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Abstract001

While large language models (LLMs) have002
been thoroughly evaluated for deductive003
and inductive reasoning, their proficiency in004
holistic rule learning in interactive environ-005
ments remains less explored. We introduce006
RULEARN, a novel benchmark to assess the007
rule-learning abilities of LLM agents in inter-008
active settings. In RULEARN, agents strate-009
gically interact with simulated environments010
to gather observations, discern patterns, and011
solve complex problems. To enhance the rule-012
learning capabilities for LLM agents, we pro-013
pose IDEA, a novel reasoning framework that014
integrates the process of Induction, DEduction,015
and Abduction. The IDEA agent generates016
initial hypotheses from limited observations017
through abduction, devises plans to validate018
these hypotheses or leverages them to solve019
problems via deduction, and refines previous020
hypotheses through induction, dynamically es-021
tablishing and applying rules that mimic hu-022
man rule-learning behaviors. Our evaluation023
of the IDEA framework, which involves five024
representative LLMs, demonstrates significant025
improvements over the baseline. Furthermore,026
our study with human participants reveals no-027
table discrepancies in rule-learning behaviors028
between humans and LLMs. We believe our029
benchmark will serve as a valuable and chal-030
lenging resource, and IDEA will provide cru-031
cial insights for the development of LLM032
agents capable of human-like rule learning in033
real-world scenarios. We will release our code034
and data upon acceptance of the paper.035

1 Introduction036

One major pillar of human intelligence is the abil-037

ity to discern and apply rules. We identify pat-038

terns, form hypotheses, and iteratively refine them039

through interaction with the environment—a pro-040

cess that traditionally involves three stages: ab-041

duction, deduction, and induction. According to042

Charles Peirce (Frankfurt, 1958; Peirce, 1974), rule043

Figure 1: The reasoning cycle of rule learning encom-
passes abduction, deduction, and induction.

learning begins with an explanatory hypothesis (ab- 044

duction), followed by iterative experiments (de- 045

duction) and hypothesis refinement (induction) 046

(see Figure 1). This interdependent process under- 047

pins human rule learning in the real world, yet 048

recent studies often isolate these stages in non- 049

interactive settings (Bowen et al., 2024; Wang et al., 050

2023; Saparov et al., 2024; Liu et al., 2024). 051

To simulate the full complexity of human rule 052

learning, three essential principles must be met: an 053

interactive environment that encourages dynamic 054

experimentation, a fine-grained action space that 055

enables flexible and precise inputs for nuanced hy- 056

pothesis testing, and the presence of unknown 057

rules that force agents to infer, test, and revise 058

hypotheses based solely on sparse observations. 059

By integrating these three key principles, we intro- 060

duce RULEARN, which features 300 high-quality, 061

manually created puzzles with hidden rules set in 062

a text-based environment, where agents begin ex- 063

ploration without any prior knowledge of the un- 064

derlying rules. RULEARN simulates human-like 065

rule learning—compelling agents to experiment dy- 066

namically, utilize fine-graind actions for detailed 067

hypothesis testing, and infer rules from limited 068

data. 069

Successfully solving the puzzles requires the 070

agent to strategically select actions, efficiently 071

gather pattern-revealing observations, and accu- 072

rately reason from them to infer the hidden rules. 073

RULEARN presents substantial challenges, as 074
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Figure 2: A simplified puzzle in the RULEARN benchmark and the IDEA agent’s workflow (in real puzzles, agents have
fewer initial observations and more complex rules). The agent generates an initial hypothesis through abduction, develops an
exploration plan via deduction, and refines its hypothesis using induction. For example, the IDEA agent first hypothesizes that
the password is the number of the blue paintings, tests this by entering code 003, and adjusts its strategy based on the feedback.

agents must rely on observations generated by their075

chosen actions to discern rules; without clear pat-076

terns emerging from their exploration, the agents077

are likely to fail.078

RULEARN consists of three types of environ-079

ments to evaluate the rule-learning ability in differ-080

ent scenarios: (1) The Function Operator: Deter-081

mining the coefficients of mathematical functions082

defined by hidden expressions. Agents can assign083

various values to the input variables and observe the084

outputs, using this information to hypothesize the085

function’s form. The challenge lies in efficiently086

selecting input values that reveal the underlying087

structure and accurately computing the coefficients088

based on limited observations. (2) The Escape089

Room: Deciphering the passcode to exit an escape090

room. A hidden rule determines how the objects091

in the room infer the passcode digits. Agents in-092

teract with these objects to gather clues and input093

passcodes into the door. Based on feedback, agents094

formulate hypotheses and infer the relationship be-095

tween the objects and the passcode. (3) The Re-096

actor: Synthesizing target strings using a reactor097

with a hidden string-combining rule. Agents need098

to experiment with different inputs and analyze out-099

puts to deduce the reactor’s transformation rule and100

achieve the desired outcome.101

To tackle the challenge in RULEARN, we in-102

troduce IDEA, a novel reasoning framework that103

integrates the process of Induction, DEduction, and104

Abduction. The IDEA agent employs these rea-105

soning processes iteratively to explore the envi-106

ronments, learn rules, and achieve goals. In the 107

abduction phase, the IDEA agent generates an ini- 108

tial hypothesis from limited observations. During 109

the deduction phase, the IDEA agent creates and 110

executes plans to attempt objectives or test its hy- 111

pothesis. In the induction phase, the IDEA agent 112

refines its hypothesis based on new observations, 113

enhancing their accuracy and robustness. This iter- 114

ative cycle enables the LLM agent to continually 115

improve the learned rules through environmental 116

feedback. An overview of how the IDEA agent 117

solves puzzles in RULEARN is shown in Figure 2. 118

We evaluate IDEA on five popular LLMs—GPT- 119

3.5-Turbo, GPT-4o, Gemma-7B, Llama3-8B, and 120

Llama3-70B—observing roughly a 10% improve- 121

ment in success rates compared to the baseline. 122

Without hypothesis guidance, the baseline agent 123

tends to choose direct, uninformed actions that 124

fail to uncover the hidden rules. In contrast, the 125

IDEA agent reduces repeated actions by 30.2%, 126

obtains more diverse observations, and better un- 127

derstands the underlying rules. To further investi- 128

gate their rule-learning capabilities, we compare 129

LLM performance with that of 50 human partic- 130

ipants. Although IDEA narrows the gap, LLMs 131

still face challenges: (1) inefficient exploration in 132

unfamiliar environments, resulting in insufficient 133

evidence to reveal rules; (2) difficulty in deducing 134

valid plans to verify current hypotheses and guide 135

future exploration; and (3) reluctance to correct ini- 136

tial hypotheses when confronted with contradictory 137

observations. These findings provide important in- 138
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sights into improving LLM agents to achieve more139

efficient rule learning in complex scenarios.140

2 Related Works141

Agents powered by large language models (LLMs)142

have shown notable progress in understanding com-143

plex tasks (Wang et al., 2024b; Chen et al., 2023;144

Zhou et al., 2023; Wang et al., 2024a; Andreas,145

2022; Park et al., 2023; Zhong et al., 2023; Zhang146

et al., 2024b; Nakano et al., 2022; Lu et al., 2023;147

Shi et al., 2023a; Schick et al., 2023; Yuan et al.,148

2023; Shen et al., 2023; Yao et al., 2023a; Besta149

et al., 2024). Recent work examines different rea-150

soning processes (abduction, deduction, induction)151

in LLMs (Bowen et al., 2024; Wang et al., 2023;152

Saparov et al., 2024; Cheng et al., 2024; Yang et al.,153

2024), but typically in isolation. As a result, their154

comprehensive rule-learning abilities in interactive155

settings remain underexplored.156

Current reasoning tasks are hindered by inade-157

quate benchmarks that either rely on QA datasets158

like Hotpot-QA (Yang et al., 2018) and Trivia-QA159

(Joshi et al., 2017)—which lack active information160

gathering—or by coarse-grained interactive envi-161

ronments such as TextWorld (Côté et al., 2019) and162

AlfWorld (Shridhar et al., 2021) that limit agents163

to high-level actions (e.g., go to, open), impeding164

complex, experiment-driven rule discovery. This is165

in stark contrast to real-world rule learning, which166

requires active evidence gathering, experimenta-167

tion, and iterative refinement. Moreover, many168

studies use static, non-interactive scenarios where169

LLMs receive all information upfront (Yang et al.,170

2023; Zhu et al., 2024; Shi et al., 2023b; Liu et al.,171

2024), failing to capture the dynamic nature of172

real-world learning. Even recent efforts (Xu et al.,173

2024; Montes et al., 2022) that integrate interac-174

tivity treat information gathering, rule generation,175

and application as distinct phases, undermining176

the development of agents capable of seamlessly177

integrating these elements.178

This gap exists because there is no interac-179

tive, text-based environment that supports fine-180

grained actions for rule learning. To address181

this, RULEARN allows agents to input arbitrary182

strings, which our system parses to provide tai-183

lored, character-by-character feedback. This en-184

ables LLM agents to perform fine-grained experi-185

ments that mirror real-world rule learning. In turn,186

IDEA equips agents to manage the interdependent187

processes of information gathering, hypothesis gen-188

eration, and validation in a unified framework that 189

mimics human rule-learning behaviors. 190

3 The RULEARN Benchmark 191

We develop three puzzle sets—Function Opera- 192

tor, Escape Room, and Reactor—each consisting 193

of 100 unique, manually created puzzles of varying 194

complexity, with each set reflects a different real- 195

world rule-learning scenario. Unlike existing fine- 196

grained interactive environments, which are pre- 197

dominantly found in the robotics domain and offer 198

significantly fewer tasks (Jain et al., 2020; Nasiri- 199

any et al., 2024; Zhang et al., 2024a), RULEARN 200

is the first text-based environment providing such 201

fine-grained interactions specifically for language 202

agents. 203

The Function Operator. This puzzle type sim- 204

ulates scenarios where systemic theories or estab- 205

lished knowledge (e.g., mathematics) are applica- 206

ble for efficiently testing hypotheses. The agent 207

interacts with a set of univariate multi-term equa- 208

tions involving integer parameters from [0,9] and 209

elementary functions of the variable x, selected 210

from f(x) ∈ {x0, x1, x2, sin(x), 1x , |x|,−x}. The 211

agent is provided with the number of functions, the 212

presence of specific parameters in each function 213

(the exact numerical values of these parameters are 214

unknown and represented by letters), and the types 215

of elementary functions involved in the current puz- 216

zle. The goal of the agent is to deduce the values 217

of these parameters. For example, in one puzzle, 218

the ground truth is F1(x) = a sin(x) + b × 1
x , 219

F2(x) = ax2 where a = 3 and b = 2. The agent 220

knows the following information: There are three 221

elementary functions in this puzzle {sin(x), 1x , x
2}, 222

there are two functions F1(x) and F2(x), F1(x) 223

has 2 terms and parameters a, b in it, and F2(x) 224

has 1 term and one parameter a. To solve the puz- 225

zle, the agent must interact with the environment 226

through a defined action space: selecting a func- 227

tion and assigning values to x, then observing the 228

resultant output. For example, assigning values 1 229

and 2 to F2 reveals a quadratic increase in output, 230

indicating the presence of x2 in F2. Similarly, as- 231

signing a value of 1 to F1 results in a floating-point 232

output, rather than an integer, suggesting the inclu- 233

sion of trigonometric components, confirming that 234

sin(x) is a component of F1. The difficulty of each 235

puzzle is controlled by variations in the number of 236

functions, unknown parameters, and elementary 237

functions in use. We manually enumerated 100 238

combinations of functions, incorporating different 239
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Table 1: The reacting rules in the Reactor Puzzle. All letters are functionally equivalent and exhibit no special behaviors.
Identical symbols represent the same letter, while different symbols denote different letters. Each puzzle operates under one
specific rule. The Middle Insertion rule inserts the shorter string into the longer string; if the length of the longer string is odd,
the shorter string is inserted just to the right of the center. If both strings are of equal length, the second string is inserted into the
middle of the first string. The Prefix Replacement rule retains the prefix of the longer string and concatenates it with the shorter
string, dropping the tail of the longer string results in two output strings. There are two special cases where the strings are simply
concatenated in order.

Rule Description Example Reaction 1 Example Reaction 2 Special Case 1 Special Case 2

Simple Concatenation AB + C = ABC AB + CDE = ABCDE — —
Reverse Concatenation AB + C = CAB AB + CDE = CDEAB — —
Middle Insertion AB + C = ACB AB + CDE = CDABE A + B = AB —
Prefix Replacement AB + C = AC + B AB + CDE = CAB + DE AB + CD = ABCD AA + A = AAA

numbers of terms and types of elementary functions240

to ensure a diverse range of puzzle complexity (see241

detailed distribution in Table 4 in Appendix A.2).242

The Escape Room. This environment simu-243

lates scenarios where no established knowledge244

is applicable, challenging agents to rely on basic245

human priors—such as counting, mapping, and at-246

tribute abstraction—to convert qualitative observa-247

tions into general rules through iterative feedback.248

We create a fictitious setting: an agent is placed249

in an art gallery escape room and must decipher250

a 3-digit password to unlock a code-secured door.251

Each digit of the password represents the count252

of paintings of a specific type—watercolor, oil,253

or acrylic—that share a given color. The agent254

receives brief descriptions of paintings, such as255

“This is an acrylic painting of a green jungle”, in-256

dicating their type and color. Initially, the agent257

only knows the password is a 3-digit number and258

is given a hint about which color to focus on. After259

proposing a hypothesis and entering a password260

guess, the door provides feedback on which digits261

are correct, allowing the agent to refine its hypothe-262

sis. To prevent a brute-force approach, the specific263

color associated with the password changes after264

every three failed attempts. Each puzzle varies in265

the number of paintings, and while paintings in the266

same room are visible, those in other rooms remain267

hidden until the agent moves to access them. The268

difficulty of this puzzle type is controlled by the269

different number of paintings, whether agent need270

to as detailed in Table 5 in the Appendix A.2.271

The Reactor. This environment simulates sce-272

narios without pre-established knowledge, requir-273

ing agents to perform sequential, interdependent274

actions to uncover ordering and transformation pat-275

terns—mirroring real-world experimental design,276

where each step influences the next. Specifically,277

the agent’s task is to synthesize target strings using278

a reactor governed by a hidden string-combining279

rule. These strings are represented by sequences280

of alphabetic letters, such as A, B, AABB, and CAB. 281

The reactor permits the agent to input two strings, 282

initiating a reaction that produces a new string for 283

use in subsequent experiments. The agent’s ob- 284

jective is to decipher the specific rules that gov- 285

ern string synthesis by methodically testing differ- 286

ent string combinations, with the ultimate goal of 287

synthesizing the target string using the discovered 288

rules. We have designed four types of rules, de- 289

tailed in Table 1. The difficulty of this puzzle type 290

is controlled by the specific rules used, the length 291

of the target string to be synthesized and the num- 292

ber of unique letters contained in the target string, 293

as detailed in Table 6 in Appendix A.2. 294

Together, these puzzle types simulate a broad 295

spectrum of real-world rule learning by requiring 296

agents to apply both formal knowledge and com- 297

monsense reasoning. Detailed statistics for each 298

puzzle type and example puzzles are provided in 299

Appendix A.2 and A.7. The RULEARN bench- 300

mark is designed to emulate realistic, complex text 301

environments with diverse rules. To preserve this 302

realism, we do not restrict rule representations to 303

a specific formal language; instead, LLM agents 304

use natural language to describe rules, promoting 305

generalizability and preventing prior knowledge 306

that could undermine the challenge. 307

4 The IDEA Agent 308

We introduce IDEA, a novel reasoning framework 309

that integrates the process of Induction, DEduction, 310

and Abduction to learn rules in interactive envi- 311

ronments. The IDEA agent consists of the fol- 312

lowing components: Goal(G), Action Space(A), 313

Memory(M), Hypothesis(H), and Plan(P), which 314

are elaborated in Table 2. 315

Upon beginning to explore a puzzle, we initialize 316

the agent memory with an initial observation of the 317

environment. The agent’s goal is initialized with 318

the objective of the puzzle, e.g., synthesize a tar- 319
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Algorithm 1 IDEA Agent Rule-learning Loop
1: procedure RULELEARNINGLOOP
2: Initialize Goal(G), Action Space(A)
3: Memory(M)← Initial observations
4: #step← 0
5: Hypothesis(H)← Abduct(G,A,M)
6: Plan(P)← Deduct(H,G,M,A)
7: M.add(“New hypothesis and plan”,H, P)
8: while G not achieved and #step ≤ max_step do
9: a← select_action(G, H, P, M,A)

10: if a is interactive action then
11: result← execute_action(a,G,H, P,M)
12: M.add(result)
13: #step← #step + 1
14: else if a is inductive action then
15: H← Induct(a,G,M,H, P)
16: P← Deduct(H,G,M,A)
17: M.add(“Refined hypothesis and plan",H, P)
18: end if
19: end while
20: end procedure

The IDEA Agent Component Definition

Goal(G) Goal of the agent in the current puzzle.

Action Space(A) Set of actions the agent can take, includ-
ing abductive action, deductive action,
inductive action, as well as the set of in-
teractive actions defined by the puzzle.

Memory(M) Set of natural language strings to record
all interaction results till the current step.

Plan(P) Generated plans to guide future actions.

Table 2: Components of the IDEA agent.

get string for a Reactor puzzle. The agent’s action320

space is initialized as the set of interactive actions321

defined by the puzzle, such as choosing two strings322

and running the Reactor, as well as establish the323

initial hypothesis (abductive action), devises a plan324

to validate or leverage hypothesis (deductive ac-325

tion), and refining the current hypothesis (inductive326

action).327

The IDEA agent begins with an abductive ac-328

tion to generate an initial hypothesis, followed by329

a deduction step to create a new plan. Based on330

this plan, the agent interacts with the environment.331

Upon receiving feedback from the environment as332

a new observation, the agent may take an inductive333

action to refine the hypothesis or perform another334

interaction with the environment. Deductive ac-335

tion is invoked to adjust the plan every time the336

hypothesis changes. This reasoning loop continues337

until the puzzle is solved or a maximum number338

of steps is reached. After each step, the results are339

appended to the agent’s memory, including inter-340

action outcomes and any modifications to the hy-341

pothesis or plan. We provide a simplified algorithm342

demonstrating how the IDEA agent operates in Al-343

gorithm 1. Specifically, at each step, we prompt344

the LLM to reflect on the information recorded in345

the IDEA agent’s components to make decisions346

and take actions. We employ the chain-of-thought 347

(CoT) reasoning (Wei et al., 2022) for all prompts. 348

Detailed prompts for each type of action are avail- 349

able in Appendix A.5. 350

More detailed implementation of the agent can 351

be found in Appendix A.3.1. Similar to real-life 352

scenarios, when agents solve tasks in RULEARN 353

puzzles, they do not know the outcomes in advance. 354

Consequently, it is challenging to decide when to 355

refine or change their hypothesis and plans, as well 356

as what interactive actions to take to gather pattern- 357

revealing observations. A detailed example of the 358

IDEA agent solving the Reactor Puzzle is provided 359

in Figure 5 in Appendix. 360

5 Experiment Results 361

5.1 Experiment Settings 362

To evaluate the effectiveness of IDEA, we re- 363

spectively initialize it with three popular open- 364

source LLMs, including Gemma-7B (Team et al., 365

2024), Llama3-8B, and Llama3-70B (Dubey et al., 366

2024), and two closed-source LLMs, GPT-3.5- 367

Turbo (Dubey et al., 2024) and GPT-4o1. We com- 368

pare IDEA against the following two variants: 369

• ReAct Agent (Baseline): We choose ReAct 370

(Yao et al., 2023b) as our baseline. The ReAct 371

agent does not incorporate the full reasoning loop 372

of abduction, deduction, and induction, nor does 373

it generate explicit hypotheses or plans. Instead, 374

at each step, it reasons over its current memo- 375

ries and the goal and selects an interactive action 376

accordingly. 377

• Oracle-rule Agent: Even if the agent could 378

successfully learn the correct rule, applying the 379

learned rule to solve the puzzle is non-trivial. 380

The Oracle-rule agent serves as a control group 381

to establish the Oracle performance with the 382

ground-truth rule provided. Specifically: 1) For 383

the Function Operator puzzles, agents are given 384

the exact forms of the functions. Their task is 385

to derive the values of the coefficients. 2) For 386

the Escape Room puzzles, agents are provided 387

with how the password is constructed from the 388

objects. Their task is to derive the password us- 389

ing the provided rule. 3) For the Reactor puzzles, 390

the reaction rule is given to the agents in natural 391

language accompanied by examples. The agents 392

only need to synthesize the target strings. 393

1https://openai.com/index/gpt-4o-system-card/
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Each variant is evaluated across all three puzzle394

types. We set the temperature for LLMs to 0, based395

on observations that models like GPT-4o perform396

better at lower temperatures. The prompts used397

for the agents are detailed in Appendix A.5. Ad-398

ditionally, since the success rate does not improve399

after 15 interactive steps for LLMs, we capped the400

maximum interaction step count at 15. An agent401

is considered to have failed a puzzle if it does not402

solve it within these 15 steps. Details on the com-403

putational budget are available in Appendix A.4.404

5.2 Human participants405

To compare human and LLM performance in ab-406

duction, deduction, and induction reasoning, we407

recruited 50 participants and assigned each three408

randomly selected puzzles (10 from each reason-409

ing type). Each puzzle was attempted by five dif-410

ferent participants, with no prior exposure to the411

rules. Participants followed the same reasoning412

procedure outlined in IDEA, which mirrors their413

natural problem-solving methods and does not bias414

their responses. They documented their reasoning415

processes, enhancing transparency and facilitating416

clearer comparisons with LLMs. Further details417

on IRB approval and participant recruitment are in418

§9. Attempts failing to solve a puzzle within 15419

steps were marked as unsuccessful, ensuring fair420

comparisons. A sample user interface is shown in421

Figure 18 in Appendix A.6.422

5.3 Main Results423

We calculated average puzzle solving success rate424

across different variants. The detailed results are425

displayed in Table 3.426

For the Oracle-rule agent, in the Escape Room427

puzzles, agents achieve up to an 89% success rate428

by simply following the provided rule. However,429

in other puzzles, merely knowing the rule is not430

sufficient for success; applying the rule to solve the431

puzzle remains challenging. The Baseline agent is432

not provided with the underlying rules and solely433

relies on historical observations to make interactive434

actions. Across models, the success rates drop by435

about half compared to the Oracle-rule agent. This436

significant decrease highlights the challenge of rule437

learning and indicates that current LLM agents438

struggle to learn rules in unfamiliar environments439

without explicit guidance.440

IDEA significantly boosts success rates. Our pro-441

posed IDEA framework leads to approximate 10%442

increases in success rates for Llama3-70B, GPT-443

5 10 15
Interaction Step Count

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Cu
m

ul
at

iv
e 

Su
cc

es
s C

ou
nt Baseline agent

5 10 15
Interaction Step CountCu

m
ul

at
iv

e 
Su

cc
es

s C
ou

nt IDEA agent

Llama3 70B
GPT_4o

Llama3 8B
GPT-3.5-turbo

Gemma 7B
Human

Figure 3: Comparison of the cumulative number of puzzles
solved at each interaction step. The IDEA agent significantly
increases the solving speed compared to the Baseline agent.

3.5-Turbo, and GPT-4o compared to the Baseline 444

agent. This improvement demonstrates that incor- 445

porating a reasoning loop of abduction, deduction, 446

and induction substantially enhances the LLM rule- 447

learning performance in unfamiliar environments. 448

IDEA enables the LLMs to generate hypotheses, 449

plan actions, and refine their understanding based 450

on new observations, which is crucial for rule learn- 451

ing. However, smaller models like Llama3-8B and 452

Gemma-7B do not perform better when applying 453

IDEA. This is likely due to the increased complex- 454

ity and context management demands introduced 455

by the IDEA framework, which pose challenges 456

for small models with limited capacity. 457

LLM agents still fall far behind humans. In the 458

Escape Room puzzle, where the primary challenge 459

is to discover the rule, the Oracle-rule agents ex- 460

cel because once the rule is identified, applying 461

the rule is simple. However, in other types of puz- 462

zles, human participants significantly outperform 463

all LLM agents, including the Oracle-rule agents, 464

even without knowing the rules beforehand. 465

5.4 Analysis 466

IDEA boosts puzzle-solving speed. Figure 3 il- 467

lustrates the cumulative number of puzzles solved 468

at each interaction step for the Baseline agent, the 469

IDEA agent, and human participants. The slopes 470

of the lines represent the rate at which puzzles are 471

solved per step. Compared to the Baseline agent, 472

the IDEA agent exhibits a steeper slope, indicating 473

that the integration of abductive, deductive, and 474

inductive reasoning enhances the agent’s efficiency 475

in exploring the environment and learning the un- 476

derlying rules, especially during the early stages. 477

When focusing on human participants, we ob- 478

serve that they solve fewer puzzles in the initial 479

steps. However, as interactions continue, the num- 480

ber of puzzles solved by humans increases rapidly, 481

eventually surpassing that of all LLM agents. In 482
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Table 3: Puzzle Success Rate. The success rates for each setting. Across all LLMs, IDEA achieves consistently significant
improvements, except for Gemma-7B in the Reactor puzzles. We use boldface to highlight performance comparisons between
the Baseline and IDEA agents with GPT-4o.

Setup LLMs All Types (%) Function Operator (%) Escape Room (%) Reactor (%)

Oracle-rule Agent

Gemma-7B 1.67 0.0 5.0 0.0
Llama3-8B 5.67 1.0 14.0 2.0
Llama3-70B 32.67 33.0 48.0 17.0
GPT-3.5-Turbo 6.33 7.0 11.0 1.0
GPT-4o 66.0 77.0 91.0 30.0

ReAct Agent (Baseline)

Gemma-7B 0.33 0.0 0.0 1.0
Llama3-8B 1.67 0.0 5.0 0.0
Llama3-70B 19.67 33.0 17.0 9.0
GPT-3.5-Turbo 5.33 13.0 3.0 0.0
GPT-4o 43.33 62.0 45.0 23.0

IDEA Agent (Ours)

Gemma-7B 0.33 0.0 1.0 0.0
Llama3-8B 4.33 7.0 5.0 1.0
Llama3-70B 29.0 41.0 35.0 11.0
GPT-3.5-Turbo 7.33 18.0 3.0 1.0
GPT-4o 50.33 73.0 51.0 27.0
Human 63.33 66.0 56.0 68.0

contrast, LLM agents solved 88.76% of the puzzles483

within the first 10 steps. Beyond this point, addi-484

tional interactions contribute less to their success485

rate. This pattern suggests that humans have a su-486

perior ability to learn continuously from interactive487

environments, effectively improving their perfor-488

mance over time. If we did not limit the puzzles489

to 15 steps, we anticipate that the success rate of490

human participants would be even higher.491

IDEA reduces repetitive actions. LLM agents492

frequently repeat previous actions instead of ex-493

ploring new ones. This behavior is highly ineffi-494

cient in our controlled puzzle environments, where495

each interaction yields deterministic results, and496

repeating the same action generally does not pro-497

vide new information. We calculate the average498

number of repeated actions performed while solv-499

ing each puzzle, with detailed statistics in Table 7500

in Appendix A.2. We observe that most LLMs501

commonly repeat actions in the Baseline agent.502

The IDEA agent effectively reduces this tendency503

by explicitly generating plans during the deduc-504

tion phase. By outlining a clear plan, the IDEA505

agent can better assess whether the current observa-506

tions are sufficient or if further specific evidence is507

needed to reveal the underlying rule. For example,508

in the Escape Room puzzle, the IDEA agent avoids509

unnecessary attempts at entering passwords when510

the evidence gathered is sufficient to determine the511

correct code (see Figure 11 in Appendix A.5).512

IDEA relies on the reasoning ability of under-513

lying LLMs. The effectiveness of IDEA depends514

on the underlying LLMs’ ability to reason from hy-515

potheses and observations. Particularly, if an agent516

generates a false hypothesis and fails to properly517

refine it, being guided by this incorrect hypothesis518

can lead the agent to perform even worse than the 519

baseline. During our experiments, we observed that 520

current LLMs tend to hallucinate, especially in the 521

Escape Room puzzles and more severely in the Re- 522

actor puzzles. This results in smaller performance 523

improvements compared to those seen with the 524

Function Operator puzzles. This is likely because 525

such fictitious scenarios are not extensively rep- 526

resented in LLM training data. Moreover, LLMs 527

struggle to recognize letter-level patterns, and their 528

reasoning capabilities still require significant en- 529

hancement. Examples of hallucination can be seen 530

in Appendix A.6.1). 531

6 Fine-grained Human Evaluation 532

To compare LLM agent rule-learning with human 533

processes, we conducted a fine-grained evaluation 534

of rule-learning trajectories at every reasoning step. 535

Computer science graduate students assessed the 536

hypotheses and plans generated by both the IDEA 537

agent and human participants during the abduction, 538

deduction, and induction stages on a randomly se- 539

lected 50% subsample of puzzles. 540

Abduction stage. In this stage, agents formu- 541

late an initial hypothesis based on early observa- 542

tions—sometimes even guessing the ground truth 543

rule in simpler puzzles. Figure 4(a) indicates that 544

LLMs such as GPT-4o correctly identify the rule 545

during abduction about 30% of the time, while 546

only around 10% of human participants generate 547

a correct hypothesis under initial uncertainty. This 548

discrepancy suggests that deviations in rule learn- 549

ing between LLMs and humans emerge as early as 550

the abduction stage. LLMs tend to process every 551

word of the prompt and produce a hypothesis even 552

when unsure, whereas humans generally refrain 553

from formalizing hypotheses under uncertainty. 554
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(a) Abduction Correct Rate by Model and Puzzle Type
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(b) Effective Deduction Rate by Model and Puzzle Type
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(c) Effective Induction Rate by Model and Puzzle Type
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(d) Avg. Interactive Actions per Effective Induction
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Figure 4: Human Evaluation Results. Bars represent measured values per model and puzzle type; the absence of a bar indicates
zero or unavailable data. Plot (a): Abduction Correct Rate—the frequency of correctly guessing the rule during abduction. Plot
(b): Effective Deduction Rate—the rate at which deduction plans effectively validate hypotheses or solve puzzles. Plot (c):
Effective Induction Rate—the proportion of inductions where the refined hypothesis improved over the previous one. Plot (d):
Average Actions per Effective Induction—the average number of interactive actions needed for an effective induction.

Deduction stage. After establishing an initial hy-555

pothesis—or each time the agent refines its hy-556

pothesis—the agent derives a plan to validate it557

or attempt the puzzle. As shown in Figure 4(b),558

humans generally outperform LLMs in creating559

high-quality plans. These superior plans enable hu-560

mans to take a wider variety of actions, gathering561

more useful observations. According to Table 7562

in Appendix A.2, humans ultimately collect 20%563

more diverse observations compared with LLMs.564

Induction stage. Figure 4(c) shows the effective in-565

duction rate—the proportion of refined hypotheses566

that improve upon the previous version. Induc-567

tion is crucial for developing high-quality hypothe-568

ses, and humans excel at this stage, with 40% of569

their refined hypotheses showing improvement. In570

contrast, LLMs struggle to converge on the cor-571

rect rule, with effective induction rates below 20%.572

Moreover, they often fail to recognize conflicts be-573

tween observations and hypotheses—for example,574

Llama3-70B rarely engages in induction within Re-575

actor puzzles(see Appendix A.6.1).—resulting in576

redundant observations and fails the puzzle.577

Average interactions needed for effective induc-578

tion. Figure 4(d) shows that humans require fewer579

interactions—approximately four on average—to580

effectively refine their hypotheses, compared to581

LLMs. While LLMs can process initial informa-582

tion thoroughly and generate plausible hypotheses,583

they face challenges in refining these hypotheses584

based on new observations during interaction with 585

the environment (see Figure 7 in Appendix A.1). 586

This limitation suggests that LLMs may struggle to 587

learn from new observations and incorporate feed- 588

back to continuously improve their hypotheses and 589

problem-solving strategies. This gap may become 590

more pronounced when agents are faced with larger 591

action spaces and more complex rules. 592

7 Conclusion 593

In this work, we introduce RULEARN, a bench- 594

mark to evaluate LLM agents’ rule-learning abil- 595

ities in interactive environments. We propose 596

IDEA, an agent framework that mimics human 597

reasoning through abduction, deduction, and induc- 598

tion. Comprehensive experiments involving five 599

prominent LLMs and human participants reveal 600

that while IDEA significantly improves the rule 601

learning ability of LLM agents, there is still a large 602

gap between LLM and humans particularly in re- 603

fining hypotheses and adapting strategies. Despite 604

these advancements from the IDEA framework, 605

LLMs still face challenges in generating valid hy- 606

potheses and avoiding repetitive actions in com- 607

plex scenarios. Our findings underscore the need 608

for further development of LLMs that can emu- 609

late human cognitive processes more effectively in 610

explorations of novel environments. RULEARN 611

provides a foundational resource for future research 612

aimed at closing these gaps. 613
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8 Limitations614

While solving puzzles, the IDEA agent needs to615

manage long contexts. As exploration progresses616

and the agent encounters more observations, it must617

simultaneously process all observations. This re-618

quirement can limit its effectiveness in scenarios619

that involve lengthy contexts and complex rules,620

where extensive experimentation is needed to un-621

cover these rules. By prioritizing and focusing622

on more critical observations, we can enhance623

the IDEA agent’s performance in managing long-624

context scenarios and in tackling challenging puz-625

zles that require multiple steps to gather sufficient626

evidence.627
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A Appendix1436

A.1 Figures1437

Figure 5: An example of the IDEA agent solving a Reactor puzzle. At each step, the agent must choose whether to interact
with the environment or adjust its hypothesis and plan based on current observations. If observed facts contradict the existing
hypothesis, the agent is expected to refine its hypothesis. The refined hypothesis and plan will then guide subsequent exploration.
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Figure 6: The scaled performance radar plot shows varying performances across different puzzle types. GPT-4o leads, followed
by Llama 70B, GPT-3.5, Llama 8B, and Gemma 7B.
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Figure 7: Although agents continuously refine their hypotheses toward the ground truth rule, identifying the exact rule remains
a challenging task. According to our evaluation, humans have a 43.3% success rate in finding the ground truth rule, with 13% of
these discoveries occurring during the abduction stage and 30% during the induction stage. In contrast, LLM agents exhibit a
different pattern. They successfully identify the ground truth rule in approximately 30% of puzzles, with nearly all of these
discoveries occurring during the abduction stage and only 5% achieved through interaction and induction. This highlights a
significant limitation of current LLM agents, as they lack the ability to learn effectively from interactions. Consequently, the
rule-learning patterns of LLM agents differ markedly from those of humans.
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A.2 Tables 1438

Table 4: Function operator puzzle distribution

No. of Functions No. of Paramters No. Terms No. of Elementary Functions No. of puzzles

1 1 1 1 25
2 2 2 2 25
2 2 3 2 25
3 3 5 4 15
3 4 6 5 10

Table 5: Distribution of puzzles in the Escape Room scenario. For each number of paintings from 3 to 13, there are two visibility
conditions: one where all paintings are initially visible, and one where the agent must take actions to reveal all paintings. Under
each condition, there are five unique puzzles, resulting in a total of 10 puzzles per number of paintings.

No. of Paintings Visibility Condition No. of Puzzles

3 All visible at start 5
3 Requires actions to reveal 5
4 All visible at start 5
4 Requires actions to reveal 5
...

...
...

13 All visible at start 5
13 Requires actions to reveal 5

Table 6: Distribution of Reactor puzzles across the four rule categories. Each category contains 25 puzzles, drawn from the
same set of 25 distinct letter strings, which vary in length from 3 to 6 characters. Each puzzle requires the agent to synthesize a
target string according to the specified rule.

Reactor Rule No. Initial Letters No. of Puzzles

Simple Concatenation 2, 3, 4, 5, 6 6, 8, 7, 2, 2
Reverse Concatenation 2, 3, 4, 5, 6 6, 8, 7, 2, 2

Middle Insertion 2, 3, 4, 5, 6 6, 8, 7, 2, 2
Prefix Replacement 2, 3, 4, 5, 6 6, 8, 7, 2, 2

A.3 IDEA agent detail 1439

A.3.1 Environment Entities 1440

• Agent: Represents the entity focused on rule-learning and problem-solving, comprising the following 1441

components: 1442

* Goal (G): The objective of the agent, articulated in natural language. 1443

* Buffer Memories (M̃ := {m̃1, m̃2, . . . , m̃n}): This temporary storage holds all newly gen- 1444

erated information during the agent’s exploration, including actions taken, outcomes of each 1445

action, and observations. This is where the most recent activities are initially recorded. 1446

* Memories (M := {m1,m2, . . . ,mn}): This permanent memory stores all significant obser- 1447

vations and facts from the beginning of the task. When the agent forms new assumptions and 1448

plans, the contents of the Buffer Memories are evaluated; non-essential details like are dis- 1449

carded, while important facts and observations are transferred to the permanent Memories. This 1450

architecture ensures that each time the agent revises its hypotheses, it can clearly distinguish 1451

which observations occurred under the new assumptions and plan. 1452
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Table 7: Average Number of Repeated Actions Per Puzzle: Repeating actions is a common pattern among LLM agents during
rule-learning tasks. Even sophisticated models like GPT-4o often exhibit reduced action duplication when exploring environments
using the IDEA agent. The implementation of this agent has been shown to mitigate this tendency across all models. However,
Gemma-7B frequently generates nonsensical actions that are not recognized as duplicates. Consequently, a duplication rate of
0.02 does not necessarily indicate that Gemma-7B effectively avoids repeating historical actions.

Setup Model All Puzzles Function Operator Escape Room Reactor Puzzles

Deduction Only

Gemma-7B 6.54 4.05 8.74 6.83
Llama-8B 4.91 3.39 2.85 8.49
Llama-70B 3.39 2.47 1.44 6.25
GPT-3.5-Turbo 8.06 7.52 6.27 10.38
GPT-4o 2.51 2.01 0.65 4.86

Baseline

Gemma-7B 7.39 6.12 8.05 8.01
Llama-8B 6.26 6.41 3.24 9.13
Llama-70B 3.36 1.25 1.59 7.23
GPT-3.5-Turbo 6.87 6.85 4.09 9.66
GPT-4o 2.68 1.86 0.19 5.99

IDEA

Gemma-7B 5.0 3.65 7.1 4.26
Llama-8B 3.77 3.92 2.73 4.65
Llama-70B 1.73 0.43 0.72 4.05
GPT-3.5-Turbo 5.67 4.69 3.55 8.76
GPT-4o 2.37 1.32 1.25 4.53

Human 0.76 0.46 1.6 0.22

* Hypotheses (H): The current hypotheses formulated by the agent to explain all the observations,1453

are expressed in natural language.1454

* Plan (P): The current strategy devised by the agent to either test the correctness of the existing1455

hypotheses or to leverage these hypotheses to achieve the goal, also represented in natural1456

language.1457

* Action Space (A): A set of potential actions available to the agent, determined by its current1458

hypotheses and plan. The Action Space is dynamic and can change in response to interactions1459

with the environment. For example, after investigating a fridge, the agent gains the additional1460

option to open the fridge and inspect its contents.1461

• Objects (O): Represents all interactive entities within the environment that provide the agent with a1462

means to interact with the world. A single object in this set is denoted as O.1463

* Description (Do): A concise description of the object, detailing its nature and potential uses,1464

presented in natural language.1465

* Predefined interactive actions (OA := {ã1, ã2, . . . , ãn}): A set of actions that are predefined1466

for each object. Each action is described in natural language, explaining its purpose. Addi-1467

tionally, each action is associated with a coded function that processes the agent’s inputs and1468

produces an effect, potentially altering the environment based on these inputs.1469

A.3.2 Interactive Functions1470

• Perceptual Action:= â(O): An action automatically added to the agent’s action space for all objects1471

within the same scope. Upon perceiving an object, the agent gains the ability to interact more1472

detailedly with it, adding its interactive actions to the S.1473

• Interactive Action:= ã(Do,G,H,P, I, M̃,M): A predefinec action that triggers a pre-coded effect1474

based on the agent’s input I. For example, in using a reactor, the agent decides the materials and1475

their order of addition, and the reactor processes these inputs based on pre-coded rules to synthesize1476

new materials.1477

• Abductive Action:= ā(G, M̃): An action based on initial observations, allowing the agent to formu-1478

late the first hypotheses and generate a new plan.1479

• Inductive Action:= ȧ(G,H,P, M̃,M): An action based on the current observations, goals, prior1480

hypotheses, and previous plans, allowing the agent to refine hypotheses and generate new plans.1481
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• Deductive Action := ä(G,H,A,M, M̃): An action based on the current memories, hypothesis, and 1482

action space that generates a plan to either validate the current hypothesis or leverage it to solve 1483

problems. 1484

• Action select:=Fa(G,H,P,M̃,M,A)→ a: A function where the agent selects an action from the 1485

action space, considering all gathered information. 1486

With the definitions and entities described above, we can formalize our interactive, rule-learning process. 1487

The sequence begins with the agent selecting an action from the available action space. The agent then 1488

decides on an input based on the selected action. Once the action is executed, the environment responds 1489

by providing feedback to the agent. The outcome of this action results in changes to M̃,M,S,H,P and 1490

O, making the environment dynamic as the exploration process progresses. These changes reflect the 1491

agent’s interactions and adaptations to the evolving conditions within the environment. 1492

A.3.3 Pseudocode of interactive rule learning procedure 1493

Algorithm 2 Agent rule-learning procedure

1: procedure RULELEARNINGLOOP

2: Initialize O,A,G
3: M̃← Initial Memories
4: M← []
5: H← ā(G, M̃,A)
6: P← ä(G,H,A,M, M̃)
7: M̃.add("You established a new H and P.")
8: #step← 0 ▷ Initialize step counter
9: while G not achieved and step_count ≤ max_step do

10: a← Fa(G,H,P,M̃,M,A) ▷ Select an action from the action space
11: if a is a perceptual action then
12: action_result← execute_perceptual_action(a,O)
13: A← update_action_space(action_result)
14: M̃.add(action_result) ▷ Record result to buffer memory
15: else if a is an interactive action then
16: I← decide_input(a,Do,G, M̃,M,H,P) ▷ Agent decide Input for this action
17: action_result← execute_interactive_action(a, I)
18: O← update_states(action_result) ▷ update state of interactive objects
19: A← update_action_space(action_result) ▷ Action may change action space
20: #step = #step + 1 ▷ Only interactive action increment step count
21: M̃.add(action_result) ▷ Record result to buffer memory
22: else if a is an inductive action then
23: H← ȧ(G,H,P, M̃,M)
24: P← ä(G,H,A, M̃,M)
25: M.filter_add(M̃) ▷ Drop non-observational log and add the rest to M
26: M̃← [] ▷ Empty buffer memory
27: M̃.add("You established a new H and P.")
28: end if
29: end while
30: end procedure
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A.4 Computational Budget1494

For each setting (the Oracle agent, the Baseline, and the IDEA agent), we ran 300 different puzzles,1495

with costs totaling $188.10 for GPT-4o and $37.62 for GPT-3.5. For open-source models, we utilized 81496

RTX-A6000 GPUs. LLama3-70B required 5 days to complete its tasks, while Llama3-8b and Gemma-7b1497

each took 2.5 days. We recruited 50 students as human participants, each working for one hour and1498

receiving $15 as compensation. In total, we spent over $1,000 and utilized 80 GPU days for open-source1499

models. The experimental cost is notably higher compared to traditional QA datasets due to each puzzle1500

requiring over 20 steps and the rapid accumulation of context during solving.1501

A.5 Prompt example1502

A.5.1 Function Operator Puzzles1503

Figure 8: Prompt of Function Operator Puzzles, Action select and Deduction.
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Select Input Prompt
GOAl: You are Kevin. You need to assign values to the functions displayed on the <Computer>, determine the 
values of 'a' and 'b'. Then, input these values into the <Code secured door> in alphabetical order to open it. You 
can test your hypothesis by entering values into the door. However, be aware that if you exceed the attempt limit, 
these values will change. 
Kevin's current action is: Assign a value to the variable of Function #2 and see the output. Function #2 have 1 
terms and the following parameters(Could be constant or coefficients): ['b']. And you have the following information 
to decide what is the value you want to assign to the variable in Function #2:

Following is the actions that Kevin did previously:
You assign the value 1 to x of the function #1, and then the function outputs 6. (Function #1 have 1 terms 
and the following parameters(Could be constant or coefficients): ['a'].) ……

After previous exploration, you have the following hypothesis and plan: 
Hypothesis and plan……

Following is the x most recent things that Kevin have done under your current hypothesis:
Most recent explorations guided by latest hypothesis and plan……

Please follow the following steps to generate your final answer.
**Step 1:** Reflect on your recent experience and consider which value for the variable 'x' would be most helpful in 
decoding the parameters. State your reason of choosing this value. **Step 2:** Please enter the value you wish to 
assign to 'x', enclosed in square brackets, you can input 'pi', '0.5*pi', 'any_integer*pi', 'any_decimal*pi', any 
decimal, and any integer. For example, if you want to assign the value 12 to 'x', you should type ['12']. If you want 
to assign the value 0.5pi to 'x', you should type ['0.5*pi']. Please do not use fraction and "/" mark, please use 
decimal multiplication instead.

**Generated_answer**:  "Step 1": "Assign x=1 to Function #2 to isolate 'b' since the output equals b/x, making the 
output equal to 'b'. This helps us find the exact value of 'b', simplifying our calculations for Function #1.",
  "Step 2": "[1]"

Agent generated answer: ……

Induction & Deduction Prompt
GOAL: Same as left…
Your task is to validate and modify your 
previous hypothesis, detailed here:
Previous Hypothesis and plan……

Determine if your current hypothesis is 
still valid. If it is, describe the next steps 
you plan to take towards your goal. If it is 
not, revise your hypothesis to accurately 
reflect all observations, both recent and 
prior. Finally, provide a plan for your next 
steps. Your response should include both 
your current hypothesis and your planned 
actions.

Following is the actions that Kevin did 
previously:
You assign the value 1 to x of the 
function #1, and then the function 
outputs 6. (Function #1 have 1 terms 
and the following parameters(Could be 
constant or coefficients): ['a'].) ……

Action Space……

Agent generated answer: ……

Figure 9: Prompt of Function Operator Puzzles, Interactive input and Induction.

Figure 10: An example of Function Operator Puzzles is provided where actions marked in green are interactive actions, while
the rest are perceptual actions through which the agent reads and perceives necessary environmental information.
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Figure 11: In the provided example, despite extensive exploration, the agent continues to assign multiple values to the function.
In contrast, the IDEA agent hypothesizes that the function is simple, possessing only a single constant parameter. Consequently,
this agent efficiently solves the puzzle by assigning just one value to the function.
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A.5.2 Escape Room Puzzles 1504

Figure 12: Prompt of Escape Room puzzles, Action select and Abduction.

Select Input Prompt
GOAL:In this puzzle, set in an art gallery, Kevin must uncover the password for the <Code Secured Door> by 
discovering the relationships between the password and the paintings. And finally input the password into the 
<Code Secured door>. You can test your hypothesis by entering the password into the door. However, be aware 
that if you exceed the attempt limit, the password and hint will change. 
Kevin's current action is: Input code to the Code Secured Door and try opening it And you have the 
following information to decide what is the correct password:

Following is the actions that Kevin did previously:
Kevin tried the following action: Input code to the Code Secured Door and try opening it, Kevin's decision 
is 421, but the password was incorrect.Kevin's first digit 4 is incorrect. Kevin's second digit 2 is correct. 
Kevin's third digit 1 is incorrect. ……

After previous exploration, you have the following hypothesis and plan: 
Hypothesis and plan……

Following is the x most recent things that Kevin have done under your current hypothesis:
Most recent explorations guided by latest hypothesis and plan……

Please follow the following steps to generate your final answer.
**Step1** reflect the recent experience, what do you think is the password to <Code Secured 
Door> is? Please only use information provided to do inference and give your reason. **Final 
Step** Please generate your final answer in a pair of square brackets. eg, if you think the final 
password is '999' you should output [‘999’], if you think the output is '090' please output [‘090’].

Agent generated answer: ……

Induction & Deduction Prompt
GOAL: Same as left…
Your task is to validate and modify your 
previous hypothesis, detailed here:
Previous Hypothesis and plan……

Determine if your current hypothesis is 
still valid. If it is, describe the next steps 
you plan to take towards your goal. If it is 
not, revise your hypothesis to accurately 
reflect all observations, both recent and 
prior. Finally, provide a plan for your next 
steps. Your response should include both 
your current hypothesis and your 
planned actions.

Following is the actions that Kevin did 
previously:
Kevin tried the following action: Input 
code to the Code Secured Door and try 
opening it, Kevin's decision is 421, but 
the password was incorrect.Kevin's first 
digit 4 is incorrect. Kevin's second digit 2 
is correct. Kevin's third digit 1 is incorrect. 
……

Action Space……

Agent generated answer: ……

Figure 13: Prompt of Escape Room puzzles, Interactive Input and Induction.
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Figure 14: An example of Escape Room is provided where actions marked in green are interactive actions. The remaining
actions, which are perceptual, allow the agent to read and gather necessary environmental information. In the given example,
although the agent successfully guesses the correct rule behind the observations, it fails to adhere to its plan and assumptions.
When inputting the password, the attempts do not align with the planned strategy, and it also makes repeated attempts (repeated
101 twice) that yield no useful results.
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A.5.3 Reactor Puzzles 1505

Figure 15: Prompt of Reactor Puzzles, Action select and Abduction

Select Input Prompt
GOAL: You are Kevin. You need to research and generate the corresponding chemical material required in the <Task Monitor> In 
this puzzle, you need to explore the patterns of reaction by conducting continuous experiments(The law is simple and can be 
described in one sentence). Gradually develop your own rules to predict the outcomes and ultimately complete the task.You know 
from an incomplete list of reaction equations that: XY+Z = ZXY. 
Kevin's current action is: Choose material you want to synthesize, and turn on the Reactor. And you have the 
following information to decide what material you put into the reactor:

Following is the actions that Kevin did previously:
By turning on the reactor B and C turned into CB after the reaction. And you put the products into your storage for 
later use. …….

After previous exploration, you have the following hypothesis and plan: 
Hypothesis and plan……

Following is the x most recent things that Kevin have done under your current hypothesis:
Most recent explorations guided by latest hypothesis and plan……

Please follow the steps below to decide which materials you should put into the reactor.

**Step 1:**Given all the material in the storage you can use and synthetics you require to create:You currently have 
the following items in your storage: ……
Decide which (one or two) material you want to put into the reactor this time you can select any material from your 
storage, you need to clear specify the reaction you excepted and state the formula.
**Step 2:** Please copy the name of the selected material and paste the name into a pair of parentheses, and 
separate two different material with comma. The name should be exactly as provided, enclosed in parentheses, for 
example, if you want to put a unit of X and a unit of Y into the reactor and make an reaction, please answer (X, Y), if 
you want to see what comes out the reactor with material <XY> and <Z> you should answer(XY, Z). You can only 
choose the material that listed in your storage. Please do not forget the parentheses!

Agent generated answer: ……

Induction & Deduction Prompt
GOAL: Same as left…
Your task is to validate and modify your 
previous hypothesis, detailed here:
Previous Hypothesis and plan……

Determine if your current hypothesis is 
still valid. If it is, describe the next steps 
you plan to take towards your goal. If it is 
not, revise your hypothesis to accurately 
reflect all observations, both recent and 
prior. Finally, provide a plan for your next 
steps. Your response should include both 
your current hypothesis and your 
planned actions.

Following is the actions that Kevin did 
previously:
By turning on the reactor B and C turned 
into CB after the reaction. And you put 
the products into your storage for later 
use. …….

Action Space……

Agent generated answer: ……

Figure 16: Prompt of Reactor puzzles, Interactive input and Induction.
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Figure 17: An example of Reactor Puzzles is provided where actions marked in green are interactive actions. The remaining
actions are perceptual, allowing the agent to read and gather necessary environmental information. In the given example, the
agent eventually realizes the flaws in its initial hypothesis and generates a correct one. However, the agent reaches the step limit
before it can implement the solution, failing.
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A.6 Human participants interface 1506

Figure 18: An example of what human participants see during the experiment. Human participants view the same prompt as the
LLM agents, except for additional overview information clarifying their responsibilities in the project. The name "{Nick_name}"
is a pseudonym used to differentiate participants; we require participants to use only fictitious nicknames rather than their real
names to ensure that the data collected is de-identified.
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A.6.1 Hallucination examples1507

Agent fail to identify the contradiction

**Generated_answer**
"Step1": "Reviewing the two provided actions, the first 
action involves synthesizing a new material with the 
Reactor, while the second action involves modifying the 
hypothesis or plan. Kevin's observation so far aligns with 
his hypothesis.",
  "Step2": "Given that the hypothesis has been verified 
(CA from A and C), Kevin should continue with the 
synthesis to achieve the goal of CADEA. Utilizing 
available materials and continuing with described pattern 
CA lead to CA -> CAA and onwards towards CADEA.",
  "Selected_Action": "[1]"

The agent has already verified its hypothesis by 
synthesizing CA from A + C; however, in the next 
step, the agent tends to synthesize CAA, which is 
not part of the final target product. Despite knowing 
the rule, the agent fails to leverage this rule 
effectively towards achieving the final goal.

Agent’s new observation contradict to current hypothesis
You are Kevin. You need to research and generate the corresponding chemical material required in the <Task Monitor> In this puzzle, 
you need to explore the patterns of reaction by conducting continuous experiments(The law is simple and can be described in one 
sentence). Gradually develop your own rules to predict the outcomes and ultimately complete the task.You know from an incomplete list 
of reaction equations that: XY+Z = ZXY. 
Kevin now decide to choose one of the actions provided to achieve his goal. Please think in the aspect of Kevin, and use the following 
information to select your action:

Following is the actions that Kevin did previously:
You entered Chemical laboratory. Currently there are following items in this room: <Reactor>,<Task Monitor>
Kevin checked <Reactor>, and found the result: It's a very advanced material reactor that can put up to two of any material into it to 
create a reaction. The reactor provided unlimited one-letter raw material and other materials you've already synthesized.
Kevin checked <Task Monitor>, and found the result: It's a quest display that shows you the current quest you need to complete, which 
currently reads, "Please synthesise a unit of <CADEA> materials and put it into the slot under the monitor."
After previous exploration, you have the following hypothesis and plan: 
"hypothesis": "When combining two materials, the second material is added at the beginning of the first material's sequence.",
"plan": "To verify this hypothesis, I will put material <A> first and then material <C> into the reactor.", please act based on your 
hypothesis and plan.

Following is the 1 most recent things that Kevin have done under your current hypothesis:
By turning on the reactor A and C turned into CA after the reaction. And you put the products into your storage for later use.
You currently have the following items in your storage: <A>, <B>, <C>, <D>, <E>, <CA>

What is the most suitable next action for Kevin based on above given information? Below are the available actions:
1th action: Choose material you want to synthesize, and turn on the Reactor.
2th action: Modify previous hypothesis and make a new plan: (Take this action when your current observations contradict your previous 
hypothesiss or your current plan is fulfilled.)
Above 2 provided actions are not yet performed by Kevin don't assume its outcome, please following the steps to generate your final 
answer. You MUST select one of the provided actions. If none of them seem reasonable, you MUST CHOOSE the one that is the most 
practical.
**Step1:** Review all the provided actions. Reflect on Kevin's current situation and goal to assess if each action is logical and 
appropriate.
**Step2:** Choose the most logical action. Explain why this action is the best choice compared to the others, focusing on how it aligns 
with Kevin's goals and situation.
**Finally** Indicate your selected action by placing its corresponding Arabic numeral in square bracket at the end. For example, if the 
third action is chosen, write [3]. Please do not use square bracket anywhere else other than final answer.

Figure 19: Example of GPT-4o agent failing to leverage rule towards the result.

Agent fail to identify the contradiction

**Generated_answer**: 

"current_hypothesis": "The reaction pattern 
allows combining the elements of the first 
reactant with the second reactant directly 
without rearrangement.", 
"plan_for_verification": "Test the reaction by 
combining B and XY to check if it results in 
BXY.

Agent already inferred from the initial 
observations that AB+C = ACB and listed that 
in the hypothesis. However, it failed to 
leverage the hypothesis effectively, and the 
refined hypothesis was nonsensical given the 
observations, leading the hypothesis further 
away from the truth.

Agent’s new observation contradict to current hypothesis
You are Kevin. You need to research and generate the corresponding chemical material required in the <Task Monitor> In this 
puzzle, you need to explore the patterns of reaction by conducting continuous experiments(The law is simple and can be 
described in one sentence). Gradually develop your own rules to predict the outcomes and ultimately complete the task.You 
know from an incomplete list of reaction equations that: XY+Z = XZY. 

Your task is to validate and modify your previous hypothesis, detailed here:  
"current_hypothesis": "The reaction pattern follows the format AB+C = ACB, where the first reactant's elements are 
rearranged with the second reactant at the end.",
"plan_for_verification": "To verify the rule, I will test the reaction between materials A and C to check if the outcome aligns with 
the expected pattern of ACB.", using your new observations. Review your most recent observation: Following is the 6 most 
recent things that Kevin have done 
Following is the actions that Kevin did previously:
You entered Chemical laboratory. Currently there are following items in this room: <Reactor>,<Task Monitor>
Kevin checked <Task Monitor>, and found the result: It's a quest display that shows you the current quest you need to 
complete, which currently reads, "Please synthesise a unit of <ACB> materials and put it into the slot under the monitor."
Kevin checked <Reactor>, and found the result: It's a very advanced material reactor that can put up to two of any material 
into it to create a reaction. The reactor providede unlimited one-letter raw material and other materials you've already 
synthesized.
By turning on the reactor A and C turned into AC after the reaction. And you put the products into your storage for later use.
By turning on the reactor AC and B turned into ABC after the reaction. And you put the products into your storage for later 
use.
By turning on the reactor AC and B turned into ABC after the reaction. And you put the products into your storage for later 
use.
By turning on the reactor AC and B turned into ABC after the reaction. And you put the products into your storage for later 
use.
By turning on the reactor ABC and A turned into ABAC after the reaction. And you put the products into your storage for later 
use.

Determine if your current hypothesis is still valid. If it is, describe the next steps you plan to take towards your goal. If it is not, 
revise your hypothesis to accurately reflect all observations, both recent and prior. Finally, provide a plan for your next steps. 
Your response should include both your current hypothesis and your planned actions.

Figure 20: Example of hallucination by GPT-4o when refining previous hypothesis.
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Agent fail to identify the contradiction

**Generated_answer**: 

Upon reviewing the provided actions, I find that 
action 1 is the most logical choice. Since Kevin's 
goal is to synthesize CCADD and he has already 
tested his initial hypothesis by combining A and B, 
the next step would be to continue testing his 
hypothesis by combining C and D. This aligns with 
his plan to refine his rule and ultimately achieve his 
goal. Kevin can now proceed to combine C and D 
in the reactor. [1]

The agent hypothesized that the materials 
combine in a consistent, alphabetical order; 
however, its most recent experiment shows 
the result A+B = BA, which contradicts this 
hypothesis. Noticing the contradiction, the 
agent should choose the second action to 
refine its hypothesis rather than continue to 
synthesize the materials under the incorrect 
hypothesis.

Agent’s new observation contradict to current hypothesis
You are Kevin. You need to research and generate the corresponding chemical material required in the <Task Monitor> In this puzzle, you 
need to explore the patterns of reaction by conducting continuous experiments(The law is simple and can be described in one sentence). 
Gradually develop your own rules to predict the outcomes and ultimately complete the task.You know from an incomplete list of reaction 
equations that: XY+Z = ZXY. 
Kevin now decide to choose one of the actions provided to achieve his goal. Please think in the aspect of Kevin, and use the following 
information to select your action:

Following is the actions that Kevin did previously:
You entered Chemical laboratory. Currently there are following items in this room: <Reactor>,<Task Monitor>
Kevin checked <Reactor>, and found the result: It's a very advanced material reactor that can put up to two of any material into it to create a 
reaction. The reactor provided unlimited one-letter raw material and other materials you've already synthesized.
Kevin checked <Task Monitor>, and found the result: It's a quest display that shows you the current quest you need to complete, which 
currently reads, "Please synthesise a unit of <CCADD> materials and put it into the slot under the monitor."

After previous exploration, you have the following hypothesis and plan: 
Initial Hypothesis: Materials combine in a consistent, alphabetical order, resulting in the longest possible string of unique letters.
To test this hypothesis, I will combine <A> and <B> to see if AB is produced, and then combine <C> and <D> to see if CD is produced. If my 
hypothesis holds, these reactions will occur, and I can further refine my rule., please act based on your hypothesis and plan.

Following is the 1 most recent things that Kevin have done under your current hypothesis:
By turning on the reactor A and B turned into BA after the reaction. And you put the products into your storage for later use.

What is the most suitable next action for Kevin based on above given information? Below are the available actions:
1th action: Choose material you want to synthesize, and turn on the Reactor.
2th action: Modify previous hypothesis and make a new plan: (Take this action when your current observations contradict your previous 
hypothesis or your current plan is fulfilled.)

Above 2 provided actions are not yet performed by Kevin don't assume its outcome, please following the steps to generate your final answer. 
You MUST select one of the provided actions. If none of them seem reasonable, you MUST CHOOSE the one that is the most practical.
**Step1:** Review all the provided actions. Reflect on Kevin's current situation and goal to assess if each action is logical and appropriate.
**Step2:** Choose the most logical action. Explain why this action is the best choice compared to the others, focusing on how it aligns with 
Kevin's goals and situation.
**Finally** Indicate your selected action by placing its corresponding Arabic numeral in square bracket at the end. For example, if the third 
action is chosen, write [3]. Please do not use square bracket anywhere else other than final answer.

Figure 21: Example of Llama-3 70B agent failing to detect a contradiction in experimental results.

Figure 22: Example of hallucination by Llama-3 70B when generating a password.
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A.7 Puzzle Examples1508

Function Operator Puzzle No. 2 (3 functions, 2 unknown parameters, 2 elementary functions)
Goal: You are Kevin. You need to assign values to the functions displayed on the <Computer>, determine the values of 'a' and 'b'. Then, input 
these values into the <Code secured door> in alphabetical order to open it.You can test your hypothesis by entering values into the door. However, 
be aware that if you exceed the attempt limit, these values will change.

Initial Memories: 
1, Kevin checked <Code secured door>, and found the result: This <Code secured door> is the only exit from this room. To unlock it and leave, you 
must enter the correct code. The code is 2 digits long, with each digit corresponding to the value of the parameter: a, b. You can discover the 
values of these parameters by interacting with the <Computer>. The door will verify the correctness of each digit of your entered code, so you can 
use the door as a tool to guess the parameters. However, if you fail 4 times, the parameter values will change.
2, Kevin checked <Computer>, and found the result: This <Computer> consists of 2 different univariate functions, each with one variable, x. Each 
function is composed of one or more of the following monomials: "x^2" (square of x) and 'sin(x)'. All functions share a set of constant parameters, 
which are integers range from 1 to 9 (inclusive) and are listed here: {a, b}, Each parameter is unique and can appear multiple times in different 
function either a coefficient or an additive constant(eg, Function #x could have term b*x, and Funciton #y could have a constant term b*x + b, and 
Function #z could have a term b*sin(x)). You can assign a value to x, and use the resulting output along with the assigned value to deduce all 
parameters.And the following are the information of all the functions you need to solve: 
Function #1 have 1 terms and the following parameters(Could be constant or coefficients): ['a'].
Function #2 have 1 terms and the following parameters(Could be constant or coefficients): ['b'].

Provided Interactive actions:
1th action: Input code to the Code secured door and try opening it
2th action: Assign a value to the variable of Function #1 and see the output. Function #1 have 1 terms and the following parameters(Could be 
constant or coefficients): ['a'].
3th action: Assign a value to the variable of Function #2 and see the output. Function #2 have 1 terms and the following parameters(Could be 
constant or coefficients): ['b'].

Figure 23: Function operator puzzle No. 2.

Function Operator Puzzle No. 17 (3 functions, 3 unknown parameters, 4 elementary functions)
Goal: You are Kevin. You need to assign values to the functions displayed on the <Computer>, determine the values of 'a', 'b', 'c'. Then, input these 
values into the <Code secured door> in alphabetical order to open it.You can test your hypothesis by entering values into the door. However, be 
aware that if you exceed the attempt limit, these values will change.
Initial Memories: 
1, Kevin checked <Code secured door>, and found the result: This <Code secured door> is the only exit from this room. To unlock it and leave, you 
must enter the correct code. The code is 3 digits long, with each digit corresponding to the value of the parameter: a, b, c. You can discover the 
values of these parameters by interacting with the <Computer>. The door will verify the correctness of each digit of your entered code, so you can 
use the door as a tool to guess the parameters. However, if you fail 4 times, the parameter values will change.
2, Kevin checked <Computer>, and found the result: This <Computer> consists of 3 different univariate functions, each with one variable, x. Each 
function is composed of one or more of the following monomials: '|x|' (absolute value of x),'x',"x^2" (square of x) and 'sin(x)'. All functions share a 
set of constant parameters, which are integers range from 1 to 9 (inclusive) and are listed here: {a, b, c}, Each parameter is unique and can appear 
multiple times in different function either a coefficient or an additive constant(eg, Function #x could have term b*x, and Function #y could have a 
constant term b*x + b, and Function #z could have a term b*sin(x)). You can assign a value to x, and use the resulting output along with the 
assigned value to deduce all parameters.And the following are the information of all the functions you need to solve: 
Function #1 have 2 terms and the following parameters(Could be constant or coefficients): ['a', 'b'].
Function #2 have 2 terms and the following parameters(Could be constant or coefficients): ['a', 'c'].
Function #3 have 1 terms and the following parameters(Could be constant or coefficients): ['c'].
Provided Interactive actions:
1th action: Input code to the Code secured door and try opening it
2th action: Assign a value to the variable of Function #2 and see the output. Function #2 have 2 terms and the following parameters(Could be 
constant or coefficients): ['a', 'c'].
3th action: Assign a value to the variable of Function #1 and see the output. Function #1 have 2 terms and the following parameters(Could be 
constant or coefficients): ['a', 'b'].
4th action: Assign a value to the variable of Function #3 and see the output. Function #3 have 1 terms and the following parameters(Could be 
constant or coefficients): ['c'].

Figure 24: Function operator puzzle No. 17.
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Escape Room Puzzle No. 3 (6 Paintings, All Paintings visible)
Goal: In this puzzle, set in an art gallery, Kevin must uncover the password for the <Code Secured Door> by discovering the relationships between 
the password and the paintings. And finally input the password into the <Code Secured door>. You can test your hypothesis by entering the 
password into the door. However, be aware that if you exceed the attempt limit, the password and hint will change.

Initial Memories: 
1, You entered Corridor. Currently there are following items in this room: <Code Secured Door>,<Emerald Tide Oil Paint>,<Sapphire Night Oil 
Paint>,<Bluebell Woods Acrylic Paint>,<Morning Glory Acrylic Paint>,<Arctic Silence Watercolor Paint>,<River Reflections Watercolor Paint>
2, Kevin checked <Code Secured Door>, and found the result: This coded door is the only exit from this room, and you can only leave this room by 
entering the correct code. The password consists of three digits.
3, Kevin checked <Bluebell Woods Acrylic Paint>, and found the result: It's an acrylic painting of blue woods.
4, Kevin checked <Arctic Silence Watercolor Paint>, and found the result: It's an watercolor painting of blue arctic.
5, Kevin checked <River Reflections Watercolor Paint>, and found the result: It's an watercolor painting of blue river.
6, Kevin checked <Morning Glory Acrylic Paint>, and found the result: It's an acrylic painting of yellow morning.
7, Kevin checked <Sapphire Night Oil Paint>, and found the result: It's an oil painting of a blue night sky.
8, Kevin checked <Emerald Tide Oil Paint>, and found the result: It's an oil painting of a green tide.
9, Currently, you see from a note on the ground that says: "Focus on blue it hides the truth."

Provided Interactive actions:
1th action: Input code to the Code Secured Door and try opening it
2th action: Try opening the Code Secured Door with brute force

Figure 25: Escape room puzzle No. 3

Escape Room Puzzle No. 13 (6 Paintings, Need to actively explore the gallery to reveal all paintings)
Goal: In this puzzle, set in an art gallery, Kevin must uncover the password for the <Code Secured Door> by discovering the relationships between 
the password and the paintings. And finally input the password into the <Code Secured door>. You can test your hypothesis by entering the 
password into the door. However, be aware that if you exceed the attempt limit, the password and hint will change.

Initial Memories: 
1, You entered Oil Painting Gallery. Currently there are following items in this room: <Emerald Tide Oil Paint>,<Sapphire Night Oil Paint>,<Code 
Secured Door>,<Watercolour Gallery Entrance>,<Acrylic Painting Gallery Entrance>
2, Kevin checked <Code Secured Door>, and found the result: This coded door is the only exit from this room, and you can only leave this room by 
entering the correct code. The password consists of three digits.
3, Kevin checked <Watercolour Gallery Entrance>, and found the result: It's an automatic door with a poster next to it that says "Watercolour 
Gallery".
4, Kevin checked <Acrylic Painting Gallery Entrance>, and found the result: It's an automatic door with a poster next to it that says "Acrylic Painting 
Gallery."
5, Kevin checked <Sapphire Night Oil Paint>, and found the result: It's an oil painting of a blue night sky.
6, Kevin checked <Emerald Tide Oil Paint>, and found the result: It's an oil painting of a green tide.
7, Currently, you see from a note on the ground that says: "Focus on blue it hides the truth."

Provided Interactive actions:
1th action: Input code to the Code Secured Door and try opening it
2th action: Try opening the Code Secured Door with brute force
3th action: Pass through the Watercolour Gallery Entrance and reaches the Watercolour Gallery.
4th action: Pass through the Acrylic Painting Gallery Entrance and reaches the Acrylic Painting Gallery.

Figure 26: Escape room puzzle No. 13
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Reactor Puzzle No.  8 (Reverse concatenation rule, Target material: “CADEA”)
Goal: You are Kevin. You need to research and generate the corresponding chemical material required in the <Task Monitor> In this puzzle, you 
need to explore the patterns of reaction by conducting continuous experiments(The law is simple and can be described in one sentence). Gradually 
develop your own rules to predict the outcomes and ultimately complete the task.
Initial Memories: 
1, Kevin checked <Reactor>, and found the result: It's a very advanced material reactor that can put up to two of any material into it to create a 
reaction. The reactor provided unlimited one-letter raw material and other materials you've already synthesized.
2, Kevin checked <Task Monitor>, and found the result: It's a quest display that shows you the current quest you need to complete, which currently 
reads, "Please synthesise a unit of <CADEA> materials and put it into the slot under the monitor."
3, You currently have the following items in your storage: <A>, <B>, <C>, <D>, <E>.
4, You know from an incomplete list of reaction equations that: XY+Z = ZXY. 
Provided Interactive actions:
1th action: Choose material you want to synthesize, and turn on the Reactor.

Reactor Puzzle No.  14 (Middle insertion rule, Target material: “ABCDEF”)
Goal: You are Kevin. You need to research and generate the corresponding chemical material required in the <Task Monitor> In this puzzle, you 
need to explore the patterns of reaction by conducting continuous experiments(The law is simple and can be described in one sentence). 
Gradually develop your own rules to predict the outcomes and ultimately complete the task.
Initial Memories: 
1, Kevin checked <Reactor>, and found the result: It's a very advanced material reactor that can put up to two of any material into it to create a 
reaction. The reactor provided unlimited one-letter raw material and other materials you've already synthesized.
2, Kevin checked <Task Monitor>, and found the result: It's a quest display that shows you the current quest you need to complete, which currently 
reads, "Please synthesise a unit of <ABCDEF> materials and put it into the slot under the monitor."
3, You currently have the following items in your storage: <A>, <B>, <C>, <D>, <E>, <F>
4, You know from an incomplete list of reaction equations that: XY+Z = XZY. 
Provided Interactive actions:
1th action: Choose material you want to synthesize, and turn on the Reactor.

Figure 27: Reactor puzzle No. 8 and No. 14
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