
ConCISE: Confidence-guided Compression in Step-by-step Efficient
Reasoning

Anonymous ACL submission

Abstract001

Large Reasoning Models (LRMs) perform002
strongly in complex reasoning tasks via Chain-003
of-Thought (CoT) prompting, but often suf-004
fer from verbose outputs, increasing compu-005
tational overhead. Existing fine-tuning-based006
compression methods either operate post-hoc007
pruning, risking disruption to reasoning co-008
herence, or rely on sampling-based selection,009
which fails to remove redundant content thor-010
oughly. To address these limitations, this work011
begins by framing two key patterns of redun-012
dant reflection in LRMs—Confidence Deficit,013
wherein the model reflects on correct interme-014
diate steps, and Termination Delay, where re-015
flection continues after a verified, confident an-016
swer—through a confidence-guided perspec-017
tive. Based on this, we introduce CONCISE018
(Confidence-guided Compression In Step-by-019
step Efficient Reasoning), a framework de-020
signed to generate concise reasoning chains,021
integrating Confidence Injection to boost rea-022
soning confidence, and Early Stopping to ter-023
minate reasoning when confidence is sufficient.024
Extensive experiments demonstrate that com-025
pared to baseline methods, fine-tuning LRMs026
on CONCISE-generated data yields a better027
balance between compression and task perfor-028
mance, reducing length by up to ~50% under029
SimPO, while maintaining high task accuracy.030

1 Introduction031

In recent years, Large Language Models (LLMs)032

have achieved remarkable progress in natural lan-033

guage processing, particularly in complex reason-034

ing tasks. Large Reasoning Models (LRMs), such035

as OpenAI-o1 (Jaech et al., 2024) and DeepSeek-036

R1 (Guo et al., 2025), which leverage the Chain-of-037

Thought paradigm (Wei et al., 2022), have demon-038

strated state-of-the-art performance on benchmarks039

involving mathematical problem solving and log-040

ical reasoning(Muennighoff et al., 2025; Qwen041

Team, 2024). However, a prominent limitation of042

Step 3

Step 4

Step 1

Step 2

Step 5

Step 6

Step 3

Step 5

First Ref After Answer
Step 1

Step 2

Step 1

Step 5

Step 6

Step 8Step 4

Conf. Inject. & Early Stop.

Step 2

Step 3

Step 1

Shortest of N (N = 4)

Delete unimportant parts

① ② ③

④

Question
Sampling
-Based
Selection

Post-hoc
Pruning

ConCISE

Step 5 Step 11Step 6

Inference Reflection First Answer Summary

SummarySummarySummary

Summary

Step 4

Step 3

Step 6

Step 1

Step 2

Step 8

Step 9

Step 5

Reasoning

Step 11

Summary

Figure 1: Training dataset construction workflows:
CONCISE (our proposed method) vs. existing methods.

Figure 2: CONCISE achieves a better trade-off between
compression and task performance than baselines.

LRMs is their tendency to generate excessively 043

verbose reasoning chains (Feng et al., 2025; Chen 044

et al., 2024), incuring considerable computational 045

overhead, and posing challenges for deployment in 046

resource-constrained settings (Team et al., 2025). 047

To mitigate LRM output verbosity, recent re- 048

search focuses on compressing their reasoning 049

chains (Qu et al., 2025; Sui et al., 2025). A promi- 050

nent strategy involves fine-tuning LRMs on con- 051

cise reasoning datasets, enabling them to generate 052

shorter responses (Ma et al., 2025; Chen et al., 053

2024; Munkhbat et al., 2025). The effectiveness 054

of this compression strategy hinges on the training 055

1

dataset design. As shown in Figure 1, common056

sampling-based selection, which generates multi-057

ple candidates and picks the shortest correct one, or058

further removes post-answer redundant reflections059

(Team et al., 2025; Chen et al., 2024), lacks control060

during generation, potentially leaving unnecessary061

steps and reducing compression effectiveness. An-062

other approach, post-hoc pruning, identifies and063

removes redundant or less important steps from064

reasoning chains (Cui et al., 2025; Xia et al., 2025),065

risks disrupting reasoning coherence and degrading066

the performance of LRMs after fine-tuning.067

To overcome existing limitations, we aim to068

construct compact, coherent reasoning chains as069

training datasets by precisely removing redundant070

reflections, ensuring LRMs do not suffer perfor-071

mance degradation after fine-tuning. To this end,072

based on the understanding that reflections are073

not solely determined by correctness (Yang et al.,074

2025), we thus adopt a confidence-guided perspec-075

tive to understand the generation of reflection steps076

in LRM’s reasoning processes. This perspective077

offers a clear interpretation of two key patterns of078

redundancy: Confidence Deficit, where low internal079

confidence causes models to undertrust and reflect080

on correct intermediate steps; and Termination De-081

lay, where reflection persists despite a repeatedly082

verified answer. These patterns inflate reasoning083

chains and provide actionable insights for how to084

create concise reasoning chains.085

Therefore, we propose CONCISE (Confidence-086

guided Compression In Step-by-step Efficient rea-087

soning), a framework that leverages a confidence-088

guided perspective for constructing concise reason-089

ing data by actively suppressing redundant reflec-090

tion during generation. CONCISE features two091

complementary components designed to mitigate092

Confidence Deficit and Termination Delay, respec-093

tively: Confidence Injection, which inserts tailored094

phrases before potential reflection points to boost095

the model’s internal confidence, consequently curb-096

ing unnecessary reflection; and Early Stopping,097

which employs a lightweight confidence detector098

to monitor internal confidence after an answer is099

reached, terminating reasoning upon achieving suf-100

ficient confidence. The synergy of these mecha-101

nisms enables CONCISE to produce more efficient102

and compact reasoning chains.103

We then fine-tune four mainstream LRMs us-104

ing CONCISE-generated data via SFT (Wei et al.,105

2021) and SimPO (Meng et al., 2024), evaluating106

their performance across multiple reasoning bench-107

marks. As shown in Figure 2, Experimental results 108

demonstrate that CONCISE consistently achieves 109

a superior trade-off between reasoning compres- 110

sion and task performance under both SFT and 111

SimPO settings compared to baselines. Notably, 112

CONCISE reduces average response length by ap- 113

proximately 50% under SimPO while maintaining 114

high accuracy. Our subsequent analysis reveals that 115

CONCISE’s unique training data design enables 116

LRMs, after fine-tuning, to learn to strategically 117

avoid generating redundant reflection steps with- 118

out harming essential critical reasoning content, 119

thereby achieving efficient reasoning compression 120

while task performance is well maintained. 121

2 Related Work 122

Recent research has increasingly focused on mit- 123

igating verbosity and redundancy in reasoning 124

chains generated by LRMs, which often produces 125

long outputs that increase computational costs, and 126

even degrade accuracy (Wu et al., 2025; Nayab 127

et al., 2024; Wang et al., 2025). To address this 128

problem, existing approaches can be broadly cate- 129

gorized into three classes: Input-based, Decoding- 130

based, and Model-based (Sui et al., 2025). 131

Input-based Methods aim to promote concise rea- 132

soning by modifying input texts (Lee et al., 2025). 133

Common techniques include imposing token limits 134

in prompts or instructing the model to reason briefly 135

(Han et al., 2024; Renze and Guven, 2024). How- 136

ever, these approaches often fail when the model 137

does not consistently follow these instructions. An- 138

other approach, task routing, dynamically selects 139

an appropriate model or reasoning strategy based 140

on input characteristics like question complexity 141

(Ong et al., 2024; Chuang et al., 2025; Aytes et al., 142

2025). Its effectiveness, however, depends on the 143

accurate assessment of input characteristics, which 144

is not always reliable. 145

Decoding-based Methods intervene during decod- 146

ing to control the reasoning process. One com- 147

mon approach compresses steps into latent repre- 148

sentations rather than explicit text, which improves 149

brevity but sacrifices interpretability (Hao et al., 150

2024; Shen et al., 2025b). Another strategy uses 151

dynamic decoding, evaluating each reasoning step 152

and deciding whether to modify or discard it during 153

generation (Sun et al., 2024; Zhang et al., 2025; Xu 154

et al., 2025). While effective at reducing verbosity, 155

these methods introduce additional computational 156

overhead and may disrupt the reasoning coherence. 157

2

Problem: Solve the equation 3x - 2 = 7.

Okay, now I need to solve the equation 3x - 2 = 7.

First, eliminate the constant term by adding 2 to both
sides: 3x - 2 + 2 = 7 + 2, simplifying to 3x = 9

0.57

0.33

0.64

0.48

0.78

0.95

\

0.50

0.50

0.50

0.90
0.50

0.90
0.50

0.90

\

Conf.
Deficit

Original Reasoning Process (7 steps) ConCISE Reasoning Process (5 steps)

The solution is verified. Final Answer: x = 3.

Therefore, Dividing both sides by 3, we get x = 3.

Let’s verify by substituting. The left side becomes 3
× 3 - 2 = 7, which matches the right side.

Conf.
Injection

Append
Therefore,

= 0.33

= 0.67

= 0.50

Termination
Delay

Early
Stopping

= 0.78

= 0.90

= 0.50

The solution is verified. Final Answer: x = 3.

Let’s verify by substituting. The left side becomes 3
× 3 - 2 = 7, which matches the right side.

Wait, we can also verify this graphically: the lines
y = 3x - 2 and y = 7 intersect at x = 3.

Dividing both sides by 3, we get x = 3.

Alternatively, move all terms to one side: 3x - 2 -
7 = 0 simplifies to 3x - 9 = 0, which leads to 3x = 9.

Problem: Solve the equation 3x - 2 = 7.

Okay, now I need to solve the equation 3x - 2 = 7.

First, eliminate the constant term by adding 2 to both
sides: 3x - 2 + 2 = 7 + 2, simplifying to 3x = 9

�� �. �
�� = �. ퟕ�

Figure 3: Illustration of CONCISE’s confidence-guided approach: identifying patterns (Confidence Deficit, Termi-
nation Delay) and applying mechanisms (Confidence Injection, Early Stopping) to suppress redundant reflections,
shown in contrast to the original reasoning process. Ci denotes step confidence and Ti its threshold.

Model-based Methods train models to generate158

concise reasoning directly. One approach employs159

reinforcement learning with reward functions that160

penalize verbosity (Shen et al., 2025a; Aggarwal161

and Welleck, 2025; Luo et al., 2025; Arora and162

Zanette, 2025; Yu et al., 2025), but can be sensitive163

to reward formulation and impose significant costs.164

Another common approach is to fine-tune LRMs on165

datasets with concise reasoning chains(Ma et al.,166

2025; Cui et al., 2025; Xia et al., 2025). These167

datasets are often created by selecting the shortest168

correct chain or removing redundant parts post-hoc.169

Such methods may inadvertently retain redundant170

reflection steps or remove useful context, degrading171

compression efficiency or model performance.172

Motivated by the limitations of existing methods,173

we propose CONCISE, a model-based method that174

precisely identifies and actively suppresses redun-175

dant reflection steps throughout the reasoning pro-176

cess. This approach enables the model to generate177

efficient reasoning chains while preserving reason-178

ing coherence. Leveraging CONCISE, we con-179

struct a high-quality training dataset and fine-tune180

the model to adopt this concise reasoning ability181

without compromising model performance.182

3 Method183

3.1 Confidence-guided Formulation184

Reflections in LRMS are not solely triggered by185

correctness; in many cases, reflection steps are in-186

voked even on correct steps that have been verified187

(Yang et al., 2025). This suggests that reflection188

behavior is also linked to the model’s internal con-189

fidence about current reasoning rather than correct- 190

ness alone. To explain this, we adopt a confidence- 191

guided perspective to formalize when and why 192

LRMS engage in reflection. 193

Let Si = {s1, s2, . . . , si} denote the partial rea- 194

soning chain up to step i, where each si is a textual 195

reasoning unit. We associate each step si with 196

a confidence score ci ∈ [0, 1], representing the 197

model’s internal confidence of that step. The gener- 198

ation policy of the LRM, denoted by πθ, maps the 199

current reasoning context Si to the next step si+1. 200

To model the decision between proceeding and 201

reflecting, we introduce a dynamic threshold ti ∈ 202

[0, 1], which may vary with the model or the 203

context. At each step, the model generates a 204

ReflectionStep as si+1 if its current internal con- 205

fidence ci falls below the threshold ti (i.e., ci < ti). 206

From this perspective, we further analyze the re- 207

flection behavior of LRMS and formally articulate 208

two key patterns responsible for reflection-related 209

redundancy existing in the reasoning process: Con- 210

fidence Deficit and Termination Delay. 211

3.2 Two Key Patterns of Redundancy 212

Confidence Deficit. One major source of redun- 213

dancy in LRMs stems from their tendency to under- 214

trust their correct intermediate steps. LRMs often 215

display unexpected reflection despite exhibiting 216

fine-grained reasoning capabilities and achieving 217

high stepwise accuracy, triggering reflection even 218

on simple and unambiguous reasoning steps. This 219

self-undermining behavior leads to redundant re- 220

flection with minimal semantic gain. We refer to 221

this phenomenon as Confidence Deficit. Formally, 222

3

Confidence Deficit can be defined as the occurrence223

of a step si satisfying:224

∃i, ci < ti despite si being correct.225

Termination Delay. LRMs exhibit another im-226

portant redundant reasoning pattern we term Ter-227

mination Delay: After producing a confident final228

answer, the model is expected to conclude with229

minimal additional reasoning. However, it often230

continues to generate unnecessary reflection steps231

even after repeatedly verifying the same conclusion.232

This behavior can be attributed to a sharp increase233

in the confidence threshold ti after reaching the234

answer at step i′, making it increasingly difficult235

for the model’s internal confidence ci to exceed ti.236

As a result, even when ci becomes relatively high,237

it may still fall short of the heightened ti, lead-238

ing to verbose post-answer reasoning. Formally,239

Termination Delay can be characterized as:240

∃i > i′, ∀j < i′, ti ≫ tj and ci < ti241

3.3 The CONCISE Framework242

To mitigate the above patterns—Confidence Deficit243

and Termination Delay—we propose CONCISE, a244

framework that dynamically steers the reasoning245

generation process to reduce redundant reflections246

and produce concise reasoning chains. CONCISE247

integrates two mechanisms: Confidence Injection,248

which actively inserts confidence phrases to sup-249

press unnecessary reflection steps, and Early Stop-250

ping, which halts generation once sufficient post-251

answer confidence is detected. These two mecha-252

nisms operate together to generate concise reason-253

ing chains without compromising inference quality.254

The overall process is illustrated in Figure 3.255

3.3.1 Confidence Injection256

To alleviate Confidence Deficit, we design a simple257

yet effective mechanism called Confidence Injec-258

tion. The key idea is to boost the model’s internal259

confidence during reasoning by inserting designed260

phrases, referred to as confidence phrases, to pre-261

vent unnecessary reflection steps. Considering that262

indiscriminate injection could disrupt reasoning,263

we selectively insert confidence phrases at critical264

points where the model’s confidence is relatively265

low, that is, when ci < ti, a condition that signifies266

an impending reflection step.267

Specifically, at each step si, the model first gen-268

erates si+1 = πθ(Si). If si+1 is a reflection step,269

(a) Reflection probability of next step
after phrase injection.

(b) Confidence calcu-
lated by our detector.

Figure 4: Effectiveness and necessity of Confidence In-
jection and Termination Delay(details in Appendix B.1).

we retroactively modify the input Si by append- 270

ing a confidence phrase pi sampled from a curated 271

pool P , and regenerate si+1. Formally, the updated 272

generation process is defined as: 273

si+1 = πθ(Si) if ci ≥ ti else πθ(Si, pi) 274

We manually constructed the initial version of P . 275

To evaluate and further refine the initial pool, we 276

conducted experiments measuring the effectiveness 277

of different phrases. We inserted each candidate 278

phrase before the reflection steps and recorded the 279

probability that the model still generated a reflec- 280

tion step. This probability indicates whether the 281

updated confidence c∗i (after phrase insertion) ex- 282

ceeds the dynamic threshold ti. As shown in Fig- 283

ure 4a, different phrases exhibit varying reflection 284

rates. Notably, even the best-performing phrases 285

still yield a reflection rate around 20%, suggesting 286

that confidence injection reduces redundant reflec- 287

tions while still retaining necessary verifications. 288

We then selected 20 phrases with the lowest reflec- 289

tion rates to form the final confidence phrase pool. 290

The composition of the phrase pool and detection 291

of reflection steps are provided in Appendix A.1. 292

3.3.2 Early Stopping 293

Although Confidence Injection effectively boosts 294

the model’s confidence during reasoning, it does 295

not fully mitigate Termination Delay, which is 296

caused by the high threshold ti after the model 297

reaches an answer, leading the model to continue 298

unnecessary reflections even when its confidence is 299

already high. To address this, we design an Early 300

Stopping mechanism based on direct estimation of 301

the model’s internal confidence. 302

Specifically, we construct a lightweight confi- 303

dence detector to provide a quantitative proxy for 304

the model’s internal confidence about the answer. 305

We introduce a probing prompt after the current 306

4

reasoning context and analyze the probability distri-307

bution of generated continuations. Based on the sta-308

tistical analysis shown in Appendix A.2, we collect309

a set of confidence-indicative phrasesW+, which310

reflect affirmations of high certainty. The detected311

confidence score ĉi at step i is calculated as:312

ĉi =
∑

w∈W+

p(w | Si,Probing prompt),313

where p(·|·) denotes the continuation probabili-314

ties determined by πθ. We then calculate the aver-315

age ĉi after the First Answer Step (FAS) is gener-316

ated, including the subsequent five reflection steps317

(Ref1-5). As shown in Figure 4b, the model ex-318

hibits relatively low confidence at the FAS, but319

increases sharply after the first reflection, and con-320

tinues to rise through subsequent reflections. No-321

tably, when the reasoning chain stops, the average322

confidence is 0.95, motivating the introduction of323

a manually controlled lower threshold te. We ulti-324

mately set te = 0.5 through experiments.325

Additionally, the application of the threshold is326

carefully controlled to prevent premature termina-327

tion: once the detected confidence ĉi exceeds te,328

the model is first prompted to output a final answer329

(e.g., by appending Final Answer:). The reason-330

ing process halts only if this answer is subsequently331

verified as correct; otherwise, generation continues.332

More details regarding the selection of te and Early333

Stopping are provided in Appendix A.2.334

3.4 Building Efficient Reasoning Chains335

CONCISE integrates Confidence Injection and336

Early Stopping to dynamically control the reason-337

ing generation process. Given an input question,338

the LRM generates the reasoning chain step-by-339

step. At each step si: if it is identified as a reflection340

step, Confidence Injection is applied by append-341

ing a confidence prompt and regenerating si with342

boosted internal confidence. si is then added to343

the current chain Si. Subsequently, a lightweight344

confidence detector estimates the detected confi-345

dence score ĉi. If ĉi > te, the LRM is prompted to346

provide a final answer a. Crucially, the generation347

process terminates early at this stage if, and only348

if, this answer a matches the ground truth gt and349

ĉi > te, otherwise reasoning continues to the next350

step. After the loop concludes, should a correct351

final answer a have been verified, a concluding352

summary (e.g., prompted by </think>) is gener-353

ated and appended to the accumulated steps Si to354

form the complete CONCISE reasoning chain S,355

Algorithm 1: Workflow of CONCISE.
Preparation: LRM generation policy: πθ,
Confidence Phrase Pool: P , Early
Stopping Threshold te, Prompt Template T

Input: Question q, Ground Truth gt
Initialize: Reasoning chain S0 ← T (q)
for each reasoning step i = 1, 2, . . . do

si ← πθ(Si−1)
if si is a reflection step then

Sample a confidence phrase pi ∈ P
si ← πθ(Si−1, pi)

Si ← Si−1 + si
Compute detected confidence ĉi
if ĉi > te then

a← πθ(Si, ’Final Answer:’)
if isequal(a, gt) then

break

if isequal(a, gt) then
Summary: S ← Si + πθ(Si,

′ </think>′)
Output: CONCISE reasoning chain S

else
Si and q are discarded

otherwise, if a wrong answer was finally achieved, 356

the partial chain and the original question are dis- 357

carded. Algorithm 1 summarizes this coordinated 358

reasoning process in CONCISE. 359

3.5 Training Objective and Fine-tuning 360

To align LRM generation with the behavior encour- 361

aged by CONCISE, we first construct a fine-tuning 362

dataset by applying the CONCISE pipeline to a 363

set of questions. This yields concise reasoning 364

chains in which redundant reflections are actively 365

suppressed. We then fine-tune the LRM on this 366

dataset using two standard learning paradigms: Su- 367

pervised Fine-Tuning (SFT) and Simple Preference 368

Optimization (SimPO). Both approaches optimize 369

a shared objective that governs the desired genera- 370

tion behavior: 371{
πθ(Si)→ πθ(Si + pi), if ci < ti

πθ(Si)→ Terminate, if i ≥ i′ and ĉi > te
372

Specifically, when the model’s confidence ci at 373

a given step falls below the threshold ti, it learns 374

to approximate the distribution conditioned on an 375

injected confidence phrase pi, which helps improve 376

internal certainty and suppress unnecessary reflec- 377

tions. After the first answer is generated, if the 378

5

Model Math-500 GSM8K AIME24 GPQA Average

Acc.↑ Tok.↓ CR↓ Acc.↑ Tok.↓ CR↓ Acc.↑ Tok.↓ CR↓ Acc.↑ Tok.↓ CR↓ Acc.↑ CR↓

DeepSeek-7BOrigin 90.8 3854 100% 93.1 1442 100% 54.2 13574 100% 51.0 8142 100% 72.3 100%

OverThinkSFT 92.2 2538 66% 93.0 1002 70% 52.5 11225 83% 51.1 7639 94% 72.2 78%
SpiritSFT 91.0 2935 76% 91.4 1107 77% 51.7 11529 85% 50.3 7084 87% 71.1 81%
ConCISESFT 92.0 2244 58% 92.9 832 58% 52.1 9751 72% 50.0 5892 72% 71.8 65%

OverThinkSimPO 91.4 2405 62% 92.9 879 61% 50.0 9603 71% 49.9 6305 77% 71.0 68%
SpiritSimPO 87.2 1765 46% 90.8 688 48% 38.3 6926 51% 50.2 5832 72% 66.6 54%
ConCISESimPO 91.0 1946 51% 92.1 715 50% 48.3 7745 57% 48.0 4859 60% 70.0 54%

DeepSeek-1.5BOrigin 82.2 4784 100% 85.4 2219 100% 29.2 17465 100% 34.5 9492 100% 57.8 100%

OverThinkSFT 84.0 3296 69% 85.2 1200 54% 30.0 12893 74% 34.8 8600 91% 58.5 72%
SpiritSFT 83.8 3857 81% 84.8 1476 67% 28.8 13685 78% 32.3 8555 90% 57.4 79%
ConCISESFT 83.6 2701 57% 84.9 923 42% 30.0 11359 65% 35.0 7253 76% 58.4 60%

OverThinkSimPO 83.6 2738 57% 84.8 1003 45% 31.3 11465 66% 34.7 8250 87% 58.6 64%
SpiritSimPO 82.6 2455 51% 82.6 804 36% 26.7 9946 57% 33.1 6910 73% 56.2 54%
ConCISESimPO 83.6 2429 51% 84.3 803 36% 30.4 8810 50% 35.4 7056 74% 58.4 53%

Skywork-7BOrigin 93.6 4178 100% 93.2 2111 100% 62.9 12464 100% 51.1 8374 100% 75.2 100%

OverThinkSFT 92.8 3410 82% 93.1 1561 74% 59.2 11047 89% 50.7 8128 97% 73.9 85%
SpiritSFT 93.4 3279 79% 93.1 1452 69% 58.8 11815 95% 52.0 7565 90% 74.2 83%
ConCISESFT 93.2 2740 66% 92.7 1247 59% 59.2 9871 79% 51.8 6543 78% 74.2 71%

OverThinkSimPO 93.8 2758 66% 93.4 1114 53% 56.3 9422 76% 51.5 6773 81% 73.7 69%
SpiritSimPO 92.0 2329 56% 92.3 801 38% 52.5 8055 65% 51.0 6663 80% 72.0 59%
ConCISESimPO 93.0 2207 53% 93.3 882 42% 55.9 7598 61% 51.7 5668 68% 74.0 56%

Qwen3-8BOrigin 93.4 5142 100% 95.6 2211 100% 73.3 15094 100% 60.6 7309 100% 80.7 100%

OverThinkSFT 93.2 4963 97% 95.5 2133 96% 72.5 14123 94% 60.3 7204 99% 80.4 96%
SpiritSFT 93.2 4184 81% 95.2 1675 76% 73.3 13854 92% 60.0 6784 93% 80.4 85%
ConCISESFT 93.0 4712 92% 95.6 1907 86% 72.1 14168 94% 60.4 6952 95% 80.6 92%

OverThinkSimPO 93.6 2488 48% 95.2 929 42% 69.2 9468 63% 57.1 3524 48% 78.9 50%
SpiritSimPO 93.2 2920 57% 95.3 997 45% 67.9 10441 69% 56.8 3473 48% 78.3 55%
ConCISESimPO 93.0 2271 44% 95.5 841 38% 71.6 10098 67% 57.6 3751 51% 79.4 50%

Table 1: Comparison of OverThink, SPIRIT, and ConCISE methods, fine-tuned with SFT or SimPO on four LRMs.
Metrics include Accuracy (Acc.), Token Count (Tok.), and Compression Ratio (CR) over four benchmarks. Light
gray rows denote original LRM performance. Best and second-best results are in bold and underlined respectively.

detected confidence score ĉi exceeds the early stop-379

ping threshold te, the model is explicitly trained380

to terminate reasoning at that point. Through fine-381

tuning, the model could learn to regulate its gener-382

ation trajectory based on confidence, strengthening383

certainty during reasoning and halting once suffi-384

cient confidence is reached.385

4 Experiments386

4.1 Settings387

Models and Datasets. We evaluate ConCISE388

on four LRMs: DeepSeek-R1-Distill-Qwen-7B389

& 1.5B(Guo et al., 2025), Skywork-OR1-7B-390

Preview(He et al., 2025), and Qwen3-8B(Team,391

2025). As for the training dataset, we select 2,000392

questions from the MATH training set(Hendrycks393

et al., 2021), ensuring that each question yields a394

correct answer under greedy decoding and main-395

taining diversity in difficulty and response lengths.396

Evaluation. We evaluate model performance397

across four benchmarks: GSM8K(Cobbe et al.,398

2021), Math-500(Hendrycks et al., 2021), AIME24,399

and GPQA_diamond(Rein et al., 2024). All eval-400

uations use the same decoding configuration with 401

temperature = 0.6 and top_p = 0.95(Guo et al., 402

2025). The maximum length is set to 16k for 403

GSM8k, Math-500, GPQA_diamond, and 32k for 404

AIME24. For AIME24 and GPQA_diamond, due 405

to their higher difficulty and smaller sizes, we sam- 406

ple 8 times and report the mean values. As for 407

metrics, we adopt three primary metrics to assess 408

both reasoning accuracy and compression effective- 409

ness comprehensively. Acc. denotes the accuracy 410

of the final answer. Tok. refers to the average 411

response length, measured in tokens. CR (Compres- 412

sion Rate) is defined as the ratio of the average 413

response length to that of the original model, with 414

lower values indicating better compression. 415

Baselines. We compare our method against exist- 416

ing approaches that aim to remove redundant rea- 417

soning and construct efficient reasoning datasets, 418

with further comparisons after fine-tuning under 419

SFT and SimPO scenarios. OverThink (Chen 420

et al., 2024) samples eight responses from the LRM 421

with a relatively high temperature and selects the 422

shortest correct one. Only the first reflection step 423

6

(a) Average Acc, StepNum, and StepLen. (b) Analysis of Reflection steps. (c) Metrics of training datasets.

Figure 5: Further analysis of reasoning chains and training datasets on DeepSeek-R1-Distill-Qwen-7B.

after the answer is retained. Spirit (Cui et al., 2025)424

iteratively removes steps with minimal impact on425

perplexity (PPL), deleting 30% of the least critical426

steps. Adjacent contexts are merged to maintain427

coherence. Appendix B.2 shows more implementa-428

tion and training details.429

4.2 Reults and Analysis430

This section evaluates different compression meth-431

ods across various reasoning benchmarks. Our432

results show that CONCISE strikes a superior bal-433

ance between compression and task performance434

compared to baseline methods, enabling mod-435

els to effectively eliminate redundant reasoning436

steps. Additionally, models fine-tuned with CON-437

CISE on mathematical datasets generalize well to438

GPQA_diamond, showcasing its robustness.439

CONCISE achieves superior balance between440

compression and task performance As shown441

in Table 1, CONCISE consistently demonstrates442

strong compression ability across all four LRMs443

and under both SFT and SimPO settings, while444

maintaining model performance. Particularly un-445

der SimPO settings, CONCISE achieves a com-446

pression rate of ~50% with minimal impact on447

the original model’s performance, achieving excel-448

lent compression results on the challenging task449

AIME24 as well as the out-of-domain task GPQA.450

In contrast, OverThink achieves competitive task451

performance but exhibits weaker compression un-452

der both SFT and SimPO settings. Regarding Spirit,453

despite attaining a compression rate comparable to454

that of CONCISE under SimPO settings, its task455

performance suffered a notable degradation, espe-456

cially on challenging tasks like AIME24. Overall,457

compared to baseline methods, CONCISE offers458

a better balance between compression and perfor-459

mance, demonstrating excellent in-domain and out- 460

of-domain generalization and robustness. 461

How does CONCISE achieve a better compres- 462

sion & performance balance? To better un- 463

derstand how CONCISE achieves an improved 464

balance between compression and performance, 465

we particularly analyze the structure of reason- 466

ing chains generated on various benchmarks of 467

DeepSeek-R1-Distill-Qwen-7B. As shown in Fig- 468

ure 5a, we evaluate the average number of steps 469

(StepNum) and the average token count per step 470

(StepLen). CONCISE generates the fewest reason- 471

ing steps, while its StepLen remains comparable 472

to that of the original model. 473

More detailed analysis focuses on reflection 474

steps within reasoning chains on MATH-500, re- 475

vealing distinct compression strategies among the 476

methods. As shown in Figure 5b, we find that prun- 477

ing reflection steps is key to compression, and 478

preserving non-reflection steps is paramount 479

for model performance. CONCISE uniquely 480

achieves this critical balance. Specifically, Spirit- 481

SFT retains the most reflection steps (RefNum), 482

followed by OverThink, while CONCISE re- 483

tains the fewest. Regarding non-reflection steps 484

(Non-RefNum), OverThink and CONCISE exhibit 485

similar counts. Spirit shows slightly fewer non- 486

reflection steps under SimPO, albeit at the cost of a 487

performance drop. This suggests that current com- 488

pression techniques primarily achieve compression 489

by pruning reflection steps, as none of the evalu- 490

ated methods can effectively reduce non-reflection 491

steps without impairing model performance. 492

Further dissecting the reflection steps, Over- 493

Think and Spirit have the most reflection steps 494

before FAS(Pre-FAS RefNum) due to ineffective 495

early-stage reasoning control. In contrast, Spirit- 496

7

SFT has most reflection steps after FAS(Post-FAS497

RefNum), indicating its inability to prune redundant498

post-answer reflections. These distinct strategies in499

reflection management contribute to performance500

disparities: OverThink’s limited pre-answer prun-501

ing curtails its compression potential, while Spirit’s502

difficulty in accurately identifying redundant steps503

often degrades performance by removing essen-504

tial content. CONCISE, however, achieves a bet-505

ter compression-performance balance by precisely506

eliminating redundant reflection steps throughout507

the entire reasoning chain without compromising508

the essential reasoning process. We present more509

details about the above analysis in Appendix B510

How does the training dataset affect compres-511

sion? Since all methods operate under identical512

training configurations, variations in final com-513

pression performance are fundamentally rooted514

in the characteristics of their respective train-515

ing datasets. To this end, we analyze training516

datasets constructed by CONCISE, OverThink,517

Spirit, Greedy-Search (derived from Spirit’s re-518

jected samples), and Longest-of-N (derived from519

rejected samples of CONCISE and OverThink).520

As shown in Figure 5c, surface-level met-521

rics such as response tokens (Tok.), step count522

(StepNum), and average step length (StepLen)523

show no strong direct correlation with the final524

compression rate. For instance, while the train-525

ing datasets of CONCISE and OverThink yield526

nearly identical values for these metrics, CONCISE527

demonstrates significantly better compression af-528

ter fine-tuning under both SFT and SimPO. Con-529

versely, Metrics related to reflection offer more530

insightful distinctions among the methods. For531

instance, OverThink has the highest values for532

Pre-FAS RefNum, while Spirit shows the highest533

Post-FAS RefNum. CONCISE, in contrast, con-534

sistently maintains lower figures for both these535

metrics, underscoring its more effective control536

over the model’s reflective tendencies. Echoing537

the analysis from the previous subsection, these ob-538

served characteristics within the training datasets539

directly mirror the fine-tuned model’s capacity for540

reflection management. This provides strong ev-541

idence that the model effectively learns features542

about reflection from the training data during the543

fine-tuning process. Thus, it becomes clear how544

CONCISE uses its unique training data design to545

achieve significant compression by identifying and546

cutting down on unnecessary reflection steps.547

Benchmark Method Acc. Tok. StepNum StepLen CR

Math-500
Origin 90.8 3854 113.7 33.9 100%
ConCISE 92.0 2244.3 63.0 35.6 58%
Conf. Inj. 91.8 2620 79.5 33.0 68%
Early Stop 92.4 2654 68.4 38.8 69%

GSM8K

Origin 93.1 1442 41.4 34.8 100%
ConCISE 92.9 832 22.5 37.1 58%
Conf. Inj. 92.6 934 23.2 40.2 65%
Early Stop 92.7 1003 22.3 45.0 70%

AIME24

Origin 54.2 13574 463.0 29.3 100%
ConCISE 52.1 9751 333.0 29.3 72%
Conf. Inj. 51.3 10166 372.2 27.3 75%
Early Stop 54.2 12205 389.7 31.3 90%

Table 2: Ablation study of Confidence Injection and
Early Stopping on DeepSeek-R1-Distill-Qwen-7B.

4.3 Ablation Study 548

We conduct an ablation study to evaluate the two 549

core components of CONCISE: Confidence Injec- 550

tion and Early Stopping. For each, we construct a 551

training dataset and fine-tune DeepSeek-7B using 552

the same configurations as in the main experiments. 553

All experiments are performed under SFT settings 554

and evaluated across three mathematical reasoning 555

tasks: Math-500, GSM8K, and AIME24. 556

The results, summarized in Table 2, show that 557

both mechanisms achieve similar reasoning accu- 558

racy to full CONCISE but exhibit weaker compres- 559

sion performance. Specifically, Confidence Injec- 560

tion suppresses unnecessary reflections by boost- 561

ing the model’s confidence, but has a limited im- 562

pact on terminating reasoning after the final an- 563

swer. Early Stopping, on the other hand, halts 564

excessive post-answer reasoning but does not ad- 565

dress earlier stages. Only by combining both can 566

we achieve comprehensive redundancy elimination 567

without compromising reasoning quality. 568

5 Conclusion 569

In this work, we first modeled the generation of 570

reflection steps in LRMs from a confidence-guided 571

perspective, helping to understand two key patterns 572

responsible for redundant reflection within the rea- 573

soning process of LRMs: Confidence Deficit and 574

Termination Delay. Based on this, we propose 575

CONCISE, which employs Confidence Injection 576

and Early Stopping mechanisms to respectively ad- 577

dress the above two patterns to suppress redundant 578

reflection steps and produce efficient, concise rea- 579

soning chains. Extensive experiments demonstrate 580

that LRMs fine-tuned on CONCISE-generated data 581

significantly compress their responses while main- 582

taining strong task performance. 583

8

Limitations584

While CONCISE demonstrates strong performance585

in compressing reasoning chains, it is subject to586

certain limitations that merit further exploration:587

Room for Further Compression. While CON-588

CISE effectively addresses redundant reflection589

steps, analysis indicates that significant poten-590

tial remains for further compression of both non-591

reflection steps and the average length of each step.592

Future work could explore integrating techniques593

with CONCISE to achieve a higher degree of com-594

pression while maintaining model performance.595

Confidence Estimation During Reasoning. Al-596

though CONCISE introduces a lightweight confi-597

dence detector for the post-answer phase, it still598

lacks a direct mechanism to model confidence be-599

fore the first answer. Instead, it relies on the oc-600

currence of reflection steps as an indirect proxy.601

Future work could explore training a lightweight602

model to detect the model’s internal confidence,603

thereby enabling more fine-grained control.604

Inference-Time Compression. CONCISE can605

also serve as a training-free, decoding-based606

method that generates concise reasoning chains607

by intervening in the decoding process. However,608

because Confidence Injection and Early Stopping609

mechanisms add inference overhead, CONCISE610

lacks a speed advantage over original long reason-611

ing chains, still requiring further optimization.612

References613

Pranjal Aggarwal and Sean Welleck. 2025. L1:614
Controlling how long a reasoning model thinks615
with reinforcement learning. arXiv preprint616
arXiv:2503.04697.617

Daman Arora and Andrea Zanette. 2025. Training lan-618
guage models to reason efficiently. arXiv preprint619
arXiv:2502.04463.620

Simon A Aytes, Jinheon Baek, and Sung Ju Hwang.621
2025. Sketch-of-thought: Efficient llm reasoning622
with adaptive cognitive-inspired sketching. arXiv623
preprint arXiv:2503.05179.624

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,625
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,626
Mengfei Zhou, Zhuosheng Zhang, and 1 others.627
2024. Do not think that much for 2+ 3=? on628
the overthinking of o1-like llms. arXiv preprint629
arXiv:2412.21187.630

Yu-Neng Chuang, Leisheng Yu, Guanchu Wang, Lizhe631
Zhang, Zirui Liu, Xuanting Cai, Yang Sui, Vladimir632

Braverman, and Xia Hu. 2025. Confident or seek 633
stronger: Exploring uncertainty-based on-device llm 634
routing from benchmarking to generalization. arXiv 635
preprint arXiv:2502.04428. 636

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 637
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 638
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 639
Nakano, and 1 others. 2021. Training verifiers 640
to solve math word problems. arXiv preprint 641
arXiv:2110.14168. 642

Yingqian Cui, Pengfei He, Jingying Zeng, Hui Liu, 643
Xianfeng Tang, Zhenwei Dai, Yan Han, Chen Luo, 644
Jing Huang, Zhen Li, and 1 others. 2025. Stepwise 645
perplexity-guided refinement for efficient chain-of- 646
thought reasoning in large language models. arXiv 647
preprint arXiv:2502.13260. 648

Sicheng Feng, Gongfan Fang, Xinyin Ma, and Xinchao 649
Wang. 2025. Efficient reasoning models: A survey. 650
arXiv preprint arXiv:2504.10903. 651

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao 652
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi- 653
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025. 654
Deepseek-r1: Incentivizing reasoning capability in 655
llms via reinforcement learning. arXiv preprint 656
arXiv:2501.12948. 657

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu 658
Zhao, Shiqing Ma, and Zhenyu Chen. 2024. 659
Token-budget-aware llm reasoning. arXiv preprint 660
arXiv:2412.18547. 661

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, 662
Zhiting Hu, Jason Weston, and Yuandong Tian. 2024. 663
Training large language models to reason in a contin- 664
uous latent space. arXiv preprint arXiv:2412.06769. 665

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie 666
Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang Zhang, 667
Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng, Tian- 668
wen Wei, Cheng Cheng, Bo An, Yang Liu, and 669
Yahui Zhou. 2025. Skywork open reasoner series. 670
https://capricious-hydrogen-41c.notion.si 671
te/Skywork-Open-Reaonser-Series-1d0bc9ae8 672
23a80459b46c149e4f51680. Notion Blog. 673

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 674
Arora, Steven Basart, Eric Tang, Dawn Song, and 675
Jacob Steinhardt. 2021. Measuring mathematical 676
problem solving with the math dataset. NeurIPS. 677

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard- 678
son, Ahmed El-Kishky, Aiden Low, Alec Helyar, 679
Aleksander Madry, Alex Beutel, Alex Carney, and 1 680
others. 2024. Openai o1 system card. arXiv preprint 681
arXiv:2412.16720. 682

Ayeong Lee, Ethan Che, and Tianyi Peng. 2025. 683
How well do llms compress their own chain-of- 684
thought? a token complexity approach. arXiv 685
preprint arXiv:2503.01141. 686

9

https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonser-Series-1d0bc9ae823a80459b46c149e4f51680
https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonser-Series-1d0bc9ae823a80459b46c149e4f51680
https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonser-Series-1d0bc9ae823a80459b46c149e4f51680
https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonser-Series-1d0bc9ae823a80459b46c149e4f51680
https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonser-Series-1d0bc9ae823a80459b46c149e4f51680

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shi-687
wei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,688
and Dacheng Tao. 2025. O1-pruner: Length-689
harmonizing fine-tuning for o1-like reasoning prun-690
ing. arXiv preprint arXiv:2501.12570.691

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan692
Fang, and Xinchao Wang. 2025. Cot-valve: Length-693
compressible chain-of-thought tuning. arXiv preprint694
arXiv:2502.09601.695

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024.696
Simpo: Simple preference optimization with a697
reference-free reward. Advances in Neural Infor-698
mation Processing Systems, 37:124198–124235.699

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-700
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke701
Zettlemoyer, Percy Liang, Emmanuel Candès, and702
Tatsunori Hashimoto. 2025. s1: Simple test-time703
scaling. arXiv preprint arXiv:2501.19393.704

Tergel Munkhbat, Namgyu Ho, Seo Hyun Kim, Yongjin705
Yang, Yujin Kim, and Se-Young Yun. 2025. Self-706
training elicits concise reasoning in large language707
models. arXiv preprint arXiv:2502.20122.708

Sania Nayab, Giulio Rossolini, Marco Simoni, Andrea709
Saracino, Giorgio Buttazzo, Nicolamaria Manes, and710
Fabrizio Giacomelli. 2024. Concise thoughts: Impact711
of output length on llm reasoning and cost. arXiv712
preprint arXiv:2407.19825.713

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chi-714
ang, Tianhao Wu, Joseph E Gonzalez, M Waleed715
Kadous, and Ion Stoica. 2024. Routellm: Learning716
to route llms from preference data. In The Thirteenth717
International Conference on Learning Representa-718
tions.719

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao720
Yan, Dongrui Liu, Ganqu Cui, Daizong Liu, Shuxian721
Liang, Junxian He, and 1 others. 2025. A survey of722
efficient reasoning for large reasoning models: Lan-723
guage, multimodality, and beyond. arXiv preprint724
arXiv:2503.21614.725

Qwen Team. 2024. QwQ: Reflect Deeply on the Bound-726
aries of the Unknown. Accessed: 2025-04-05.727

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-728
pher D Manning, Stefano Ermon, and Chelsea Finn.729
2023. Direct preference optimization: Your lan-730
guage model is secretly a reward model. Advances in731
Neural Information Processing Systems, 36:53728–732
53741.733

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-734
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-735
lian Michael, and Samuel R Bowman. 2024. Gpqa:736
A graduate-level google-proof q&a benchmark. In737
First Conference on Language Modeling.738

Matthew Renze and Erhan Guven. 2024. The benefits739
of a concise chain of thought on problem-solving in740
large language models. In 2024 2nd International741

Conference on Foundation and Large Language Mod- 742
els (FLLM), pages 476–483. IEEE. 743

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wen- 744
jing Zhang, Jiangze Yan, Ning Wang, Kai Wang, and 745
Shiguo Lian. 2025a. Dast: Difficulty-adaptive slow- 746
thinking for large reasoning models. arXiv preprint 747
arXiv:2503.04472. 748

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, 749
Yali Du, and Yulan He. 2025b. Codi: Compress- 750
ing chain-of-thought into continuous space via self- 751
distillation. arXiv preprint arXiv:2502.21074. 752

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu 753
Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, An- 754
drew Wen, Hanjie Chen, Xia Hu, and 1 others. 755
2025. Stop overthinking: A survey on efficient rea- 756
soning for large language models. arXiv preprint 757
arXiv:2503.16419. 758

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao 759
Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter 760
Bartlett, and Andrea Zanette. 2024. Fast best-of-n 761
decoding via speculative rejection. arXiv preprint 762
arXiv:2410.20290. 763

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, 764
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun 765
Xiao, Chenzhuang Du, Chonghua Liao, and 1 others. 766
2025. Kimi k1. 5: Scaling reinforcement learning 767
with llms. arXiv preprint arXiv:2501.12599. 768

Qwen Team. 2025. Qwen3. 769

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu 770
Chen, Zhiwei He, Linfeng Song, Dian Yu, Juntao Li, 771
Zhuosheng Zhang, and 1 others. 2025. Thoughts are 772
all over the place: On the underthinking of o1-like 773
llms. arXiv preprint arXiv:2501.18585. 774

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin 775
Guu, Adams Wei Yu, Brian Lester, Nan Du, An- 776
drew M Dai, and Quoc V Le. 2021. Finetuned lan- 777
guage models are zero-shot learners. arXiv preprint 778
arXiv:2109.01652. 779

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 780
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 781
and 1 others. 2022. Chain-of-thought prompting elic- 782
its reasoning in large language models. Advances 783
in neural information processing systems, 35:24824– 784
24837. 785

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka, 786
and Yisen Wang. 2025. When more is less: Un- 787
derstanding chain-of-thought length in llms. arXiv 788
preprint arXiv:2502.07266. 789

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie 790
Wang, and Wenjie Li. 2025. Tokenskip: Control- 791
lable chain-of-thought compression in llms. arXiv 792
preprint arXiv:2502.12067. 793

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng 794
He. 2025. Chain of draft: Thinking faster by writing 795
less. arXiv preprint arXiv:2502.18600. 796

10

https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwen3/

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,797
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,798
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-799
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,800
Jingren Zhou, Junyang Lin, Kai Dang, and 22 oth-801
ers. 2024. Qwen2.5 technical report. arXiv preprint802
arXiv:2412.15115.803

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu,804
Chenyu Zhu, Zheng Lin, Li Cao, and Weiping Wang.805
2025. Dynamic early exit in reasoning models. arXiv806
preprint arXiv:2504.15895.807

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan,808
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,809
Lingjun Liu, Xin Liu, and 1 others. 2025. Dapo:810
An open-source llm reinforcement learning system811
at scale. arXiv preprint arXiv:2503.14476.812

Jintian Zhang, Yuqi Zhu, Mengshu Sun, Yujie Luo,813
Shuofei Qiao, Lun Du, Da Zheng, Huajun Chen,814
and Ningyu Zhang. 2025. Lightthinker: Think-815
ing step-by-step compression. arXiv preprint816
arXiv:2502.15589.817

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan818
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.819
2024. Llamafactory: Unified efficient fine-tuning820
of 100+ language models. In Proceedings of the821
62nd Annual Meeting of the Association for Compu-822
tational Linguistics (Volume 3: System Demonstra-823
tions), Bangkok, Thailand. Association for Computa-824
tional Linguistics.825

11

http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

A Details about ConCISE826

A.1 Confidence Injection827

The selection of appropriate confidence phrases is828

critical for the Confidence Injection component of829

ConCISE. We curated a pool of 20 distinct phrases,830

presented in Table 3, by observing the model’s831

native reasoning expressions, employing manual832

design, and performing experimental refinement833

(partly illustrated in Figure 4a). The purpose of834

these phrases is to inject confidence into the model,835

thereby preventing redundant reflection steps dur-836

ing reasoning. To mitigate potential overfitting to837

any specific phrase, one phrase is randomly se-838

lected from the pool for injection at runtime.839

Additionally, another crucial mechanism within840

the Confidence Injection process is identifying841

whether the current step constitutes a reflection842

step. The accurate and swift identification of such843

steps is paramount for the success of Confidence844

Injection. Consequently, informed by our observa-845

tions of reflection steps during LRM reasoning pro-846

cesses, we employed a rule-based detection method.847

This method, which is detailed in Appendix A.3.1,848

achieves reasonably accurate detection while hav-849

ing a negligible impact on the model’s inference850

speed.851

A.2 Early Stopping852

Probing prompt and confidence-indicated to-853

kens. The effectiveness of the Early Stopping854

mechanism relies heavily on the accuracy of its855

confidence detector. To identify an appropriate856

probing prompt, we first analyzed the reasoning857

chains generated by four Large Reasoning Mod-858

els (LRMs) using Greedy decoding on the training859

question set. This analysis revealed that the model860

frequently expresses confidence during the later861

part of the reasoning chain, and as shown in Ta-862

ble 4, self-reported confidence expressions starting863

with “I’m” (such as “I’m confident”) are very com-864

mon.865

Based on this observation, particularly consider-866

ing the prevalence of confidence statements led by867

“I’m”, we considered "So, I’m" as a potential prob-868

ing prompt. Concurrently, we also experimented869

with alternative probing prompts, such as "So, I870

feel" and "I can be". However, we observed871

that these alternative prompts often resulted in high872

confidence scores before the model had reached the873

final answer (i.e., prior to Final Answer Serializa-874

tion, FAS), leading to unnecessary computational875

Table 3: The Pool of 20 Confidence Phrases used for
Confidence Injection.

Index Confidence Phrase

1 Therefore
2 The reasoning holds
3 Previous steps are correct
4 All steps are valid
5 With this established
6 That sounds reasonable
7 Let’s go ahead
8 Alright, let’s carry on
9 Let’s proceed
10 Let’s progress
11 So, putting it all together
12 The logic stands firm
13 The reasoning process is valid
14 Good, let’s keep going
15 Everything seems reasonable so far
16 This part checks out
17 I think that’s solid. So
18 The reasoning holds, let’s keep going
19 Everything checks out, let’s move on
20 All steps are solid, let’s move forward

overhead. 876

Therefore, considering these factors—namely, 877

the prevalence of “I’m”-led confidence statements 878

in the model’s natural expressions and the short- 879

comings of the alternative prompts—we ulti- 880

mately selected "So, I’m" as the fixed probing 881

prompt. Subsequently, we identified the primary 882

confidence-indicative tokens that follow the "So, 883

I’m" prompt, which are: "confident", "pretty 884

confident", "sure", and "pretty sure". 885

The confidence score, ĉi, for a given state Si is
then calculated by summing the probabilities of
generating these tokens or sequences immediately
following the probing prompt "So, I’m":

ĉi =P ("confident" | Si, "So, I’m")

+ P ("sure" | Si, "So, I’m")

+ P ("pretty" | Si, "So, I’m")×(
P ("confident" | Si, "So, I’m pretty")

+ P ("sure" | Si, "So, I’m pretty")
)

Here, notation like P (token | Si, sequence) rep- 886

resents the conditional probability of generating the 887

next token given the preceding state Si and the spe- 888

cific text sequence provided as context. As demon- 889

strated in Figure 4b and supported by our exper- 890

12

Table 4: Frequency of Common Confidence Expressions Observed in 2000 training Reasoning Chains Across
Different Large Reasoning Model Series(DeepSeek, Qwen and Skywork)

Expression DeepSeek-7B DeepSeek-1.5B Qwen3-8B Skywork-OR17B

I’m confident 423 335 127 560
I feel confident 170 172 58 144
I can be confident that 157 156 475 130
I can confidently say 70 176 91 98
This gives me (more)confidence that 68 81 23 86
I’m pretty confident 43 69 2 60
I’m pretty sure 37 28 2 17
Therefore, confident that 1 0 26 5

Total (sum of listed expressions) 969 1017 804 1100

imental results, the confidence detector designed891

using this probing prompt and set of confidence-892

indicative tokens proves effective for the early stop-893

ping mechanism in ConCISE.894

Early stopping threshold. The selection of the895

early stopping threshold, t, was guided by the prin-896

ciple of tailoring the reflection process to the appar-897

ent quality of the reasoning chain. Our objective898

was to configure the threshold such that:899

• Simple problems with rigorous reasoning900

steps require no post-answer reflection.901

• Problems of moderate difficulty benefit from902

exactly one round of reflection.903

• Difficult problems or those with less rigorous904

reasoning undergo two or more rounds of re-905

flection.906

To find a threshold value that aligns with907

this principle, we empirically evaluated te ∈908

{0.4, 0.5, 0.6, 0.7} on the DeepSeek-R1-Distill-909

Qwen-7B model. For each value, we mea-910

sured the probability distribution of the exceed-911

ing points(when ĉi > te) across different stages:912

exceeding after the initial answer generation (0 re-913

flections), after the first reflection, after the second914

reflection, etc. The results of this analysis are illus-915

trated in Figure 6.916

Observing the distributions in Figure 6, we found917

that these te settings generally cause the model to918

achieve a confidence score ĉi > te at the position919

of the first reflection, which aligns with our three920

guiding principles. Furthermore, the confidence921

monitored by our designed lightweight detector922

rarely indicates high confidence before the FAS923

Figure 6: Distribution of exceeding points(when ĉi >
te) probability of Pre-FAS, FAS, Ref1, 2, ..., 5 for dif-
ferent threshold values (te).

Benchmark Te Acc. Tok. StepNum StepLen CR

Math-500

0.4 91.4 2390.6 68.4 34.9 62.0%
0.5 92.0 2244.3 63.0 35.6 58.2%
0.6 91.8 2324.3 66.1 35.2 60.3%
0.7 92.0 2345.1 67.5 34.8 60.8%

GSM8K

0.4 92.4 828.9 19.9 41.6 57.5%
0.5 92.9 831.9 22.5 37.1 57.7%
0.6 93.0 831.7 20.4 40.7 57.7%
0.7 92.7 849.3 21.7 39.2 58.9%

AIME24

0.4 45.8 11548.7 402.1 28.7 85.1%
0.5 52.1 9750.8 333.0 29.3 71.8%
0.6 52.1 9802.5 340.5 28.8 72.2%
0.7 51.7 9719.9 339.8 28.6 71.6%

Table 5: Effect of different early stopping thresholds
(0.4, 0.5, 0.6, 0.7) on the SFT performance of DeepSeek-
R1-Distill-Qwen-7B across mathematical benchmarks.

13

(Final Answer Serialization) step. This is advanta-924

geous as it effectively reduces the computational925

overhead associated with prematurely judging the926

correctness of an answer, making it highly compat-927

ible with the ConCISE methodology.928

Therefore, we further conducted experiments929

for te ∈ {0.4, 0.5, 0.6, 0.7} under the SFT set-930

ting of DeepSeek-R1-Distill-Qwen-7B, and Table 5931

presents these experimental results. We found that932

under the settings of te = 0.5, 0.6, and 0.7, the933

model ultimately exhibited similar performance in934

both compression rate (CR) and accuracy (Acc),935

demonstrating robustness to the choice of te. Con-936

sequently, we selected te = 0.5 for subsequent937

extensive experiments. However, when te = 0.4,938

there was a significant decline in performance. This939

is because when te is set to 0.4, more data exists at940

the FAS step, preventing the model from adequately941

checking its reasoning process; this excessive con-942

fidence leads to a performance drop.943

A.3 Reflection step detection944

The detection of reflection steps, as mentioned945

throughout this paper, plays a crucial role in both946

the algorithmic flow and experimental evaluation947

of ConCISE. Specifically, we employ two distinct948

methods for identifying these steps, selecting the949

most suitable one depending on the specific ap-950

plication context. These methods and their corre-951

sponding usage scenarios are detailed below.952

A.3.1 Rule-based detection.953

Reflection steps generated by the model of-954

ten exhibit distinct linguistic characteristics, fre-955

quently containing specific keywords (e.g., "wait",956

"alternatively") that signal potential reasoning957

shifts or reconsiderations. Consequently, a straight-958

forward and effective strategy for identifying the959

start of such steps is rule-based detection. This960

method checks for the presence of predefined "re-961

flection keywords" within the generated text of a962

given step, Si.963

Formally, let K be the predefined set of reflec-
tion keywords. A step si is identified as the start of
a reflection, denoted as IsReflectionStart(si), if its
text contains any keyword k from the set K:

IsReflectionStart(si) ≡
∨
k∈K

(k ⊆ si)

where k ⊆ si indicates that the keyword k appears964

as a substring of step si.The set K of reflection965

keywords used for rule-based detection consists of 966

the following: 967

• "wait", "alternatively", "check", 968

"reconsider", "reflect", "rethink", 969

"reconsidering", "reviewing", 970

"reassess", "pause", "second thought", 971

"reevaluate", "verify", "think again". 972

While effective for identifying the onset of a re- 973

flection sequence, this method typically cannot rec- 974

ognize subsequent steps within the same reflection 975

process, as these later reflection steps often lack 976

the initial triggering keywords. Despite this limita- 977

tion, we utilize this rule-based approach within the 978

Confidence Injection. Since Confidence Injection 979

operates during the model’s generation process, 980

identifying and potentially preventing only the first 981

redundant reflection step is often sufficient to avoid 982

generating the entire reflection. This method is 983

particularly advantageous here due to its efficiency 984

(introducing no computational overhead) and ease 985

of implementation. 986

Similarly, this rule-based detection is used for 987

the Figure 4a analysis to determine if an interven- 988

tion (like inserting a confidence phrase) triggers the 989

start of a new reflection, as only detecting the initial 990

step with this lightweight method is necessary. 991

A.3.2 LLM-as-a-Judge 992

When the task requires identifying all reflection 993

steps within an entire reflection behavior—a ca- 994

pability beyond the rule-based method—a more 995

comprehensive approach is needed. For example, 996

implementing the OverThink baseline necessitates 997

isolating and retaining the complete first reflection 998

sequence that occurs after the FAS(First Answer 999

Step). To address this, we employ an LLM-as-a- 1000

Judge methodology. 1001

Specifically, we utilize the Qwen-Max model 1002

as the judge. We provide it with both the original 1003

problem/question and the model’s complete reason- 1004

ing chain as input. The prompt supplied to Qwen- 1005

Max includes precise definitions of the FAS and 1006

the characteristics defining a ’reflection behavior’. 1007

The model is instructed to return a structured out- 1008

put that annotates the input chain, identifying the 1009

index of the FAS and providing the indices for all 1010

detected reflection steps, grouped according to the 1011

reflection behavior they belong to. We then parse 1012

this structured output to finalize the detection and 1013

grouping of reflection steps. Illustrative examples 1014

of the prompt structure, input format, and expected 1015

14

(a) Difficulty diversity of question set. (b) Length diversity of question set.

Figure 7: Diversity of the question set, showing distributions for difficulty and length.

response can be found in Figure 9, Figure 10, and1016

Figure 111017

Our observations indicate that Qwen-Max per-1018

forms reliably in identifying FAS and grouping1019

reflection steps when the reasoning chains are of1020

moderate length. However, we noted a decline1021

in performance for chains exceeding 5000 tokens.1022

This degradation is likely attributable to the known1023

limitations of current LLMs in processing very long1024

contexts effectively. Consequently, for the imple-1025

mentation of the OverThink baseline comparison,1026

reasoning chains longer than 3000 tokens were1027

manually annotated to ensure accuracy.1028

Furthermore, the LLM-as-a-Judge approach is1029

the basis for calculating several reflection-based1030

metrics presented in our results, such as RefNum,1031

Non-RefNum, pre-FAS RefNum, and post-FAS1032

RefNum (shown in Figure 5b and Figure 5c).1033

B Details about Experiments1034

B.1 Datasets1035

Question Set While the construction methodol-1036

ogy for the question set is detailed in Section 4,1037

here we focus on illustrating its diversity in terms of1038

difficulty and length.Figures 7a and 7b demonstrate1039

the diversity of the Question set. Difficulty distri-1040

bution is derived from metric Level in the MATH1041

dataset, while length distribution reflects reasoning1042

chain lengths from DeepSeek-R1-Distill-Qwen-7B1043

under greedy decoding. Furthermore, it is impor-1044

tant to note a subsequent refinement process for1045

these selected questions when constructing the final1046

training set. Although the initial 2000 data entries1047

were chosen based on the premise that the model1048

could correctly answer them using greedy search, 1049

the generation processes for our CONCISE and 1050

OverThink methods do not strictly adhere to greedy 1051

decoding, and CONCISE will discard wrong rea- 1052

soning chains. Therefore, for training purposes, we 1053

ultimately utilize the common subset of correctly 1054

reasoned chains derived from the outputs of three 1055

methods: CONCISE, OverThink, and Spirit. This 1056

intersection results in a refined training dataset of 1057

approximately 1900 samples. 1058

Validation Dataset For the experiments pre- 1059

sented in Figure 4, we curated the Verification 1060

Dataset. This was necessary because the required 1061

analyses (including First Answer Step (FAS) and 1062

reflection detection, as shown in Figure 4b) rely 1063

on annotations from the LLM-as-a-Judge method 1064

(§A.3.2), whose reliability decreases on long rea- 1065

soning chains. To ensure dependable results, the 1066

Verification Dataset comprises another 1000 rea- 1067

soning chains selected from the MATH training set, 1068

filtered based on two criteria: yielding a correct 1069

answer under greedy decoding and having a rea- 1070

soning chain length under 5000. This curated set 1071

facilitates reliable LLM-based annotation for the 1072

validation experiments. 1073

Evaluation Dataset The analysis presented in 1074

Figure 5b and Figure 8b required LLM-as-a-Judge 1075

annotations. To ensure reliable results despite this 1076

method’s limitations with long contexts, we filtered 1077

the MATH500 dataset. We selected only those 1078

problems where reasoning chains generated by all 1079

twelve specified finetuning configurations (com- 1080

binations of ConCISE/OverThink/Spirit methods, 1081

1.5B/7B sizes, and SFT/SimPO techniques) were 1082

15

(a) Average Acc, StepNum, and StepLen. (b) Analysis of Reflection steps. (c) Metrics of training datasets.

Figure 8: Further analysis of reasoning chain and training dataset characteristics on DeepSeek-R1-Distill-Qwen-
1.5B.

shorter than 5000 tokens. This yielded a common1083

subset of 340 problems, on which our subsequent1084

comparative analysis of the different methods was1085

exclusively performed.1086

B.2 Training Details1087

Models. DeepSeek-R1-Distill-Qwen-7B and1088

DeepSeek-R1-Distill-Qwen-1.5B are reasoning1089

models derived by DeepSeek from the Qwen2.51090

series models (Yang et al., 2024)through distilla-1091

tion training, using training and generation data1092

from the DeepSeek-R1 model. Skywork-OR1-7B-1093

Preview was further developed via reinforcement1094

learning, exhibiting strong capabilities on test sets1095

such as mathematics. Meanwhile, Qwen3-8B is a1096

recently released hybrid reasoning model noted for1097

its powerful reasoning abilities. All four of these1098

are open-source models. While they possess strong1099

Chain-of-Thought (CoT) reasoning capabilities,1100

they also present clear issues with reasoning1101

redundancy. Consequently, we employ these four1102

models for subsequent training and evaluation.1103

Furthermore, we ensure that these models, along1104

with all datasets involved in the training and1105

evaluation processes, are utilized following their1106

original licenses and intended purposes.1107

Training. We construct training datasets based1108

on the question set using CONCISE, OverThink,1109

and Spirit. For the generation process of Con-1110

CISE, we set Temperature=0.6, Top_p=0.95. For1111

OverThink, we sample 8 reasoning chains under1112

Tempature=1.0(which is relatively high due to the1113

recommended temperature for solving math prob-1114

lems of the LRMs is usually 0.6-0.8), Top_p=0.95.1115

For Spirit, compression is applied to reasoning1116

chains generated via greedy search. During train- 1117

ing, we adopt two strategies: SFT and SimPO. SFT 1118

directly uses the question and its corresponding 1119

compressed reasoning trace for supervised fine- 1120

tuning. For SimPO, reject samples are also re- 1121

quired (Rafailov et al., 2023). Following the orig- 1122

inal OverThink setup, we use the longest correct 1123

reasoning chain among the eight samples as the 1124

reject samples. To ensure a fair comparison, CON- 1125

CISE adopts the same strategy. For Spirit, the 1126

full reasoning chain before compression serves as 1127

reject samples, because this is precisely the compar- 1128

ative effect Spirit aims to demonstrate: important 1129

steps are retained while preference relationships 1130

are learned only for non-important steps. We use 1131

LlamaFactory for both SFT and SimPO fine-tuning 1132

(Zheng et al., 2024). All models are trained with 1133

lr = 1e− 6; SFT runs for 2 epochs and SimPO for 1134

1 epoch. The effective batch size for all training is 1135

32 (using per_device_train_batch_size=1 and 1136

gradient_accumulation_steps=8 on 4 A800 1137

GPUs), and max_length is set to 10240. 1138

B.3 Analysis on DeepSeek-1.5B 1139

Regarding the analysis conducted on DeepSeek-R1- 1140

Distill-Qwen-7B in the Experimental Section 4.1, 1141

we also performed a similar analysis for DeepSeek- 1142

R1-Distill-Qwen-1.5B. Figure 8 shows the spe- 1143

cific results. The trends exhibited by the data, as 1144

well as the relationships among the three meth- 1145

ods, are largely consistent with those presented for 1146

DeepSeek-R1-Distill-Qwen-7B. Consequently, the 1147

final conclusions are also consistent. 1148

16

Prompt

You are an AI assistant trained to analyze reasoning steps in a response. Your task has two parts:
1. Examine each reasoning step to determine if it’s part of a reflection process.
2. Identify the earliest step where the final answer (as later shown in boxed{}) is first derived,
regardless of whether it is formally written or boxed at that moment.

[Definition of Reflection]:
1. A reflection process is a sequence of one or more reasoning steps that recheck or doubt a
previously made conclusion, such as double-checking calculations, using alternative methods.
2. Typical signals include (but are not limited to): ‘Wait’, ‘Alternatively’, ‘Just to double check’,
’But hold on’, etc. These signals usually mean the start of a new reflection process.
3. However, even without such phrases, if the content of a step reflects a verification or reevaluation,
it should be marked as a part of a reflection process.

[Output Format]:
1. Reflection Step: List all reflection processes as groups of steps.

- If Step3 and Step4 form a reflection, write as (Step3, Step4)
- If Step5, Step6, Step7 form a new reflection process together, list as a separate group: [(Step3,

Step4), (Step5, Step6, Step7)]
- Avoid putting a lot of steps into one single reflection process.

2. First Answer Step: Write the earliest step where the final answer is first derived(e.g., Step2).

[Example]:
Question: 2 + 3 = ?
Response: Step1: I start with 2 + 3. Step2: That gives me 5. Step3: Wait, is that right? Let me
make sure... Step4: But hold on, let me double-check. Maybe I should... Step5: Wait, no, I think...
Step6: Therefore, the result is 5 Step7: Alternatively, if I use... Step8: So, the answer is 5 Step9:
Final Answer: the answer is boxed5.
Output:
Reflection Step: [(Step3), (Step4), (Step5, Step6), (Step7, Step8)]
First Correct Step: Step2
Explanations for Reflection Step:

- There is ’wait’, a reflection keyword, in Step3, so Step3 is the start of a reflection process.
- There is ’But hold on’ in step4, so step4 means the start of a new reflection process.
- Then, there is ’wait’ in step5, so step5 means the start of a new reflection process.
- There is ’therefore’ in step6, so (step5,step6) is in the same refleciton process.
- There is ’alternatively’ in step7, so step7 is the start of a new reflection process.
- There is ’so’ in step8, so (step7,step8) is in the same reflection process.

[Task]:
Now analyze the following question and response:
f"Question: {question}"
f"Response: {response}"
Please output the reflection steps and the first correct step in the format without extra explanation.

Figure 9: Prompt of using the LLM-as-a-Judge method for reflection step detection.

17

Input

Question:

• What day of the week will it be 40 days from Tuesday?

Response:

• Step1: Alright, so I need to figure out what day of the week it will be 40 days from Tuesday.
Hmm, okay. Let me think about how to approach this.

• Step2: First, I remember that each week has 7 days. So, if something happens every 7 days,
it’s on the same day of the week next time. That might be useful here. Maybe I can figure out
how many weeks are in 40 days and then see how many extra days that is.

• Step3: Let me do the division: 40 divided by 7. I think that’s 5 weeks and 5 days.

• Step4: Wait, let me check. 7 times 5 is 35, right? So, 40 minus 35 is 5. So, 40 days is equal
to 5 weeks and 5 days. That makes sense.

• Step5: So, if today is a Tuesday, then 35 days later is also a Tuesday. Because 35 is exactly 5
weeks, which is 5 times 7. So, after 35 days, it’s still Tuesday. Now, I need to find out what
day it is 5 days after Tuesday.

• Step6: Let me count: Tuesday plus one day is Wednesday, plus two days is Thursday, plus
three days is Friday, plus four days is Saturday, and plus five days is Sunday. So, 5 days after
Tuesday is Sunday .

• Step7: Therefore, 40 days from Tuesday is Sunday. Let me double-check that to make sure
I didn’t make a mistake. If today is Tuesday and 7 days later is also Tuesday, then adding
another 7 days each time cycles through the week. So, 35 days later, as we calculated, it is
Tuesday again. Then, 5 days beyond that would be Sunday. Yeah, that seems right.

• Step8: Final Answer: The day of the week 40 days from Tuesday is Sunday .

Figure 10: An example input of using the LLM-as-a-Judge method for reflection step detection.

Output

Output:

• Reflection Step: [(Step4), (Step7)]

• First Answer Step: Step6

Figure 11: An example output of using the LLM-as-a-Judge method for reflection step detection.

18

	Introduction
	Related Work
	Method
	Confidence-guided Formulation
	Two Key Patterns of Redundancy
	The ConCISE Framework
	Confidence Injection
	Early Stopping

	Building Efficient Reasoning Chains
	Training Objective and Fine-tuning

	Experiments
	Settings
	Reults and Analysis
	Ablation Study

	Conclusion
	Details about ConCISE
	Confidence Injection
	Early Stopping
	Reflection step detection
	Rule-based detection.
	LLM-as-a-Judge

	Details about Experiments
	Datasets
	Training Details
	Analysis on DeepSeek-1.5B

