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Abstract
Recent studies report that even if deep neural001
models make correct predictions, models may002
be relying on shortcut rather than understand-003
ing the semantics of the text. Previous stud-004
ies indicate that the shortcut deriving from the005
biased data distribution in training set makes006
spurious correlations between features and la-007
bels. In this paper, we focus on analyzing008
and mitigating the biased data distribution in009
question matching by exploring the model be-010
havior and performance. In particular, we de-011
fine bias-word as the shortcut, and explore012
the following questions: (1) Will the bias af-013
fect the model? (2) How does the bias affect014
the model’s decision? Our analysis reveals015
that bias-words make significantly higher con-016
tributions to model predictions than random017
words, and the models tend to assign labels018
that are highly correlated to the bias-words. To019
mitigate the effects of shortcut, we propose020
a simple approach that learns more no-bias-021
examples first and more bias-examples last.022
The experiments demonstrate the effectiveness023
of the proposed approach.024

1 Introduction025

The task of question matching (QM) aims at iden-026

tifying if a question pair has the same meaning,027

which benefits many real-world applications, e.g.028

search engine, intelligent customer services and029

others. With the development of deep learning (De-030

vlin et al., 2018; Liu et al., 2019; Sun et al., 2019),031

the pre-trained language models have achieved re-032

markable results on the task of question matching.033

However, recent studies have demonstrated that034

these models strongly rely on some spurious corre-035

lations between features and labels (i.e., shortcut)036

instead of deep understanding of text for making037

predictions (Geirhos et al., 2020; Khani and Liang,038

2021; Tu et al., 2020; Hendrycks et al., 2020; Wang039

and Culotta, 2020). The shortcut learning has been040

studied in various NLP tasks, such as machine read-041

ing comprehension (MRC) (Jia and Liang, 2017;042

Lai et al., 2021; Kaushik and Lipton, 2018; Sug- 043

awara et al., 2018, 2020), natural language infer- 044

ence (NLI) (Gururangan et al., 2018; McCoy et al., 045

2019; Poliak et al., 2018; Du et al., 2021; Kavumba 046

et al., 2021) and question answering (QA) (Ye and 047

Kovashka, 2021; Yu et al., 2020). Previous works 048

mainly examine the shortcut by creating artificial 049

adversarial examples (Jia and Liang, 2017; Sug- 050

awara et al., 2018; Niven and Kao, 2019; Kavumba 051

et al., 2019; McCoy et al., 2019; Lai et al., 2021; 052

Kavumba et al., 2021). However, it is not clear that 053

if the studies and improvements on artificial adver- 054

sarial examples can work well on the distributions 055

from real-world applications (Morris et al., 2020; 056

Bender and Koller, 2020). 057

To the best of our knowledge, very few studies 058

systematically analyze the shortcut learning phe- 059

nomena on question matching (QM) task so far. In 060

this paper, we focus on analyzing and mitigating 061

the shortcut in question matching. Instead of creat- 062

ing artificial adversarial examples, our key idea is 063

exploring the biased data distribution to explain the 064

shortcut learning behavior of the question matching 065

models. Specifically we try to answer the following 066

research questions: 067

• RQ 1: What is the bias in the training set of 068

question matching? 069

• RQ 2: Will the bias affect the question matching 070

model? 071

• RQ 3: How does the bias affect the model’s 072

decision? 073

• RQ 4: How to mitigate the model’s reliance on 074

bias? 075

In summary, we have the following major find- 076

ings and contributions: 077

• We formally define bias-word as the shortcut 078

in the training set of question matching, that is 079

highly correlated to a specific label, and we ob- 080

serve that there is a large proportion of examples 081

containing the bias-words (see Sec. 2). 082

• We observe that bias-examples are easier to be 083
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learned than others, and bias-words make signifi-084

cantly higher contributions to model predictions085

than random words (see Sec. 3).086

• We find that the models tend to assign labels that087

highly correlated to the bias-words (see Sec. 4).088

• According to the above observations, we pro-089

pose a simple approach to mitigate the shortcut090

in question matching, that learns more no-bias-091

examples first and more bias-examples last. The092

experiments show the effectiveness of our pro-093

posed approach (see Sec. 5).094

The remaining of this paper is organized as fol-095

lows. In Section 2, we answer RQ 1 and formally096

define the bias-word and bias-example. In Sec-097

tion 3 and Section 4, we answer RQ 2 and RQ098

3 respectively, and we conduct extensive analy-099

sis on the model behavior on bias-words and bias-100

examples. Section 5 tries to answer RQ 4 and101

proposes a simple approach to mitigate the shortcut102

in question matching. We conclude our work in103

Section 6 and discuss the future work.104

2 Preliminary105

In this section, we firstly introduce the QM datasets106

on which we perform analysis, then we give def-107

initions about bias-words and bias-examples. At108

last, we provide the settings of our experiments that109

used in our experiments.110

2.1 Datasets111

We conduct our study on three datasets, LCQMC,112

DuQM and OPPO 1, all of which are about QM113

task and collected from real-word applications.114

LCQMC (Liu et al., 2018) is a large-scale Chinese115

question matching corpus proposed by Harbin In-116

stitute of Technology in general domain BaiduZhi-117

dao2. DuQM 3 is a fine-grained controlled dataset118

which is aimed to evaluate the robustness of ques-119

tion matching models and generated based on120

queries in Baidu Search Engine 4. OPPO is col-121

lected from OPPO XiaoBu Dialogue application122

and we can get it from CCF Big Data & Computing123

Intelligence Contest. Data statistics are in Tab. 1.124

2.2 Definitions125

Here we provide the definitions we will use in our126

analysis and experiments. If we denote W as all127

words in the data set, the set of examples with a128

1The datasets can be downloaded from https://luge.ai.
2https://zhidao.baidu.com.
3https://github.com/baidu/DuReader/tree/master/DuQM.
4http://www.baidu.com.

Dataset Word cnt. Total Category Total
q1 q2 #0 #1

Ltrain 6.04 6.36 12.40 100,192 138,574 238,766
Ltest 5.51 5.61 11.12 6,250 6,250 12,500
DuQM 4.66 4.80 9.46 7,318 2,803 10,121
OPPO 4.82 4.71 9.53 7.160 2.840 10,000

Table 1: Data statistics. Ltrain denotes LCQMC train-
ing set, and Ltest denotes LCQMC test set.

Word Category Total B-degree
#0 #1

B-word0

漂浮
(float)

5 0 5 1.00

B-word1

简便
(handy)

2 33 35 0.94

Table 2: Examples of bias-word0, and bias-word1. B-
word0 represents bias-word0, and B-word1 represent
bias-word1.

specific word wi can be formalized as S(wi), and 129

frequency of wi can be formalized as fwi , and 130

fwi = |S(wi)| (1) 131

We then define bias-degree to measure the de- 132

gree of word wi co-occur with category cj (for QM 133

task, cj ∈ (0, 1)) and denote is as 134

d
cj
wi =

|S(wi, cj)|
|S(wi)|

=
|S(wi, cj)|

fwi

(2) 135

where |S(wi, cj)| represents the number of exam- 136

ples with wi and tagged with cj . 137

Bias-word. A word highly correlated with a spe- 138

cific label in a data set.5 To better discuss them, 139

we define bias-word as the word wi with fwi ≥ 3 140

and dcjwi ≥ 0.8. It is worth mentioning that the 141

bias-words we analyze in this work are originated 142

from LCQMCtrain. 143

We further define bias-word0 and bias-word1 144

as the words highly correlated to category 0 and 145

1. As shown in Tab. 2, "简便" ("handy") occurs 146

in 35 examples, 33 of which are with category 147

1, hence it is a bias-word1. Tab. 3 shows that 148

27.24% (15864/58230) of words are bias-word, 149

and there are more bias-word0 than bias-word1 in 150

LCQMCtrain. 151

5Word is the smallest independent lexical items with own
objective or practical meaning. We use Lexical Analysis of
Chinese (Jiao et al., 2018) (https://github.com/baidu/lac) for
word segmentation in our work.
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# Word # B-word0 # B-word1 # B-word

58,230 11,143 4,721 15,864

Table 3: The statistics of bias-words in LCQMCtrain.

Bias-example. An example with at least one152

bias-word. As shown in Tab. 4, 41.15% of ex-153

amples in LCQMCtrain are bias-examples, which154

is 25.97%, 32.25% and 24.98% in LCQMCtest,155

DuQM and OPPO respectively. Since bias-156

words occur in almost half of the examples in157

LCQMCtrain, it is meaningful to study their ef-158

fects. On the other hand, we define the examples159

without bias-word as no-bias-example.160

Dataset # Examples # B-exp %B-exp

LCQMCtrain 238,766 98,260 41.15%

LCQMCtest 12,500 3,246 25.97%
DuQM 10,121 3,264 32.25%
OPPO 10,000 2,498 24.98%

Table 4: The statistics of bias-examples in datasets. B-
exp represents bias-example.

2.3 Experimental setup161

Models. We evaluate three popular public avail-162

able pre-trained models, BERT-base (Devlin et al.,163

2018)6, ERNIE-1.0 (Sun et al., 2019)7, RoBERTa-164

large (Liu et al., 2019)8 in our work.165

Metrics. Like most binary classification tasks,166

we use accuracy to evaluate the performance.167

Training details. In the training stage, we en-168

code question pairs with a [SEP ] and then pass169

the pooled output to a classifier. We use different170

learning rates and epochs for different pre-trained171

models. Specifically, for RoBERTalarge, the learn-172

ing rate is 5e-6 and the number of epochs is 3. For173

BERTbase and ERNIE1.0, the learning rate is 2e-5,174

and we set the number of epochs as 2. The batch175

size is set as 64 and the maximal length of ques-176

tion pair is 64. The proportion of weight decay177

is 0.01. In addition, we use early stopping to se-178

lect the best checkpoint. Each model is fine-tuned179

five times with different seed on LCQMCtrain.180

We choose the model with the best performance181

on the LCQMCdev and report average results on182

LCQMCtest, DuQM and OPPO.183

6https://github.com/google-research/bert.
7https://github.com/PaddlePaddle/ERNIE.
8https://github.com/ymcui/Chinese-BERT-wwm.

3 Will bias affect models? 184

The dataset statistics in Sec. 2 show that 41.15% of 185

examples in LCQMCtrain involve bias-words. It is 186

a reasonable assumption that the large proportion 187

of bias-examples would affect the model behavior. 188

To validate our hypothesis, we conduct a behavior 189

analysis about the model’s learning and deciding. 190

3.1 Bias and models’ learning 191

To diagnose the model’s behavior during training, 192

we separate LCQMCtrain into two subsets, bias- 193

examples and no-bias-examples, and re-organize 194

the train examples in 3 orders: 195

• bias-first: firstly bias-examples, then no-bias- 196

examples; 197

• bias-last: firstly no-bias-examples, then bias- 198

examples; 199

• random order: sample the examples randomly. 200

We fine-tune three models (BERT, ERNIE and 201

RoBERTa) in these 3 orders and plot the training 202

loss curves in Fig. 1. The training loss curves of all 203

three models present the same tendencies: 204

• If bias-first, the loss curve drops more rapidly 205

than random order. After learning all the bias- 206

examples, the loss curve rises slightly and then 207

decreases. 208

• The tendency of bias-last is contrary: the loss 209

drops more slowly than random order until all 210

the no-bias-examples have been learned, and then 211

the curve decreases faster. 212

• These two trends repeat for each epoch. 213

The above observations reflect that models be- 214

have different when they learn bias-examples and 215

no-bias-examples: the loss curves of bias-examples 216

drop more sharply than other examples, which indi- 217

cates that the words highly correlated with specific 218

labels are shortcuts and relatively easy for models 219

to learn. Generally, we validate our hypothesis that 220

the bias feature will affect the model’s learning 221

behavior with training loss analysis. 222

3.2 Bias and models’ prediction 223

The training loss curves illustrate how bias influ- 224

ences model during training. In this part, we pro- 225

vide a quantitatively analysis about bias’s impact 226

on model’s prediction. If bias is a easier feature 227

for a model to learn, will bias-words make greater 228

contributions when predicting? 229

The LIME method (Ribeiro et al., 2016) inter- 230

prets model prediction based on locally approxi- 231

mating the model around a given prediction. In our 232
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(b) Training loss curve of ERNIE.
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(c) Training loss curve of RoBERTa.

Figure 1: Training loss curves of three models on LCQMCtrain, in which • represents finishing learning bias-
examples, and N represents finishing learning no-bias-examples.

work, LIME method serves as a tool to measure the233

contribution of different words in one input to the234

final prediction.235

To observe the contribution of bias-word in each236

test sample, we rank the words based on their con-237

tributions computing with LIME method. In Fig. 2,238

we illustrate the probabilities of bias-words with239

the highest, second, third, and fourth contribution240

in three test sets. For comparison, we select a same241

size of words randomly and also plot their proba-242

bilities in Fig. 2.243

As we reported in Tab. 1, in these three test sets,244

each sample is composed of around 9 to 11 words.245

Fig. 2 shows that the random words have a proba-246

bility of around 46% ranked among the highest 4247

contribution words. Compared with random words,248

the bias-words have significantly higher probability249

to be ranked among the highest 4, which is about250

80% in LCQMCtest and DuQM, 68% in OPPO.251

Specifically, in about 40% of bias-examples of252

LCQMCtest, 37% of DuQM, and 25% of OPPO,253

the bias-word is the word with the highest contri-254

bution to final prediction, which is 2~3 times to255

random words (which is only 13%~15%).256

In short, the bias-examples are easier for mod-257

els to learn, and the bias-words make significantly258

higher contributions than random words when pre-259

dicting, which implies that models tend to pay more260

attention to bias-words during predicting. With the261

analysis in this section, we can determine that bias262

is a shortcut and will affect the model behavior. It263

is therefore substantial to further analyze how it264

affects the models.265

4 How does bias affect models’ decision?266

Previous works show that superficial cues exist267

in many data sets and are widely studied (Boluk-268

basi et al., 2016; May et al., 2019; Ravfogel et al.,269

2020; Webster et al., 2020; Kaneko and Bollegala,270

B-word0
LCQMCtest DuQM OPPO

# S # Sfocus # S # Sfocus # S Sfocus

BERT
1777

890
2375

1296
1991

799
ERNIE 891 1345 828
RoBERTa 877 1353 793

Table 5: Statistics of bias-example0 (S) and focus-bias0
examples (Sfocus). Focus-bias0 examples represent the
examples where models focus on the bias-word0.

2021). However, there are few quantitative anal- 271

ysis to discuss how these cues affect the model’s 272

decision. We have proved that bias-words tend 273

to make more contributions to the final prediction 274

than other words. In this section, we will focus on 275

the examples where bias-words make the greatest 276

contribution to the final prediction, in which the 277

effect of bias-word would be more significant, to 278

probe the relationship between the bias-word and 279

the predicted category. A reasonable guess is that 280

the models tend to assign the category highly rely- 281

ing on the distribution bias trick, i.e. a bias-word1 282

with high contribution to the final decision will 283

bring a prediction of category 1 and vice versa. 284

4.1 Influence of bias-word on predicted labels 285

Although bias-words tend to contribute more, not 286

all bias-words make great contribution during pre- 287

dicting. To explore the impact of bias-word on 288

predicted label, an effective method is to observe 289

the prediction result when bias-word contributes 290

the most, in which the effect of bias-word would 291

be more significant. For convenience, we define 292

focus-bias examples as the examples in which 293

bias-words make the greatest contribution, and we 294

present the statistics of bias-examples and focus- 295

bias examples in Tab. 5 and Tab. 6. 296
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Figure 2: Probability of bias-words with the 1st, 2nd,
3rd, 4th contribution on three test sets.

Tendency to predict cj . We define Tcj as the297

tendency of model to predict of category cj298

Tcj =
|Spred(cj)|
|Strue(cj)|

cj ∈ (0, 1) (3)299

where |Strue(cj)| and |Spred(cj)| represent the300

number of test examples with true label cj and301

predicted as cj .302

Results analysis. To evaluate the influence of303

bias-word on predicted label, we calculate the ten-304

dency of "normal" bias-examples and focus-bias305

examples and denote them as Tcj and T focus
cj .306

Fig. 3(a) to Fig. 3(c) demonstrates the influences307

of bias-word0 on three test sets. In DuQM (Fig.308

3(b)), it is obvious that T focus
0 is higher than T0 by309

5%~7% with all three models, which implies that310

when the bias-word0 contributes the most, models311

B-word1
LCQMCtest DuQM OPPO

# S # Sfocus # S # Sfocus # S Sfocus

BERT
1543

984
1095

557
602

265
ERNIE 1009 541 267
RoBERTa 993 514 255

Table 6: Statistics of bias-example1 (S) and focus-bias1
examples (Sfocus). Focus-bias1 examples represent the
examples where models focus on the bias-word1.

have a high tendency to predict of 0. The same re- 312

sult is shown in LCQMCtest (Fig. 3(a)). However, 313

on OPPO, T0 is slightly higher (0.01~0.02) com- 314

pared with T focus
0 . We suppose that it is resulted 315

by co-influencing of other shortcut and we provide 316

an extensive experiment to discuss it in Sec. 4.2. 317

Fig. 3(d) to Fig. 3(f) are about the influence of 318

bias-word1. As shown in Fig. 3(f), models tend 319

to predict 1 when they concentrate on bias-word1 320

on OPPO, T focus
1 is higher than T1 by 16% aver- 321

aged between three models). The comparisons on 322

DuQM present different results on three datasets. 323

On LCQMCtest, T
focus
1 is higher than T1 with 324

BERT and RoBERTa. 325

In short, when models pay more attention to 326

bias-words, they tend to assign labels relying on 327

the distribution bias they learn from training set. 328

To explore why the tendency to 0 is not obvious 329

on on OPPO (Fig. 3(c)), we will provide a further 330

discussion about the influence of other shortcut. 331

4.2 Word-overlap: another shortcut for QM 332

models 333

In real-world scenarios, the mechanism of a 334

model’s decision is complicated. Different short- 335

cuts may interact together to give the final pre- 336

diction. In this work, we argue that QM models 337

are also affected by word overlap shortcut. Word 338

overlap is a shortcut which have been discussed in 339

many MRC and NLI works (McCoy et al., 2019; 340

Lai et al., 2021; Kaushik and Lipton, 2018). For 341

QM task, the QM models tend to predict 0 if a sen- 342

tence pair has low word overlap, i.e., there are few 343

common words between them, and vice versa. As 344

the result of OPPO shown in Tab. 7, even if models 345

focus on bias-word0, the tendency to 0 is not sig- 346

nificant. We attribute the phenomenon to the word 347

overlapping bias in the QM task. To eliminate the 348

influence of word-overlapping, we design a experi- 349

ment on the examples in which the question pairs 350

with high overlapping. We use Levenshtein edit 351

distance to measure the overlapping degree. The 352
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(c) Bias-word0 on OPPO.

1.133 

1.133 

1.125 

1.137 

1.131 

1.125 

1 1.05 1.1 1.15

BERT

ERNIE

RoBERTa

T_1^{focus} T_1^{focus}

 
 
 

𝑇!
"#$%& 

 

𝑇! 
 

(d) Bias-word1 on LCQCMtest.
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(e) Bias-word1 on DuQM.
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(f) Bias-word1 on OPPO.

Figure 3: Tendency to predict 0 of bias-word0 and predict 1 of bias-word1.

Model
Dist. 6 1 Dist. 6 2 Dist. 6 3 Dist. 6 4 Dist. 6 5

T0 T focus
0 T0 T focus

0 T0 T focus
0 T0 T focus

0 T0 T focus
0

BERT 0.78 0.80 0.79 0.80 0.84 0.85 0.89 0.90 0.94 0.96
ERNIE 0.78 0.82 0.80 0.81 0.85 0.87 0.90 0.92 0.95 0.97
RoBERTa 0.86 0.92 0.86 0.91 0.89 0.92 0.94 0.96 0.98 1.00

∆ 0.0385 0.0243 0.0177 0.0215 0.0183

Table 7: Tendency to predict 0 with edit distance less than 6. ∆ denotes the mean of T focus
0 -T0 on BERT, ERNIE

and RoBERTa.

long edit distance examples with category 0 suffers353

from overlapping shortcut.354

Results analysis. We report the models’ predic-355

tion tendency with short edit distance in Tab. 7.356

From the Tab. 7, we can observe that models have357

a higher tendency to predict 0 on focus-bias ex-358

amples than "normal" bias-examples, which im-359

plies that models tend to predict 0 if we try to360

eliminate the word-overlap bias. Specifically, com-361

parison with normal bias-examples, the average362

T focus
0 of three models with edit distance 1 in-363

creases by 0.0385, which is 0.0243, 0.0177, 0.0215364

and 0.0183 for edit distance of 2, 3, 4 and 5. The365

less word-overlap the samples has, the more signif-366

icant the impact of bias is.367

Generally, we can deduce that models tend to368

assign labels relying on the distribution bias trick.369

With eliminating the influence of word-overlap, the370

models’ prediction tendency towards 0 becomes371

significant on OPPO. Besides the bias-word short-372

cut we study in this work, QM models are also373

affected by many other shortcuts and they influ- 374

ence the models’ behaviors together. 375

5 How to mitigate model’s reliance on 376

bias? 377

Previous work argues that models tend to learn the 378

bias at a very early stage of training (Lai et al., 379

2021). Likewise, the training loss curve in Fig. 1 380

reflects that the loss curve of bias-examples drops 381

more rapidly than random shuffling. These find- 382

ings imply that model tends to find superficial cues 383

firstly, which is the easiest way to fit the training 384

data. Motivated by these observations, we propose 385

a training strategy that the order of training samples 386

is re-organized in a hard-to-easy form to mitigate 387

the models’ reliance on bias. 388

5.1 Hard-to-Easy in each epoch 389

To alleviate this shortcut learning behavior of mod- 390

els, a straightforward idea is that model’s training 391

starts from no-bias-examples and gradually moves 392
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Model Approach LCQMCtest DuQM OPPO

BERT
Random sampling 86.93±0.41 67.65±0.82 81.40±0.48

Hard2easy (each epoch) 87.36±0.78 68.54±1.42 81.71±0.39

Hard2easy (all epochs) 87.38±0.48 68.82±0.85 81.60±0.35

ERNIE
Random sampling 86.72±0.65 70.88±1.72 82.23±0.21

Hard2easy (each epoch) 87.27±0.45 70.40±2.10 82.26±0.31

Hard2easy (all epochs) 87.65±0.54 71.48±0.61 82.45±0.25

RoBERTa
Random sampling 87.60±0.94 73.92±0.50 82.56±0.25

Hard2easy (each epoch) 87.78±0.26 74.10±0.80 82.48±0.38

Hard2easy (all epochs) 87.74±0.27 74.32±0.45 82.75±0.34

Table 8: Accuracy (%) of random sampling, hard2easy (each epoch) and hard2easy (all epochs) on three test sets.
Each experiment is repeated five times with different random seeds and we report mean and standard deviation
here. The experimental settings are same as we described in Sec. 2. It is worth mentioning that we fine-tune BERT
and ERNIE for 2 epochs, RoBERTa for 3 epochs, in which all models can converge.

0.1

0.2

0.3

0.4
Random order

Hard2easy (each epoch)

Hard2easy (all epochs)

Lo
ss

Epoch
1 20

0.16

0.18

0.2

0.22

Lo
ss

Epoch
1 2

Last Epoch

(a) Training loss curves on BERT.
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(b) Training loss curves on ERNIE.
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(c) Training loss curves on RoBERTa.

Figure 4: Training loss curves of three models. To better present how curves converge, we provide detailed figures
of last epoch below.

on to bias-examples. If we present more no-bias-393

examples at the early stage, the models will be394

prevented from fitting bias feature and forced to395

learn other semantic features.396

Implementation. The conventional manner of397

training neural model is to perform mini-batch398

stochastic gradient descent (mini-batch SGD) and399

the examples in each mini-batch are chosen ran-400

domly. In our proposed training strategy, we pre-401

sample training examples in a hard-to-easy form:402

the proportion of bias-examples in the example403

set we have sampled grows linearly, until all the404

bias-examples are selected. Appendix A contains405

more details about our sampling procedure to get a406

linearly-increasing hard-to-easy order. The experi-407

mental setup is same as we descried in Sec. 2.3.408

Results analysis. The experiment results are409

shown in column hard2easy (each epoch) of Tab. 8.410

Compared to random sampling, a hard-to-easy or- 411

der improves the accuracy of BERT on all three 412

test sets, which is by 0.43% on LCQMCtest, 0.89% 413

on DuQM, and 0.31% on OPPO. The effects on 414

ERNIE and RoBERTa are not significant. We guess 415

that hard-to-easy (each epoch) for more than one 416

epoch results in a non-consistent increasing on pro- 417

portion of bias-examples, which increases from 418

0% to 41.15% in the first epoch (the proportion 419

of bias-examples in LCQMCtrain is 41.15%) and 420

fluctuates in next epochs (see Fig. 5). 421

Hard-to-easy in each epoch is effective for BERT, 422

but does not improve the performance of ERNIE 423

and RoBERTa. If we train the model more than one 424

epoch, this strategy would not increase the propor- 425

tion of bias-examples linearly. To overcome this 426

limitation, we optimize our strategy and propose 427

the training strategy hard-to-easy all epochs. 428
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Model Approach LCQMCtest DuQM OPPO

BERT
Random sampling 40.28 37.23 24.94
Hard2easy(all epochs) 40.28 36.69↓ 23.61↓

ERNIE
Random sampling 40.49 36.99 25.92
Hard2easy(all epochs) 40.17↓ 36.47↓ 25.62↓

RoBERTa
Random sampling 39.75 36.56 24.04
Hard2easy(all epochs) 38.80↓ 35.76↓ 23.84↓

Table 9: Probability (%) that bias-word makes the greatest contribution to final prediction. We compare the results
between random order and our method hard2easy (all epochs). Our strategy reduces the contribution of bias-words
to all models’ prediction on all test sets.
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Figure 5: The proportion of bias-examples in the exam-
ples we have sampled.

5.2 Hard-to-Easy all epochs429

To achieve hard-to-easy in more intuitive way, as430

shown in Fig. 5, we re-order the bias-examples for431

the whole training process, i.e., the proportion of432

bias-examples in the training set we have sampled433

grows linearly from the start to the end of training.434

In Fig. 4, we compare the training loss curves of435

random order and hard-to-easy. For all three mod-436

els, in the first epoch, the loss curves of two hard-437

to-easy are above random order, since we present438

more challenging examples at the early stage; in439

each epoch, the loss curves of hard-to-easy (each440

epoch) are firstly slightly above all epochs and then441

the two curves overlap; due to the increasing pro-442

portion of no-bias-examples in the beginning of443

each epoch, the curves of each epoch have a slight444

rising in epochs’ start; in the last epoch (green fig-445

ures below), the loss curves of all epochs converge446

to the lowest value.447

Results analysis. We report the results in column448

hard2easy (all epochs) of Tab. 8. Across all models449

and test sets, hard-to-easy (all epochs) outperforms450

random sampling and hard-to-easy (each epoch).451

Across three models, the improvement of BERT is452

highest, which is 0.45% on LCQMCtest, 1.17% on453

DuQM, 0.20% on OPPO. Especially on DuQM, in454

which the proportion of bias-examples is highest,455

our strategy brings the greatest improvement for456

all models, which is 1.17% for BERT, 0.60% for457

ERNIE, 0.40% for RoBERTa. 458

Besides the model’s performance, we are also 459

concerned about whether our strategy helps mod- 460

els shift attention from bias-words. We compare 461

the contribution of bias-words with random sam- 462

pling and hard-to-easy (all epochs) in Tab. 9. Our 463

strategy reduces all three models’ attention on bias- 464

words successfully across all three test sets. For 465

example, when RoBERTa predicts on LCQMCtest, 466

the contribution of bias-words decreases by 0.95%, 467

which represents the model pay less attention on 468

bias-words with our strategy. 469

We provide a example to explain how our strat- 470

egy helps model focus on wright words in Ap- 471

pendix B. In conclusion, with our simple strategy, 472

the performance of the models are improved on all 473

three test sets. Moreover, the contribution of bias- 474

words become less significant after applying our 475

strategy. It is an effective approach to mitigate the 476

bias shortcut in QM datasets that we re-organize 477

the training order from hard to easy. 478

6 Conclusion 479

In this paper, we explore the biased data distri- 480

bution to explain the shortcut learning behavior 481

of the QM models. Specifically, we observe that 482

bias-examples are easier being learned than others, 483

and bias-words make significantly higher contri- 484

butions to model predictions than random words. 485

Besides, we observe that the models tend to as- 486

sign labels that are highly correlated to the bias- 487

words. According to our observation, we propose 488

a simple approach to mitigating the shortcut in 489

QM task, that learns more no-bias-examples first 490

but more bias-examples last, and the experiment 491

results demonstrate the effectiveness of our pro- 492

posed approach. In the future work, we will apply 493

this analysis framework and mitigation approach 494

to other NLP tasks. 495
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A Sampling procedure of hard-to-easy637

Algorithm 1 Sampling procedure of hard2easy
Define:
N : Training epoch
T : Training set
Tbias : Bias-examples in T
Tno−bias : No-bias-examples in T
Initialize:
THard2easy ← ∅
Set α to ensure that the remaining examples in
Tbias or Tno−bias at the end are as few as possible.
Process of sampling:
for i = 1 to N × Size(T ) do

if Size(Tbias) == 0 then
Insert Tno−bias into THard2easy;
Break;

if Size(Tno−bias) == 0 then
Insert Tbias into THard2easy;
Break;

k ← 100− (α× i);
Num← RandInit(0, 100);
if Num ≥ k then

Sample example from Tbias;
Append example to THard2easy;

else
Sample example from Tno−bias;
Insert example into THard2easy;

return THard2easy

We pre-define the training order with algorithm638

shown in Alg. 1, which helps us organize the639

training samples in a hard-to-easy form. We divide640

the training set T into two sets Tbias and Tno−bias.641

With tuning k, the probability of sampling from642

Tno−bias decreases, so as to present more no-bias-643

examples at the early stage and more bias-examples644

at the late stage. The k decreases linearly as the645

number of samples increases and the slope is α.646

Until the end of sampling, either Tbias or Tno−bias647

will have remaining examples. In order to fit the648

size of training set, we need tune the value of α649

to ensure that the remaining examples in Tbias or650

Tno−bias are as few as possible.651

B The effect of hard-to-easy on words’ 652

contribution 653

As our strategy shows the highest improvement in 654

DuQM, we conduct a case study on it. We filter out 655

106 examples where RoBERTa predicts wrongly 656

with random sampling but correctly with hard-to- 657

easy (all epochs). Out of the 48 examples which 658

were predicted wrongly and focused incorrectly, 659

31 examples model focuses correctly after employ- 660

ing hard-to-easy (all epochs) and makes a correct 661

prediction. 662

As the example shown in Fig. 6, RoBERTa fo- 663

cuses on "cervical spondilosis" with random order; 664

if we re-order the training examples with hard-to- 665

easy all epochs, the most important words are "se- 666

rious" and "common". The model detects the dif- 667

ferences and predicts correctly after employing our 668

strategy. 669
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Figure 6: With random sampling, RoBERTa focuses on wrong words (which are bias-words) and predicts incor-
rectly. With our hard-to-easy (all epochs), the contribution of right words increase significantly and model makes
a right prediction.
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