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Abstract

Recent studies report that even if deep neural
models make correct predictions, models may
be relying on shortcut rather than understand-
ing the semantics of the text. Previous stud-
ies indicate that the shortcut deriving from the
biased data distribution in training set makes
spurious correlations between features and la-
bels. In this paper, we focus on analyzing
and mitigating the biased data distribution in
question matching by exploring the model be-
havior and performance. In particular, we de-
fine bias-word as the shortcut, and explore
the following questions: (1) Will the bias af-
fect the model? (2) How does the bias affect
the model’s decision? Our analysis reveals
that bias-words make significantly higher con-
tributions to model predictions than random
words, and the models tend to assign labels
that are highly correlated to the bias-words. To
mitigate the effects of shortcut, we propose
a simple approach that learns more no-bias-
examples first and more bias-examples last.
The experiments demonstrate the effectiveness
of the proposed approach.

1 Introduction

The task of question matching (QM) aims at iden-
tifying if a question pair has the same meaning,
which benefits many real-world applications, e.g.
search engine, intelligent customer services and
others. With the development of deep learning (De-
vlin et al., 2018; Liu et al., 2019; Sun et al., 2019),
the pre-trained language models have achieved re-
markable results on the task of question matching.

However, recent studies have demonstrated that
these models strongly rely on some spurious corre-
lations between features and labels (i.e., shortcut)
instead of deep understanding of text for making
predictions (Geirhos et al., 2020; Khani and Liang,
2021; Tu et al., 2020; Hendrycks et al., 2020; Wang
and Culotta, 2020). The shortcut learning has been
studied in various NLP tasks, such as machine read-
ing comprehension (MRC) (Jia and Liang, 2017;

Lai et al., 2021; Kaushik and Lipton, 2018; Sug-
awara et al., 2018, 2020), natural language infer-
ence (NLI) (Gururangan et al., 2018; McCoy et al.,
2019; Poliak et al., 2018; Du et al., 2021; Kavumba
et al., 2021) and question answering (QA) (Ye and
Kovashka, 2021; Yu et al., 2020). Previous works
mainly examine the shortcut by creating artificial
adversarial examples (Jia and Liang, 2017; Sug-
awara et al., 2018; Niven and Kao, 2019; Kavumba
et al., 2019; McCoy et al., 2019; Lai et al., 2021;
Kavumba et al., 2021). However, it is not clear that
if the studies and improvements on artificial adver-
sarial examples can work well on the distributions
from real-world applications (Morris et al., 2020;
Bender and Koller, 2020).

To the best of our knowledge, very few studies
systematically analyze the shortcut learning phe-
nomena on question matching (QM) task so far. In
this paper, we focus on analyzing and mitigating
the shortcut in question matching. Instead of creat-
ing artificial adversarial examples, our key idea is
exploring the biased data distribution to explain the
shortcut learning behavior of the question matching
models. Specifically we try to answer the following
research questions:

* RQ 1: What is the bias in the training set of
question matching?

* RQ 2: Will the bias affect the question matching
model?

* RQ 3: How does the bias affect the model’s
decision?

* RQ 4: How to mitigate the model’s reliance on
bias?

In summary, we have the following major find-
ings and contributions:

* We formally define bias-word as the shortcut
in the training set of question matching, that is
highly correlated to a specific label, and we ob-
serve that there is a large proportion of examples
containing the bias-words (see Sec. 2).

* We observe that bias-examples are easier to be



learned than others, and bias-words make signifi-

cantly higher contributions to model predictions

than random words (see Sec. 3).

* We find that the models tend to assign labels that

highly correlated to the bias-words (see Sec. 4).
* According to the above observations, we pro-

pose a simple approach to mitigate the shortcut

in question matching, that learns more no-bias-
examples first and more bias-examples last. The
experiments show the effectiveness of our pro-

posed approach (see Sec. 5).

The remaining of this paper is organized as fol-
lows. In Section 2, we answer RQ 1 and formally
define the bias-word and bias-example. In Sec-
tion 3 and Section 4, we answer RQ 2 and RQ
3 respectively, and we conduct extensive analy-
sis on the model behavior on bias-words and bias-
examples. Section 5 tries to answer RQ 4 and
proposes a simple approach to mitigate the shortcut
in question matching. We conclude our work in
Section 6 and discuss the future work.

2 Preliminary

In this section, we firstly introduce the QM datasets
on which we perform analysis, then we give def-
initions about bias-words and bias-examples. At
last, we provide the settings of our experiments that
used in our experiments.

2.1 Datasets

We conduct our study on three datasets, LCQMC,
DuQM and OPPO !, all of which are about QM
task and collected from real-word applications.
LCQMC (Liu et al., 2018) is a large-scale Chinese
question matching corpus proposed by Harbin In-
stitute of Technology in general domain BaiduZhi-
dao®. DuQM ? is a fine-grained controlled dataset
which is aimed to evaluate the robustness of ques-
tion matching models and generated based on
queries in Baidu Search Engine *. OPPO is col-
lected from OPPO XiaoBu Dialogue application
and we can get it from CCF Big Data & Computing
Intelligence Contest. Data statistics are in Tab. 1.

2.2 Definitions

Here we provide the definitions we will use in our
analysis and experiments. If we denote W as all
words in the data set, the set of examples with a

'The datasets can be downloaded from https://luge.ai.
*https://zhidao.baidu.com.
*https://github.com/baidu/DuReader/tree/master/DuQM.
“http://www.baidu.com.

Word cnt. Category
Dataset q @ Total 40 ¥ Total
Lirain 6.04 636 12.40|100,192 138,574 238,766
Liest 551 5.61 11.12] 6,250 6,250 12,500
DuQM 4.66 480 9.46 | 7,318 2,803 10,121
OPPO 4.82 471 9.53 | 7.160  2.840 10,000

Table 1: Data statistics. L4, denotes LCQMC train-
ing set, and L;.; denotes LCQMC test set.

Category

Word 40 #1 Total B-degree
Bt
B-wordg (float) > 0 > 1.00
(o
B-word; | (handy) 2 33 35 0.94

Table 2: Examples of bias-wordy, and bias-word;. B-
wordy represents bias-wordy, and B-word; represent
bias-word; .

specific word w; can be formalized as S(w;), and
frequency of w; can be formalized as f,,,, and

fuy = 15 (wi)] D

We then define bias-degree to measure the de-
gree of word w; co-occur with category c¢; (for QM
task, ¢; € (0, 1)) and denote is as

A5 — |5 (wi, ¢j)| _ S (wi, ¢;)|
C 1S (wi) fu;

where |.S(w;, ¢;)| represents the number of exam-
ples with w; and tagged with c;.

2

Bias-word. A word highly correlated with a spe-
cific label in a data set.’ To better discuss them,
we define bias-word as the word w; with f,,, > 3
and dfﬁi > 0.8. It is worth mentioning that the
bias-words we analyze in this work are originated
from LCQMCy,4in.

We further define bias-wordy and bias-word;
as the words highly correlated to category 0 and
1. As shown in Tab. 2, "f&{#" ("handy") occurs
in 35 examples, 33 of which are with category
1, hence it is a bias-word;. Tab. 3 shows that
27.24% (15864/58230) of words are bias-word,
and there are more bias-wordg than bias-word; in
LCQMCtrain-

SWord is the smallest independent lexical items with own
objective or practical meaning. We use Lexical Analysis of
Chinese (Jiao et al., 2018) (https://github.com/baidu/lac) for
word segmentation in our work.



# B-word
15,864

# Word ‘ # B-wordo
58230 | 11,143

# B-word;
4,721

Table 3: The statistics of bias-words in LCQMC,.4iy,.

Bias-example. An example with at least one
bias-word. As shown in Tab. 4, 41.15% of ex-
amples in LCQMCy;.;,, are bias-examples, which
is 25.97%, 32.25% and 24.98% in LCQMC;¢s,
DuQM and OPPO respectively.  Since bias-
words occur in almost half of the examples in
LCQMC;, 4in, it is meaningful to study their ef-
fects. On the other hand, we define the examples
without bias-word as no-bias-example.

Dataset ‘ # Examples ‘ # B-exp ‘ % B-exp
LCQMCrain | 238,766 | 98260 | 41.15%
LCQMC:ecst 12,500 3,246 25.97%
DuQM 10,121 3,264 32.25%
OPPO 10,000 2,498 24.98%

Table 4: The statistics of bias-examples in datasets. B-
exp represents bias-example.

2.3 Experimental setup

Models. We evaluate three popular public avail-
able pre-trained models, BERT-base (Devlin et al.,
2018)°, ERNIE-1.0 (Sun et al., 2019)’, RoBERTa-
large (Liu et al., 2019)3 in our work.

Metrics. Like most binary classification tasks,
we use accuracy to evaluate the performance.

Training details. In the training stage, we en-
code question pairs with a [SEP] and then pass
the pooled output to a classifier. We use different
learning rates and epochs for different pre-trained
models. Specifically, for ROBERTa;4;4¢, the learn-
ing rate is 5e-6 and the number of epochs is 3. For
BERT}, . and ERNIE; g, the learning rate is 2e-5,
and we set the number of epochs as 2. The batch
size is set as 64 and the maximal length of ques-
tion pair is 64. The proportion of weight decay
is 0.01. In addition, we use early stopping to se-
lect the best checkpoint. Each model is fine-tuned
five times with different seed on LCQMC,4in.
We choose the model with the best performance
on the LCQMC, and report average results on
LCQMCyest, DuQM and OPPO.

®https://github.com/google-research/bert.
"https://github.com/PaddlePaddle/ERNIE.
8https://github.com/ymcui/Chinese-BERT-wwm.

3 Will bias affect models?

The dataset statistics in Sec. 2 show that 41.15% of
examples in LCQMC;,4;,, involve bias-words. It is
a reasonable assumption that the large proportion
of bias-examples would affect the model behavior.
To validate our hypothesis, we conduct a behavior
analysis about the model’s learning and deciding.

3.1 Bias and models’ learning

To diagnose the model’s behavior during training,

we separate LCQMCy;4;,, into two subsets, bias-

examples and no-bias-examples, and re-organize
the train examples in 3 orders:

* bias-first: firstly bias-examples, then no-bias-
examples;

* bias-last: firstly no-bias-examples, then bias-
examples;

* random order: sample the examples randomly.
We fine-tune three models (BERT, ERNIE and

RoBERT?2) in these 3 orders and plot the training

loss curves in Fig. 1. The training loss curves of all

three models present the same tendencies:

* If bias-first, the loss curve drops more rapidly
than random order. After learning all the bias-
examples, the loss curve rises slightly and then
decreases.

* The tendency of bias-last is contrary: the loss
drops more slowly than random order until all
the no-bias-examples have been learned, and then
the curve decreases faster.

* These two trends repeat for each epoch.

The above observations reflect that models be-
have different when they learn bias-examples and
no-bias-examples: the loss curves of bias-examples
drop more sharply than other examples, which indi-
cates that the words highly correlated with specific
labels are shortcuts and relatively easy for models
to learn. Generally, we validate our hypothesis that
the bias feature will affect the model’s learning
behavior with training loss analysis.

3.2 Bias and models’ prediction

The training loss curves illustrate how bias influ-
ences model during training. In this part, we pro-
vide a quantitatively analysis about bias’s impact
on model’s prediction. If bias is a easier feature
for a model to learn, will bias-words make greater
contributions when predicting?

The LIME method (Ribeiro et al., 2016) inter-
prets model prediction based on locally approxi-
mating the model around a given prediction. In our
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(a) Training loss curve of BERT.

(b) Training loss curve of ERNIE.

(c) Training loss curve of ROBERTa.

Figure 1: Training loss curves of three models on LCQMCy,.4;,, in which e represents finishing learning bias-

examples, and

work, LIME method serves as a tool to measure the
contribution of different words in one input to the
final prediction.

To observe the contribution of bias-word in each
test sample, we rank the words based on their con-
tributions computing with LIME method. In Fig. 2,
we illustrate the probabilities of bias-words with
the highest, second, third, and fourth contribution
in three test sets. For comparison, we select a same
size of words randomly and also plot their proba-
bilities in Fig. 2.

As we reported in Tab. 1, in these three test sets,
each sample is composed of around 9 to 11 words.
Fig. 2 shows that the random words have a proba-
bility of around 46% ranked among the highest 4
contribution words. Compared with random words,
the bias-words have significantly higher probability
to be ranked among the highest 4, which is about
80% in LCQMCy.s: and DuQM, 68% in OPPO.
Specifically, in about 40% of bias-examples of
LCQMC¢cst, 37% of DuQM, and 25% of OPPO,
the bias-word is the word with the highest contri-
bution to final prediction, which is 2~3 times to
random words (which is only 13%~15%).

In short, the bias-examples are easier for mod-
els to learn, and the bias-words make significantly
higher contributions than random words when pre-
dicting, which implies that models tend to pay more
attention to bias-words during predicting. With the
analysis in this section, we can determine that bias
is a shortcut and will affect the model behavior. It
is therefore substantial to further analyze how it
affects the models.

4 How does bias affect models’ decision?

Previous works show that superficial cues exist
in many data sets and are widely studied (Boluk-
basi et al., 2016; May et al., 2019; Ravfogel et al.,
2020; Webster et al., 2020; Kaneko and Bollegala,

represents finishing learning no-bias-examples.

LCQMCicst DuQM OPPO
B-wordg
#S  #Sjocus | #S  #Sfocus | #S  Sfocus
BERT 890 1296 799
ERNIE 1777 891 2375 1345 1991 828
RoBERTa 877 1353 793

Table 5: Statistics of bias-example (.5) and focus-bias
examples (S focus). Focus-biasg examples represent the
examples where models focus on the bias-wordy.

2021). However, there are few quantitative anal-
ysis to discuss how these cues affect the model’s
decision. We have proved that bias-words tend
to make more contributions to the final prediction
than other words. In this section, we will focus on
the examples where bias-words make the greatest
contribution to the final prediction, in which the
effect of bias-word would be more significant, to
probe the relationship between the bias-word and
the predicted category. A reasonable guess is that
the models tend to assign the category highly rely-
ing on the distribution bias trick, i.e. a bias-word;
with high contribution to the final decision will
bring a prediction of category 1 and vice versa.

4.1 Influence of bias-word on predicted labels

Although bias-words tend to contribute more, not
all bias-words make great contribution during pre-
dicting. To explore the impact of bias-word on
predicted label, an effective method is to observe
the prediction result when bias-word contributes
the most, in which the effect of bias-word would
be more significant. For convenience, we define
focus-bias examples as the examples in which
bias-words make the greatest contribution, and we
present the statistics of bias-examples and focus-
bias examples in Tab. 5 and Tab. 6.
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Figure 2: Probability of bias-words with the 1st, 2nd,
3rd, 4th contribution on three test sets.

Tendency to predict c;. We define 7¢; as the
tendency of model to predict of category c;

T — |Sp7’ed(cj)|

‘I ’St (c)| ¢ € (07 1) 3)
rue\Cj

where |Sirue(cj)| and |Spreq(cj)| represent the
number of test examples with true label ¢; and
predicted as c;.

Results analysis. To evaluate the influence of
bias-word on predicted label, we calculate the ten-
dency of "normal" bias-examples and focus-bias
examples and denote them as T, and ngocus.

Fig. 3(a) to Fig. 3(c) demonstrates the influences
of bias-wordg on three test sets. In DuQM (Fig.
3(b)), it is obvious that Tg 2% is higher than Tj by
5%~T7% with all three models, which implies that
when the bias-wordg contributes the most, models

LCQMC,c s DuQM OPPO
B-word;
#S #Sfocus #S #Sfocus #S Sfocus
BERT 984 557 265
ERNIE 1543 1009 1095 541 602 267
RoBERTa 993 514 255

Table 6: Statistics of bias-example; (S) and focus-bias;
examples (S focus). Focus-bias; examples represent the
examples where models focus on the bias-word; .

have a high tendency to predict of 0. The same re-
sult is shown in LCQMC,.4; (Fig. 3(a)). However,
on OPPO, Tj is slightly higher (0.01~0.02) com-
pared with Tg °¢%? We suppose that it is resulted
by co-influencing of other shortcut and we provide
an extensive experiment to discuss it in Sec. 4.2.
Fig. 3(d) to Fig. 3(f) are about the influence of
bias-word;. As shown in Fig. 3(f), models tend
to predict 1 when they concentrate on bias-word;
on OPPO, Tlf "% is higher than T} by 16% aver-
aged between three models). The comparisons on
DuQM present different results on three datasets.
On LCQMC e, T{° is higher than T} with
BERT and RoBERTa.

In short, when models pay more attention to
bias-words, they tend to assign labels relying on
the distribution bias they learn from training set.
To explore why the tendency to O is not obvious
on on OPPO (Fig. 3(c)), we will provide a further
discussion about the influence of other shortcut.

4.2 Word-overlap: another shortcut for QM
models

In real-world scenarios, the mechanism of a
model’s decision is complicated. Different short-
cuts may interact together to give the final pre-
diction. In this work, we argue that QM models
are also affected by word overlap shortcut. Word
overlap is a shortcut which have been discussed in
many MRC and NLI works (McCoy et al., 2019;
Lai et al., 2021; Kaushik and Lipton, 2018). For
QM task, the QM models tend to predict O if a sen-
tence pair has low word overlap, i.e., there are few
common words between them, and vice versa. As
the result of OPPO shown in Tab. 7, even if models
focus on bias-wordy, the tendency to 0 is not sig-
nificant. We attribute the phenomenon to the word
overlapping bias in the QM task. To eliminate the
influence of word-overlapping, we design a experi-
ment on the examples in which the question pairs
with high overlapping. We use Levenshtein edit
distance to measure the overlapping degree. The
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Figure 3: Tendency to predict O of bias-word, and predict 1 of bias-word;.

Model Dist. < 1 Dist. < 2 Dist. < 3 Dist. < 4 Dist. < 5
Ty Tofocus To T({ocus To Tofocus To Tofocus Ty Tofocus
BERT 078 080 [079 080 |084 085 |08 090 |094 096
ERNIE 078 082 | 080 081 | 085 087 |09 092 |095 097
RoBERT2a 086 092 | 086 091 | 089 092 | 094 096 | 098  1.00
A 0.0385 00243 | 00177 | 00215 0.0183

Table 7: Tendency to predict O with edit distance less than 6. A denotes the mean of Tg °“"5_.Ty on BERT, ERNIE

and RoBERTa.

long edit distance examples with category O suffers
from overlapping shortcut.

Results analysis. We report the models’ predic-
tion tendency with short edit distance in Tab. 7.
From the Tab. 7, we can observe that models have
a higher tendency to predict 0 on focus-bias ex-
amples than "normal" bias-examples, which im-
plies that models tend to predict O if we try to
eliminate the word-overlap bias. Specifically, com-
parison with normal bias-examples, the average
T of three models with edit distance 1 in-
creases by 0.0385, which is 0.0243, 0.0177, 0.0215
and 0.0183 for edit distance of 2, 3, 4 and 5. The
less word-overlap the samples has, the more signif-
icant the impact of bias is.

Generally, we can deduce that models tend to
assign labels relying on the distribution bias trick.
With eliminating the influence of word-overlap, the
models’ prediction tendency towards O becomes
significant on OPPO. Besides the bias-word short-
cut we study in this work, QM models are also

affected by many other shortcuts and they influ-
ence the models’ behaviors together.

S How to mitigate model’s reliance on
bias?

Previous work argues that models tend to learn the
bias at a very early stage of training (Lai et al.,
2021). Likewise, the training loss curve in Fig. 1
reflects that the loss curve of bias-examples drops
more rapidly than random shuffling. These find-
ings imply that model tends to find superficial cues
firstly, which is the easiest way to fit the training
data. Motivated by these observations, we propose
a training strategy that the order of training samples
is re-organized in a hard-to-easy form to mitigate
the models’ reliance on bias.

5.1 Hard-to-Easy in each epoch

To alleviate this shortcut learning behavior of mod-
els, a straightforward idea is that model’s training
starts from no-bias-examples and gradually moves



Model Approach LCOQMC;cs: DuQM OPPO
Random sampling 86.9340.41 67.654+0.82 81.4040.48
BERT Hard2easy (each epoch)  87.3610.7s  68.5411.42 81.7110.39
Hard2easy (all epochs) 87.3810.48 68.82.0s85 81.6040.35
Random sampling 86.7240.65 70.88+1.72  82.2310.21
ERNIE Hard2easy (each epoch)  87.27+0.45 70.4042.10 82.26+0.31
Hard2easy (all epochs) 87.6510.54 71481061 82.4510.25
Random sampling 87.60+0.94 73.9240.50 82.56+0.25
RoBERTa Hard2easy (each epoch) 87.78.10.26 74101080 82.4810.38
Hard2easy (all epochs) 87.T410.27 74321045 827541034

Table 8: Accuracy (%) of random sampling, hard2easy (each epoch) and hard2easy (all epochs) on three test sets.
Each experiment is repeated five times with different random seeds and we report mean and standard deviation
here. The experimental settings are same as we described in Sec. 2. It is worth mentioning that we fine-tune BERT
and ERNIE for 2 epochs, RoBERTa for 3 epochs, in which all models can converge.
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(a) Training loss curves on BERT.

(b) Training loss curves on ERNIE.

(c) Training loss curves on ROBERTa.

Figure 4: Training loss curves of three models. To better present how curves converge, we provide detailed figures

of last epoch below.

on to bias-examples. If we present more no-bias-
examples at the early stage, the models will be
prevented from fitting bias feature and forced to
learn other semantic features.

Implementation. The conventional manner of
training neural model is to perform mini-batch
stochastic gradient descent (mini-batch SGD) and
the examples in each mini-batch are chosen ran-
domly. In our proposed training strategy, we pre-
sample training examples in a hard-to-easy form:
the proportion of bias-examples in the example
set we have sampled grows linearly, until all the
bias-examples are selected. Appendix A contains
more details about our sampling procedure to get a
linearly-increasing hard-to-easy order. The experi-
mental setup is same as we descried in Sec. 2.3.

Results analysis. The experiment results are
shown in column hard2easy (each epoch) of Tab. 8.

Compared to random sampling, a hard-to-easy or-
der improves the accuracy of BERT on all three
test sets, which is by 0.43% on LCQMC;,st, 0.89%
on DuQM, and 0.31% on OPPO. The effects on
ERNIE and RoBERTa are not significant. We guess
that hard-to-easy (each epoch) for more than one
epoch results in a non-consistent increasing on pro-
portion of bias-examples, which increases from
0% to 41.15% in the first epoch (the proportion
of bias-examples in LCQMCyy 4, is 41.15%) and
fluctuates in next epochs (see Fig. 5).

Hard-to-easy in each epoch is effective for BERT,
but does not improve the performance of ERNIE
and RoBERTa. If we train the model more than one
epoch, this strategy would not increase the propor-
tion of bias-examples linearly. To overcome this
limitation, we optimize our strategy and propose
the training strategy hard-to-easy all epochs.



Model Approach LCQMC;es: DuQM  OPPO
BERT Random sampling 40.28 37.23 24.94
Hard2easy(all epochs) 40.28 36.69, 23.61,
ERNIE Random sampling 40.49 36.99 25.92
Hard2easy(all epochs) 40.17, 36.47, 25.62,
Random sampling 39.75 36.56 24.04
ROBERTa 1 d2easy(all epochs) 38.80, 3576,  23.84,

Table 9: Probability (%) that bias-word makes the greatest contribution to final prediction. We compare the results
between random order and our method hard2easy (all epochs). Our strategy reduces the contribution of bias-words

to all models’ prediction on all test sets.

50%

40%

30% = |
/

20%

10% /
0%

0 1 2 3

Epoch

== Hard2éasy (each epoch)

Hard2éasy (all epochs)

Proportion of Bias-examples

Figure 5: The proportion of bias-examples in the exam-
ples we have sampled.

5.2 Hard-to-Easy all epochs

To achieve hard-to-easy in more intuitive way, as
shown in Fig. 5, we re-order the bias-examples for
the whole training process, i.e., the proportion of
bias-examples in the training set we have sampled
grows linearly from the start to the end of training.

In Fig. 4, we compare the training loss curves of
random order and hard-to-easy. For all three mod-
els, in the first epoch, the loss curves of two hard-
to-easy are above random order, since we present
more challenging examples at the early stage; in
each epoch, the loss curves of hard-to-easy (each
epoch) are firstly slightly above all epochs and then
the two curves overlap; due to the increasing pro-
portion of no-bias-examples in the beginning of
each epoch, the curves of each epoch have a slight
rising in epochs’ start; in the last epoch (green fig-
ures below), the loss curves of all epochs converge
to the lowest value.

Results analysis. We report the results in column
hard2easy (all epochs) of Tab. 8. Across all models
and test sets, hard-to-easy (all epochs) outperforms
random sampling and hard-to-easy (each epoch).
Across three models, the improvement of BERT is
highest, which is 0.45% on LCQMC;,s¢, 1.17% on
DuQM, 0.20% on OPPO. Especially on DuQM, in
which the proportion of bias-examples is highest,
our strategy brings the greatest improvement for
all models, which is 1.17% for BERT, 0.60% for

ERNIE, 0.40% for RoBERTa.

Besides the model’s performance, we are also
concerned about whether our strategy helps mod-
els shift attention from bias-words. We compare
the contribution of bias-words with random sam-
pling and hard-to-easy (all epochs) in Tab. 9. Our
strategy reduces all three models’ attention on bias-
words successfully across all three test sets. For
example, when RoBERTa predicts on LCQMCigt,
the contribution of bias-words decreases by 0.95%,
which represents the model pay less attention on
bias-words with our strategy.

We provide a example to explain how our strat-
egy helps model focus on wright words in Ap-
pendix B. In conclusion, with our simple strategy,
the performance of the models are improved on all
three test sets. Moreover, the contribution of bias-
words become less significant after applying our
strategy. It is an effective approach to mitigate the
bias shortcut in QM datasets that we re-organize
the training order from hard to easy.

6 Conclusion

In this paper, we explore the biased data distri-
bution to explain the shortcut learning behavior
of the QM models. Specifically, we observe that
bias-examples are easier being learned than others,
and bias-words make significantly higher contri-
butions to model predictions than random words.
Besides, we observe that the models tend to as-
sign labels that are highly correlated to the bias-
words. According to our observation, we propose
a simple approach to mitigating the shortcut in
QM task, that learns more no-bias-examples first
but more bias-examples last, and the experiment
results demonstrate the effectiveness of our pro-
posed approach. In the future work, we will apply
this analysis framework and mitigation approach
to other NLP tasks.
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A Sampling procedure of hard-to-easy

Algorithm 1 Sampling procedure of hard2easy
Define:

N : Training epoch

T : Training set

Thias : Bias-examples in T

Tho—bias : No-bias-examples in T

Initialize:

THard2easy <~ @
Set « to ensure that the remaining examples in

Thias of Tho—bias at the end are as few as possible.
Process of sampling:
fori = 1to N x Size(T) do
if Size(Tyias) == 0 then

L Insert Tno—bias into THardQeasy;
Break;
if Size(Tyo—pias) == 0 then

L Insert Tbias into THard2easy;
Break;
k< 100 — (a x 0);
Num < RandInit(0,100);

if Num > k then
L Sample example from Tp;qs;

Append example t0 THqrd2easy:
else

L

return THard2easy

Sample example from 7,5 _piqs;
Insert example into Txgrd2easys

We pre-define the training order with algorithm
shown in Alg. 1, which helps us organize the
training samples in a hard-to-easy form. We divide
the training set T into two sets Tp;qs and 1o _pias-
With tuning k, the probability of sampling from
Tho—bias decreases, so as to present more no-bias-
examples at the early stage and more bias-examples
at the late stage. The k decreases linearly as the
number of samples increases and the slope is «.
Until the end of sampling, either Tj;qs o1 Th,6_pias
will have remaining examples. In order to fit the
size of training set, we need tune the value of «
to ensure that the remaining examples in Tp;,s OF
Tho—bias are as few as possible.
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B The effect of hard-to-easy on words’
contribution

As our strategy shows the highest improvement in
DuQM, we conduct a case study on it. We filter out
106 examples where RoBERTa predicts wrongly
with random sampling but correctly with hard-to-
easy (all epochs). Out of the 48 examples which
were predicted wrongly and focused incorrectly,
31 examples model focuses correctly after employ-
ing hard-to-easy (all epochs) and makes a correct
prediction.

As the example shown in Fig. 6, RoBERTa fo-
cuses on "cervical spondilosis" with random order;
if we re-order the training examples with hard-to-
easy all epochs, the most important words are "se-
rious" and "common". The model detects the dif-
ferences and predicts correctly after employing our
strategy.



Example
QIR ™ E MEIRE BFLE(What are the serious symptoms of cervical spondilosis)  True Label: 0
QLIRS & JLEYAE IR WRLE(What are the common symptoms of cervical spondilosis)
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Figure 6: With random sampling, RoBERTa focuses on wrong words (which are bias-words) and predicts incor-
rectly. With our hard-to-easy (all epochs), the contribution of right words increase significantly and model makes
a right prediction.
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