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Abstract

As foundation Vision-Language Models (VLMs) unlock fine-tuning on smaller
datasets while leveraging large-scale pre-training data, machine unlearning be-
comes critical in addressing privacy concerns and regulatory compliance. Task
vector, representing the difference between parameters of models fine-tuned with
and without specific data, is a popular retraining-free unlearning strategy. However,
we observe that task vectors exhibit substantial sensitivity to various fine-tuning
configurations, resulting in unstable unlearning effectiveness that correlates neg-
atively with the prediction-level variance. While aggregating multiple functions
(e.g., VLM with classifier) whose parameters are represented by different task vec-
tors reduces function variance and improves unlearning, the computational cost of
obtaining numerous task vectors and aggregating functions is computationally high.
Thus, in order to capture the space of task vectors induced by diverse fine-tuning
strategies, we propose modeling it within the convex hull of (Q−1)-simplex whose
vertices represent Q task vectors. Although a function ensemble can be formed
by sampling numerous task vectors from such a simplex, we derive a closed-form
ensemble of an infinite number of functions whose parameters are uniformly sam-
pled from the simplex, enabling efficient function-level task vector ensembling
with enhanced unlearning performance. Extensive experiments and analyses across
diverse datasets and scenarios demonstrate the efficacy of our method.

1 Introduction

Vision-Language Models (VLMs), such as CLIP [52] and its derivatives [39, 41] including adversari-
ally fine-tuned VLMs [45, 13, 14, 20, 12, 15], enjoy remarkable generalization due to pre-training on
massive-scale datasets [65]. Given their superior performance on various tasks, including notable
robustness in single-modal settings [17, 16, 19, 10, 18, 9], significant privacy concerns and regulatory
compliance challenges arise regarding data erasure rights mandated by regulations [53, 2]. Conse-
quently, developing efficient unlearning models that can effectively “forget” specific data is critical to
responsible deployment, as simply retraining VLMs from scratch is prohibitive [42].

Among machine unlearning approaches [23, 25, 4], so-called task vector arithmetic [29] is a very
effective plug-and-play strategy. Task vector is defined as the difference of parameters of the model
fine-tuned on the target data (e.g., data to be removed) and the original model. The simplicity of
task vector arithmetic makes it suitable for large-scale VLMs. Subtracting a task vector from the
original model’s parameters enables its efficient unlearning without retraining. It reduces the model’s
performance on a target dataset (forget set) and preserves performance on the remainder of the
original data. However, the unlearning performance inherently depends on the quality of task vectors,
which differ between fine-tuning runs, leading to prediction-level uncertainty due to variance that is
unaccounted for in task vector arithmetic.
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Figure 1: Accuracy on forget set vs. class
variance w.r.t. the number of task vectors
Q used by Q prediction functions that
we aggregate. We varied λ (defined in
text) to sustain the retain set accuracy of
60.4%±0.3 as per protocol [29].

To support our claim, Figure 1 reveals the relationship
between the average unlearning accuracy on the forget
set and the corresponding average prediction-level vari-
ance across 8 datasets, computed using function-level en-
sembles (VLMs with classifier) with varying numbers
of task vectors Q. Specifically, we obtain an ensem-
ble µ(x) = 1

Q

∑Q
i=1 f(x;θ0−λτ i) (see [8]) with vari-

ance σ2(x)=−µ2(x)+ 1
Q

∑Q
i=1 f

2(x;θ0−λτ i) where
f(· ; θ0) : Rin_size → [0, 1]C is a VLM with original
training parameters θ0 ∈ Rpar_size and a SoftMax clas-
sifier with C classes. Let τ 1, . . . , τQ be Q task vectors
obtained by fine-tuning f(·,θ0) Q times under different
augmentations on the forget set (protocol of [29]), which
transforms θ0 into θi for i=1, . . . , Q. Task vectors, de-
fined as τ i=θi − θ0, are constructed by fine-tuning on 8
datasets, and evaluated on the function ensemble by aver-
aging the forget accuracy and variance over their test sets.
In detail, we fine-tuned/tested on forget datasets (Stanford Cars, DTD, EuroSAT, GTSRB, MNIST,
RESISC45, SUN397, SVHN). Retain accuracy is obtained on ImageNet. See Section 4.1 for details.

Our findings indicate a strong negative correlation: increased prediction variance corresponds to
poorer unlearning (higher forget set accuracy indicates worse unlearning). Conversely, aggregating
additional task vectors into the function-level ensemble consistently reduces prediction variance and
improves unlearning efficacy. This finding is supported by the Bienaymé formula under the average
correlation of distinct variables ρ≥0 and a shared variance σ2, defined as σ̄2= σ2

Q +
(
1− 1

Q

)
ρσ2,

which dictates that σ̄2 decreases as Q grows ifor sufficiently small ρ. Thus, we note that aggregating
multiple functions of different task vectors can lower the prediction variance and improve unlearning.

However, increasing the number of aggregated functions (one per task vector) is costly, as obtaining
each task vector requires fine-tuning. Thus, we propose to replace individual task vector arithmetic
with the task (Q−1)-simplex whose vertices are Q task vectors. Averaging task vectors realizes
a multi-task setting [29]. Thus, uniformly sampling a simplex can provide an infinite number of
interpolations between task vectors (i.e., interpolation between 1, 2, . . . , Q task vectors), realizing an
infinite number of tasks encapsulated by the task simplex. However, aggregating an infinite number of
functions by naively sampling the task simplex is prohibitive. Instead, we leverage a Taylor expansion
and derive a computationally efficient closed-form expectation over an infinite number of functions
realized by an infinite uniform sampling of such a task simplex. We show that our model leads to
the celebrated bias-variance trade-off [33] and we provide the means of penalizing the variance by
learning the importance of vertices or improving their location within a small ℓ2 ball of ϵ radius.

Our task simplex unlearning outperforms state-of-the-art approaches based on task vector unlearning
across 8 datasets. We also show that with task simplex, one can devise a simple incremental
unlearning, allowing gradual removal of data. Our main contributions are summarized as follows:

i. We analyze unlearning effectiveness vs. function-level (VLM with a classifier) variance in an
ensemble of functions of task vectors. As the Bienaymé formula dictates, increasing the number
of functions (and thus task vectors) decreases the variance and improves unlearning performance.

ii. Motivated by the additive task vector arithmetic, we propose a (Q−1)-task simplex whose
vertices are task vectors. Sampling from such a simplex can yield an interpolated task vector
between any number of task vector vertices, facilitating multi-task learning.

iii. As aggregating a large number of functions of task vectors is computationally prohibitive, we
propose a closed-form ensemble of the infinite number of functions of interpolated task vectors
sampled uniformly from the task simplex. To this end, we use 1) Taylor expansion, 2) Jacobian
and Hessian of the function evaluated at θ0, and 3) the expected value over outer products of
interpolated vectors sampled from the simplex, obtained from properties of Dirichlet distribution.

iv. We show our closed-form ensemble leads to the bias-variance trade-off by enabling penalizing
variance. We also replace the mean aggregation of an infinite number of functions with the
probability of at least one success of each class in the infinite trial. Finally, we show that we can
distill unlearned parameters from the ensemble (if the final model follows the original VLM).
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2 Related Works

Machine Unlearning for VLMs facilitates selective removal of specific knowledge or data (forget set)
while preserving knowledge of remaining data, and helps address privacy protection and regulatory
compliance [2]. This privacy challenge is especially pronounced in VLMs, given their superior
generalization due to extensive pre-trained data [42]. Recent efforts in unlearning for foundation
VLM include: (i) incremental fine-tuning of VLMs on datasets from which the target knowledge is
removed [38, 61], (ii) gradient ascent at the parameter level to erase target knowledge [63, 57], and
(iii) pruning model neurons associated with the target knowledge [43]. Arithmetic on task vector [29],
defined as parameter differences between models fine-tuned with and without specific data, enables
efficient and scalable unlearning. Ortiz-Jimenez et al. [50] further addressed weight disentanglement
within task vectors via model linearization in the tangent space. However, utilizing individual/few
task vectors neglects the models’ variability due to diverse fine-tuning. Thus, we propose an efficient
ensemble of an infinite number of functions of task vectors captured by the task simplex.

Parameter-level Model Merging can enhance performance by combining parameters from multiple
models [64, 32, 22]. A simple strategy involves parameter averaging across fine-tuned models, im-
proving task-specific performance without extra computational overhead during inference [56]. Apart
from averaging, refined merging of coefficients can be obtained from Fisher information matrices
[46] or linear regression [31]. Yadav et al. [59] explored interference among model parameters
when merging, addressing it by pruning low-magnitude parameter modifications. Yang et al. [60]
proposed to adaptively learn merging coefficients in an unsupervised scheme. Related are also
Parameter-efficient Fine-tuning (PEFT) models, e.g., LoRA [27], PACE [48], CrossSpectra [66] and
BiLoRA [67] whose fine-tuned parameter residuals are task vectors. Distilled/adapted parameters can
be also merged [40, 11]. We focus on function-level ensembles rather than parameter-level merging.

Function-level Ensemble Learning aggregates the function outputs of diverse models, and improves
both accuracy and calibration [8, 62]. Simple averaging at the prediction (function) level has been
extended to deep learning to enhance generalization across diverse domains under distribution shift
[36, 51]. Gontijo-Lope et al. [24] empirically showed that diverse training configurations induce
distinct generalization behaviors characterized by uncorrelated errors, thereby improving ensemble
performance. Rodriguez-Opazo et al. [49] investigated cross-backbone ensemble learning in VLMs
based on re-weighting predicted logits. In contrast, we focus on VLM unlearning and lowering the
prediction variance by the ensemble of infinite number of functions from the task simplex.

3 Proposed Method
CLIP-V

 image 
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unlearn test set
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Figure 2: The task simplex based unlearning. Pa-
rameters θ0 are given from pre-trained model. For
Q augmentation ways, we get θ1, . . . ,θQ on the
unlearning set and task vectors τ 1, . . . , τQ which
form slimplex S for a function-level ensemble.

Below, we provide background and introduce a
closed-form aggregation of the infinite number
of functions (VLMs with classifier) formed from
task vectors within the task simplex. We also
propose how to distill such an ensemble into one
task vector ( VLM with no ensemble).

Background. Foundation VLMs, such as CLIP
[52] and its recent variants [39, 41] are pre-
trained on extensive datasets collected from diverse internet sources. Formally, a VLM with a
classifier can be represented as a function f:X × θ→ [0, 1]C , parameterized by a set of parameters
θ0∈θ≡Rm, which maps an input x∈X to predicted probabilities across C categories. To adapt a
pre-trained VLM to a specific downstream task i using a single task vector [29], characterized by its
dataset Di (e.g., ImageNet), the pre-trained parameters θ0 are fine-tuned, resulting in task-specific
parameters θi, i>0. Following fine-tuning, the associated task vector is defined as the parameter
difference between the fine-tuned parameters and the original pre-trained parameters: τ i=θi−θ0.
Depending on the adaptation type, i may refer to a specific dataset or the i-th aug. variant of data.

3.1 Problem Formulation

Figure 1 shows that aggregating more task vectors of different fine-tuning configurations on the
unlearning set can lower the prediction variance and enhance unlearning performance. We thus
propose to capture the space of all possible interpolations of Q task vectors by a (Q−1)-task simplex
whose vertices are given by (τ 1, . . . , τQ). Figure 2 is an overview of our method, detailed below.
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Problem definition. We investigate machine unlearning in the context of VLMs, aiming to
remove knowledge of a so-called forget set, while preserving performance across the rest of the
data i.e., the retain set. Leveraging task vector arithmetic, unlearning can be efficiently achieved by
performing task vector negation. Subtracting the scaled task vector from the original parameters
(pre-training), i.e., θ−

i =θ0−λ τ i, where λ is a scaling factor obtained on a held-out validation
set to ensure the model’s accuracy reduction on the forget set while maintaining accuracy on the
retain set. However, given sample x∈X , we are interested in an ensemble of the infinite number
of functions (VLM with a classifier) of task vectors uniformly sampled from (Q−1)-simplex ∆θ:

µf (x)=
1

|∆θ|

∫
∆θ

f(x,θ0−λτ ) dτ ∈ [0, 1]C . (1)

Task vectors have large dimension, i.e., m=86M dim. (CLIP ViT-B-16). Given low number of
vectors, e.g., Q = 30 ≪ m=86M ), due to the curse of dimensionality there exist no obvious way
to reliably estimate what distribution type the task vectors follow. However, we choose to model
Eq. (1) with the Dirichlet distribution as even for very large m, it facilitates: (i) ease to define its
Probability Density Function (PDF) with task vectors as its support parameters, (ii) compact support
which does not “exceed” observed minimum or maximum values of individual parameter coefficients,
(iii) efficient sampling through our Taylor formulation based on the closed-form 0th, 1st, and 2nd order
moments.

Closed-form Aggregation of Functions from Task Simplex. To facilitate efficient aggregation in
Eq. (1), we employ a second-order Taylor expansion of the VLM function f(x;θ0−λ τ ) around the
original parameters θ0. Let Jf (θ0)∈RC×m denote the Jacobian matrix of f(x;θ0) for a given input
x. Let class-specific Hessian matrices be

(
Hf (θ0))1, . . . , (Hf (θ0)

)
C
∈ Rm×m. For sufficiently

small scaling factors λ constraining ∥θ0−λ τ∥2 to a small ϵ′ > 0 ball, we have the following
second-order approximation: f(x;θ0−λ τ )=f(x;θ0)− λJf (θ0) τ + 1

2

[
λ2 τ⊤Hf (θ0)τ

]C
c=1

+

O
(
λ3∥θ0∥3

)
. Thus, for a task simplex ∆θ, the aggregated function-f ensemble is given as:

µf (x)=
1

|∆θ|
∑

τ∈∆θ0︸ ︷︷ ︸
1

|∆θ|

∫
∆θ

dτ if uncountable
set ∆θ

f(x;θ−λ τ )≈f(x;θ0)−λ
〈
Jf (θ0),

1

|∆θ|
∑

τ∈∆θ

τ

︸ ︷︷ ︸
µτ

〉
+
1

2

C∑
c=1

λ2
〈
Hf (θ0)c,

1

|∆θ|
∑

τ∈∆θ

ττ⊤
〉

︸ ︷︷ ︸
ωc(θ0;∆θ)

.

(2)

After simplifying the right-hand part of Eq. (2), ωc(θ0; ∆θ)=
1

|∆θ|
∑

τ∈∆θ

τ⊤Hf (θ0)cτ . However, ω

in Eq. (2) contains a sum over task vector samples from ∆θ . Thus, below we derive a closed-form ω.
Theorem 1. Let S⊂Rm be a (Q−1)-simplex with vertices τ 1, . . . , τQ∈Rm. Let matrix H∈Rm×m

(in our case, a Hessian matrix). Consider an i.i.d. uniformly drawing an infinite number of vectors τ
contained in S . Compute an expected value E[τ⊤Hτ ] which leads to a closed-form expression2:

ω =
1

Q(Q+ 1)

( Q∑
i=1

τ⊤
i Hτ +

( Q∑
i=1

τ i

)⊤
H

( Q∑
i=1

τ i

))
. (3)

Proof. Every vector τ enjoys barycentric coordinates τ =
∑Q

i=1 αi τ i with αi ≥ 0 and
∑Q

i=1 αi =
1. Under the uniform measure on S, the vector α = (α1, . . . , αQ) is distributed as Dir(1Q). Thus:

E[αi] =
1
Q , E[α2

i ] =
2

Q(Q+1) , E[αiαj ] =
1

Q(Q+1) (iff i ̸= j). (4)

Now we expand τ⊤Hτ =
∑Q

i=1

∑Q
j=1 αiαj τ

⊤
i Hτ j , substitute Eq. (4) and compute expectations:

E[τ⊤Hτ ]=

Q∑
i=1

E[α2
i ] τ

⊤
i Hτ i +

Q∑
i,j=1
i̸=j

E[αiαj ] τ
⊤
i Hτ j=

2
Q(Q+1)

Q∑
i=1

τ⊤
i Hτ i +

1
Q(Q+1)

Q∑
i,j=1
i̸=j

τ⊤
i Hτ j .

(5)

2See also an expectation over the outer product of vectors on S [14].
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Corollary 1. Let vertices be assigned importance weights, i.e.,
(
w1, . . . , wQ :

∑Q
i=1 wi=1

)
. Let w

be a linear interpolation of these weights at location τ . Extending Theorem 1 to E[wτ⊤Hτ ] yields:

ω′ =
1

Q(Q+ 1)(Q+ 2)

( Q∑
i=1

(2 + 4wi) τ
⊤
i Hτ i +

Q∑
i,j=1
i ̸=j

(
1 + wi + wj

)
τ⊤
i Hτ j

)
. (6)

Proof. See Appendix G.1.

Theorem 1 and Corollary 1 provide closed-form ω for Eq. (2) under uniform and impor-
tance weighting of task vectors, respectively. Weights of importance weighting (or task vectors
themselves) may be optimized to lower the variance associated with Eq. (2).

Computing Variance. Using Eq. (2), the variance of ensemble of the infinite number of functions is
given as: σ2(x) = µf2(x)−

(
µf (x)

)2
. (7)

Advanced Aggregation Scheme. Up to this point, we discussed the average pooling aggregator
in Eq. (1) and (2). Another popular aggregator is maximum pooling over a set of votes (outputs
of classifier-level functions) [34]. However, the maximum operation cannot be applied over an
infinite number of voters. Therefore, we leverage the probability mass function (PMF) of the Poisson
Binomial distribution. Firstly, we ask a question: what is the probability of zero successes in Q
trials? This question is asked under independent Bernoulli trials that are not necessarily identically
distributed, i.e., we treat an output of each function in the ensemble as one probability of success,
denoted pci . For Q trials and class c, we readily obtain

∏Q
i=1(1−pci ) and we readily deduce that

1−
∏Q

i=1(1−pci ) ≥ max
i=1,...,Q

pci is the probability of at least one successes in Q trials and an upper

bound of maximum pooling. Now it remains to extend this result to an ensemble of the infinite
number of functions from the task simplex.
Theorem 2. Consider task vector τ ∈ ∆θ sampled from task simplex ∆θ. Let g(x;θ0 − λτ ) =
log

(
1 − f(x;θ0 − λτ )

)
, where g : Rm → (−∞, 0]C converts the prediction into the log space.

Notice that |∆θ|µg(x)=
∑

τ∈∆θ
g(x;θ0 − λτ ) and thus we have:

ϕf (x)︸ ︷︷ ︸
∈[0,1]C

= 1− exp
(
|∆θ|µg(x)

)
= 1−

∏
τ∈∆θ

(
1− f(x;θ0 − λτ )

)
≥ max

τ∈∆θ

f(x;θ0 − λτ ), (8)

which is the probability of at least one successes in the infinite number of trials, each trial being an
output of function f(x;θ0 − λτ ) for task vector τ ∈ ∆θ. Volume |∆θ| is defined in Theorem 3.
Proof. See Appendix G.2.

Theorem 2 proposes an aggregator which returns a high likelihood if (i) many aggregated
functions yielded at least weak but consistent belief in class activation across many functions or
(ii) at least one aggregated function yielded a very strong belief in class activation. In contrast,
the average pooling aggregator may not yield strong response if many voters yield consistent but
relatively weak class activations.

Theorem 2 requires evaluation of volume of the task simplex |∆θ| which provided below.
Theorem 3. Consider (Q−1)-simplex ∆θ with vertex list (τ 1, τ 2, . . . , τQ) and construct a vertex
list matrix offset by τ 1, i.e., V = [τ 2−τ 1, . . . , τQ−τ 1]∈Rm×(Q−1). Then the volume of the simplex
∆θ is given as:

|∆θ| =

√
detV ⊤V

(Q− 1)!
. (9)

Proof. See Appendix G.3.

Distillation from Ensemble. Our aggregation of the infinite number of functions requires to be
implemented on top of an VLM. However, if deployment requires a VLM without ensemble, one can
distill the task vector from the ensemble as follows:

argmin
τ−

(opt.)w s.t. ∥w∥2=1
∆τ i s.t. ∥∆τ i∥2≤ϵ,∀i

1
|X ′|

∑
x∈X ′

∥∥f(x,θ0−τ−)− µstop_grad
f

(
x;w, (τ 1+∆τ 1, . . . , τQ+∆τQ)

)∥∥2
2

+ β
∥∥σ2

(
x;w, (τ 1+∆τ 1, . . . , τQ+∆τQ)

)∥∥
1
, (10)
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where X ′ is a distillation set used without labels, i.e. the training split of unlearning set, β≥0 controls
the variance (section below explains importance of bias-variance trade-off in controlling the model
complexity), stop_grad means we stop the gradient through computations of µf and τ− is a single
distilled task vector capturing the ensemble. Moreover, “opt.” indicates one can optionally optimize
over importance weights w and/or small perturbations ∆τ i of vertices within ϵ radius. Notice that
we slightly abuse notation of µf and σ2

f by passing parameters w and ∆τ i into them.

Controlling Variance of Ensemble. In order to control the complexity of the unlearned model, one
can reduce variance of the model in the so-called bias-variance trade-off [33]. For our ensemble,
reducing variance may be achieved as follows:

argmin
w s.t. ∥w∥2=1 and/or
∆τ i s.t. ∥∆τ i∥2≤ϵ,∀i

1
|X ′|

∑
x∈X ′

∥∥σ2
(
x;w, (τ 1+∆τ 1, . . . , τQ+∆τQ)

)∥∥
1
, (11)

where optimizing requires early stopping to achieve a desired variance reduction. Notice, Mean
Square Loss (MSE) over x ∈ X ′ between labels y(x) and the learner f(x), given as ED0,τ

[∥∥y(x)−
f(x;θ0 − λτ )

∥∥2
2

]
can readily be decomposed into the bias and variance terms:

ED0,τ

[
∥f∗(x)− µf (x)∥22︸ ︷︷ ︸

(Biasτ f(x))2

+ ∥σ2
f (x)∥1︸ ︷︷ ︸

Varτ (f(x))

]
+ γ2, (12)

where f∗(·) is some class function we want to approximate, y(x)=f∗(x)+η where η∼N (0,γ2)
is noise with variance γ2 a.k.a. the so-called irreducible error. See Appendix G.4 for further details.

Bias-variance trade-off. Eq. (12) shows that that our ensemble can be interpreted as bias-
variance trade-off [33] under different choices of the unlearning task vectors τ . While we cannot
reduce the bias, we can adjust the variance to improve generalization on the underlying unlearning
set. Belkin et al. [1] showed that below the so-called interpolation threshold, high bias and low
variance indicate low model complexity, whereas low bias and high variance indicate high model
complexity. Above the interpolation threshold, lowering the variance can further increase the
function complexity. In either case, variance is key in controlling the ensemble complexity.

Theoretical Analysis. Below we provide additional theoretical analysis of properties of our ensemble.
Theorem 4 (Interpolation Bound). Let g : Rm → RC′

be an unlearning function. Let g(·) be
L-Lipschitz continuous, i.e., ∥g(θi)− g(θj)∥1 ≤ L∥θi − θj∥2, ∀i ̸= j.

Given task vectors (τ 1, . . . , τQ), diameter η = maxi ̸=j∥τ i − τ j∥2, and any convex combination
τ =

∑Q
i=1 αiτ i where

∑Q
i=1 αi = 1, αi ≥ 0, we obtain:∥∥∥g(θ0 − λτ )−

Q∑
i=1

αi g(θ0 − λτ i)
∥∥∥
1
≤ Lλη. (13)

Proof. See Appendix G.5.

This bound is small if (i) task vectors differ by a small diameter η, λ is small and g(·) is smooth with
low Lipschitz constant L. Indeed, these conditions are met, e.g., we have low η due to sparse change
between task vectors as explained in Appendix H.2, and λ ≤ 1. Theorem 4 says that any interpolated
choice of (α1, . . . , αQ) deviates from the expected convex combination by at most Lλη.

Next, below we compare Taylor expansions of (i) Vector Uniform Merge (Uniform Soup) [56], (ii)
Function Ensemble [56, 8] and (iii) our infinite number of functions drawn from the task simplex:

Vector
Uniform
Merge:

f
(
x;θ0 − λ

Q

∑Q

i=1
τ i

)
≈ f(x;θ0)− λ⟨Jf (θ0),µτ ⟩︸ ︷︷ ︸

linear

+λ2 µ⊤
τ Hf (θ0)µτ︸ ︷︷ ︸

quadratic_V UM

. (14)

Function
Ensemble:

1
Q

∑Q

i=1
f(x;θ0 − λτ i) ≈ linear + λ2 1

Q

∑Q

i=1
τ⊤
i Hf (θ0)τ i︸ ︷︷ ︸

quadratic_FE

. (15)

Ours: 1
|∆θ|

∫
∆θ

f(x;θ−λ τ ) dτ ≈ linear + ρ quadratic_V UM + ζ quadratic_FE.︸ ︷︷ ︸
Interpolation of Vector Uniform Merge and Func. Ensemble.

(16)
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Table 1: Standard unlearning of CLIP models measured by the average accuracy (%) on the forget
datasets (Stanford Cars, DTD, EuroSAT, GTSRB, MNIST, RESISC45, SUN397, and SVHN) and the
accuracy (%) on the retain dataset (ImageNet) across diverse CLIP architectures. Note that the retain
set accuracy is required by the protocol to be fixed around 95% of pre-trained model by cross-val. λ.

Method ViT-Base/32 ViT-Base/16 ViT-Large/14

Forget (↓) Retain (↑) Forget (↓) Retain (↑) Forget (↓) Retain (↑)

Pre-trained Model 48.09 63.33 55.46 68.33 65.22 75.53

Standard Task Arithmetic [29] 24.23 60.74 20.57 64.77 16.66 72.10
Best Model on Val. Set [56] 22.69 60.54 19.86 64.43 16.16 71.64
Vector Uniform Merge [56] 23.01 60.64 20.28 64.66 17.30 72.08
Vector Greedy Merge [56] 22.14 60.46 19.28 64.51 16.77 71.67
Vector TIES-Merging [59] 23.94 60.27 20.19 64.56 17.83 72.50
Vector EMR-Merging [28] 21.83 60.34 19.10 64.52 15.67 71.89
Function Ensemble [56, 8] 22.75 60.32 19.89 64.48 16.32 71.91

Ours 15.20 60.58 12.17 64.93 9.98 72.17
Ours (Distillation) 15.66 60.79 12.70 64.72 10.63 72.59

The 0th and 1st order terms of Taylor expansions are identical for Vector Uniform Merge, Function
Ensemble and our approach, and are related to the Neural Tangent Kernel of f(·).
However, Eq. (14) and (15) differ in their second-order terms of Taylor expansions. Eq. (16)
shows that our approach in fact interpolates between quadratic terms of Vector Uniform Merge and
Function Ensemble. For arbitrary concentration parameter α of the Dirichlet distribution, we obtain
an interpolation with ρ= αQ

αQ+1 and ζ= 1
αQ+1 . For α=1, ρ= Q

Q+1 and ζ= 1
Q+1 .

4 Experiments

4.1 Experimental Setup

Datasets. Following prior works [29, 50], we adopt the identical experimental setup. The unlearning
evaluation of CLIP is performed on eight datasets designated as the forget set. To assess performance
of retained knowledge, we use ImageNet [7] as the retain set. Further details are in Appendix A.1.

Compared Methods & Evaluations. In addition to standard task vector-based unlearning [29] for
VLMs, we also adapt the notion of task vectors to extend existing model merging approaches [54] for
unlearning. Specifically, we reinterpret Uniform Merge [56], Greedy Merge [56], TIES-Merging [59],
and EMR-Merging [28] as parameter-level task vector merging strategies for unlearning comparisons.
As our proposed method emphasizes function-level ensemble unlearning, we also consider the vanilla
function-level ensemble as a baseline. Detailed formulations of these methods within the context
of vision-language model (VLM) unlearning are provided in Appendix A.2. Unlearning is assessed
on both the forget set and the retain set, where lower accuracy on the forget set indicates better
unlearning, and accuracy on the retain set is mandated by the protocol to reach a fixed retain accuracy.

Implementation Details. Unless otherwise stated, we adopt the standard CLIP fine-tuning protocol
for generating the task vectors on each forget dataset, in line with prior task arithmetic studies [29, 50].
Specifically, we adopt the AdamW optimizer [44] with a peak learning rate of 1× 10−5, momentum
(0.9, 0.999) along with a cosine annealing scheduler and a weight decay of 0.1. During fine-tuning,
the CLIP text encoder is frozen to retain the integrity of the pre-trained textual representations for the
classification head via zero-shot prompt embeddings. To ensure diversity of task vectors, we generate
a pool of 30 fine-tuned CLIP models by varying the data augmentation configurations, e.g., using
different hyper-parameters of RandAugment [6]. All VLM unlearning experiments are conducted
across diverse CLIP backbones [52], including ViT-Base/32, ViT-Base/16, and ViT-Large/14. For
each unlearning scenario, the task vector negation coefficient λ is selected on a small held-out subset
of the training data. Unless otherwise specified, the task simplex is constructed using 30 vertices, and
the distillation variance penalty is set to β = 2.0. More details are in Appendix A.3.

4.2 Main Results

Unlearning with Task Vectors. Below, we compare our proposed method and its distilled single task
vector variant, against prior task vector based unlearning approaches across three CLIP backbones:
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Table 2: Linear task vector unlearning of CLIP models measured by the average accuracy (%) on
the forget datasets (Stanford Cars, DTD, EuroSAT, GTSRB, MNIST, RESISC45, SUN397, SVHN)
and the accuracy (%) on the retain dataset (ImageNet) across diverse CLIP architectures. The protocol
mandates the retain set accuracy to be fixed around 95% of pre-trained model by cross-val. λ.

Method ViT-Base/32 ViT-Base/16 ViT-Large/14

Forget (↓) Retain (↑) Forget (↓) Retain (↑) Forget (↓) Retain (↑)

Pre-trained Model 48.09 63.33 55.46 68.33 65.22 75.53

Standard Task Arithmetic [29] 11.40 60.53 8.48 64.87 7.76 72.15
Best Model on Val. Set [56] 10.98 60.46 8.17 65.10 7.40 72.26
Vector Uniform Merge [56] 10.62 60.37 7.90 64.68 7.48 72.04
Vector Greedy Merge [56] 10.12 60.42 7.55 64.66 7.14 71.93
Vector TIES-Merging [59] 11.08 60.25 7.82 64.72 7.43 72.28
Vector EMR-Merging [28] 9.53 60.51 7.09 64.35 6.51 72.29
Function Ensemble [56, 8] 9.97 60.40 7.41 64.62 7.02 72.12

Ours 7.88 60.43 6.46 64.59 5.70 72.38
Ours (Distillation) 8.13 60.83 6.79 65.08 5.94 72.56

Table 3: Incremental unlearning measured by sequential-average forget accuracy (%, lower is
better) after each step across eight benchmark datasets using CLIP ViT-Base/32.

Method Cars +DTD +EuroSAT +GTSRB +MNIST +RESISC45 +SUN397 +SVHN

Standard Task Arithmetic [29] 34.8 34.4 28.0 24.3 23.8 26.2 31.0 29.2
Best Model on Val. Set [56] 32.0 32.6 26.3 22.9 22.1 24.5 29.4 27.7
Vector Uniform Merge [56] 32.6 33.1 26.6 22.8 22.7 24.3 29.1 28.0
Vector Greedy Merge [56] 32.0 32.5 26.0 22.5 21.4 23.9 28.7 27.1
Vector TIES-Merging [59] 33.6 34.2 27.4 23.8 23.3 25.8 30.7 28.9
Vector EMR-Merging [28] 31.0 31.6 25.4 22.0 21.5 23.9 28.4 26.8
Function Ensemble [56, 8] 32.3 32.8 26.3 22.8 22.3 24.7 29.4 27.7

Ours 28.7 28.3 21.0 17.3 15.2 16.4 21.5 20.1
Ours (Distillation) 29.2 29.0 21.8 18.3 17.2 17.6 22.8 22.5

ViT-Base/32, ViT-Base/16, and ViT-Large/14. Table 1 lists the average accuracy on both the forget
set and the retain set, computed by individually unlearning each of the eight target datasets. One can
observe that the classification accuracy on the retain set remains consistently high, preserving ~95% of
the original performance of the pre-trained model on all methods. Compared to function ensemble our
closed-form solution achieves 7.55%, 7.72% and 6.34% improvement in unlearning on ViT-Base/32,
ViT-Base/16 and ViT-Large/14, respectively. Our method also outperforms alternatives when scaled
to larger-scale CLIP architectures (e.g., ViT-Large/14), effectively removing targeted knowledge
while retaining general capabilities. The distilled variant of our method achieves unlearning accuracy
similar to that of our function-level ensemble, highlighting benefits of distilling function-level task
simplex ensemble into a single task vector for improved portability. Unlearning performance w.r.t.
each dataset is presented in Appendix B.

Unlearning with Linear Task Vectors. Model linearization, grounded in the Neural Tangent Kernel
(NTK) theory [30], enjoys strong task arithmetic capabilities [50]. Thus, we leverage linearized
task vectors in various model merging strategies and evaluate their effectiveness in unlearning tasks.
Details of the task vector linearization are provided in Appendix C. Table 2 shows that the linearized
task vectors consistently yield substantial reductions in the forget set accuracy across multiple merging
methods and CLIP architectures, while maintaining fixed accuracy on the retain set relative to their
standard (non-linearized) counterparts in Table 1. Notably, both our method and its distilled variant
continue to outperform other baselines, achieving the best unlearning efficacy while preserving most
of the retained knowledge on ImageNet.

Incremental Unlearning. While prior literature on unlearning in VLMs focus on single-dataset
removal, we propose a more realistic and challenging scenario: unlearning datasets incrementally.
This setup lets us assess the cumulative unlearning ability and interferences across distribution shifts
from the perspective of task vectors. To this end, we fine-tune CLIP ViT-B/32 on each forget dataset,
construct task vectors, and sequentially use them in each method to remove datasets one by one: Cars
� DTD � EuroSAT � . . . � SVHN. After each removal step, we report the average accuracy on all
unlearned (forget) datasets so far. For our distillation, after each step we distill the task vector τ−

and set θ0 := θ0−λτ− to accumulate parameters across unlearning steps. Table 3 shows our method
enjoys the lowest average forget accuracy across all steps. See Appendix D for more details.
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VQA Task. Table 4: CLEAR VQA (multi-modal) results.
Method VQA Acc. Forget (↓) VQA Retain (↑)

Pre-trained Model 69.2 55.7
Standard Task Arithmetic 42.7 49.4
Uniform Merge 37.9 50.5
TIES-Merging 36.1 49.7
EMR-Merging 34.8 49.3
Function Ensemble 35.6 50.0
Ours 31.5 50.2

Below we apply our method on multi-
modal CLEAR benchmark [21] (fictional
author profiles with face images–captions
pairs). Average accuracy (VQA task) with
LLaVA-1.5-7B, CLIP ViT-L/14 as vision
encoder. Task vectors are derived by fine-
tuning on the corresponding target data.
Task specificity: forgetting is measured in terms of classification accuracy. This experiment demon-
strates that our approach is not limited to classification tasks. Fine-tuning can be performed on
image-text pairs, and the CLIP loss or any other loss can be used for fine-tuning to obtain task vectors.

4.3 Analysis

Below provide further analyses of each component in our closed-form ensemble unlearning.

Table 5: Ablation study of key components in our method
for average forget-set and retain-set accuracy (%).

Simplex Adv. Aggregator Weighting Vertices Opt. Forget (↓) Retain (↑)
1 22.75 60.32
2 ✓ 17.89 60.43
3 ✓ ✓ 16.87 60.52
4 ✓ ✓ 16.72 60.45
5 ✓ ✓ ✓ 15.67 60.30
6 ✓ ✓ ✓ 15.20 60.58

Ablation Studies. Table 5 compares
four key components of our method
in unlearning efficacy: (1) Vanilla en-
semble of functions from task vectors
(first row), (2) Our Task Simplex (Sim-
plex), (3) Advanced Aggregation (The-
orem 2) denoted Adv. Aggregator, and
(4) Variance reduction by Vertex Im-
portance Weighting (Corollary 1+Eq. (11)) denoted as Weighting, and (5) Variance reduction by
Optimization of Vertices ∆τ i (Eq. (11)) denoted as Vertices Opt. We report both the average forget-
set accuracy across 8 datasets and the average retain-set accuracy on ImageNet based on CLIP
ViT-Base/32. Table 5 shows that the task simplex significantly enhances the unlearning efficacy
over function ensembling of limited task vectors. Advanced aggregation further reduces the forget
accuracy while preserving most of the retained knowledge on ImageNet. The unlearning improve-
ment obtained by variance reduction by vertex importance weighting justifies our motivation that
suppressing prediction variance helps unlearning performance.
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Figure 3: Comparison between function-
level ensembles from task vectors and
our task simplex w.r.t. the number of task
vectors Q.

The Impact of the Number of Task Vector Vertices of
the Simplex. Figure 1 shows that ensembling a larger
number of functions from task vectors reduces prediction
variance, and improves unlearning efficacy. Figure 3 fur-
ther validates this claim within the framework of the task
simplices. We analyze our closed-form simplex aggrega-
tion under varying numbers of task vectors (i.e., simplex
vertices). Unlike ensembling functions from limited task
vectors, our closed-form solution approximates infinite
sampling over the simplex, resulting in consistently lower
prediction variance and reduced forget-set accuracy. Fur-
thermore, we observe a clear correlation between unlearn-
ing performance and prediction-level variance: modeling
higher-dimensional task vector simplices by aggregating
more task vectors yields enhanced unlearning effective-
ness, further validating the robustness of our method.

Importance Weighting Strategies. Motivated by the observed correlation between unlearning
efficacy and prediction variance, below we study different importance weighting strategies for
simplex vertices with the goal of enhancing unlearning.

Table 6: Average accuracy (%) comparing variants
of importance weighting of simplex vertices.

Weighting strategy Forget (↓) Retain (↑)
Uniform weighting 16.87 60.52

CE-guided weighting 16.37 60.28
Variance-reducing weighting (Ours) 15.20 60.58

In addition to importance weighting mechanism
from Corollary 1+Eq. (11), we also investigate
a weighting strategy that measures the impor-
tance of each task vector vertex based on the
Cross-Entropy (CE) loss on the forget dataset
(formulated in Appendix E). Table 6 evaluates
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both forget-set and retain-set accuracy and shows that the variance reduction by importance weighting
consistently outperforms the CE-guided strategy in terms of the forget-set performance. We attribute
this improvement to learning weights that reduce variance of ensemble by limiting the impact of
functions associated with noisy task vectors.

Table 7: Average performance (%) of our method
w.r.t. different task vector distillation schemes.

Prediction Alignment Metric Variance Tuning Forget (↓) Retain (↑)
KL Div. no 17.28 60.47

ℓ2 distance no 16.83 60.52
KL Div. yes 16.09 60.64

ℓ2 distance yes 15.66 60.79

Comparison of Distillation Schemes. Our dis-
tillation in Eq. (10) distills single task vector
from the ensemble to facilitate easier deploy-
ment of unlearned-set model. Table 7 studies
the effectiveness of different task vector distilla-
tion schemes. Specifically, it compares different
prediction alignment metrics (e.g., KL Divergence and the ℓ2 distance) and evaluates their variants
with or without variance tuning. Without variance tuning, the use of the ℓ2 distance already demon-
strates improved unlearning efficacy over the KL Div., potentially due to its stronger impact on logits
and smoother gradient behavior. Incorporating importance weighting for variance tuning enhances
the effectiveness of both metrics by suppressing high-variance predictions during distillation.

Table 8: Effect of Dirichlet
concentration α.

α Forget (↓) Retain (↑)

0.1 14.65 64.49
0.5 12.83 64.26
0.8 12.05 64.68
1.2 12.48 64.85
1.5 12.70 64.92
2.0 13.29 64.81
1.0 12.17 64.93

Concentration Parameter α. The Dirichlet distribution may follow
a non-uniform density if the concentration parameter α ̸=1. Up to
this point, we employed α= 1. However, Eq. (16) shows that α
controls the level of interpolation between quadratic terms of Vector
Greedy Merge and Function Ensemble in our method. Table 8 (CLIP
ViT-B/16) shows that the best unlearning performance is achieved
for α= 0.8. Intuitively, α < 1 indicates higher sampling density
toward simplex vertices (away from the simplex center) which are
task vectors. Thus, the function ensemble puts more emphasis on
contributions closer to Q task vectors.
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Figure 4: Comparison of explicit
task vector sampling vs. our closed-
form solution. The circle radius de-
notes the number of sampled task
vectors, while ours represents an in-
finite sampling.

Sampling Task Vectors vs. closed-form Solution. Our func-
tion ensemble enjoys closed-form solution as an efficient alter-
native to naive task vector sampling from the simplex. Figure 4
compares our closed-form task vector aggregation with explicit
task vector sampling for function-level ensembling. As the
number of sampled vectors increases, the forget-set accuracy
gradually improves but saturates near 300 samples, beyond
which additional gains are marginal. However, this improve-
ment comes at the cost of significantly higher unlearning time,
up to 4× longer. In contrast, our closed-form solution achieves
similar performance with a dramatically lower time cost (e.g.,
0.8 hours vs. 6.3 hours), offering a scalable and efficient un-
learning. The circle radius indicates the number of sampled task
vectors used in unlearning, with our method effectively sam-
pling the infinite number of task vector interpolations between
vertices of the task simplex.

5 Conclusions

We have investigated the function-level ensemble perspective of task vector–based unlearning in
VLMs, revealing an inherent connection between unlearning effectiveness and prediction-level
variance. Through empirical and theoretical analysis, we have shown that aggregating larger number
of functions from several task vectors obtained on unlearning set improves unlearning performance
by reducing prediction variance, consistent with the Bienaymé principle. To address the scalability
limitations of explicitly generating and ensembling an infinite number of task vectors, we introduce
a novel framework based on a high-dimensional task simplex, where each vertex represents a task
vector derived from distinct fine-tuning strategy on the unlearning set. We then derive a closed-form
ensemble over an infinite number of interpolated task vectors uniformly sampled from this simplex.
This formulation enables efficient unlearning via function-level aggregation while capturing the
bias-variance trade-off. Our framework supports the distillation of unlearned model parameters from
the ensemble, ensuring compatibility with the original VLM when required.
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A Further Experimental Configurations

Below, we provide details of our experimental setups of Vision-Language Model (VLM) unlearning
in terms of dataset description, formulation of compared approaches, and implementation details.

A.1 Dataset Setups

Following prior task vector-based unlearning works [29, 50], we evaluate the unlearning efficacy of
VLMs across eight datasets that span a diverse range of recognition tasks, collectively forming the
forget set. The retain set is fixed as the ImageNet dataset [7], which serves to assess the preservation
of general knowledge during unlearning. The eight datasets used as forget sets are categorized by
their recognition scenario as follows:

1. Fine-grained classification: Stanford Cars [35].
2. Texture recognition: Describable Textures Dataset (DTD) [5].
3. Remote sensing and aerial imagery: EuroSAT [26], and Remote Sensing Image Scene Classifi-

cation (RESISC) [3].
4. Traffic and digit recognition: German Traffic Sign Recognition Benchmark (GTSRB) [55],

MNIST [37], and Street View House Numbers (SVHN) [47].
5. Scene recognition: SUN397 [58].

For each dataset (eight datasets in total) in the forget set, we obtain the task vector by fine-tuning
the CLIP model on its training split. Unlearning evaluation is then performed using the ImageNet
validation set, as its test labels are not publicly available. Note that the task vector is obtained
through fine-tuning on the training set of each forget set (eight datasets in total), while the unlearning
performance evaluation is conducted on the validation set of ImageNet, as the ground-truth labels
for its test set are not publicly available. To promote diversity in the task vector space, we vary the
data augmentation configuration during fine-tuning by applying RandAugment [6] with different
hyperparameter settings. Specifically, we vary the number of sequential augmentation transformations
from 1 to 3, and the transformation magnitude from 1 to 10. This results in a total of 30 fine-tuned
CLIP models per dataset for each architecture, yielding a rich set of task vectors for subsequent
unlearning experiments.

A.2 Detailed Formulations of Compared Methods

To comprehensively evaluate the effectiveness of our proposed function-level ensemble unlearning
framework, we compare it with several representative baselines. These include standard task vec-
tor–based unlearning [29], diverse task vector–adapted model merging strategies [56, 59, 28], and
a vanilla function-level ensemble baseline [8]. Note that the model merging is adapted to the task

*Corresponding authors. PK also in charge of theory & derivations.
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vector domain by simply treating the task vector as a unique set of network parameters. Below, we
outline how each method is formulated and applied in the context of vision-language model (VLM)
unlearning.

1. Standard Task Arithmetic [29]. The unlearned model is obtained by subtracting a single task
vector from the fine-tuned model, i.e., f(x;θ0−λτ ). This method is retraining-free and efficient,
but may suffer from instability due to sensitivity to fine-tuning configurations.

2. Best Model on the Validation Set [56]. The unlearned task vector is selected based on the best
unlearning efficacy (the lowest forget set accuracy) from the validation set. The unlearned VLM
is obtained via subtracting the selected task vector, i.e., f(x; argmini ValAcc(θ0−λτ i)).

3. Uniform Merge [56]. First, compute the average of multiple task vectors, and then subtract
the resulting average task vector from the base model to obtain the unlearned model, i.e.,
f(x;θ0−λ 1

Q

∑Q
i=1 τ i). This can also be regarded as a parameter-level ensemble.

4. Greedy Merge [56]. Iteratively select and merge task vectors based on a greedy criterion (i.e.,
minimizing unlearning score) to optimize unlearning performance.

5. TIES-Merging [59]. Trim low-magnitude changes in the values of task vectors and then resolve
sign disagreements across the task vectors being merged.

6. EMR-Merging [28]. First, elect a unified task vector from all the task vectors and then generate
their corresponding modulators, including masks and rescalers (coefficients), to align the direction
and magnitude between the unified task vector and each specific task vector, respectively.

7. Function ensemble [8]. To isolate the benefit of our proposed function-level closed-form
solution, we consider a vanilla ensemble of models whose parameters are fine-tuned with
different forget datasets. The predictions from each unlearned model are averaged at inference
time, i.e., 1

Q

∑Q
i=1 f(x;θ0−λτ i). This ensemble does not require task vector/model merging.

A.3 Implementation Details

In accordance with previous task arithmetic approaches [29, 50], we employ the standard CLIP
fine-tuning protocol to generate task vectors for each forget dataset, unless specified otherwise. For
each forget dataset, we fine-tune the CLIP model using the AdamW optimizer [44] with a cosine
learning rate schedule. The peak learning rate is set to 1 × 10−5 with momentum coefficients
(β1, β2) = (0.9, 0.999) and a weight decay of 0.1. The CLIP text encoder is frozen throughout to
preserve the integrity of the pre-trained textual embeddings, which serve as zero-shot classification
prompts. The vision encoder is updated exclusively. Accordingly, the number of training epochs is
set based on dataset characteristics: 70 epochs for Stanford Cars, 100 epochs for DTD, 40 epochs for
EuroSAT, GTSRB, RESISC45, and SUN397, and 30 epochs for MNIST and SVHN. We evaluate
unlearning performance across three widely used CLIP variants released in [52]: ViT-B/32, ViT-B/16,
and ViT-L/14. All models are initialized from pre-trained OpenAI weights and kept fixed for fair
comparison across methods.

Unless otherwise defined, the task vector simplex is constructed using Q = 30 vertices (i.e., 30
diverse task vectors per forget dataset). The coefficient λ controlling the magnitude of task vector
subtraction is selected per forget dataset based on unlearning efficacy measured on a small held-out
split, i.e., λ ∈ {0.0, 0.05, 0.1, . . . , 1.0}, mimicking a tuning-free practical scenario. We choose λ that
achieves the lowest forget set accuracy while the unlearned VLM still preserves at least 95% of the
accuracy of the pre-trained VLM on the retain dataset (ImageNet). For the closed-form function-level
ensemble and its distillation, the bias-variance weighting factor is fixed to β = 2.0, which we find
consistently balances forget and retain performance across datasets. All the experiments in this paper
are conducted based on eight NVIDIA H100 GPUs with 80GB of memory.

B Standard Unlearning Performance for Individual Datasets

Unlearning w.r.t. CLIP ViT-Base/32 backbone. We here provide the VLM unlearning results
across eight datasets using the architecture of CLIP ViT-Base/32 in Table 9. We can easily observe
that our method and its distillation variant generally achieve great unlearning efficacy on the forget
datasets while preserving most of the retained knowledge on other datasets. Furthermore, our
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Table 9: CLIP ViT-Base/32 unlearning measured by the individual accuracy (%) on each forget
dataset and its corresponding accuracy (%) on the retain dataset (ImageNet).

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

F (↓) R (↑) F (↓) R (↑) F (↓) R (↑) F (↓) R (↑) F (↓) R (↑) F (↓) R (↑) F (↓) R (↑) F (↓) R (↑)

Pre-trained Model 59.6 63.3 44.4 63.3 44.7 63.3 32.6 63.3 48.3 63.3 60.3 63.3 63.2 63.3 31.6 63.3

Standard Task Arithmetic [29] 34.8 60.8 29.6 60.5 12.0 60.9 8.8 60.1 16.4 60.6 31.9 61.1 52.1 60.9 8.3 61.1
Best Model on Val. Set [56] 32.0 60.4 28.8 60.5 10.7 60.6 8.1 60.4 13.6 61.3 29.7 60.3 51.1 60.3 7.7 60.6
Vector Uniform Merge [56] 32.6 60.7 29.2 60.8 10.5 60.4 7.1 60.7 16.5 60.8 26.0 60.3 50.1 60.4 12.2 61.1
Vector Greedy Merge [56] 32.0 60.3 28.6 60.5 10.0 60.3 7.4 60.4 11.5 60.7 29.9 60.6 49.8 60.3 7.7 60.6
Vector TIES-Merging [59] 33.6 60.3 30.5 60.3 10.7 60.1 8.4 60.3 15.8 60.6 31.5 60.0 52.6 60.4 8.4 60.3
Vector EMR-Merging [28] 31.0 60.1 27.8 60.4 9.8 60.2 7.5 60.4 13.9 60.5 29.2 60.4 47.9 59.9 7.5 60.8
Function Ensemble [56, 8] 32.3 60.1 29.0 60.2 10.2 60.1 7.8 60.4 14.5 60.6 30.4 60.3 49.9 60.0 7.8 60.7

Ours 28.7 60.7 23.6 60.5 3.2 60.4 1.8 60.6 1.2 60.9 16.0 60.4 44.2 60.7 2.0 60.8
Ours (Distillation) 29.2 60.9 23.9 60.7 3.6 60.6 2.5 60.8 1.4 61.1 16.6 60.6 45.5 60.9 2.6 61.0

Table 10: CLIP ViT-Base/16 unlearning measured by the individual accuracy (%) on each forget
dataset and its corresponding accuracy (%) on the retain dataset (ImageNet).

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

F (↓) R (↑) F (↓) R (↑) F (↓) R (↑) F (↓) R (↑) F (↓) R (↑) F (↓) R (↑) F (↓) R (↑) F (↓) R (↑)

Pre-trained Model 64.7 68.3 44.7 68.3 55.3 68.3 43.4 68.3 51.7 68.3 66.4 68.3 65.5 68.3 51.9 68.3

Standard Task Arithmetic [29] 27.8 64.7 24.1 64.3 12.4 65.0 7.6 64.5 9.4 65.3 27.3 64.7 49.6 64.8 6.4 64.8
Best Model on Val. Set [56] 30.0 63.9 23.1 64.2 9.9 64.6 7.6 64.3 5.4 65.1 27.7 64.9 48.6 63.9 6.6 64.5
Vector Uniform Merge [56] 28.6 64.6 21.7 63.3 10.6 64.9 8.4 64.9 13.2 65.5 24.0 64.5 49.2 64.7 6.5 64.8
Vector Greedy Merge [56] 30.0 63.9 23.1 64.0 10.2 64.8 7.6 64.3 4.1 65.3 23.8 64.5 49.1 64.6 6.4 64.7
Vector TIES-Merging [59] 28.3 64.6 25.7 64.6 9.0 64.4 7.1 64.6 13.3 64.9 26.6 64.3 44.4 64.7 7.1 64.6
Vector EMR-Merging [28] 26.8 64.5 24.3 64.6 8.5 64.1 6.7 64.7 12.6 64.9 25.2 64.1 42.0 64.5 6.7 64.7
Function Ensemble [56, 8] 27.9 64.5 25.3 64.5 8.9 64.3 7.0 64.5 13.1 64.8 26.2 64.2 43.7 64.6 7.0 64.5

Ours 20.3 64.9 14.7 64.9 1.4 64.7 0.9 64.9 0.8 65.3 16.1 64.6 42.0 65.1 1.3 64.9
Ours (Distillation) 21.5 64.7 15.5 64.7 1.7 64.5 1.0 64.7 0.9 65.1 16.7 64.4 43.1 64.8 1.2 64.7

Table 11: CLIP ViT-Large/14 unlearning measured by the individual accuracy (%) on each forget
dataset and its corresponding accuracy (%) on the retain dataset (ImageNet).

Method Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

F (↓) R (↑) F (↓) R (↑) F (↓) R (↑) F (↓) R (↑) F (↓) R (↑) F (↓) R (↑) F (↓) R (↑) F (↓) R (↑)

Pre-trained Model 77.9 75.5 55.4 75.5 63.6 75.5 50.5 75.5 76.3 75.5 71.3 75.5 68.2 75.5 58.4 75.5

Standard Task Arithmetic [29] 16.9 70.8 21.8 70.7 9.5 71.9 7.7 71.9 3.4 74.6 16.9 71.8 50.5 71.8 6.7 73.3
Best Model on Val. Set [56] 21.7 71.3 22.3 70.5 5.4 72.2 5.2 71.2 3.4 73.9 14.1 70.9 50.4 71.3 6.7 71.9
Vector Uniform Merge [56] 21.7 71.4 23.2 71.8 9.7 72.0 5.3 71.7 8.7 74.0 13.3 71.7 49.8 71.7 6.7 72.3
Vector Greedy Merge [56] 20.6 70.6 22.8 71.1 10.4 72.2 6.8 71.3 5.3 73.4 11.0 70.8 50.4 71.1 6.9 72.9
Vector TIES-Merging [59] 22.4 72.6 23.9 72.5 10.0 72.3 5.5 72.4 9.0 73.7 13.7 71.3 51.3 72.6 6.9 72.5
Vector EMR-Merging [28] 19.7 71.8 21.0 72.0 8.8 71.7 4.8 71.8 7.9 72.0 12.0 72.0 45.1 71.7 6.1 72.1
Function Ensemble [56, 8] 20.5 71.9 21.9 72.0 9.2 71.7 5.0 71.9 8.2 72.0 12.5 71.9 47.0 71.8 6.3 72.0

Ours 14.0 72.2 11.6 72.1 0.9 72.0 0.7 72.1 0.4 72.4 9.5 72.2 41.3 72.3 1.6 72.2
Ours (Distillation) 15.1 71.9 12.5 72.5 1.0 72.7 0.8 72.6 0.5 72.8 10.0 72.3 43.3 72.7 1.8 72.8

distillation approach maintains comparable effectiveness, indicating the utility of function-level
ensemble compression into a single task vector for efficiency.

Unlearning w.r.t. CLIP ViT-Base/16 backbone. Our method also shows consistent performance
gains with CLIP ViT-Base/16 backbone, as shown in Table 10. Specifically, we achieve more
uniformly low forget-set accuracy, which reflects stable task vector disentanglement at the function
level. Moreover, we observe minimal degradation in the ImageNet accuracy, further confirming that
the retain-set supervision/knowledge is well preserved.

Unlearning w.r.t. CLIP ViT-Large/14 backbone. With a stronger-capacity CLIP ViT-Large/14
backbone, our proposed method continues to outperform all other VLM unlearning approaches (see
Table 11). We can easily observe that the forget-set accuracy across all the datasets is substantially
reduced compared to lightweight CLIP architectures. In the meantime, the larger model capacity
appears to amplify the benefits of our approach, as our closed-form solution is able to separate
task-specific information from generalizable knowledge.

C Further Details of Task Vector Linearization

We have investigated an additional VLM unlearning scenario (see Table 2) regarding linearized task
vectors grounded in the Neural Tangent Kernel (NTK) theory [30], which has recently demon-
strated improved unlearning effectiveness. In the tangent space (linear) approach, the VLM
function f ′(x;θ0+τ ′) is linearized via a first-order Taylor expansion at θ0. This yields a lin-
earized VLM in which weight changes produce linear changes in the output: f ′(x;θ0+τ ′) =
f(x;θ0)+τ ′⊤ ∇θ0

f(x;θ0), where τ ′ is defined as the linearized task vector. By simply replacing

17



standard task vectors with their linearized counterparts and adopting the linear approximation f ′, we
achieve VLM unlearning in the context of tangent-space task vectors.

Thus, for each forget dataset, we linearly fine-tune a diversity of linearized task vectors as the standard
unlearning cases. We then build the corresponding linearized task vector simplex for a closed-form
function ensemble. During evaluations, we follow the same protocol as the standard unlearning
detailed in Appendix A.3, reporting both forget-set and retain-set accuracy. More details are in [50].

D Further Details of Incremental Unlearning

To comprehensively evaluate incremental unlearning performance, we follow an unlearning protocol
across a predefined sequence of diverse datasets: Cars, DTD, EuroSAT, GTSRB, MNIST, RESISC45,
SUN397, and SVHN (see Table 3). Each dataset represents distinct distributional characteristics,
enabling an assessment of how cumulative distribution shifts influence unlearning efficacy. We
employ the CLIP ViT-B/32 model and follow the standard fine-tuning setup as detailed in the main
text. Each forget dataset is individually fine-tuned to derive corresponding task vectors, subsequently
subtracted sequentially from the current model to simulate incremental forgetting.

To quantify cumulative unlearning effectiveness, after each sequential subtraction of a task vector, we
evaluate the VLM on all datasets that have been unlearned up to that step (forget dataset). Specifically,
we compute the forget-set accuracy for each previously evaluated dataset and the current one, reporting
their average as the average forget-set accuracy. This sequential-average forget accuracy clearly
indicates how effectively information from multiple tasks is incrementally erased. Lower values
indicate superior unlearning capability.

E Task Vector Re-weighting Guided by Cross-entropy Loss

Recall that we investigate an adaptive re-weighting alternative based on the Cross-Entropy (CE) loss
evaluated on the forget dataset (see Table 6), which servers as a performance proxy for each task
vector. A higher CE loss indicates that the VLM predictions are significantly deviating from the
forget samples, thus reflecting better forgetting performance. Let lforget

i denote the CE loss value for
the forget dataset corresponding to the i-th task vector. To adaptively quantify each task vector’s
relative importance, we adopt a softmax normalization defined as: wi = exp(lforget

i )/
∑

j exp(l
forget
j ).

While CE-guided re-weighting provides an effective alternative to prioritizing task vectors that induce
stronger forgetting (i.e., higher CE loss on the forget set), its effectiveness remains limited. As shown
in Table 6, the CE-based strategy yields marginal improvements over uniform weighting, yet falls
short of the performance achieved by our learned re-weighting scheme. This discrepancy stems from
the fact that CE losses are computed independently for each task vector, lacking the capacity to model
interactions or correlations across different forget directions.

In contrast, our learned re-weighting approach benefits from being jointly optimized with the overall
objective, allowing it to adaptively capture complex interdependencies among task vectors. Notably,
the learned weights are implicitly regularized by the prediction variance minimization objective,
enabling more effective machine unlearning.

F Broader Impact and Limitations.

F.1 Broader Impact

The growing deployment of large-scale VLMs consistently brings increasing societal pressure to
support machine unlearning, enabling systems to forget specific information upon request. This need
arises from regulatory requirements such as the right to be forgotten and ethical concerns over data
misuse or retention. Our proposed task vector simplex unlearning framework provides an efficient
alternative to re-training, enabling scalable removal of targeted knowledge from pretrained VLMs
with minimal computational overhead.

The task vector formulation also promotes a compositional and interpretable unlearning mechanism,
where users can flexibly combine, subtract, or re-weight different task-level behaviors. This capability
facilitates responsible model editing and personalized deployment.
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The broader impact of our work includes:

• Data compliance and privacy. Our proposed method supports a data removal scheme without
full retraining, providing a feasible path toward compliance with modern data privacy regulations
and ethical unlearning requirements.

• Resource-efficient unlearning. By enabling efficient unlearning through task vector simplex,
our method lowers the barrier for deploying unlearning mechanisms in the context of VLMs.

• Modular AI systems. The compositional structure of task vectors introduces a way toward
plug-and-play model updates, supporting dynamic behavior editing in foundation models.

F.2 Limitations

Despite the strong unlearning performance demonstrated by our closed-form task vector simplex
approach for VLMs, several limitations still remain, which we aim to address or mitigate throughout
the paper, as outlined below:

• Dependence on forget data availability. Our method assumes access to representative/partial
data from the target forget task to extract task vectors. While this requirement may appear
restrictive, it is often reasonable in real-world scenarios where users explicitly request the
removal of identifiable data or task-specific knowledge.

• Function-level ensemble dependency. Our main method operates at the function level by
aggregating multiple task vectors through a simplex-based ensemble. While this strategy is
flexible and effective, it may raise concerns about architectural compatibility or deployment
constraints. To address this, we provide an extension that distills the ensemble’s behavior
(predictions) into a single set of model parameters, yielding a fully unlearned model that remains
structurally identical to the original VLM.

G Proofs.

G.1 Corollary 1

Proof. Let each τ be parameterized in barycentric coordinates τ =
∑Q

i=1 αi τ i with αi ≥ 0 and∑Q
i=1 αi = 1. Let each w be parameterized as w =

∑Q
i=1 αi wi.

Notice α = (α1, . . . , αQ)∈RQ is uniformly distributed over the (Q−1)-simplex, i.e., Dir(1Q).

Moreover, we have the following expectations:

E[α3
i ] =

6

Q(Q+ 1)(Q+ 2)
,

E[α2
iαj ] =

2

Q(Q+ 1)(Q+ 2)
iff i ̸= j,

E[αiαjαk] =
1

Q(Q+ 1)(Q+ 2)
iff i ̸= j, i ̸= k, j ̸= k, (17)

which are based on the following formula:

E
[
αp1

1 · · ·αpQ
q

]
=

p1! p2! · · · pQ!
Q(Q+ 1) · · ·

(
Q+ (

∑Q
i=1 pi)− 1

) (18)

because we have density:

f(α1, . . . , αQ) =
1

Beta(1, . . . , 1)

Q∏
i=1

α1−1
i = (Q− 1)!1{αi≥0,

∑
αi=1}, (19)

where Beta(α1, . . . , αQ) =
∏Q

i=1 Γ(αi)

Γ(
∑Q

i=1 αi)
is the multivariate Beta function. In order to get raw

moments, one computes:

E
[
αp1

1 · · ·αpQ

Q

]
=

∫
∑

αi=1, αi≥0

αp1

1 · · ·αpQ

Q

1

Beta(1, . . . , 1)
dα, (20)
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where Beta(1, . . . , 1)=
∏

i Γ(1)

Γ(Q) = 1
(Q−1)! .

E[αp1

1 · · ·αpQ

Q ] =
1

Beta(1, . . . , 1)
Beta(1 + p1, 1 + p2, . . . , 1 + pQ) (21)

= (Q− 1)!

∏Q
i=1 Γ(1 + pi)

Γ
(
Q+

∑Q
i=1 pi

) =
p1! p2! · · · pQ!

Q(Q+ 1) · · ·
(
Q+ (

∑Q
i=1 pi)− 1

) , (22)

which is exactly Eq. (18).

i. For the choice of three variables αi, αj and αk, Eq. (18) can simply be expanded as follows
E[αiαjαk]=E

[
α0
1 · · ·α0

i−1α
1
iα

1
jα

1
kα

0
k+1 · · ·α

pQ

Q

]
= 0! ··· 0! 1! 1! 1! 0! ··· 0!

Q(Q+1) ··· (Q+3−1) =
1

Q(Q+1)(Q+2) .

ii. For the choice of two variables α2
i and αj , Eq. (18) can simply be expanded as follows E[α2

iαj ]=

E
[
α0
1 · · ·α0

i−1α
2
iα

1
jα

0
j+1 · · ·α

pQ

Q

]
= 0! ··· 0! 2! 1! 0! ··· 0!

Q(Q+1) ··· (Q+3−1) =
2

Q(Q+1)(Q+2) .

iii. For the choice of one variable α3
i , Eq. (18) can simply be expanded as follows E[α3

i ] =
E
[
α0
1 · · ·α0

i−1α
3
iα

0
i+1 · · ·α

pQ

Q

]
= 0! ··· 0! 3! 0! ··· 0!

Q(Q+1) ··· (Q+3−1) =
6

Q(Q+1)(Q+2) .

Now we expand w τ⊤Hτ =
∑Q

i=1

∑Q
j=1

∑Q
k=1 αiαjαkwiτ

⊤
j Hτ k, substitute Eq. (17) and com-

pute expectations:

E[w τ⊤Hτ ]=
1

Q(Q+ 1)(Q+ 2)

( Q∑
i=1

(2 + 4wi) τ
⊤
i Hτ i +

Q∑
i,j=1
i ̸=j

(
1 + wi + wj

)
τ⊤
i Hτ j

)
.

(23)

This completes the proof.

G.2 Advanced Aggregation

Proof. Eq. (8) emerges from the following set of transitions:

1−
∏

τ∈∆θ

(
1− f(x;θ0 − λτ )

)
= 1− exp

[
log

( ∏
τ∈∆θ

(
1− f(x;θ0 − λτ )

))]
= 1− exp

[ ∑
τ∈∆θ

log
(
1− f(x;θ0 − λτ )

)]
= 1− exp

[
|∆θ|

1

|∆θ|
∑

τ∈∆θ

log
(
1− f(x;θ0 − λτ )

)]
= 1− exp

[
|∆θ|µg(x)

]
. (24)

Moreover, as
∏Q

i=1(1−pci ) is the probability of zero successes in Q independent Bernoulli trials
that are not necessarily identically distributed (Wadycki et al. [71]), thus 1 −

∏Q
i=1(1− pci ) is

the probability of at least one successes in Q independent Bernoulli trials that are not necessarily
identically distributed.

Therefore, it follows that infinitely sampling trials from the simplex ∆θ, as in 1 −
∏

τ∈∆θ

(
1 −

f(x;θ0 − λτ )
)
, yields the probability of at least one successes in the infinite number of independent

Bernoulli trials that are not necessarily identically distributed, and are sampled from simplex ∆θ .

Notice that as function f varies due to changes of task vectorτ , underlying trials are not necessarily
identically distributed, and that is why we employed the PMF of the Poisson binomial distribution.
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G.3 Volume of Simplex

For detailed derivations of the volume formula of simplex refer to the work by Stein [70].

G.4 Bias-variance Trade-off

Proof. Let y(x) = f∗(x) + η with η ∼ N (0,γ2). Let τ = τ (D) be a task vector learned by
fine-tuning on some augmented dataset D derived from unlearning dataset D0. Let predictor be
f(x) = f(x;θ0 − λτ ).

Consider the following expression

y − f(x) =
(
f∗(x) + η

)
− f(x) =

(
f∗(x)− f(x)

)
+ η (25)

and observe that

∥y(x)− f(x)∥22 =
∥∥f∗(x)− f(x)

∥∥2
2
+ 2

〈
f∗(x)− f(x),η

〉
+ ∥η∥22. (26)

Consider the following expectation:

ED0,τ

[
Eη

[
∥y(x)− f(x)∥22 | D0, τ

]︸ ︷︷ ︸
inner expectation

]
. (27)

Now, expand its inner expectation as follows:

Eη

[
∥y(x)−f(x)∥22 | D0, τ

]
=Eη

[
∥f∗(x)−f(x)∥22

]
+2Eη

[
⟨f∗(x)−f(x),η⟩

]
+Eη

[
∥η∥22

]
= ∥f∗(x)−f(x)∥22 + 0 + ∥γ∥22. (28)

Subsequently, Eq. (27) reduces to the following expression:

ED0,τ

[
∥f∗(x)− f(x)∥22

]
+ ∥γ∥22, (29)

which we expand below into the squared bias and variance. Let µf (x) = ED0,τ

[
f(x;θ0−λτ )

]
and

consider that f(x;θ0 − λτ ) changes due to changing task vector τ and dataset D0, whereas f∗(x)
does not change w.r.t. changes of τ or D0.

Substitute u = f(x;θ0−λτ )−µf (x) and v = µf (x)−f∗(x), and apply the following expansion:

∥u+ v∥22=∥u∥22 + 2⟨u,v⟩+ ∥v∥22 (30)

=
∥∥f(x;θ0 − λτ )−µf (x)

∥∥2
2
+ 2

〈
f(x;θ0 − λτ )−µf (x),µf (x)−f∗(x)

〉
+ ∥µf (x)−f∗(x)∥22.

Incorporating expectations into Eq. (30) leads to:

ED0,τ

[
∥f(x;θ0 − λτ )− f∗(x)∥22

]
= ED0,τ

[∥∥f(x;θ0 − λτ )−µf (x)
∥∥2
2

]
︸ ︷︷ ︸

=ED0

[
∥σ2

f (x)∥1︸ ︷︷ ︸
Varτ (f(x))

]
+ ED0,τ

[
2
〈
f(x;θ0 − λτ )−µf (x),µf (x)−f∗(x)

〉]
︸ ︷︷ ︸

=0

+ ED0

[
Eτ

[
∥µf (x)−f∗(x)∥22

]︸ ︷︷ ︸(
Biasτ f(x)

)2

]
. (31)

Including ∥γ∥22 from Eq. (29) into the result in Eq. (31) completes the proof.

The importance of the above proof is that our closed-form ensemble of infinite number of functions
with task vectors sampled from task simplex ∆θ has the associated with it closed-form variance.
Such a variance term tells us how much function f(x;θ0−λτ ) fluctuates around µf (x) over
random draws of τ from the task simplex ∆θ and dataset D0. High variance may result from task
vectors overfitting to the unlearning dataset so controlling the variance controls the generalization
of our unlearning algorithm.
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G.5 Interpolation Bound

Proof. Let θ̄ =
∑Q

i=1 αi(θ0 − λτ i) be the convex combination of perturbed parameters.

Note that:

θ̄ =

Q∑
i=1

αi(θ0 − λτ i) = θ0 − λ

Q∑
i=1

αiτ i = θ0 − λτ . (32)

Next, for l = 1, . . . , C ′, we write:∣∣∣gl(θ0 − λτ )−
Q∑
i=1

αi gl(θ0 − λτ i)
∣∣∣ = ∣∣∣gl(θ̄)− Q∑

i=1

αi gl(θ0 − λτ i)
∣∣∣, (33)

where gl(·) is simply the lth output of the multivariate-output unlearning function g(·).
Let gl(·) be Ll-Lipschitz continuous, i.e., |gl(θi)− gl(θj)| ≤ Ll∥θi − θj∥2, ∀i ̸= j. Then g(·) is
L-Lipschitz continuous with L=

∑
l Ll as:∥∥∥g(θi)− g(θj)

∥∥∥
1
=

∑
l

∣∣∣gl(θi)− gl(θj)
∣∣∣ ≤ ∑

l

Ll

∥∥∥θi − θj

∥∥∥
2
= L

∥∥∥θi − θj

∥∥∥
2
, ∀i ̸= j. (34)

Next, we write: ∣∣∣ Q∑
i=1

αigl(θ0 − λτ i)− gl(θ̄)
∣∣∣ = ∣∣∣ Q∑

i=1

αi

[
gl(θ0 − λτ i)− gl(θ̄)

]∣∣∣ (35)

≤
Q∑
i=1

αi

∣∣∣gl(θ0 − λτ i)− gl(θ̄)
∣∣∣ (36)

≤
Q∑
i=1

αiLl

∥∥(θ0 − λτ i)− θ̄
∥∥
2

(37)

= Ll

Q∑
i=1

αi

∥∥λ(τ − τ i)
∥∥
2

(38)

= Llλ

Q∑
i=1

αi

∥∥τ − τ i

∥∥
2
. (39)

Since τ =
∑Q

j=1 αjτ j , we have:∥∥∥τ − τ i

∥∥∥
2
=

∥∥∥ Q∑
j=1

αj(τ j − τ i)
∥∥∥
2
≤

Q∑
j=1

αj

∥∥∥τ j − τ i

∥∥∥
2
≤ max

j

∥∥∥τ j − τ i

∥∥∥
2
. (40)

Therefore:∣∣∣gl(θ0−λτ )−
Q∑
i=1

αigl(θ0−λτ i)
∣∣∣ ≤ Llλ

Q∑
i=1

αi max
j

∥∥τ j −τ i

∥∥
2
≤ Llλmax

i,j

∥∥τ i−τ j

∥∥
2
. (41)

Now using Eq. (34) it follows that Eq. (41) can be further transformed as:∥∥∥g(θ0 − λτ )−
Q∑
i=1

αig(θ0 − λτ i)
∥∥∥
1
=

∑
l

∣∣∣gl(θ0 − λτ )−
Q∑
i=1

αigl(θ0 − λτ i)
∣∣∣

≤
∑
l

Llλmax
i,j

∥∥τ i − τ j

∥∥
2
= Lλmax

i,j

∥∥τ i − τ j

∥∥
2
. (42)
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H Additional Analyses and Considerations

H.1 Computation of the First-order Taylor Term

For the standard expansion without weighting, we have:

µτ =
1

|∆θ|
∑
τ∈∆θ

τ =
1

Q

Q∑
i=1

τ i, (43)

while for Corollary 1 we have:

µω
τ =

1

|∆θ|
∑

(w,τ )∈∆w×∆θ

wτ =
1∑Q

j=1 wj

Q∑
i=1

wiτ i. (44)

H.2 Sparse Parameter Change and Active Parameter Subset

Few-epochs fine-tuning θ0 on unlearning dataset toward θi yields sparse change
m∑
j=1

1(|θj,0 − θj,i| > ϵ) ≪ m (45)

for small ϵ and m= 86M (CLIP ViT-B-16). He et al. [68] and Zeng et al. [72] observe sparsity
between fine-tuned and original models. For ϵ = 1e−4 (CLIP ViT-B/16), about 4.6% parameters
change.

Thus, in this work we assume that interpolating between such sparse differences in θi and θj , i ̸= j
captures a parameter subset responsible for unlearning. Interpolating on such a subset of coefficients
serves as choosing varying magnitudes of parameters that are active in unlearning.

H.3 Distributions with Non-compact Support

We assert that the compact support of Dirichlet distribution is beneficial as sampling from it provides
a sample of parameter vector obeying the support, and thus not activating parameters irrelevant for
the task.

Table 12: The Normal distribution vs. the Dirichlet
distribution ensemble.

Distribution Forget (↓) Retain (↑)

Normal (S=100) 16.80 64.32
Normal (S=300) 15.98 64.54
Dirichlet (Ours) 12.17 64.93

As a counterexample, let task vectors be Nor-
mally distributed, i.e., θ′ ∼ N (µ,σ2). Let
off-diagonal elements be set to 0 as one can-
not estimate m × m dimensional covariance
for very large m. Let µ = 1

Q

∑Q
i=1 θi and

σ2 = 1
Q−1

∑Q
i=1(θi − µ)2 which produces

parameter samples θ′ = µ + σ ⊙ v where
v ∼ N (0,1).

Table 12 shows that the Normal distribution performs worse than the Dirichlet distribution model
as for the Normal distribution the slopes of PDF decay slowly toward ∞ whereas the Dirichlet
distribution has compact support.

H.4 Parameter Augmentation Perspective

As averaging all task vectors gives viable unlearning (Vector Uniform Merge), and ensembling
functions on individual task vectors is viable unlearning (Function Ensemble), interpolation between
the mean 1

Q

∑Q
i=1 τ i and individual τ j can be considered as a parameter augmentation strategy.

Let
p(x; Ω) =

1

|Ω|

∫
τ∈Ω

f
(
x;θ0 − τ

)
dτ . (46)

Based on Theorem 4, if f(·) changes fast in Ωfast and slow in Ωslow (within the same neighborhood
sizes) then intuitively the entropy of prediction Ent(p(x; Ωslow)) is lower than Ent(p(x; Ωfast))
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as smooth changes contribute coherently to the vote (ensemble), whereas chaotic changes are
incoherent leading to cancellation of class peaks; Ent(vec(1/C)) is max. Hence our method
leverages smoothness of f(·) w.r.t. augmentation. See Izmailov et al. for related considerations [69].

H.5 Proximity of Task Vectors with the Simplex

Task vectors do not follow the Dirichlet distribution per se. However, They are located close to the
simplex. We take Q= 10 out of 30 task vectors fine-tuned on SUN397 and build a simplex. We
count-sketch dimension down to Q=d+1=11 for tractability. The remaining 20 task vectors are
within 0.9(η/2) radius of the simplex while task vectors of Cars exceed 1.6(η/2) distance (cluster
around their own simplex) for diameter η defined for Theorem 4.

H.6 Varying Fine-tuning Numbers Q Table 13: Scaling with # task vectors Q (CLIP ViT-B/16).
Q Forget (↓) Retain (↑) Fine-tuning Time Unlearning Inference Time

10 14.06 64.77 1.9h 372s
15 13.29 64.62 2.9h 458s
30 12.17 64.93 5.7h 716s

In our experiments, we fine-tuned the
model over mere 6–35 epochs. We
can reduce Q = 30 down to Q = 10
to achieve faster speed if parallel fine-
tuning is not permitted.

Table 14: Effect of reducing fine-tuning epochs.
Fine-tuning Epoch % Forget (↓) Retain (↑) Fine-tuning Time

1/3 of 6–35 epochs 15.54 65.14 2.4h
1/2 of 6–35 epochs 14.28 65.06 3.2h

5–35 epochs 12.17 64.93 5.7h

Table 13 provides sequential fine-tuning time
and unlearning inference time together with the
forget and retain performance.

Table 14 provides sequential fine-tuning time
and the forget and retain performance under the
epochs range (6–35) reduced by 1/2 or 1/3.

H.7 Impact of λ on Taylor Expansion
Table 15: Effect of vary-
ing λ (CLIP ViT-B/16,
SUN397).

λ Forget (↓) Retain (↑)

0.1 61.4 67.6
0.2 57.5 66.7
0.3 53.6 66.2
0.4 49.8 65.7
0.5 45.9 64.8
0.6 42.0 65.1
0.7 40.1 62.8
0.8 39.2 60.3

Task vectors are combined with weight 0≤λ≤1. Thus, the λ2 term in
the second-order part of the Taylor expansion decays quadratically, while
the first-order term λ is linear. In practice, λ is chosen by cross-validation.
For very low λ2, our method reverts to the 1st-order expansion. Table
15 investigates results w.r.t. varied λ (CLIP ViT-B/16) on SUN397. Bold
indicates the λ value achieving the best performance in cross-validation.

H.8 Variance σ2(x) vs. Σ(x)

In experiments we assumed each µi for i = 1, . . . , C is independent for simplicity and fi(·) produces
likelihood of the ith class. As some task vectors may be noisy for some classes, we targeted limiting
class-wise variance only. In the future, we will consider reducing covariance (off-diagonal terms) to
decorrelate the model. This will require rethinking the Taylor expansion to produce the outer product
of shape C×C.

H.9 Details of the Bienaymé Formula

For a fixed sample x, one may think of f(·) as a transformation of random variable (task vector
sampled from the Dirichlet distribution (simplex)) into another random variable living in the class
space (surface of a simplex) which follows some class distribution resulting from this transformation.
The Bienaymé formula tells what happens with variance of each class (treated independently) as
the number of ensembled functions grows. That number depends on Q task vectors. However, ρ is
required to be low. The opposite means each Q functions are not independent. In extreme case, one
could have Q identical functions which indeed cannot reduce the variance if they all are identical. To
help reduce the variance, we investigated optimizing wi or τ i in a small radius. Reducing off-diagonal
terms of covariance could strengthen this effect.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the main contributions and scope
of the paper, providing a well-motivated rationale for pursuing machine unlearning. The
presented claims are substantiated by both rigorous theoretical analysis and comprehensive
experimental evaluation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Appendix F.2.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper presents thorough theoretical results, with each theorem accompa-
nied by explicitly stated assumptions. Detailed formal proofs are provided in the appendix,
while intuitive explanations are included in the main text to enhance clarity.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Detailed experimental setups are provided in Appendix A. For each experi-
ment/anaylsis, we also provide its corresponding configuration for clarity.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Detailed experimental setups for reproducing our results are provided in
Appendix A. All the datasets used in the paper are publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Full details of training and evaluations are provided in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We repeat each experiment five times under different random seeds and report
the mean performance. Consistent trends across runs indicate the robustness of our findings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The required computing resources in our setting are provided in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have thoroughly checked the NeurIPS Code of Ethics for our research.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader positive impacts are discussed in Appendix F.1.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

29

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the external resources we used are properly mentioned and credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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