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Abstract
We study the performance of policy gradient meth-
ods for the subclass of Markov games known as
Markov potential games (MPGs), which extends
the notion of normal-form potential games to the
stateful setting and includes the important special
case of the fully cooperative setting where the
agents share an identical reward function. Our fo-
cus in this paper is to study the convergence of the
policy gradient method for solving MPGs under
softmax policy parameterization, both tabular and
parameterized with general function approxima-
tors such as neural networks. We first show the
asymptotic convergence of this method to a Nash
equilibrium of MPGs for tabular softmax policies.
Second, we derive the finite-time performance
of the policy gradient in two settings: 1) using
the log-barrier regularization, and 2) using the
natural policy gradient under the best-response
dynamics (NPG-BR). Finally, extending the no-
tion of price of anarchy (POA) and smoothness
in normal-form games, we introduce the POA for
MPGs and provide a POA bound for NPG-BR.
To our knowledge, this is the first POA bound for
solving MPGs. To support our theoretical results,
we empirically compare the convergence rates and
POA of policy gradient variants for both tabular
and neural softmax policies.

1. Introduction
The framework of multi-agent sequential decision making
is often formulated as (variants of) Markov games (MGs)
(Shapley, 1953), which finds a wide range of real-world
applications such as coordination of multi-robot systems
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(Corke et al., 2005), traffic control (Chu et al., 2019), power
grid management (Callaway & Hiskens, 2010), etc. Perhaps
the most well-known solution concept for MGs is the Nash
policy, which is also known as the Nash equilibrium in the
special case of stateless Markov games (i.e., normal-form
games). In a Nash policy, every agent selects its actions
independently of any other agent given the state and plays
a best response to all other agents. In the special case of
single-agent Markov games, aka Markov decision processes
(MDPs), Nash policies reduce to the agent’s optimal poli-
cies. Most existing algorithms seeking to find Nash policies
are value-based (i.e., computing only value functions re-
lated to the MG), with examples including Nash Q-learning
(Hu & Wellman, 2003), Hyper-Q Learning (Tesauro, 2003),
and Nash-VI for the special case of zero-sum MGs (Zhang
et al., 2020). Policy-based algorithms, including multi-agent
actor-critic algorithms, have recently gained attention with
impressive empirical success (Lowe et al., 2017; Foerster
et al., 2017) as well as provable guarantees (Zhang et al.,
2018; Leonardos et al., 2021; Zhang et al., 2021).

This paper focuses on the MG subclass of Markov potential
games (MPGs) (Macua et al., 2018; Leonardos et al., 2021;
Zhang et al., 2021), which is extended from the notion of
(normal-form) potential game and also incorporates as a
special case the fully cooperative MGs where all agents
share the same reward to optimize. The MPG structure al-
lows for exploiting recent advances in single-agent policy
gradient methods (e.g., (Agarwal et al., 2019)) to establish
the convergence of policy gradient to (near-)Nash policies
in MPGs. Specifically, existing work has established finite-
time convergence guarantees under the direct policy param-
eterization. In this paper, we are interested in the alternative
softmax policy parameterization, both tabularly and with
neural networks for learnable state representations. For tabu-
lar softmax, we establish several convergence guarantees to
(near-)Nash policies in MPGs in Section 3, extending their
counterpart from the single-agent setting (Agarwal et al.,
2019). We then empirically compare tabular softmax with
neural network-based softmax parameterization in terms of
their convergence rates.

MPGs can model many problems where outcomes of high
social welfare, measured by the sum of all agents’ values,
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are most desirable. In these scenarios, the solution concept
of the Nash policy is inadequate. The price of anarchy
(POA) of a policy, firstly studied in normal-form games
(Roughgarden, 2015), is accordingly defined as the ratio
between the sum of all agents’ value under this policy and
the maximum-possible value sum. In this sense, the POA
further measures the quality of a Nash policy. In Section
4, we extend the notion of POA to the stateful MGs and
provide first POA bounds for near-Nash policies in MGs
and for an approximate best-response dynamics in MPGs.
We empirically compare the POA of Nash policies achieved
by variants of softmax policy gradient dynamics.

1.1. Related work

Single-agent policy gradient convergence. Agarwal et
al. firstly established the policy gradient convergence of
to global optima in the single-agent setting under tabular
softmax parameterization, specifically, asymptotic conver-
gence of policy gradient ascent, finite-time convergence
with log barrier regularization, and finite-time convergence
with natural policy gradient. Agarwal et al. also established
finite-time convergence for direct policy parameterization
(Agarwal et al., 2019). Mei et al. later established finite-time
convergence of (regularized) policy gradient ascent under
tabular softmax parameterization, with a convergence rate
depending on a problem-specific variable (Mei et al., 2020).
This problem-specific variable in some sense is necessary,
as Li et al. have shown that softmax policy gradient can take
exponential time to converge (Li et al., 2021).

Policy gradient convergence in MPGs. Extending the
work by Agarwal et al. (Agarwal et al., 2019) from the
single-agent setting, Leonardos et al. (Leonardos et al.,
2021) and Zhang et al. (Zhang et al., 2021) both established
finite-time convergence of projected gradient ascent under
tabular softmax parameterization to near-Nash policies in
MPGs. Fox et al. (Fox et al., 2022) established the asymp-
totic convergence of natural policy gradient to Nash policies
in MPGs.

POA bounds in normal-form games. Mirrokni and Vetta
(Mirrokni & Vetta, 2004) initiated the discussion on the
importance of POA bounds beyond Nash equilibria. Rough-
garden (Roughgarden, 2015) defined the smoothness of
(normal-form) games and then established the first POA
bounds of on near-Nash equilibria in smooth games. Rough-
garden (Roughgarden, 2015) provided POA bounds for the
maximum-gain best-response dynamics in smooth (normal-
form) potential games.

2. Preliminaries
Markov game. We consider a Markov game (MG)
⟨N ,S,A, P, r⃗⟩ with N agents indexed by i ∈ N =

{1, ..., N}, state space S , action space A = A1×· · ·×AN ,
transition function P : S × A → ∆(S), reward functions
r⃗ = {ri}i∈N with ri : S ×A → R for each i ∈ N , and ini-
tial state distribution µ ∈ ∆(S). We assume full observabil-
ity for simplicity, i.e., each agent observes the state s ∈ S.
Under full observability, we consider product policies,
π : S → ×i∈N∆(Ai), that is factored as the product of indi-
vidual policies πi : S → ∆(Ai), π(a|s) =

∏
i∈N πi(ai|s).

Define the discounted return for agent i from time step t
as Gi

t =
∑∞

l=0 γ
lrit+l, where rit := ri(st, at) is the re-

ward at time step t for agent i. For agent i, product pol-
icy π = (π1, ..., πN ) induces a value function defined as
V i
π(st) = Est+1:∞,at:∞∼π[G

i
t|st], and action-value function

Qi
π(st, at) = Est+1:∞,at+1:∞∼π[G

i
t|st, at]. Following pol-

icy π, agent i’s cumulative reward starting from s0 ∼ µ is
denoted as V i

π(µ) := Es0∼µ[V
i
π(s0)].

It will be useful to define the (unnormalized) discounted
state visitation measure by following policy π after starting
at s0 ∼ µ:

dπµ(s) := Es0∼µ

[ ∞∑
t=0

γtPrπ(st = s|s0)

]

where Prπ(st = s|s0) is the probability that st = s after
starting at state s0 and following π thereafter. We make
a standard assumption for the discounted state visitation
distribution to be positive for every state under any policy,
as formally stated in Assumption 2.1.

Assumption 2.1. For any π and any state s of the Markov
game, dπµ(s) > 0.

Markov potential game.
Definition 2.2 (Markov potential game). A Markov game
is called a Markov potential game (MPG) if there exists a
potential function ϕ : S × A → R such that for any agent
i, any pair of product policies (πi, π−i), (π̄i, π−i), and any
state s:

Est+1:∞,at:∞∼(π̄i,π−i)

[ ∞∑
t=0

γtri(st, at)|s0 = s

]

− Est+1:∞,at:∞∼(πi,π−i)

[ ∞∑
t=0

γtri(st, at)|s0 = s

]

=Est+1:∞,at:∞∼(π̄i,π−i)

[ ∞∑
t=0

γtϕ(st, at)|s0 = s

]

− Est+1:∞,at:∞∼(πi,π−i)

[ ∞∑
t=0

γtϕ(st, at)|s0 = s

]
.

Given a product policy π, we define
the total potential function as Φπ(s) :=
Est+1:∞,at:∞∼π [

∑∞
t=0 γ

tϕ(st, at)|s0 = s], and we
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can obtain that, for any agent i,

V i
π̄i,π−i(s)− V i

πi,π−i(s) =Φπ̄i,π−i(s)− Φπi,π−i(s) (1)

giving ∇θiV i
θ (s) =∇θiΦθ(s).

We also similarly define Φπ(µ) := Es0∼µ[Φπ(s0)].

As formally stated in Assumption 2.3, we assume that ϕ,
and therefore Φ, are bounded.

Assumption 2.3 (Potential function is bounded). The po-
tential function ϕ is bounded, such that the total potential
function Φ is bounded as Φmin ≤ Φπ(s) ≤ Φmax ∀s, π.

Nash policy. We focus on the solution concept of (ϵ-)Nash
policy, as formally defined below.

Definition 2.4 (ϵ-Nash policy). The Nash-gap of a policy π
is defined as

Nash-gap(π) := max
i

(
max
π̄i

V i
π̄i,π−i(µ)− V i

π(µ)

)
A product policy π = (π1, ..., πN ) is an ϵ-Nash policy if
Nash-gap(π) ≤ ϵ.

3. Convergence of the tabular softmax policy
gradient in MPGs

In this section, we consider individual policies (π1, ..., πN )
to be independently parameterized in the softmax tabular
manner from the global state, i.e., we have, for each agent
i, its policy parameter θi = {θis,ai : s ∈ S, ai ∈ Ai} and
policy

πi
θi(ai|s) =

exp(θis,ai)∑
āi∈Ai exp(θis,āi)

.

For the rest of this paper, we will abbreviate Φπθ
, V i

πθ
, Ai

πθ

as Φθ, V i
θ , Ai

θ, respectively. Lemmas 3.1 and 3.2 formally
states the policy gradient form and the smoothness under the
tabular softmax parameterization, respectively, which will
be used to establish the convergence results in this section.

Lemma 3.1 (Multi-agent tabular softmax policy gradient
form, proof in Appendix A). For the state-based tabular
softmax multi-agent policy parameterization, we have:

∂Φθ(µ)

∂θis,ai

=
∂V i

θ (µ)

∂θis,ai

= dπθ
µ (s)πi

θi(ai|s)Ai
θ(s, a

i) (2)

where Ai
θ(s, a

i) := Ea−i∼π−i

θ−i (·|s)
[Ai

θ(s, a
i, a−i)].

Lemma 3.2 (Smoothness of Φ under tabular softmax,
proof in Appendix B). Under tabular softmax πθ, Φθ(s) is

41N
4(1−γ)3 -smooth for any state s (hence for any initial state
distribution µ).

We next present our convergence results for the standard
policy gradient dynamics without and with log barrier reg-
ularization in Sections 3.1 and 3.2, respectively, where As-
sumptions 2.1 and 2.3 hold.

3.1. Asymptotic convergence of the policy gradient
dynamics

In Theorem 3.4, we establish, under the tabular softmax pol-
icy parameterization, the asymptotic convergence to a Nash
policy in a MPG of the standard policy gradient dynamics:

θit+1 = θit + η∇θiV i
θt(µ) = θit + η∇θiΦθt(µ) (3)

where η is the fixed stepsize and the update is performed by
every agent i ∈ N . Theorem 3.4 relies on the assumption
on the asymptotic convergence of the policy parameters,
formally stated as follows.

Assumption 3.3. Following the policy gradient dynamics
(3), the policy parameter of every agent i converges asymp-
totically, i.e., θit → θi∗ as t → ∞, ∀i.

We remark here that the assumption that θi converges is
made to ensure the convergence of {Qi(s, ai)}i, which is
then used to prove the theorem in a similar manner to (Agar-
wal et al., 2019). Note that, since the gradient is as Equation
(2), the gradient converging to zero cannot directly imply
the parameters converging to zero. A sufficient condition for
Assumption 3.3 to hold is that the stationary points of are
isolated, which is originally assumed in Fox et al. (Fox et al.,
2022) to establish the asymptotic convergence of natural
policy gradient to Nash policies.

Theorem 3.4 (Asymptotic convergence of policy gradi-
ent, proof in Appendix C). Suppose every agent i ∈
N follows the policy gradient dynamics (3) with η ≤
min( 1−γ

Nmax(5,
√
N)(Φmax−Φmin)

, 4(1−γ)3

41N ) and Assumption 3.3

holds such that θit → θi∗ for every agent i, then the product
policy defined by θ∗ = {θi∗}i∈N is a Nash policy.

3.2. Policy gradient dynamics with log-barrier
regularization

Inspired by (Agarwal et al., 2019) for the single-agent set-
ting, we consider the log barrier regularized objective as
defined below to establish finite-time convergence guaran-
tees for the policy gradient dynamics:

Lλ(θ) :=Φθ(µ)− λ
∑N

i=1 Es∼UnifS [KL(UnifAi , πθ(·|s))]

=Φθ(µ) + λ
∑N

i=1

(∑
s,ai log πi

θi
(ai|s)

|S||Ai| + log |Ai|
)

where the log barrier regularization, i.e., the KL divergence
with respect to the uniform action-selection distribution, is
applied to each agent’s policy independently. Lemma 3.5
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extends the results in (Agarwal et al., 2019) to the multi-
agent setting, stating that, with the log barrier regularization,
approximate first-order stationary points are near-Nash.

Lemma 3.5 (Log barrier regularization’s approximate
first-order stationary points are near-Nash, proof in Ap-
pendix D.1). Suppose θ is such that ∥∇θLλ(θ)∥2 ≤
λ/(2|S|maxi |Ai|). Then the product policy πθ =
(π1

θ1 , ..., πN
θN ) is a 2λM -Nash policy where M :=

maxπ,π′

∥∥∥ dπ
µ

dπ′
µ

∥∥∥
∞

, which is well-defined by Assumption 2.1.

With Lemma 3.5, we establish the convergence rate as stated
in Theorem 3.6.

Theorem 3.6 (Convergence rate of the policy gradient with
log barrier regularization, proof in Appendix D.2). Letting
βλ := 41N

4(1−γ)3 + 2λN
|S| , then βλ is an upper bound on the

smoothness of Lλ(θ). Starting from θ0 = 0, consider the
updates θt+1 = θt + η∇θLλ(θt) with λ = ϵ/2M and
η = 1/βλ. Then, for any initial distribution µ, we have
mint<T Nash-gapt ≤ ϵ whenever

T ≥328NM2|S|2 maxi |Ai|2(Φmax − Φmin)

(1− γ)3ϵ2

+
32NM |S|maxi |Ai|2(Φmax − Φmin)

ϵ
.

3.3. Approximate best-response natural policy gradient
dynamics

In this subsection, we consider the natural policy gradient
(NPG) dynamics extended from the single-agent setting to
Markov potential games. The NPG dynamics is defined as

θit+1 = θit + η(F i
θt)

†∇θiV i
θt(µ) = θit + η(F i

θt)
†∇θiΦθt(µ),

(4)

where A† denotes the Moore–Penrose inverse of a matrix
A and F i

θ is the Fisher information matrix for agent i under
product policy πθ:

F i
θ = Es∼d

πθ
µ ,ai∼πi(s)

[
∇θi log πi

θi(ai|s)∇θi log πi
θi(ai|s)⊤

]
.

Lemma 3.7 (NPG is effectively soft policy iteration, proof
in Appendix E.1). For any agent i, the NPG update (4) is
effectively:

θit+1 =θit + ηAi
θt and

πi
θi
t+1

(ai|s) =πi
θi
t
(ai|s)

exp
(
ηAi

θt
(s, ai)

)
Zi
t(s)

where Zi
t(s) =

∑
ai πi

θi
t
(ai|s) exp

(
ηAi

θt
(s, ai)

)
is the nor-

malization constant for the softmax.

In the single-agent setting with the tabular softmax param-
eterization, we know that the NPG update (soft policy it-
eration) can achieve O(1/ϵ) convergence rate with ϵ being

the single-agent optimality gap, compared with the O(1/ϵ2)
convergence rates achieved by (projected) gradient ascent
methods for the direct parameterization and for the tabular
softmax parameterization with the log barrier regularization
(Agarwal et al., 2019). For MPGs, Fox et al. (Fox et al.,
2022) established the asymptotic convergence of natural pol-
icy gradient. However, deriving the finite-time convergence
with the tabular softmax parameterization when the agents
concurrently perform the soft policy iteration is challenging,
primarily due to the technical difficulty of relating the poten-
tial function value and the Nash-gap. Here, we take a step
back and consider the non-concurrent soft policy iteration,
where an agent will perform a number of soft policy iter-
ations with fixing other agents’ policies: letting θit,0 = θit,
for k = 1, ...,K:

θit,k =θit,k +Ai
t,k−1 with (5)

Ai
t,k−1(s, a

i) =Ea−i∼π−i

θ
−i
t

(·|s)

[
Ai

θi
t,k−1,θ

−i
t
(s, ai, a−i)

]
,

where Ai
t,k is agent i’s local advantage of its policy cur-

rently parameterized by θ−i
t with respect to the other agents’

policies parameterized by θ−i
t , and K is a hyperparameter

that controls how close agent i will get to its best response
to θ−i

t .

The above update is performed independently for all agents,
and for the next iteration t+ 1 we only keep the change of
the agent that induces the maximum gain in its own value
and, equivalently, in the total potential function:

i∗t =argmax
i

Φθi
t,K ,θ−i

t
(µ)− Φθt(µ),

θ
i∗t
t+1 =θ

i∗t
t,K and θit+1 = θit for i ̸= i∗t (6)

which ensembles the standard maximum-gain best-response
dynamics for normal-form games (Roughgarden, 2016).

Suppose we aim to converge to a ϵ-Nash policy. We can
set K large enough (specifically K ≥ 4

(1−γ)2ϵ (Agarwal
et al., 2019)), such that every agent’s inner-loop update
(indexed by k (5)) achieves at least ϵ/2-near-best-response.
Therefore, if no agent’s improvement in their local value or,
equivalently, in the total potential function as computed in
(6) is no larger than ϵ/2, then the product policy is already
a ϵ-Nash policy; otherwise, we can significantly improve
the total potential function such that the total number of
outer-loop updates, indexed by t in (6), can be bounded.
This establishes the convergence rate of our approximate-
best-response NPG dynamics (5,6), as formally stated in
Theorem 3.8.
Theorem 3.8 (Convergence of the approximate-best-re-
sponse NPG, proof in Appendix E.2). Setting K ≥ 4

(1−γ)2ϵ

for as the iteration complexity of the inner-loop (5), then the
approximate-best-response NPG dynamics (5,6) converges
to a ϵ-Nash policy within O(Φmax−Φmin

(1−γ)2ϵ2 ) inner-loop steps.
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4. Bounding the price of anarchy in smooth
Markov (potential) games

In Definition 4.1, we formally define the price of anarchy in
Markov games, which directly extends the notion in normal-
from games that measures the quality of a product policy in
terms of maximizing the sum of all agents’ values.

Definition 4.1 (Price of anarchy in Markov games). The
price of anarchy (POA) of a product policy π is defined as∑

i V
i
π(µ)

maxπ̄
∑

i V
i
π̄(µ)

, i.e., the ratio between the values summed
over all agents and the largest summed values achieved by
any product policy π̄.

For the rest of this section, we formally extend the notion of
smoothness from normal-form games (Roughgarden, 2015)
to Markov games in Section 4.1, and present our POA
bounds in smooth Markov (potential) games in Sections
4.2 and 4.3.

4.1. Definition and sufficient conditions of smooth
Markov game.

Definition 4.2 extends the notion of smooth normal-form
game to its counterpart in Markov games.

Definition 4.2 (Smooth Markov game). A Markov game is
(α, β)-smooth if∑

i V
i
πi
′ ,π

−i(s) ≥ αVπ′(s)− βVπ(s)

for any s and any pair of product policies π, π′, where
Vπ(s) :=

∑
i V

i
π(s).

Intuitively, in a smooth Markov game, the externality im-
posed by one agent on the value of the others is limited.
Therefore, we conjecture that a sufficient condition is that
both the transition and reward functions of the Markov game
are “smooth”. Proposition 4.3 verifies this conjecture, which
formally defines the smoothness of the transition and reward
functions and establishes it as a sufficient condition for the
smoothness of the Markov game.

Proposition 4.3 (Transition and reward smoothness as a
sufficient condition for Markov game smoothness). The
reward functions {ri}i∈N of a Markov game is said to be
(λ, µ)-smooth if

λrπ′(s) ≤
∑

i r
i
πi
′ ,π

−i(s) ≤ µrπ(s)

for any state s and any pair of product policies π, π′, where
riπ(s) := Ea∼π(s)[r

i(s, a)] and rπ(s) :=
∑

i r
i
π(s). Let-

ting Mπ := (I − γPπ)
−1, the transition function P of a

Markov game is said to be (κ, ν)-smooth if

Mπi
′ ,π

−ir ≥ κMπ′r − νMπr

for any r ∈ R|S| and any pair of product policies π, π′. For
a Markov game, if its reward functions are (λ, µ)-smooth

and its transition function is (κ, ν)-smooth, then the Markov
game is (α = κλ, β = µν)-smooth.

Proof. We can establish∑
i V

i
πi
′ ,π

−i(s) =
∑

i Mπi
′ ,π

−iriπi
′ ,π

−i

≥
∑

i κMπ′r
i
πi
′ ,π

−i − νMπr
i
πi
′ ,π

−i

=κMπ′

∑
i r

i
πi
′ ,π

−i − µMπ

∑
i r

i
πi
′ ,π

−i

≥κMπ′λrπ′ − µMπµrπ = κλVπ′ − µνVπ

where the two inequalities are due to the smoothness of the
transition function and the reward functions, respectively,
which completes the proof.

4.2. POA bound for near-Nash policies

We here derive our POA bound in Theorem 4.5 for near-
Nash policies in smooth Markov games, generalizing from
smooth normal-form games (Roughgarden, 2016) to smooth
Markov games. Similar to the normal-form game counter-
part, we describe the result for ϵ-ratio-Nash policies as
defined in Definition 4.4 to ease presentation.

Definition 4.4 (ϵ-ratio-Nash policy). A product policy π =
(π1, ..., πN ) is an ϵ-ratio-Nash policy if, for any agent i,
maxπi

′
V i
πi
′ ,π

−i(µ) ≤ (1− ϵ)V i
π(µ).

Theorem 4.5 (POA of ϵ-ratio-Nash in smooth Markov
games). In any (α, β)-smooth Markov game, the POA of
any ϵ-ratio-Nash policy is at least (1−ϵ)α

1+(1−ϵ)β .

Proof. Consider setting π′ = π∗ in Definition 4.2 where π∗
is a policy that achieves the optimal joint value, we have

Vπ(s) =
∑

i V
i
π(s) ≥

∑
i(1− ϵ)V i

πi
∗,π

−i(s)

≥(1− ϵ) (αVπ∗(s)− βVπ(s))

where the first inequality is by the definition of π being
ϵ-ratio-Nash and the second inequality is by the definition
of smooth Markov game. Rearranging the terms completes
the proof.

4.3. POA bound for the approximate best-response
dynamics

Inspired by the POA bounds for the best-response dynamics
in smooth (normal-form) potential games (Roughgarden,
2015), we here derive the counterpart for smooth MPGs
in Theorem 4.7, which bounds the number of policies gen-
erated from the maximum-gain ϵ-ratio-best-response dy-
namics: Until product policy π is ϵ-ratio-Nash, update
the maximum-gain agent to its best response, where the
maximum-gain agent is the agent that induces the maximum
increase in value after its best response.
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Figure 1. POA (top) and Nash-gap (bottom) under the tabular softmax parameterization (means and standard errors over 10 random
initializations).The dashed lines are the curves of the log barrier regularized version of the algorithms with the same color.

We make Assumption 4.6 that also appears in the normal-
form game setting (Roughgarden, 2015).

Assumption 4.6. We have 0 < Φπ(s) ≤ Vπ(s) for any
product policy π and any state s.

Theorem 4.7 (POA bound of maximum-gain
ϵ-ratio-best-response in smooth MPGs, proof in Ap-
pendix F.1). Consider a (α, β)-smooth MPG where
Assumption 4.6 holds. Let π∗ = argmaxπ Vπ(µ) be
a globally optimal policy and σ > 0 be a constant
for analysis. Consider the sequence of maximum-gain
ϵ-ratio-best-response policies π0, ..., πT . Then, all but at
most

logρ
Φmax

Φ0
− T logρ

1

1− ϵ
(7)

policies πt in the sequence satisfy

Vπt
(µ) ≥ α

(1 + β)(1 + σ)
Vπ∗(µ) (8)

where ρ = (1− ϵ)(1 + σ(1+β)
N ) and Φt := Φπt(µ).

Since our NPG dynamics (5,6) described in Section 3.3 is an
instance of maximum-gain approximate-best-response dy-
namics, we have Corollary 4.8 directly induced by Theorem
4.7.

Corollary 4.8 (POA bound of the approximate-best-re-
sponse NPG dynamics (5,6) in smooth MPGs, proof in
Appendix F.2). Consider a (α, β)-smooth MPG where As-
sumption 4.6 holds. Let π∗ = argmaxπ Vπ(µ) be a glob-
ally optimal policy and σ > 0 be a constant for analysis.
Consider the sequence of policies π0, ..., πT generated from
the approximate-best-response NPG dynamics (5,6) with
K ≥ 4

(1−γ)2ϵ . Then, all but at most

logρ
Φmax

Φ0
− T logρ

(
1 +

ϵ

2(1− γ)

)
(9)

policies πt in the sequence satisfy (8), where ρ = (1 +
σ(1+β)

N )/(1 + ϵ
2(1−γ) ).

5. Experiments
Environment. We evaluate the algorithms on Coordination
Game, which extends the two players version in (Zhang
et al., 2021) to multiple players N = 2, 3, 5. The state
space and action space are S = S1 × · · · × SN ,A = A1 ×
· · · × AN , respectively, where ∀i ≤ N,Si ∈ {0, 1},Ai ∈
{0, 1}. The reward is shared by all the agents (cooperative
setting, a special case of Markov Potential Games), and it
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Figure 2. POA (top) and Nash-gap (bottom) under the NN parameterization (means and standard errors over 20 random initializations).The
dashed lines are the curves of the log barrier regularized version of the algorithms with the same color.

encourages agents to be in the same local state. To have
rewards with more different levels, we design the reward in
the way that when the number of agents occupy local state
0 or 1, whichever the maximum, to be the same, the state
with more local states of 0s is larger than the one with more
1s. The transition function for each agent i’s local state is
P (si = 0|ai = 0) = 1 − ϵ, P (si = 0|ai = 1) = ϵ, where
ϵ = 0.1.

Algorithms. We exhaustively evaluate the performance
of policy gradient PG, natural policy gradient NPG, and
best response natural policy gradient NPG-BR with soft-
max parameterization under the tabular setting, w/wo log
barrier regularizer. Besides softmax parameterization for
PG, we also consider the neural network parameterization
with softmax activation in the last layer NN-PG. Precisely,
the policy gradient update rule for agent i’s neural network
policy πi

θi : S → ∆(Ai) is

∇θiΦθ(µ) =
∑
s

∑
ai

dπθ
µ (s)πi

θi(ai|s)Ai
θ(s, a

i)∇θiπi
θi(ai|s).

We run each algorithm in Coordination Game with N =
2, 3, 5 agents and plot the Nash-gap and POA as the eval-
uation metrics. The algorithms, both the tabular softmax
and the neural network parameterizations, share the same

initial policy parameters, which are sampled from the nor-
mal distribution of mean 0 and standard deviation 1. For
each log barrier regularized algorithm, we performed a grid
search for its coefficient λ ∈ {0.01, 0.1, 1.0, 10.0, 100.0}
and picked the one with the best POA. Additional details of
our experiment are presented in Appendix G.

5.1. Results under the tabular softmax parameterization

Figure 1 presents the POA and the Nash-gap of the algo-
rithms under the tabular softmax parameterization. The
results help address the following questions:

How fast do the algorithms converge? In terms of both the
POA and the Nash-gap, NPG converges fastest, with NPG-
BR the second and PG the slowest. This result demonstrates
the improvement in the convergence rate of using the natural
policy gradient over the policy gradient.

What is the effect of K for NPG-BR? We did a grid search
of K ∈ {1, 5, 10, 20, 50} for NPG-BR (details in Appendix
H.1), we show the results for the best-performing K in
terms of the POA for N = 2, 3, 5 separately in Figure 1. We
observe that K = 5 is the best for N = 3, 5 and K = 50,
the largest value we searched, is the best for N = 2.



Convergence and Price of Anarchy Guarantees of the Softmax Policy Gradient in Markov Potential Games

How do the algorithms compare in terms of the POA? Con-
sistent with the converge rate, NPG enjoys the overall high-
est POA, with NPG-BR the second and PG the lowest.

5.2. Results under the neural network parameterization

Figure 2 presents the POA and the Nash-gap of the algo-
rithms under the neural network (NN) parameterization. The
results help address the following questions:

Does NN help improve the convergence/POA from tabu-
lar softmax? With the NN parameterization, the PG al-
gorithm (“NN-PG”) significantly outperforms its tabular
softmax counterpart (“Softmax-PG”) in terms of both the
convergence rate and the POA. NN-PG even outperforms
Softmax-NPG in terms of POA at the beginning of the train-
ing, although and eventually the POA of Softmax-NPG is
the highest among all. This demonstrates the significant
improvement of the NN parameterization over the tabular
softmax.

What is the effect of the NN regularization? Compared with
the results under tabular softmax, the log barrier regular-
ization under NN has a significantly larger impact: it both
improves the POA and reduces the Nash-gap at convergence,
especially when N is large (e.g., N = 5).

What is the effect of the NN optimizer? Among all NN
variants, NN-PG is the best in terms of POA when N is
small, and the regularized NN-Adam is the best when N
is large. When N = 5, the POA of the best NN variant,
the regularized NN-Adam, is still significantly smaller than
Softmax-NPG.

6. Conclusion and discussion
To conclude, we have established in Section 3 convergence
to (near-)Nash policies in Markov potential games of sev-
eral policy gradient-based dynamics under tabular softmax
parameterization, including asymptotic convergence of the
standard policy gradient dynamics (Section 3.1), its finite-
time convergence with log-barrier regularization (Section
3.2), and finite-time convergence of the approximate best-
response natural policy gradient dynamics (Section 3.3). In
Section 4, we have extended the notion of smoothness in
normal-form games to Markov games and established the
price-of-anarchy bounds of near-Nash policies in smooth
Markov games and of the approximate maximum-gain best-
response dynamics in smooth Markov potential games.

Future work. (i) Our theoretical guarantee for the NPG
dynamics is limited to the (approximate) best-response vari-
ant, although our empirical results imply that the standard
NPG dynamics where all agents get updated per iteration
should also converge. This suggests that a future direction is
to establish the convergence of the standard NPG dynamics.

(ii) Our POA bound is also limited to the (approximate) best-
response NPG dynamics, and a future direction is to provide
POA bounds for other learning dynamics. (iii) Both the
theoretical and the empirical parts of this paper are limited
to exact gradient computation, and therefore an immediate
future direction is to explore sample-based learning dynam-
ics.
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Chu, T., Wang, J., Codecà, L., and Li, Z. Multi-agent
deep reinforcement learning for large-scale traffic signal
control. IEEE Transactions on Intelligent Transportation
Systems, 21(3):1086–1095, 2019.

Corke, P., Peterson, R., and Rus, D. Networked robots:
Flying robot navigation using a sensor net. In Robotics
research. The eleventh international symposium, pp. 234–
243. Springer, 2005.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and
Whiteson, S. Counterfactual multi-agent policy gradients.
arXiv preprint arXiv:1705.08926, 2017.

Fox, R., Mcaleer, S. M., Overman, W., and Panageas, I.
Independent natural policy gradient always converges in
markov potential games. In International Conference
on Artificial Intelligence and Statistics, pp. 4414–4425.
PMLR, 2022.

Hu, J. and Wellman, M. P. Nash q-learning for general-sum
stochastic games. Journal of machine learning research,
4(Nov):1039–1069, 2003.

Leonardos, S., Overman, W., Panageas, I., and Pil-
iouras, G. Global convergence of multi-agent policy
gradient in markov potential games. arXiv preprint
arXiv:2106.01969, 2021.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. Softmax
policy gradient methods can take exponential time to
converge. In Conference on Learning Theory, pp. 3107–
3110. PMLR, 2021.

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Abbeel, O. P.,
and Mordatch, I. Multi-agent actor-critic for mixed
cooperative-competitive environments. In Advances in
neural information processing systems, pp. 6379–6390,
2017.



Convergence and Price of Anarchy Guarantees of the Softmax Policy Gradient in Markov Potential Games

Macua, S. V., Zazo, J., and Zazo, S. Learning parametric
closed-loop policies for markov potential games. arXiv
preprint arXiv:1802.00899, 2018.

Mei, J., Xiao, C., Szepesvari, C., and Schuurmans, D. On
the global convergence rates of softmax policy gradient
methods. In International Conference on Machine Learn-
ing, pp. 6820–6829. PMLR, 2020.

Mirrokni, V. S. and Vetta, A. Convergence issues in com-
petitive games. In Approximation, randomization, and
combinatorial optimization. algorithms and techniques,
pp. 183–194. Springer, 2004.

Roughgarden, T. Intrinsic robustness of the price of anarchy.
Journal of the ACM (JACM), 62(5):1–42, 2015.

Roughgarden, T. Twenty lectures on algorithmic game the-
ory. Cambridge University Press, 2016.

Shapley, L. S. Stochastic games. Proceedings of the national
academy of sciences, 39(10):1095–1100, 1953.

Tesauro, G. Extending q-learning to general adaptive multi-
agent systems. Advances in neural information process-
ing systems, 16, 2003.

Zhang, K., Yang, Z., Liu, H., Zhang, T., and Başar, T.
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A. Proof of Lemma 3.1
Note that

∂ log πi
θi(ai′ |s′)

∂θis,ai

= 1[s = s′](1[ai = ai′ ]− πi
θi(ai|s)).

Plugging it and by similar derivations in the proof of Lemma C.1 in (Agarwal et al., 2019), we have:

∂V i
θ (µ)

∂θis,ai

=Es′∼d
πθ
µ

Ea′∼πθ(·|s)
[
1[(s′, ai′) = (s, ai)]Ai

θ(s
′, a′)

]
=dπθ

µ (s)πi
θi(ai|s)Ea−i∼π−i

θ−i (·|s)
[
Ai

θ(s, a
i, a−i)

]
.

This concludes the proof.

B. Proof of Lemma 3.2
Since Φθ(s0), abbreviated as Φθ in this proof, is (assumed to be) twice-differentialble, as an equivalent condition for
smoothness, we will bound the spectral norm of its Hessian ∇2

θΦθ. Similar to the proof of Lemma 4.4 in (Leonardos et al.,
2021), we view Hessian

∇2
θΦθ =

[
∂2Φθ

∂θis,ai∂θ
j
s′,aj

]
i,s,ai,j,s′,aj

as a symmetric N ×N block matrix with submatrices

∇2
θiθjΦθ =

[
∂2Φθ

∂θis,ai∂θ
j
s′,aj

]
s,ai,s′,aj

for all i, j ∈ N . Claim C.2 in (Leonardos et al., 2021) shows that if we can bound the spectral norm of any submatrix as∥∥∇2
θiθjΦθ

∥∥
2
≤ L, then the spectral norm of the block matrix is bounded as

∥∥∇2
θΦθ

∥∥
2
≤ NL. We then next bound the

spectural norm (i.e., the largest absolute eigenvalue) of matrix ∇2
θjθiΦθ. Noting ∇2

θjθiΦθ = ∇2
θjθiV

j
θ = ∇2

θjθiV i
θ due to

(1), it suffices to define U(t) := Vθi+t·u,θ−i and W (t, s) := Vθi+t·u,θj+s·v,θ−i,−j for scalars t, s ≥ 0 and unit vectors u, v,
and to show

max
∥u∥2=1

∣∣∣∣ d2U(t)

dt2

∣∣∣∣
t=0

∣∣∣∣ ≤ 41

4(1− γ)3
and max

∥u∥2=∥v∥2=1

∣∣∣∣∣ d2W (t, s)

dtds

∣∣∣∣
t=0,s=0

∣∣∣∣∣ ≤ 41

4(1− γ)3
.

For U(t), we decompose it as U(t) =
∑

ai

∑
a−i πi

θi+t·u(a
i|s0) · π−i

θ−i(a
−i|s0) · Qθi+t·u,θ−i(s0, a

i, a−i). Abbreviating
πi
θi+t·u as πi

t, π
−i
θ−i as π−i, and Qθi+t·u,θ−i as Qt, we have

d2U(t)

dt2
=
∑
ai

∑
a−i

(
d2πi

t(a
i|s0)

dt2
· π−i(a−i|s0) ·Qt(s0, a

i, a−i)

+2
dπi

t(a
i|s0)

dt
· π−i(a−i|s0) ·

dQt(s0, a
i, a−i)

dt

+πi
t(a

i|s0) · π−i(a−i|s0) ·
d2Qt(s0, a

i, a−i)

dt2

)
We then bound

∣∣∣ d2U(t)
dt2

∣∣∣
t=0

∣∣∣ for any unit vector u by bounding the three terms, respectively. For the first term, we have∑
ai

∣∣∣ d2πi
t(a

i|s0)
dt2

∣∣∣
t=0

∣∣∣ ≤ 6 =: C2 as proved in Lemma D.4 in (Agarwal et al., 2019), 0 ≤ Qt(s0, a
i, a−i) ≤ 1

1−γ assuming

the reward is bounded in [0, 1], and
∑

a−i π−i(a−i|s0) = 1. For the second term, we have
∑

ai

∣∣∣ dπi
t(a

i|s0)
dt

∣∣∣
t=0

∣∣∣ ≤ 2 =: C1
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as proved in Lemma D.4 in (Agarwal et al., 2019), and
∣∣∣ dQt(s0,a

i,a−i)
dt

∣∣∣
t=0

∣∣∣ ≤ γC1

(1−γ)2 as proved in Lemma D.2 in (Agarwal

et al., 2019) and Lemma 4.4 in (Leonardos et al., 2021). For the third term, we have
∣∣∣ d2Qt(s0,a

i,a−i)
dt2

∣∣∣
t=0

∣∣∣ ≤ 2γ2C1

(1−γ)3 +
γC2

(1−γ)2

as proved in Lemma D.2 in (Agarwal et al., 2019). We hence derive the bound:

max
∥u∥2=1

∣∣∣∣ d2U(t)

dt2

∣∣∣∣
t=0

∣∣∣∣ ≤ C2

1− γ
+

2γC2
1

(1− γ)2
+

2γ2C1

(1− γ)3
+

γC2

(1− γ)2

=
C2

(1− γ)2
+

2γC2
1

(1− γ)3
=

6 + 2γ

(1− γ)3
(C1 = 2, C2 = 6)

≤ 8

(1− γ)3
≤ 41

4(1− γ)3

For W (t, s), similarly, we decompose it as W (t, s) =
∑

ai

∑
aj

∑
a−i,−j πi

θi+t·u(a
i|s0) · πj

θj+s·v(a
j |s0) ·

π−i,−j
θ−i,−j (a

−i,−j |s0) ·Qθi+t·u,θj+s·v,θ−i,−j (s0, a
i, aj , a−i,−j). With similar abbreviations, we have

d2W (t, s)

dtds
=
∑
ai

∑
aj

∑
a−i,−j

(
dπi

t(a
i|s0)

dt
· dπ

j
s(a

j |s0)
ds

· π−i,−j(a−i,−j |s0) ·Qt,s(s0, a
i, aj , a−i,−j)

+
dπi

t(a
i|s0)

dt
· πj

s(a
j |s0) · π−i,−j(a−i,−j |s0) ·

dQt,s(s0, a
i, aj , a−i,−j)

ds

+πi
t(a

i|s0) ·
dπj

s(a
j |s0)

ds
· π−i,−j(a−i,−j |s0) ·

dQt,s(s0, a
i, aj , a−i,−j)

dt

+πi
t(a

i|s0) · πj
s(a

j |s0) · π−i,−j(a−i,−j |s0) ·
d2Qt,s(s0, a

i, aj , a−i,−j)

dtds

)
.

We then bound
∣∣∣∣ d2W (t,s)

dtds

∣∣∣
t=0,s=0

∣∣∣∣ for any unit vectors u, v by bounding the four terms, respectively. Similarly, the first

term can be bounded by C2
1

1−γ , the second term by γC2
1

(1−γ)2 , the third term by γC2
1

(1−γ)2 , and the fourth term by C2

(1−γ)2 +
2γC2

1

(1−γ)3 .
We hence derive the bound:

max
∥u∥=∥v∥=1

∣∣∣∣∣ d2W (t, s)

dtds

∣∣∣∣
t=0,s=0

∣∣∣∣∣ ≤ C2
1

1− γ
+

γC2
1

(1− γ)2
+

γC2
1

(1− γ)2
+

C2

(1− γ)2
+

2γC2
1

(1− γ)3

=
−4γ2 + 2γ + 10

(1− γ)3
(C1 = 2, C2 = 6)

≤ 41

4(1− γ)3
.

This concludes the proof.

C. Proof of Theorem 3.4
C.1. Notation

Define

V πθ

ϕ (s) = E[
∞∑
t=0

γtϕ(st, at)|πθ, s0 = s]

Φπθ (µ) = Es0∼µ[V
πθ

ϕ (s0)]

Qπθ

ϕ (s, a) = E[
∞∑
t=0

γtϕ(st, at)|πθ, s0 = s, a0 = a]

Aπθ

ϕ (s, a) = Qπθ

ϕ (s, a)− V πθ

ϕ (s)

Suppose Φmin ≤ Qπθ

ϕ (s, a) ≤ Φmax.
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C.2. Smoothness of F

Lemma C.1 (Smoothness of F under tabular softmax). Fix a state s. Let θs = [(θ1s)
⊤, ..., (θNs )⊤]⊤ ∈ R

∑
i |A

i| be
the column vector of parameters for state s, with θis ∈ R|Ai| for i ∈ N . For some fixed vector cs ∈ R|A|, define
Fs(θs) :=

∑
a∈A πθs(a|s)cs,a =: πθs · cs with πθs ∈ R|A| and · denoting inner product. Then, Fs(θs) is -smooth.

Proof. We will view Hessian ∇2
θs
Fs(θs) as a N × N block matrix and bound the spectral norm of each submatrix as∥∥∥∇2

θi
sθ

j
s
Fs(θs)

∥∥∥
2
≤ L, which bounds the Hessian’s spectral norm as

∥∥∇2
θs
Fs(θs)

∥∥
2
≤ NL.

We have

∇θi
s
Fs(θs) = ∇θi

s
(πθs · cs) = (∇θi

s
πθs)

⊤cs = ∇θi
s
πi
θi
s

(
π−i

θ−i
s

⊗ I|Ai|

)⊤
M ics

where ∇θi
s
Fs(θs) ∈ R1×|Ai|, M i ∈ R|A|×|A| is the permutation matrix that permutes all joint actions to be sorted as

a = (a−i, ai), In is the n× n identity matrix, and ⊗ is the Kronecker product. For the tabular softmax parameterization,
we have

∇θi
s
πi
θi
s
= diag

(
πi
θi
s

)
− πi

θi
s

(
πi
θi
s

)⊤
.

The submatrix is therefore

∇2
θi
sθ

j
s
Fs(θs) =∇θj

s

(
∇θi

s
πi
θi
s

(
π−i

θ−i
s

⊗ I|Ai|

)⊤
M ics

)

If j = i:

∇2
θi
sθ

i
s
Fs(θs) =∇θi

s

(
∇θi

s
πi
θi
s

(
π−i

θ−i
s

⊗ I|Ai|

)⊤
M ics

)
=∇θi

s
(πi

θi
s
⊙ b− (πi

θi
s
· b)πi

θi
s
)

, where b =
(
π−i

θ−i
s

⊗ I|Ai|

)⊤
M ics.

For the first term, we get
∇θi

s
(πi

θi
s
⊙ b) = diag(πi

θi
s
⊙ b)− πi

θi
s
(πi

θi
s
⊙ b)⊤

For the second term we get:

∇θi
s
((πi

θi
s
· b)πi

θi
s
) = (πi

θi
s
· b)∇θi

s
(πi

θi
s
) + (∇θi

s
(πi

θi
s
· b))(πi

θi
s
)⊤

−→ ∇2
θi
sθ

i
s
Fs(θs) = diag(πi

θi
s
⊙ b)− πi

θi
s
(πi

θi
s
⊙ b)⊤ − (πi

θi
s
· b)∇θi

s
(πi

θi
s
)− (∇θi

s
(πi

θi
s
· b))(πi

θi
s
)⊤

Since

max(
∥∥∥diag(πi

θi
s
⊙ b)

∥∥∥
2
,
∥∥∥πi

θi
s
⊙ b
∥∥∥
2
, |πi

θi
s
· b|) ≤ ∥b∥∞ = ∥c∥∞∥∥∥∇θi

s
πi
θi
s

∥∥∥
2
=

∥∥∥∥diag (πi
θi
s

)
− πi

θi
s

(
πi
θi
s

)⊤∥∥∥∥
2

≤ 1∥∥∥∇θi
s
(πi

θi
s
· b)
∥∥∥
2
≤
∥∥∥πi

θi
s
⊙ b
∥∥∥
2
+
∥∥∥(πi

θi
s
· b)πi

θi
s

∥∥∥
2
≤ 2 ∥c∥∞ ,

we know that ∥∥∥∇2
θi
sθ

i
s
Fs(θs)

∥∥∥
2
≤ 5 ∥c∥∞

If j ̸= i:

∇2
θi
sθ

j
s
Fs(θs) =M j∇θi

s
πi
θi
s

(((
π−i,−j

θ−i,−j
s

⊗ I|Aj |

)
∇θj

s
πj

θj
s

)
⊗ I|Ai|

)⊤

M jM ics
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Since∥∥M jM ics
∥∥
2
≤

√
N ∥c∥∞∥∥∥∥((π−i,−j

θ−i,−j
s

⊗ I|Aj |

)
∇θj

s
πj

θj
s

)
⊗ I|Ai|

∥∥∥∥
2

=
∥∥∥(π−i,−j

θ−i,−j
s

⊗ I|Aj |

)
∇θj

s
πj

θj
s

∥∥∥
2

≤
∥∥∥π−i,−j

θ−i,−j
s

⊗ I|Aj |

∥∥∥
2

∥∥∥∇θj
s
πj

θj
s

∥∥∥
2

≤
∥∥∥π−i,−j

θ−i,−j
s

∥∥∥
2

≤ 1

(10)

we know that
∇2

θi
sθ

j
s
Fs(θs) ≤

√
N ∥c∥∞

Therefore, we have ∥∥∇2
θsFs(θs)

∥∥
2
≤ Nmax(5,

√
N) ∥c∥∞

Lemma C.2. For product policy that can be factorized into the product of individual policies with softmax parameterization,
we have:

∂V πθ (µ)

∂θis,ai

=
∂Φπθ (µ)

∂θis,ai

=
1

1− γ
dπθ
µ (s)πθi(ai|s)Aπθ,i

ϕ (s, ai)

,where Qπθ,i
ϕ (s, ai) = Ea−i∼πθ−i (·|s)

[
Qπθ

ϕ (s, ai, a−i)
]
, Aπθ,i

ϕ (s, ai) = Qπθ,i
ϕ (s, ai)− V πθ

ϕ (s).

Proof.
∂V πθ

ϕ (µ)

∂θis′,ai

=
∂Φπθ (µ)

∂θis,ai

=
1

1− γ
Es∼d

πθ
µ

Ea∼πθ(·|s)

[
Aπθ

ϕ (s, a)
∂ log πθi(ai|s)

∂θis′,ai

]
=

1

1− γ
Es∼d

πθ
µ

Ea∼πθ(·|s)

[
Aπθ

ϕ (s, a)1[s = s′](1[a[m] = ai]− πθi(ai|s))
]

=
1

1− γ
dπθ
µ (s′)Ea∼πθ(·|s′)

[
Aπθ

ϕ (s′, a)(1[a[m] = ai]− πθi(ai|s′))
]

=
1

1− γ
dπθ
µ (s′)(Ea∼πθ(·|s′)

[
Aπθ

ϕ (s′, a)1[a[m] = ai]
]
− Ea∼πθ(·|s′)

[
Aπθ

ϕ (s′, a)πθi(ai|s′)
]
)

=
1

1− γ
dπθ
µ (s′)(Ea∼πθ(·|s′)

[
Aπθ

ϕ (s′, a)1[a[m] = ai]
]
− πθi(ai|s′)Ea∼πθ(·|s′)

[
Aπθ

ϕ (s′, a)
]
)

=
1

1− γ
dπθ
µ (s′)Ea∼πθ(·|s′)

[
Aπθ

ϕ (s′, a)1[a[m] = ai]
]

=
1

1− γ
dπθ
µ (s′)

∑
a

πθ(a|s′)Aπθ

ϕ (s′, a)1[a[m] = ai]

=
1

1− γ
dπθ
µ (s′)πθi(ai|s′)Ea−i∼πθ(·|s′)

[
Aπθ

ϕ (s′, ai, a−i)
]

=
1

1− γ
dπθ
µ (s′)πθi(ai|s′)Aπθ,i

ϕ (s′, ai)

Lemma C.3. For all agents i with a round of parallel update

θit+1 = θit + η∇V i
θi
t
(µ) = θit + η∇Φθi

t
(µ)

with learning rates η ≤ 1−γ
β , where β = NL(Φmax − Φmin) , L = max(5,

√
N), we have

V
(t+1)
ϕ (s) ≥ V

(t)
ϕ (s);Q

(t+1)
ϕ (s, a) ≥ Q

(t)
ϕ (s, a).
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Proof. Let us use the notation θs ∈ R
∑

i |A
i
ϕ| to refer to the parameters of the product policy on state s. Define

Fs(θs) =
∑
a

πθs(a|s)c(s, a)

where c(s, a) is treated as a constant, and is set to be A
(t)
ϕ (s, a) later in the proof. Thus,

∂Fs(θs)

∂θis,ai

∣∣∣∣
θt,i
s

=
∑
a′

∂πθs(a
′|s)

∂θis,ai

∣∣∣∣
θt,i
s

c(s, a′)

=
∑
a′

1[a′[i] = ai]
∂πθs(a

′|s)
∂θis,ai

∣∣∣∣
θt,i
s

c(s, a′)︸ ︷︷ ︸
(1)

+
∑
a′

1[a′[i] ̸= ai]
∂πθs(a

′|s)
∂θis,ai

∣∣∣∣
θt,i
s

c(s, a′)︸ ︷︷ ︸
(2)

(1) =
∑
a′

1[a′[i] = ai]
πθs(a

′|s)
πθi

s
(ai|s)

[
πθi

s
(ai|s)(1− πθi

s
(ai|s))

]
c(s, a′)

=
∑
a′

1[a′[i] = ai]πθs(a
′|s)
(
1− πθi

s
(ai|s)

)∣∣∣∣
θs,t

c(s, a′)

=
∑
a′

1[a′[i] = ai]πt(a′|s)
(
1− πt,i(ai|s)

)
c(s, a′)

(2) =
∑
a′

1[a′[i] ̸= ai]
πθs(a

′|s)
πθi

s
(ai|s)

(
− πθi

s
(ai|s)πθi

s
(a′[i]|s)

)∣∣∣∣
θt,i
s

c(s, a′)

= −
∑
a′

1[a′[i] ̸= ai]πθs(a
′|s)πθi

s
(ai|s)

∣∣∣∣
θt,i
s

c(s, a′)

= −
∑
a′

1[a′[i] ̸= ai]πt(a′|s)πt,i(ai|s)c(s, a′)

(1) + (2) =
∑

a′ 1[a′[i] = ai]πt(a′|s)c(s, a′)−

(∑
a′

1[a′[i] = ai]πt(a′|s)πt,i(ai|s)c(s, a′) +
∑
a′

1[a′[i] ̸= ai]πt(a′|s)πt,i(ai|s)c(s, a′)
)

=
∑
a′

1[a′[i] = ai]πt(a′|s)c(s, a′)−
∑
a′

πt(a′|s)πt,i(ai|s)c(s, a′)

Let c(s, a′) = Aϕ(s, a
′),

=
∑
a′

1[a′[i] = ai]πt(a′|s)Aϕ(s, a
′)−

∑
a′

πt(a′|s)πt,i(ai|s)Aϕ(s, a
′)

=
∑
a′

1[a′[i] = ai]πt(a′|s)Aϕ(s, a
′)

= πθi(ai|s)Aπθ,i
ϕ (s, ai)

Therefore,

∇Φt
θi(µ) =

1

1− γ
dπθ
µ (s)

∂Fs(θs)

∂θis,ai

−→ θt+1
s = θts + η

1

1− γ
dπθ
µ (s)

∂Fs(θs)

∂θs

∣∣∣∣
θt
s
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Since Fs(θs) is a β-smooth function for β = Nmax(5,
√
N)(Φmax − Φmin), then our assumptions that η ≤ 1−γ

β =
1−γ

Nmax(5,
√
N)(Φmax−Φmin)

implies η 1
1−γ d

πθ
µ (s) ≤ 1

β , which means

Fs(θ
t+1
s ) ≥ Fs(θ

t
s)

−→ V
(t+1)
ϕ (s) ≥ V

(t)
ϕ (s);Q

(t+1)
ϕ (s, a) ≥ Q

(t)
ϕ (s, a).

Lemma C.4. For all states s and actions a, there exists values V ∞
ϕ (s), Q∞

ϕ (s, a) and Q∞,i
ϕ (s, a) such that as t →

∞, V t
ϕ(s) → V ∞

ϕ (s), Qt
ϕ(s, a) → Q∞

ϕ (s, a), Qt,i
ϕ (s, a) → Q∞,i

ϕ (s, a). Define

∆i = min
{s,ai|A∞,i

ϕ (s,ai) ̸=0}
|A∞,i

ϕ (s, ai)|.

∆ = min
i

∆i.

Further, there exists a T0 such that ∀t > T0, s ∈ S, ai ∈ Ai
ϕ,

Q∞,i
ϕ (s, ai)− ∆

4
≤ Qt,i

ϕ (s, ai) ≤ Q∞,i
ϕ (s, ai) +

∆

4

Proof. {V t
ϕ(s)} is bounded and monotonically increasing, therefore V t

ϕ(s) → V ∞
ϕ (s). Similarly, we know Qt

ϕ(s, a) →
Q∞

ϕ (s, a). Since the product policy is assumed to converge, we have that {Qt,i
ϕ (s, ai)} is convergent. For agent i, state s,

categorize the local action ai into three groups:

Is,i0 =

{
ai|Q∞,i

ϕ (s, ai) = V ∞
ϕ (s)

}

Is,i+ =

{
ai|Q∞,i

ϕ (s, ai) > V ∞
ϕ (s)

}

Is,i− =

{
ai|Q∞,i

ϕ (s, ai) < V ∞
ϕ (s)

}

Since Qt,i
ϕ (s, ai) → Q∞,i

ϕ (s, ai) as t → ∞, there exists a T0 such that ∀t > T0, s ∈ S, ai ∈ Ai
ϕ,

Q∞,i
ϕ (s, ai)− ∆

4
≤ Qt,i

ϕ (s, ai) ≤ Q∞,i
ϕ (s, ai) +

∆

4

Lemma C.5. ∃T1 such that ∀t > T1, s ∈ S, we have

At,i
ϕ (s, ai) < −∆

4
for ai ∈ Is,i− ;At,i

ϕ (s, ai) >
∆

4
for ai ∈ Is,i+

Proof. Since V t
ϕ(s) → V ∞

ϕ (s), we have that there exists T1 > T0 such that for all t > T1,

V ∞
ϕ (s)− ∆

4
≤ V t

ϕ(s) ≤ V ∞
ϕ (s) +

∆

4
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For ai ∈ Is,i− , t > T1 > T0,

At,i
ϕ (s, ai) = Qt,i

ϕ (s, ai)− V t
ϕ(s)

≤ Q∞,i
ϕ (s, ai) +

∆

4
− V t

ϕ(s)

≤ Q∞,i
ϕ (s, ai) +

∆

4
− V ∞

ϕ (s) +
∆

4

≤ −∆+
∆

4
+

∆

4

≤ −∆

4

(11)

For ai ∈ Is,i+ , t > T1 > T0,

At,i
ϕ (s, ai) = Qt,i

ϕ (s, ai)− V t
ϕ(s)

≥ Q∞,i
ϕ (s, ai)− ∆

4
− V t

ϕ(s)

≥ Q∞,i
ϕ (s, ai)− ∆

4
− V ∞

ϕ (s)

≥ ∆− ∆

4

≥ ∆

4

(12)

Lemma C.6. ∂Φπθ (µ)
∂θi

s,ai
→ 0 as t → ∞ for all states s, agents i, actions ai. This implies that ∀ai ∈ Is,i− ∪Is,i+ , πt,i(ai|s) → 0

and that
∑

ai∈Is,i
0

πt,i(ai|s) → 1.

Proof. Since Φπθ (µ) is smooth, we know ∂Φπθ (µ)
∂θi

s,ai
→ 0 for all s, i, ai. From lemma 1 we have

∂Φt(µ)

∂θis,ai

=
1

1− γ
dπ

t

µ (s)πt,i(ai|s)Aπt,i

ϕ (s, ai)

Since from lemma 4 we know that |At,i
ϕ (s, ai)| > ∆

4 for all t > T1, for all ai ∈ Is,i− ∪Is,i+ , which together with the assumption
that µ is strict positive for all state s prove πt,i(ai|s) → 0. Then we also know for all

∑
ai∈Is,i

0
πt,i(ai|s) → 1.

Lemma C.7. For t ≥ T1, θis,ai is strictly decreasing ∀ai ∈ Is,i− and θis,ai is strictly increasing ∀ai ∈ I+s,i.

Proof. From lemma 1 we have
∂Φt(µ)

∂θis,ai

=
1

1− γ
dπ

t

µ (s)πt,i(ai|s)At,i
ϕ (s, ai)

From lemma 4, we know for all t > T1, a
i ∈ Is,i− , At,i

ϕ (s, ai) ≤ −∆
4 ; For all ai ∈ Is,i+ , At,i

ϕ (s, ai) ≥ ∆
4 . This implies

that after iteration T1, ∂Φt(µ)
∂θi

s,ai
< 0∀ai ∈ Is,i− ; ∂Φt(µ)

∂θi
s,ai

> 0∀ai ∈ Is,i+ . −→ After iteration T1, θis,ai is strictly decreasing

∀ai ∈ Is,i− and θis,ai is strictly increasing ∀ai ∈ Is,i+ .

Lemma C.8. For all states s where Is,i+ ̸= ∅, we have:

maxai∈Is,i
0
θt,is,ai → ∞, minai∈Aiθt,is,ai → −∞
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Proof. Since Is,i+ ̸= ∅, we have some action ai+ ∈ Is,i+ . From lemma 5, we know

πt,i(ai+|s) → 0 as t → ∞

−→
exp(θt,i

s,ai
+
)∑

ai∈Ai exp(θt,is,ai)
→ 0 as t → ∞

From lemma 6 we know θt,i
s,ai

+
is monotonically increasing, which implies

∑
ai∈Ai

exp(θt,is,ai) → ∞ as t → ∞

From lemma 5, we also know ∑
ai∈Is,i

0

πt,i(ai|s) → 1

−→
∑

ai∈Is,i
0

exp(θt,is,ai)∑
ai∈Ai exp(θt,is,ai)

→ 1

Since denominator does to ∞, we know ∑
ai∈Is,i

0

exp(θt,is,ai) → ∞

which implies
maxai∈Is,i

0
θt,is,ai → ∞

Note this also implies maxai∈Aiθt,is,ai → ∞. The sum of the gradient is always zero:
∑

ai∈Ai
∂Φt(µ)
∂θi

s,ai
=

1
1−γ d

πt

µ (s)
∑

ai∈Ai πθi(ai|s)Aπt,i

ϕ (s, ai) = 0. Thus,
∑

ai∈Ai θ
t,i
s,ai =

∑
ai∈Ai θ

0,i
s,ai which is a constant. Since

maxai∈Aiθt,is,ai → ∞, we know

minai∈Aiθt,is,ai → −∞

Lemma C.9. Suppose ai+ ∈ Is,i+ . ∀a ∈ Is,i0 , if ∃t ≥ T1 such that πt,i(a|s) ≤ πt,i(ai+|s), then ∀τ ≥ t, πτ,i(a|s) ≤
πτ,i(ai+|s).

Proof. Suppose ai+ ∈ Is,i+ , a ∈ Is,i0 , if πt,i(a|s) ≤ πt,i(ai+|s), then

∂Φt(µ)

∂θis,a
=

1

1− γ
dπ

t

µ (s)πt,i(a|s)(Qt,i
ϕ (s, a)− V t

Φ(s))

≤ 1

1− γ
dπ

t

µ (s)πt,i(ai+|s)(Q
t,i
ϕ (s, ai+)− V t

Φ(s)) =
∂Φt(µ)

∂θi
s,ai

+

, where the last step holds because Qt,i
ϕ (s, ai+) ≥ Q∞,i

ϕ (s, ai+)− ∆
4 ≥ Q∞,i

ϕ (s, a) +∆− ∆
4 ≥ Qt,i

ϕ (s, a)− ∆
4 +∆− ∆

4 >

Qt,i
ϕ (s, a) for t > T0.

We can then partition Is,i0 into Bs,i
0 (ai+) and B̄s,i

0 (ai+) as follows:

Bs,i
0 (ai+) : {a|a ∈ Is,i0 and ∀t ≥ T0, π

t,i(ai+|s) < πt,i(a|s)}

B̄s,i
0 (ai+) : I

s,i
0 \Bs,i

0 (ai+).
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Lemma C.10. Suppose Is,i+ ̸= ∅. ∀ai+ ∈ Is,i+ , we have that Bs,i
0 (ai+) ̸= ∅ and that∑

ai∈Bs,i
0 (ai

+)

πt,i(ai|s) → 1, as t → ∞.

This implies that:
maxai∈Bs,i

0 (ai
+)θ

t,i
s → ∞.

Proof. Let ai+ ∈ Is,i+ . Consider any āi ∈ B̄s,i
0 (ai+). Then by definition of B̄s,i

0 (ai+), there exists t′ > T0 such that
πt,i(ai+|s) ≥ πt,i(āi|s). From lemma 8, we know ∀τ > t, πτ,i(ai+|s) ≥ πτ,i(āi|s). From lemma 5, we know πt,i(ai+|s) →
0 as t → ∞, which implies

πt,i(āi|s) → 0 as t → ∞.

Since Bs,i
0 (ai+) ∪ B̄s,i

0 (ai+) = Is,i0 and
∑

ai∈Is,i
0

πt,i(ai|s) → 1, we know∑
ai∈Bs,i

0 (ai
+)

πt,i(ai|s) → 1

Bs,i
0 (ai+) ̸= ∅

Using the same techniques in lemma 7, we know

maxai∈Bs,i
0 (ai

+)θ
t,i
s → ∞

Lemma C.11. Consider any s where Is,i+ ̸= ∅. Then, ∀ai+ ∈ Is,i+ ,∃Tai
+

such that ∀t > Tai
+
,∀ai ∈ B̄s,i

0 (ai+),

πt,i(ai+|s) > πt,i(ai|s)

Proof. By the definition of B̄s,i
0 (ai+) and lemma 8, there exists tai > T0 such that ∀τ > tai , πτ,i(ai+|s) > πτ,i(ai|s). We

can choose Tai
+
= maxai∈Bs,i

0 (ai
+)tai .

Lemma C.12. ∀ai+ ∈ Is,i+ , we have θi
s,ai

+
is lower bounded as t → ∞. ∀ai− ∈ Is,i− , we have that θi

s,ai
−
→ −∞ as t → ∞.

Proof. From lemma 6, we know that ∀ai+ ∈ Is,i+ , after T1, θi
s,ai

+
is strictly increasing, and is therefore bounded from below.

For the second claim, we know from lemma 6 that ∀ai− ∈ Is,i− , after T1, θi
s,ai

−
is strictly decreasing. Then, by monotone

convergence theorem, we know limt→∞θi
s,ai

−
exists and is either −∞ or some constant θi0. We now prove by contraction that

limt→∞θi
s,ai

−
cannot be some constant θi0. Suppose limt→∞θi

s,ai
−
= θi0. We immediately know that ∀t ≥ T1, θ

i
s,ai

−
> θi0.

By lemma 7, we know ∃ai ∈ Aϕ
i such that

lim inf
t→∞

θt,is,ai = −∞ (13)

Let us consider some δi > 0 such that θT1,i
s,ai ≥ θi0 − δi. Now for t ≥ T1, define τ i(t) to be the largest iteration in [T1, t]

such that θτ
i(t),i

s,ai ≥ θi0 − δi. Define T t,i to be the subsequence {t′} of the interval (τ i(t), t) such that θt
′,i
s,ai decreases.

Define

Zt,i =
∑

t′∈T t,i

∂Φt′(µ)

∂θis,ai

For non-empty T t,i, we have:

Zt,i =
∑

t′∈T t,i

∂Φt′(µ)

∂θis,ai

≤
t−1∑

t′=τ i(t)+1

∂Φt′(µ)

∂θis,ai

≤
t−1∑

t′=τ i(t)

∂Φt′(µ)

∂θis,ai

+
1

(1− γ)
(Φmax − Φmin)



Convergence and Price of Anarchy Guarantees of the Softmax Policy Gradient in Markov Potential Games

=
1

η
(θt,is,ai − θ

τ i(t),i
s,ai ) +

1

(1− γ)
(Φmax − Φmin)

where we have used that |∂Φ
t′ (µ)

∂θi
s,ai

| ≤ 1
(1−γ) (Φmax − Φmin).

By equation (13), we know
lim inf

t→∞
Zt,i = −∞ (14)

For any T t,i ̸= ∅,∀t′ ∈ T t,i, from lemma 1, we know:∣∣∣∣∣∂Φ
t′(µ)/∂θi

s,ai
−

∂Φt′(µ)/∂θis,ai

∣∣∣∣∣ =
∣∣∣∣∣πt′,i(ai−|s)A

t′,i
ϕ (s, ai−)

πt′,i(ai|s)At′,i
ϕ (s, ai)

∣∣∣∣∣ ≥ exp(θi0 − θt
′,i
s,ai)

∆

4(Φmax − Φmin)

≥ exp(δi)
∆

4(Φmax − Φmin)

where we have used that |At′,i
ϕ (s, ai)| ≤ Φmax − Φmin and ∀t′ > T1, |At′,i

ϕ (s, ai−)| ≥ ∆
4 . Since both ∂Φt′ (µ)

∂θi

s,ai
−

and ∂Φt′ (µ)
∂θi

s,ai

are negative, we can get:
∂Φt′(µ)

∂θi
s,ai

−

≤ exp(δi)
∆

4(Φmax − Φmin)

∂Φt′(µ)

∂θis,ai

(15)

For non-empty T t,i,

1

η
(θt,i

s,ai
−
− θT1,i

s,ai
−
) =

t−1∑
t′=T1

∂Φt′(µ)

∂θi
s,ai

−

≤
∑

t′∈T t,i

∂Φt′(µ)

∂θi
s,ai

−

By equation (15)

≤ exp(δi)
∆

4(Φmax − Φmin)

∑
t′∈T t,i

∂Φt′(µ)

∂θis,ai

= exp(δi)
∆

4(Φmax − Φmin)
Zt,i

which together with the fact that θT1,i
s,ai

−
is some finite constant and equation (14) lead to

θt,i
s,ai

−
→ −∞ as t → ∞

this contradicts the assumption that {θi
s,at,i

−
}t≥T1

is lower bounded by θi0 and complete the proof.

Lemma C.13. Consider any s where Is,i+ ̸= ∅. Then, ∀ai+ ∈ Is,i+ ,∑
ai∈Bs,i

0 (ai
+)

θt,is,a → ∞

Proof. For any ai ∈ Bs,i
0 (ai+). By definition, we know that ∀t > T0, π

t,i(ai+|s) < πt,i(a|s), which implies that
θt,i
s,ai

+
< θt,is,a. Since in lemma 11, θt,i

s,ai
+

is lower bounded as t → ∞, we know that θt,is,a is lower bounded as t → ∞. This
together with lemma 9 proves that ∑

ai∈Bs,i
0 (ai

+)

θt,is,a → ∞
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Proof of Theorem 3.4. Suppose Is,i+ is non-empty for some s, else the proof is complete. Let ai+ ∈ Is,i+ . Then, by lemma
12, we know ∑

ai∈Bs,i
0 (ai

+)

θt,is → ∞ (16)

For ai ∈ Is,i− , since πt,i(ai|s)
πt,i(ai

+|s) = exp(θt,is − θt,i
s,ai

+
) → 0 (as θt,i

s,ai
+

is lower bounded and θt,is → −∞ by lemma 11), there
exists T2 > T0 such that

πt,i(ai|s)
πt,i(ai+|s)

<
∆

8|Ai
ϕ|(Φmax − Φmin)

−→ −
∑

ai∈Is,i
−

πt,i(ai|s)
Φmax − Φmin

> −πt,i(ai+|s)
∆

8
(17)

For ai ∈ B̄s,i
0 , by definition of B̄s,i

0 , we have At,i
ϕ (s, ai) → 0 and by lemma 10, ∀t > Tai

+
1 <

πt,i(ai
+|s)

πt,i(ai|s) . Then,
∃T3 > T2, Tai

+
such that

|At,i
ϕ (s, ai)| <

πt,i(ai+|s)
πt,i(ai|s)

∆

16|Ai
ϕ|

−→
∑

ai∈B̄s,i
0 (ai

+)

πt,i(ai|s)|At,i
ϕ (s, ai)| < πt,i(ai+|s)

∆

16

−→ −πt,i(ai+|s)
∆

16
<

∑
ai∈B̄s,i

0 (ai
+)

πt,i(ai|s)At,i
ϕ (s, ai) < πt,i(ai+|s)

∆

16
(18)

For t > T3,
0 =

∑
ai∈Ai

ϕ

πt,i(ai|s)At,i
ϕ (s, ai)

=
∑

ai∈Is,i
0

πt,i(ai|s)At,i
ϕ (s, ai) +

∑
ai∈Is,i

+

πt,i(ai|s)At,i
ϕ (s, ai) +

∑
ai∈Is,i

−

πt,i(ai|s)At,i
ϕ (s, ai)

(a)

≥
∑

ai∈Bs,i
0 (ai

+)

πt,i(ai|s)At,i
ϕ (s, ai) +

∑
ai∈B̄s,i

0 (ai
+)

πt,i(ai|s)At,i
ϕ (s, ai)

+πt,i(ai+|s)A
t,i
ϕ (s, ai+) +

∑
ai∈Is,i

−

πt,i(ai|s)At,i
ϕ (s, ai)

(b)

≥
∑

ai∈Bs,i
0 (ai

+)

πt,i(ai|s)At,i
ϕ (s, ai) +

∑
ai∈B̄s,i

0 (ai
+)

πt,i(ai|s)At,i
ϕ (s, ai) + πt,i(ai+|s)

∆

4
−
∑

ai∈Is,i
−

πt,i(ai|s)
Φmax − Φmin

(c)

≥
∑

ai∈Bs,i
0 (ai

+)

πt,i(ai|s)At,i
ϕ (s, ai)− πt,i(ai+|s)

∆

16
+ πt,i(ai+|s)

∆

4
− πt,i(ai+|s)

∆

8

>
∑

ai∈Bs,i
0 (ai

+)

πt,i(ai|s)At,i
ϕ (s, ai)

where (a) uses ∀ai ∈ Is,i+ and t > T3 > T1, A
t,i
ϕ (s, ai) > 0 from lemma 3, (b) uses ∀t > T3 > T1, A

t,i
ϕ (s, ai+) >

∆
4 from

lemma 3 and At,i
ϕ (s, ai) ≥ −(Φmax − Φmin), (c) uses equation (17) and equation (18). This implies that

∀t > T3,
∑

ai∈Bs,i
0 (ai

+)

∂Φt(µ)

∂θis,a
< 0
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which contradicts with equation (16) which leads to

limt→∞
∑

ai∈Bs,i
0 (ai

+)

(θt,is,ai − θT3,i
s,ai ) = η

∞∑
t=T3

∑
ai∈Bs,i

0 (ai
+)

∂Φt(µ)

∂θis,a
→ ∞

Therefore, the set Is,i+ = ∅.
Let θ = [θi,∞, θ−i,∞], θ′ = [θi, θ−i,∞].

V πθ′ (µ)− V πθ (µ) = Φπθ′ (µ)− Φπθi (µ)

= Es0∼µ[V
πθ′
Φ (s0)− V πθ

Φ (s0)]

By performance difference lemma,

=
1

1− γ
E
s∼d

π
θ′

µ
[Ea∼πθ′ (·|s) A

πθ

Φ (s, a)]

=
1

1− γ
E
s∼d

π
θ′

µ
[Eai∼πi(·|s)[Ea−i∼πθ∞,−i (·|s) A

πθ

Φ (s, a)]]

=
1

1− γ
E
s∼d

π
θ′

µ
[Eai∼πi(·|s) A

∞,i
Φ (s, ai)]

Since Is,i+ = ∅,

≤ 1

1− γ
E
s∼d

π
θ′

µ
[Eai∼π∞,i(·|s) A

∞,i
Φ (s, ai)]

= 0

which completes the proof.

D. Proofs for Section 3.2
D.1. Proof of Lemma 3.5

The proof extends the proof of Theorem 5.2 in (Agarwal et al., 2019) by the usage of the multi-agent performance difference
lemma (Lemma C.1 in (Leonardos et al., 2021)).

Fix an arbitrary agent i ∈ N and suppose it deviates from πi
θi to an optimal policy πi

∗(θ
−i) w.r.t. the corresponding

single-agent MDP specified by θ−i. We will use πi
∗ as a shorthand for πi

∗(θ
−i) and π−i as a shorthand for π−i

θ−i . By the
definition of ϵ-Nash, we need to show that V i

πi
∗,π

−i(µ)− V i
θ (µ) ≤ 2λM .

Similar to the proof of Theorem 5.2 in (Agarwal et al., 2019), we can bound Ai
θ(s, a

i) ≤ for any (s, ai)-pair. It suffices to
bound Ai

θ(s, a
i) for any (s, ai) where Ai

θ(s, a
i) ≥ 0 (else Ai

θ(s, a
i) ≤ is trivially true):

λ/(2|S||Ai|) =: ϵopt ≥
∂Lλ(θ)

∂θis,ai

(i)
= dπθ

µ (s)πi
θi(ai|s)Ai

θ(s, a
i) +

λ

|S|

(
1

|Ai|
− πi

θi(ai|s)
)

≥ λ

|S|

(
1

|Ai|
− πi

θi(ai|s)
)

where the last inequality is due to Ai
θ(s, a

i) ≥ 0, and by rearranging we get πi
θi(ai|s) ≥ 1/2|Ai|. Solving (i) for Ai

θ(s, a
i),

we have

Ai
θ(s, a

i) =
1

dπθ
µ (s)

(
1

πi
θi(ai|s)

∂Lλ(θ)

∂θis,ai

+
λ

|S|

(
1− 1

πi
θi(ai|s)|Ai|

))

≤ 1

dπθ
µ (s)

(
2|Ai|ϵopt +

λ

|S|

)
(πi

θi(ai|s) ≥ 1/2|Ai|)

≤ 2λ

dπθ
µ (s)|S|

(ϵopt = λ/(2|S||Ai|))
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We are now ready to use the multi-agent performance difference lemma on π∗ := (πi
∗, π

−i) and πθ:

V i
πi
∗,π

−i(µ)− V i
θ (µ) =Es∼dπ∗

µ
Eai∼πi

∗(s)
Ea−i∼π−i

[
Ai

θ(s, a
i, a−i)

]
=
∑
s

dπ∗
µ (s)

∑
ai

πi
∗(a

i|s)Ai
θ(s, a

i)

≤
∑
s

dπ∗
µ (s)

2λ

dπθ
µ (s)|S|

≤ 2λmax
s

(
dπ∗
µ (s)

dπθ
µ (s)

)
≤ 2λM

which concludes the proof.

D.2. Proof of Theorem 3.6

Lemma 3.2 shows that Φθ is 41N
4(1−γ)3 -smooth. Lemma D.4 in (Agarwal et al., 2019) shows that the regularizer for each agent

i is 2λ
|S| -smooth. Thus, βλ is an upper bound on the smoothness of Lλ(θ). Then, by standard results, we have

min
t≤T

∥∥∥∇θLλ(θ
(t))
∥∥∥2
2
≤ 2βλ(Lλ(θ

∗)− Lλ(θ0))

T
≤ 2βλ(Φmax − Φmin)

T
,

where the last inequality is because. We need to choose T large enough such that√
2βλ(Φmax − Φmin)

T
≤ λ/(2|S|max

i
|Ai|).

Solving the above inequality we obtain T ≥ 8βλ|S|2 maxi |Ai|2(Φmax−Φmin)
λ2 . By Lemma 3.5, we should set λ = ϵ/2M to

achieve the specified Nash-gap of ϵ. Plugging in λ = ϵ/2M and βλ := 41N
4(1−γ)3 + 2λN

|S| , we have

T ≥32M2|S|2 maxi |Ai|2βλ(Φmax − Φmin)

ϵ2

=
328NM2|S|2 maxi |Ai|2(Φmax − Φmin)

(1− γ)3ϵ2
+

64λNM2|S|maxi |Ai|2(Φmax − Φmin)

ϵ2

=
328NM2|S|2 maxi |Ai|2(Φmax − Φmin)

(1− γ)3ϵ2
+

32NM |S|maxi |Ai|2(Φmax − Φmin)

ϵ

which completes the proof.

E. Proofs for Section 3.3
E.1. Proof of Lemma 3.7

The proof is similar to that of the counterpart lemma for the single-agent setting (Lemma 5.1 of (Agarwal et al., 2019)).

For a vector w ∈ R|S||Ai|, define the error function

Li
θ(w) = Es∼d

πθ
µ ,ai∼πi

θi
(·|s)

[
w⊤∇θi log πi

θi(ai|s)−Ai
θ(s, a

i)
]
=
∥∥Di

θ

(
(∇θi log πi

θi)w −Ai
θ

)∥∥2
2

where Di
θ ∈ R|S||Ai|×|S||Ai| is the diagonal matrix with diagonal entries {dπθ

µ (s)πi
θi(ai|s)}s,ai , and ∇θi log πi

θi ∈
R|S||Ai|×|S||Ai| is the Jacobian matrix. By the main property of the Moore–Penrose inverse for least squares, i.e., the
minimizer of ∥Ax− b∥22 with the smallest ℓ2 norm is A†b, we have

w∗
θ =

(
Di

θ(∇θi log πi
θi)
)† (

Di
θA

i
θ

)
where w∗

θ is the minimizer of Li
θ(w) with the smallest ℓ2 norm. One can verify that w∗

θ =:

(F i
θ)

†∇θiV i
θ (µ) =

(
(∇θi log πi

θi)⊤Di
θ∇θi log πi

θi

)† (
(∇θi log πi

θi)⊤Di
θA

i
θ

)
=
(
Di

θ∇θi log πi
θi

)† (
(∇θi log πi

θi)⊤
)† (

(∇θi log πi
θi)⊤Di

θA
i
θ

)
=
(
Di

θ∇θi log πi
θi

)† (
Di

θA
i
θ

)
=w∗

θ
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We can then follow the same argument in the proof of Lemma 5.1 in (Agarwal et al., 2019) to show the claim of Lemma 3.7.

E.2. Proof of Theorem 3.8

Suppose the inner loop achieves ϵ
2 -near-optimal deviation, which require at most 4

(1−γ)2ϵ inner iterations (Agarwal et al.,
2019). Then, either the best-response iteration halts, or the total potential function is improved by at least ϵ

2 , which implies
the number of outer iterations is at most O( 1

(1−γ)ϵ ).

F. Proofs for Section 4
F.1. Proof of Theorem 4.7

We abbreviate V i
π(µ) as V i

π and Vπ(µ) as Vπ. For any policy πt, define δi(πt) := V i
πi
∗,π

−i
t

− V i
πt

and ∆(πt) :=
∑

i δ
i(πt).

We now have

Vπt =
∑
i

V i
πt

=
∑
i

(
V i
πi
∗,π

−i
t

− δi(πt)
)
≥ αVπ∗ − βVπt −∆(πt)

where the inequality is due to the (α, β)-smoothness of the MPG, which implies

Vπt
≥ α

1 + β
Vπ∗ − 1

1 + β
∆(πt). (19)

For a “bad” policy πt that violates (8), we have

∆(πt) ≥αVπ∗ − (1 + β)Vπt
> (1 + β)(1 + σ)Vπt

− (1 + β)Vπt
= σ(1 + β)Vπt

≥ σ(1 + β)Φπt

where the first inequality is directly from inequality (19), the second inequality due to that πt is a bad policy, the third
due to the assumption that Φπ(s) ≤ Vπ(s). Therefore, for the maximum-gain agent chosen to update from t to t+ 1, the
increase in its local value is at least σ(1+β)

N Φπt
since ∆(πt) =

∑
i δ

i(πt). Due to the characteristic of Φ in (1), we have
Φt+1 − Φπt

≥ σ(1+β)
N Φπt

, i.e.,

Φt+1 ≥ (1 + σ(1 + β)/N) Φπt
. (20)

For a good πt being updated, Φ can increase by a ratio of at least 1
1−ϵ since

Φt+1 − Φt

Φt
=

V i
πt+1

− V i
πt

Φt
=

Vπt+1
− Vπt

Φt
≥

Vπt+1
− Vπt

Vπt

>
1

1− ϵ
− 1.

Let m and T − m be the number of bad and good policies in the sequence, respectively. We then have Φ0(1 +
σ(1+β)

N )m( 1
1−ϵ )

T−m ≤ Φmax, which implies (7) and concludes the proof.

F.2. Proof of Corollary 4.8

Similar to the proof of Theorem 4.7, we can obtain inequality (20) for a bad πt, and for a good πt, the ϵ/2 increase per
iteration implies

Φt+1 − Φt

Φt
=

V i
πt+1

− V i
πt

Φt
=

Vπt+1
− Vπt

Φt
≥

Vπt+1
− Vπt

Vπt

>
ϵ/2

1− γ
.

Let m and T −m be the number of bad and good policies in the sequence, respectively. We then have Φ0(1+
σ(1+β)

N )m(1+
ϵ

2(1−γ) )
T−m ≤ Φmax, which implies (9) and concludes the proof.
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G. Experiment details
G.1. Pseudocode for the reward function of our Coordination Game

Algorithm 1 Calculate the team reward for N agents in state s

if (N = 2) or (N = 3) then
difference bound=1

else
difference bound=2

end if
if abs(s.count(”0”) − s.count(”1”)) ≤ difference bound then

if s.count(”0”) < s.count(”1”) then
reward= 1

else
reward= 0

end if
else if s.count(’0’) > s.count(’1’) then

reward= 3
else

reward= 2
end if

G.2. Hyperparameters

Table 1. Hyperparameters

Hyperparameter Value
γ (discount factor) 0.95
µ (initial state distribution) Uniform
η (learning rate) 0.1
λ (log barrier coefficient) searched over {0.01, 0.1, 1.0, 10.0, 100.0}
K (NPG-BR inner-loop complexity) searched over {1, 5, 10, 20, 50}
NN architecture 2N -FC(2N )-FC(2N )-Linear(2)-softmax

*The NN’s input is the one-hot representation of the global state s.

G.3. Computing resources

The code is implemented by PyTorch, and a single run of 400 iterations took approximately 30, 50, 200 seconds for 2,3,5
agents version of the coordination game, respectively, using an NVIDIA Tesla V100 GPU and 32 CPU cores.
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H. Additional experimental results
H.1. Effect of K for the NPG-BR dynamics

In Figure 1, we plot the best-performing K for N = 2, 3, 5, respectively, in terms of the POA, with the results for each
individual K shown in Figure 3.
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Figure 3. POA (top) and Nash-gap (bottom) under the tabular softmax parameterization (means and standard errors over 10 random
initializations).The dashed lines are the curves of the log barrier regularized version of the algorithms with the same color.
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H.2. Effect of the log barrier coefficient λ for the PG dynamics under tabular softmax

0 100 200 300 400
Iterations

0.5

0.6

0.7

0.8

0.9

PO
A

N=2, PG-Softmax

0 100 200 300 400
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

N=3, PG-Softmax

0 100 200 300 400
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

N=5, PG-Softmax

Lambda=0.01
Lambda=0.1

Lambda=10.0
Lambda=100.0

Lambda=1.0

0 100 200 300 400
Iterations

0

5

10

15

20

25

NE
-G

ap

N=2, PG-Softmax

0 100 200 300 400
0

2

4

6

8

10

12

14

N=3, PG-Softmax

0 100 200 300 400
5

10

15

20

25

N=5, PG-Softmax

Lambda=0.01
Lambda=0.1

Lambda=10.0
Lambda=100.0

Lambda=1.0

Figure 4. POA (top) and Nash-gap (bottom) for the PG dynamics under the tabular softmax parameterization (means and standard errors
over 10 random initializations) with various choices for λ, the log barrier regularization coefficient.

In Figure 1, we plot in the dashed lines the best-performing λ, the log barrier regularization coefficient, for the PG dynamics
under tabular softmax. Figure 4 complement the results with the POA and Nash-gap curves with various choices for λ we
searched.


