentially find wk

a
andwk

b , that satisfy the following:

ρ̂k = max
wk
a ,wk

b

⟨zka , zkb ⟩ = max
wk
a ,wk

b

⟨Lawk
a ,Lbw

k
b ⟩, (1)

subject to

| |zka | |2 = 1 | |zkb | |2 = 1,

⟨zka , zra⟩ = 0 ⟨zkb , z
r
b ⟩ = 0,

∀ r , k for r ,k = 1, . . . ,min(p,q),
where ⟨·, ·⟩ denotes the Euclidean inner product. Terminology wise,
wk
a andwk

b are the kth canonical weights or components and the
linear transforms zka and zkb are the corresponding canonical vari-
ates.

One of the ways to solve the CCA optimization problem in (1) is
by using Singular Value Decomposition (SVD) [16]. Let us denote
the covariance matrices of La and Lb by Ca ∈ Rp×p and Cb ∈
Rq×q respectively, and the cross-covariance between La and Lb by
Ca,b ∈ Rp×q . Then, we find that the canonical directions are given
by

wa = C
− 1

2
a U and wb = C

− 1
2

b V ,

where U and V are the matrices corresponding to the sets of or-
thonormal left and right singular vectors respectively, which are
obtained by solving the following SVD

C
− 1

2
a Ca,bC

− 1
2

b = UT SV . (2)
In the above equation, S ∈ Rp×q is the matrix containing the sin-
gular values (in its diagonal entries) of the left-hand-side, which

GECCO ’20, July 8–12, 2020, CancÃžn, Mexico Thomas Uriot and Dario Izzo

correspond to the canonical correlations. In summary, for the pur-
pose of our paper, CCA outputs a series of pairwise orthogonal
singular vectors uk ,vk from which the corresponding canonical

components wk
a = C

− 1
2

a uk and wk
b = C

− 1
2

b vk can be computed,
alongside the canonical correlation ρ̂k ∈ [0, 1], with ρ̂k < ρ̂ j if
k > j, for k = 1, . . . ,min(p,q).

Note that while CCA is well suited to analyse the relationships
between two sets of data, it can overfit to spurious correlation be-
tween the two views, in particular in under-determined systems or
in data containing a large proportion of noisy variables [4, 32]. One
needs to be wary of this pitfall since in overparametrized neural
networks, many neurons are either redundant or capturing noise
in the data [32]. To tackle the aforementioned problem, we will
apply two different techniques: Singular Vector Canonical Corre-
lation Analysis (SVCCA) [32] and L2 regularized CCA (canonical
ridge) [41]. This means that when we refer to safe crossover using
CCA (SC-CCA), there are two variants: SVCCA and ridge CCA.
SVCAA first computes the main variance directions (principal com-
ponents) by performing SVD on the hidden layers La and Lb , before
carrying out CCA on the lower rank representations of La and Lb .
In doing so, the neurons exhibiting low variance are discarded and
CCA is less prone to identifying spurious correlations [32]. On
the other hand, L2 regularized CCA constrains the norms of the
canonical vectorswk

a andwk
b in Equation (1) as follows

(wk
a)TCawk

a + λ | |wk
a | |22 = 1,

(wk
b)

TCbw
k
b + λ | |w

k
b | |

2
2 = 1,

which as a result relaxes the orthogonality constraint between the
canonical directions, in the original CCA formulation. In this paper,
we experiment with different numbers of SVD directions (i.e. the
number of principal components kept in the low-rank approxima-
tions of La and Lb) as well as with different regularization values
for λ. In the experiments, we show that the results are sensitive to
the number of kept variance directions but not to the value of λ, in
SVCCA and ridge CCA respectively.

3.3 Pairwise Cross-Correlation of Neurons
Here, we summarize the approach from Li et al. [24], which seeks to
find relationships between neuron pairs by computing their cross-
correlation. Let La ∈ Rn×p denote the mean-centred representation
of a hidden layer, where each column hja , j = 1, . . . ,p, corresponds
to a neuron, as described in Section 3.2. Then, the observed correla-
tion matrix Σ̂a ∈ Rp×p of La is defined as

Σ̂
i, j
a =

(hia)Th
j
a√

V̂ar(hia)V̂ar(h
j
a)
, for i, j = 1, . . . ,p

where V̂ar(·) denotes the observed (sample) variance. Similarly, the
observed cross-correlation matrix Σ̂a,b ∈ Rp×p between two layers
La and Lb is defined as

Σ̂
i, j
a,b =

(hia)Th
j
b√

V̂ar(hia)V̂ar(h
j
b)
, for i, j = 1, . . . ,p.

Note that while Σ̂a is indeed symmetric, Σ̂a,b is not. In Figure 2
(a) and (b), the within-network correlation matrices Σ̂a and Σ̂b
are shown for the first 100 neurons of a randomly chosen pair of
networks θa and θb , trained on MNIST. On the other hand, in (c),
the between-network cross-correlation matrix Σ̂a,b is displayed.

4 SAFE CROSSOVER OPERATOR
Wehave now seen how to apply CCA and pairwise cross-correlation
to the neurons of neural network pairs. In this section, we are going
to describe how to match neurons from two networks by separately
using CCA (Section 4.1 and Algorithm 1) and pairwise correlation
(Section 4.2). We also introduce an efficient way to permute the
neurons of neural networks to be functionally aligned (Section 4.3
and Algorithm 2) and ready to be recombined (Section 4.4).

We will assume that we have trained (with some variants of
gradient descent) two feed-forward neural networks of depth D +
1, θa and θb , with identical architectures, on the same dataset,
but starting from different initializations. Thus, these networks
have D hidden layers and D + 1 weight matrices. We denote the
hidden layer representations and weights matrices (including the
biases) as {Lda }Dd=1, {L

d
b }

D
d=1 and {W

d
a }D+1d=1 , {W

d
b }D+1d=1 for θa and θb ,

respectively. Note that the rows of the weight matrices correspond
to the incoming layer (inputs) and the columns to the outgoing
layer (outputs). Furthermore, we denote the functionally aligned
versions of θa and θb as θ̃a and θ̃b , respectively.

4.1 Neurons Matching via CCA
Here, we further assume that we have performed CCA on all the
pairs of hidden layers {(Lda ,Ldb)}

D
d=1. Then, for each pair of layers

(at each depth), CCA outputs a series of canonical directions wk
a

andwk
b , k = 1, . . . ,min(p,q), for which corr(wk

aLa ,w
k
b Lb) is max-

imized. The coefficients of the canonical componentswk
a andwk

b
correspond to the strength of the linear relationship between the
neurons of the two layers. The relationship between two neurons
from La and Lb is positive if their coefficients have the same sign,
and is negative if their coefficients have different signs. The strength
of the relation is given by the absolute value of the coefficients.

In Algorithm 1, making use of the aforementioned facts, we
describe ourmethod tomatch up neurons, for a pair of hidden layers
La and Lb . For each pair of canonical components (wk

a ,w
k
b), we seek

to match the two neurons with the highest positive relationship.
In doing so, we match exactly one pair of neurons per canonical
component, for k = 1, . . . ,min(p,q). Note that in Algorithm 1, we
omit the fact that the same neuron may be chosen more than once:
the same neuron in La can have strong positive relationships with
more than one neuron in Lb . In our implementation1, if the most
recently formed kth pair of neurons contains at least one neuron
which is already part of a previous pair j , j < k , then we look for the
next highest positive relationship, and proceed in this fashion until
all the canonical components have been used. Note that matching
neuron pairs by giving priority to the first canonical components is
justified since we have that the canonical correlations are ranked
in decreasing order with ρ̂ j < ρ̂k if j > k , for j = 1, . . . ,min(p,q).

1https://github.com/pinouche/GECCO_2020

Safe Crossover of Neural Networks Through Neuron Alignment GECCO ’20, July 8–12, 2020, CancÃžn, Mexico

Algorithm 1 Finding pairs of neurons for layers La and Lb
Inputs:

i. Canonical vectors: {wk
a ,w

k
b }

min(p,q)
k=1

ii. Empty lists: la , lb
Output:

i. Lists of ordered neuron indices
1: for k = 1, . . . ,min(p,q) do
2: sk− = abs(min(wk

a) +min(wk
b))

3: sk+ = abs(max(wk
a) +max(wk

b))
4: if sk+ > sk− then
5: la [k] = argmax(wk

a), lb [k] = argmax(wk
b)

6: else
7: la [k] = argmin(wk

a), lb [k] = argmin(wk
b)

8: end if
9: end for
10: return la , lb (ordered neuron indices for layers La and Lb)

Note that there is a significant difference between Algorithm 1
and the direct application of CCA to the hidden layers proposed
in Raghu et al. [32]. Indeed, in our case, we are using the linear
relationships extracted by CCA in order to devise a one-to-one map-
ping between individual neurons of network pairs. In other words,
instead of using CCA to measure some overall similarity between
network pairs, we use it to functionally align neural networks in
order to introduce a safe crossover operator directly in parameter
space (see Section 4.4).

4.2 Neurons Matching via Pairwise
Cross-Correlation

In Section 3.3, we have seen how to compute the cross-correlation
matrix Σ̂a,b between two layers La and Lb . We consider two ways
in which the information contained in the matrix can be used to
match neurons.

In the first method, referred to as bipartite semi-matching in
graph theory [22], each neuron in La is paired with the neuron
in Lb with which it is maximally correlated. Therefore, more than
one neuron in La may be paired with the same neuron in Lb . In
other words, all the neurons in La are paired but not necessarily all
the neurons in Lb . As a result, θ̃b does not have to be functionally
equivalent to the original non-permuted network θb , since they
may not contain the same neurons. Note that semi-matching yields
different results, if each neuron in Lb is instead paired with the
neuron in La with which it is maximally correlated, due to Σ̂a,b
not being symmetric.

The second method, referred to as bipartite matching, seeks to
find a one-to-one pairing of neurons such that the sum of pairwise
correlation is maximized [18]. In this scenario, all the neurons in
both La and Lb are used. Therefore, we have that θ̃a and θ̃b are
functionally equivalent to θa and θb , respectively.

After having applied either of those matching techniques, we
obtain a mapping of neurons that can be stored in two lists la and
lb (see Section 4.3), similarly to when the matching is made via
CCA, in Algorithm 1.

Algorithm 2 Permuting neural networks weights
Inputs:

i. Neuron indices: {lda , ldb }
D
d=1

ii. Neural network weights: {W d
a ,W

d
b }D+1d=1

Output:
i. Permuted versions of the input weight matrices

1: for d = 1, . . . ,D do
2: if d == 1 then
3: W̃ d

a =W
d
a [:, lda], W̃ d

b =W
d
b [:, ldb] (order columns)

4: else
5: W̃ d

a = W̃
d
a [:, lda], W̃ d

b = W̃
d
b [:, ldb] (order columns)

6: end if
7: W̃ d+1

a =W d+1
a [lda , :], W̃ d+1

b =W d+1
b [lda , :] (order rows)

8: end for
9: return {W̃ d

a }D+1d=1 and {W̃ d
b }D+1d=1

Figure 1: Toy example illustrating howAlgorithm1 and 2 op-
erate. Here, we have two single layered networks θa and θb ,
which have learned the same features {A,B,C}. Algorithm 1
identifies the pairs of neurons which are functionally iden-
tical and returns two lists la and lb of indices. The following
pair of neurons should be formed: (1,2), (3,1) and (2,3). Algo-
rithm 2 uses la and lb to permute the neurons (i.e. the in-
bound and outbound weights) and returns the functionally
aligned networks ˜θa and ˜θb .

4.3 Neurons Ordering
At each depth d = 1, . . . ,D, we have two lists lda and ldb containing
ordered neuron indices. The first element of la contains the neuron
index from La which matches with the neuron index from Lb given
in the first element of lb , and so on. Following Algorithm 2, we
can then functionally align θa and θb by permuting the neurons
of the layers {Lda ,Ldb }

D
d=1 (and thus the weights) according to the

pairings {lda , ldb }
D
d=1. Finally, once the weights of the two neural

networks are permuted, we can safely crossover the two networks
by directly matching the weights at the same location in both
networks (assuming that the two networks have the same topology).
The steps to go from θa and θb to θ̃a and θ̃b are illustrated in Figure
1, for a network with a single hidden layer of three neurons. We
can view θ̃a and θ̃b as non-redundant representations of θa and θb ,
where the networks are now functionally aligned according to a
uniquely defined mapping obtained by applying Algorithm 2.

GECCO ’20, July 8–12, 2020, CancÃžn, Mexico Thomas Uriot and Dario Izzo

4.4 Safe Arithmetic Crossover
We can now use the permuted neural networks θ̃a and θ̃b and
perform a safe arithmetic crossover on the inbound weights of each
neuron (i.e. linearly interpolating the weights), without having
to worry about the competing conventions problem and neuron
functionalities. In this paper, we consider

θ̃t = (1 − t)θ̃a + tθ̃b t ∈ [−0.25; 1.25], (3)

which is simply a weighted average of the two neural networks.
Our method could also be used in more complex interpolations (e.g.
non-linear curves) and schemes, where only a subset of neurons is
recombined at each generation (e.g. symbiotic evolution [14, 30]).
The naive arithmetic crossover counterpart is simply given by

θt = (1 − t)θa + tθb , t ∈ [−0.25; 1.25]. (4)

5 EXPERIMENTS AND RESULTS
5.1 Experimental Settings
In this section, we apply SC-CCA and SC-PwC to feed-forward
neural networks trained on MNIST and CIFAR-10. We split the
data in the conventional way, using 80% for training and 20% re-
served for validation. In this section, the results are reported on the
validation sets, which contain 10k examples in both MNIST and
CIFAR-10. Again, in this paper, we are much more interested in the
relative performance of safe vs naive crossover than in the absolute
performance. However, it is of interest to carry out safe crossover
on state-of-the-art architectures and more complex datasets in fu-
ture research. The experimental set-up is the following: 400 unique
networks with different random weight initializations are trained
(using gradient-descent with Adam) on each dataset, out of which
200 unique pairs are randomly formed. The architecture used on
MNIST is a simple network with a single hidden layer of 512 neu-
rons. On CIFAR-10, the network architecture is composed of three
hidden layers of 100 neurons each. The activation functions are
the same for both datasets: ReLU [11] on the hidden layers and
softmax on the output layer. Weights are initialized using a Normal
distribution N (0,

√
hi

−1), where hi is the number of incoming con-
nections to a given layer from the previous layerâĂŹs output (layer
i). In our experiments, we choose a rather large number of neurons
in the hidden layers in order to have a more homogeneous loss
distribution, so that the networks learn similar internal representa-
tions. Indeed, networks with small hidden layers are more likely to
converge to bad local minima [6], implying that they may not learn
the same features, rendering any sort of crossover meaningless.

5.2 Results on MNIST and CIFAR-10
In this section, the results are presented in two parts: i. the ef-
fects of the number of variance directions kept in SVCCA (by first
performing SVD on the hidden layers) and of the regulation pa-
rameter λ in L2 CCA are reported; ii. SC-CCA, SC-PwC and naive
crossover are compared on a full (zero-point) arithmetic crossover
performed on 200 network pairs, playing the role of parents. Finally,
the computational costs of the methods in Section 4.1 and 4.2 are
reported.

5.2.1 SVCCA vs. L2 regularized CCA. For SVCCA, on CIFAR-10,
we chose to keep the same number of variance directions for all
three hidden layers. Note that when the number of variance direc-
tions is taken to be equal to the number of neurons in the layer
(100 and 512 for CIFAR-10 and MNIST respectively), it is equiva-
lent to CCA being performed directly on the hidden layers. In our
experiments, on MNIST, we found that keeping 256 of the vari-
ance directions lead to better results (the resulting offspring had a
lower loss on average) than performing CCA directly on the hidden
layers. This is probably due to CCA finding spurious correlations
(i.e. finding significant relationships between noisy neurons due to
chance), which is more likely to happen for large hidden layers. On
the other hand, on CIFAR-10, we found that directly performing
CCA on the hidden layer was better than first computing their
SVD. For L2 regularized CCA, we try λ ∈ {0.01, 0.1, 1} and find that
results are consistent across all three values. In particular, for the
three λ values, at t = 0.5, we find that the offspring θ̃0.5 found with
SC-CCA has a lower loss than θ0.5 found using naive crossover, 193
times on MNIST and 200 times on CIFAR-10, out of 200 random and
independent trials. In the remainder of this section, for SC-CCA,
results are reported using SVCCA with 256 variance directions for
MNIST and non-regularized CCA directly applied to the hidden
layers for CIFAR-10.

5.2.2 SC-CCA vs. SC-PwC vs. Naive Crossover. Figure 3 shows
the results obtained on MNIST and CIFAR-10 when comparing safe
(SC-CCA, SC-PwC) and naive crossover. The main takeaway is that
safe crossover significantly improves upon naive crossover. Indeed,
on CIFAR-10, in (b), when two able parents (≈ 40% accuracy) are
naively recombined, the created offspring drops to 10% accuracy,
which is as good as random guessing. On MNIST, in (c), SC-PwC
finds a very low-error path between the gradient trained networks
θ̃a and θ̃b . This suggests that for datasets as simple as MNIST, there
exists a one-to-one correspondence between neurons. Furthermore,
it shows that for a dataset where the classes are well structured
and easy to classify, the loss surface between two local minima
is approximately flat. However, this is not the case on CIFAR-10,
where the loss goes up in-between local minima. It remains to be
seen whether this is still the case when more appropriate models
such as convolutional networks are used.

Another worthy observation is that while SC-PwC is much better
than SC-CCA on MNIST, it produces worse offspring on CIFAR-10.
This may be because MNIST is so simple that neurons only learn
to recognize a single digit. This makes pairwise cross-correlation
an ideal method to match neurons. On the other hand, CCA (much
like principal components) extracts more general patterns or "con-
cepts" [40], implying that we only match one pair of neurons per
concept. In fact, on MNIST, we find that on average (across 200
network pairs) CCA extracts 125 statistically significant relation-
ships per network pair, using Bartlett’s test [3]. Meanwhile, with
cross-correlation, we find an average of 203 pair of neurons with a
correlation of 0.7 or higher, per network pair. The fact that CCA
directions are distributed across several neurons [32] makes it bet-
ter suited to capture more complex (many-to-many) relationships
between neurons, which naturally occur in more complex datasets.

Safe Crossover of Neural Networks Through Neuron Alignment GECCO ’20, July 8–12, 2020, CancÃžn, Mexico

(a)

Within-network θa

(b)

Within-network θb

(c)

Between-network (θa, θb)

(d)

Between-network (θ̃a, θ̃b)

Figure 2: Correlationmatrices for neurons of a randomly chosen network pair (θa,θb), trained onMNIST. In (a)-(c), we display
the pairwise correlation of the first 100 neurons. For (d), we display the correlation of the 100 aligned neuron pairs obtained
using SVCCA (keeping 100 variance directions). In other words, the first diagonal element of thematrix in (d) is the correlation
between the neuron pair obtained by looking at the coefficients of the first canonical componentsw1

a andw1
b
, and so on.

In future work, it is of interest to further investigate the aforemen-
tioned observation by comparing the performance of SC-PwC and
SC-CCA on datasets such as CIFAR-100 and ImageNet.

5.2.3 Computational Costs. Even though SVCCA is a two-step
process (first performing the SVD of La and Lb and then CCA on
the low-rank approximations), it is generally less computationally
expensive in practice than running CCA directly on La and Lb .
Indeed, if we assume without loss of generality that p = q, then the
SVD of La ∈ Rn×p and Lb ∈ Rn×p has complexity ofO(2np2 + 2p3)
and the complexity of CCA is O(3np2 + p3). Now, if we denote the
low rank approximations of La and Lb as L1:ka ∈ Rn×k and L1:kb ∈
Rn×k respectively, then the overall cost of SVCCA isO(2np2+2p3+
3nk2 + k3). We are thus comparing np2 to p3 + 3nk2 + k3, which
is a lot more costly for large n and small k (e.g. k ≤ p

2). Once we
have performed CCA on the hidden layers, the matching method
proposed in Algorithm 1 requires only one pass over the canonical
vectors and can be solved in O(p2) time.

On the other hand, the computational cost of matching neurons
using pairwise cross-correlation is simply O(np2 + p3). The first
term np2 corresponds to the computation of the cross-correlation
matrix between La and Lb and the second term corresponds to the
cost of using bipartite matching [18] in order to maximize the sum
of pairwise correlations.

The computational cost of these two methods is thus similar and
is negligible when compared to the computational cost required
to train these networks in the first place. Indeed, for a network
with pw learnable parameters (i.e. weights and biases), the cost
of one epoch (using all the data points once) is O(Npw), with N
usually much larger than n used in computing CCA or pairwise
cross-correlation.

6 CONCLUSION AND FUTUREWORK
In this paper, we proposed two safe crossover operators acting di-
rectly on neural network parameters. We showed, on MNIST and
CIFAR-10, that they significantly outperformed naive crossover
when linearly interpolating between two neural networks trained

on the same dataset, from different initializations. This new opera-
tor allows us to explore different regions of the parameter space,
without erasing the internal representations learned by the par-
ents. Furthermore, mapping functionally equivalent networks to a
unique non-redundant representation greatly reduces the size of
the search space, which is particularly relevant when using global
optimization algorithms.

In future research, it is of interest to apply safe crossover to
state-of-the art architectures and more complex datasets such as
ImageNet. This work could also serve as the basis to develop more
methods to perform safe crossover in parameter space of neural
networks. In addition, metrics to compare different safe crossover
operators according to how much exploration (i.e. how different
the offspring are to the parents) is performed relative to how much
information is lost could be developed and investigated.

More related to genetic algorithms, a straightforward research
line would be to use safe crossovers in GAs to evolve neural network
weights, in RL tasks [38]. The hope is that safe crossover would
improve the efficiency of GAs in a similar way that they benefited
from safe mutations [23].

Furthermore, safe crossover could enable training of distributed
data-parallel neural networks. Instead of training a single network,
simultaneously evaluating the gradient on several batches and av-
eraging gradients for the backward pass, one could train several
networks in parallel and average their parameters. This can be
seen as a form of networks ensemble where the ensembling hap-
pens in parameter space Izmailov et al. [20], as opposed to output
space. Finally, instead of using a traditional model ensemble (e.g.
the arithmetic crossover used in this paper) or model stacking, we
could usemore advanced evolutionary algorithms such as symbiotic
evolution [14, 30], where only a subset of neurons is recombined
(ensembled) at each generation.

GECCO ’20, July 8–12, 2020, CancÃžn, Mexico Thomas Uriot and Dario Izzo

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

0.90

0.92

0.94

0.96

0.98

1.00

A
(θ̃
t)

0.0

0.1

0.2

0.3

0.4

0.5

L
(θ̃
t)

SC-CCA

Naive

(a)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

0.0

0.2

0.4

0.6

0.8

1.0

A
(θ̃
t)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L
(θ̃
t)

SC-CCA

Naive

(b)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

0.90

0.92

0.94

0.96

0.98

1.00

A
(θ̃
t)

0.0

0.1

0.2

0.3

0.4

0.5

L
(θ̃
t)

SC-CCA

SC-PwC

(c)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

0.0

0.2

0.4

0.6

0.8

1.0

A
(θ̃
t)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L
(θ̃
t)

SC-CCA

SC-PwC

(d)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

0.90

0.92

0.94

0.96

0.98

1.00

A
(θ̃
t)

0.0

0.1

0.2

0.3

0.4

0.5

L
(θ̃
t)

SC-PwC matching

SC-PwC semi-matching

(e)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
t

0.0

0.2

0.4

0.6

0.8

1.0

A
(θ̃
t)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L
(θ̃
t)

SC-PwC matching

SC-PwC semi-matching

(f)

Figure 3: Comparison of SC-CCA, SC-PwCandnaive crossover onMNIST (a), (c), (e) andCIFAR-10 (b), (d), (f). The lines show the
average over 200 unique neural network pairs and the shaded areas represent the corresponding standard deviation, computed
at regular intervals for t ∈ [−0.25; 1.25] . The left-axis A(˜θt) in green and the right-axis L(˜θt) in blue, correspond to accuracy
and cross-entropy loss, respectively. On MNIST, in (a), we can see that the gains of SC-CCA are marginal compared to naive
crossover, while in (c), SC-PwC significantly improves upon SC-CCA (and thus naive crossover) by consistently finding a very
low error path between ˜θa at t = 0 and ˜θb at t = 1 . On the other hand, on CIFAR-10, in (b) and (d), we can see that SC-
CCA significantly outperforms naive crossover and also improves upon SC-PwC. Indeed, when using naive crossover (b), the
accuracy drops all the way down to 10% at t = 0.5, which means that our solution becomes as good as random guessing, after
having recombined two able parents. Safe crossovermakes the accuracy drop to 25% , which suggests that the offspring explores
the parameter space while retaining some of the parents’ functionalities. Finally, in (e) and (f), we compare SC-PwC where
neurons are matched using semi-matching or one-to-one matching (see Section 4.2).

Safe Crossover of Neural Networks Through Neuron Alignment GECCO ’20, July 8–12, 2020, CancÃžn, Mexico

REFERENCES
[1] Peter J Angeline, Gregory M Saunders, and Jordan B Pollack. 1994. An evolution-

ary algorithm that constructs recurrent neural networks. IEEE transactions on
Neural Networks 5, 1 (1994), 54–65.

[2] Ben Athiwaratkun, Marc Finzi, Pavel Izmailov, and Andrew Gordon Wilson. 2018.
There are many consistent explanations of unlabeled data: Why you should
average. arXiv preprint arXiv:1806.05594 (2018).

[3] Maurice S Bartlett. 1941. The statistical significance of canonical correlations.
Biometrika 32, 1 (1941), 29–37.

[4] Natalia Y Bilenko and Jack L Gallant. 2016. Pyrcca: regularized kernel canonical
correlation analysis in python and its applications to neuroimaging. Frontiers in
neuroinformatics 10 (2016), 49.

[5] Sara BC Buonomo, Rosemary K Clyne, Joerg Fuchs, Josef Loidl, Frank Uhlmann,
and Kim Nasmyth. 2000. Disjunction of homologous chromosomes in meiosis I
depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell 103,
3 (2000), 387–398.

[6] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and
Yann LeCun. 2015. The loss surfaces of multilayer networks. In Artificial intelli-
gence and statistics. 192–204.

[7] Friederike Finsterbusch, Ramya Ravindranathan, Ihsan Dereli, Marcello
Stanzione, Daniel Tränkner, and Attila Tóth. 2016. Alignment of homologous
chromosomes and effective repair of programmed DNA double-strand breaks dur-
ing mouse meiosis require the minichromosome maintenance domain containing
2 (MCMDC2) protein. PLoS genetics 12, 10 (2016), e1006393.

[8] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian
Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin,
et al. 2017. Noisy networks for exploration. arXiv preprint arXiv:1706.10295
(2017).

[9] TanmayGangwani and Jian Peng. 2017. Policy optimization by genetic distillation.
arXiv preprint arXiv:1711.01012 (2017).

[10] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and An-
drew G Wilson. 2018. Loss surfaces, mode connectivity, and fast ensembling of
dnns. In Advances in Neural Information Processing Systems. 8789–8798.

[11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier
neural networks. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics. 315–323.

[12] David E Goldberg and JohnHenryHolland. 1988. Genetic algorithms andmachine
learning. (1988).

[13] Faustino Gomez, Jürgen Schmidhuber, and Risto Miikkulainen. 2008. Accelerated
neural evolution through cooperatively coevolved synapses. Journal of Machine
Learning Research 9, May (2008), 937–965.

[14] Faustino J Gomez and Risto Miikkulainen. 1999. Solving non-Markovian control
tasks with neuroevolution. In IJCAI, Vol. 99. 1356–1361.

[15] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. 2015. Qualitatively charac-
terizing neural network optimization problems. 3rd International Conference on
Learning Representations, ICLR (2015).

[16] MJR Healy. 1957. A rotation method for computing canonical correlations. Math.
Comp. 11, 58 (1957), 83–86.

[17] John H Holland et al. 1975. Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control, and artificial intelligence.
(1975).

[18] John E Hopcroft and Richard M Karp. 1973. An nˆ5/2 algorithm for maximum
matchings in bipartite graphs. SIAM Journal on computing 2, 4 (1973), 225–231.

[19] Harold Hotelling. 1992. Relations between two sets of variates. In Breakthroughs
in statistics. Springer, 162–190.

[20] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and An-
drew Gordon Wilson. 2018. Averaging weights leads to wider optima and better
generalization. arXiv preprint arXiv:1803.05407 (2018).

[21] Jan Koutník, Jürgen Schmidhuber, and Faustino Gomez. 2014. Evolving deep
unsupervised convolutional networks for vision-based reinforcement learning.
In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Compu-
tation. 541–548.

[22] Eugene L Lawler. 2001. Combinatorial optimization: networks and matroids.
Courier Corporation.

[23] Joel Lehman, Jay Chen, Jeff Clune, and Kenneth O Stanley. 2018. Safe mutations
for deep and recurrent neural networks through output gradients. In Proceedings
of the Genetic and Evolutionary Computation Conference. 117–124.

[24] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John E Hopcroft. 2015. Con-
vergent learning: Do different neural networks learn the same representations?.

In FE@ NIPS. 196–212.
[25] Horia Mania, Aurelia Guy, and Benjamin Recht. 2018. Simple random search

provides a competitive approach to reinforcement learning. arXiv preprint
arXiv:1803.07055 (2018).

[26] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning. 1928–1937.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529–533.

[28] David J Montana and Lawrence Davis. 1989. Training Feedforward Neural
Networks Using Genetic Algorithms.. In IJCAI, Vol. 89. 762–767.

[29] Ari Morcos, Maithra Raghu, and Samy Bengio. 2018. Insights on representational
similarity in neural networks with canonical correlation. In Advances in Neural
Information Processing Systems. 5727–5736.

[30] David E Moriarty and Risto Mikkulainen. 1996. Efficient reinforcement learning
through symbiotic evolution. Machine learning 22, 1-3 (1996), 11–32.

[31] Nicholas J Radcliffe. 1993. Genetic set recombination and its application to neural
network topology optimisation. Neural Computing & Applications 1, 1 (1993),
67–90.

[32] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. 2017.
Svcca: Singular vector canonical correlation analysis for deep learning dynamics
and interpretability. In Advances in Neural Information Processing Systems. 6076–
6085.

[33] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. 2017.
Evolution strategies as a scalable alternative to reinforcement learning. arXiv
preprint arXiv:1703.03864 (2017).

[34] J David Schaffer, Darrell Whitley, and Larry J Eshelman. 1992. Combinations
of genetic algorithms and neural networks: A survey of the state of the art. In
[Proceedings] COGANN-92: International Workshop on Combinations of Genetic
Algorithms and Neural Networks. IEEE, 1–37.

[35] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015. Trust region policy optimization. In International conference on machine
learning. 1889–1897.

[36] Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. 2019. De-
signing neural networks through neuroevolution. Nature Machine Intelligence 1,
1 (2019), 24–35.

[37] Kenneth O Stanley and Risto Miikkulainen. 2002. Evolving neural networks
through augmenting topologies. Evolutionary computation 10, 2 (2002), 99–127.

[38] Felipe Petroski Such, VashishtMadhavan, Edoardo Conti, Joel Lehman, Kenneth O
Stanley, and Jeff Clune. 2017. Deep neuroevolution: Genetic algorithms are a
competitive alternative for training deep neural networks for reinforcement
learning. arXiv preprint arXiv:1712.06567 (2017).

[39] Dirk Thierens. 1996. Non-redundant genetic coding of neural networks. In
Proceedings of IEEE International Conference on Evolutionary Computation. IEEE,
571–575.

[40] Viivi Uurtio, João M Monteiro, Jaz Kandola, John Shawe-Taylor, Delmiro
Fernandez-Reyes, and Juho Rousu. 2018. A tutorial on canonical correlation
methods. ACM Computing Surveys (CSUR) 50, 6 (2018), 95.

[41] Hrishikesh D Vinod. 1976. Canonical ridge and econometrics of joint production.
Journal of econometrics 4, 2 (1976), 147–166.

[42] L Darrell Whitley et al. 1989. The GENITOR algorithm and selection pressure:
why rank-based allocation of reproductive trials is best.. In Icga, Vol. 89. Fairfax,
VA, 116–123.

[43] Alexis PWieland. 1991. Evolving neural network controllers for unstable systems.
In IJCNN-91-Seattle International Joint Conference on Neural Networks, Vol. 2. IEEE,
667–673.

[44] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen
Schmidhuber. 2014. Natural evolution strategies. The Journal of Machine Learning
Research 15, 1 (2014), 949–980.

[45] Xin Yao and Yong Liu. 1998. Towards designing artificial neural networks by
evolution. Appl. Math. Comput. 91, 1 (1998), 83–90.

[46] Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon
Wilson. 2019. Cyclical stochastic gradient mcmc for bayesian deep learning.
arXiv preprint arXiv:1902.03932 (2019).

	Abstract
	1 Introduction
	2 Motivation
	2.1 Evolutionary Algorithms in Reinforcement Learning
	2.2 Neural Network Representations

	3 Correlation Analysis of Neurons
	3.1 Neuron's Activation Vector
	3.2 Canonical Correlation Analysis on Hidden Layers
	3.3 Pairwise Cross-Correlation of Neurons

	4 Safe Crossover Operator
	4.1 Neurons Matching via CCA
	4.2 Neurons Matching via Pairwise Cross-Correlation
	4.3 Neurons Ordering
	4.4 Safe Arithmetic Crossover

	5 Experiments and Results
	5.1 Experimental Settings
	5.2 Results on MNIST and CIFAR-10

	6 Conclusion and Future Work
	References

