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Abstract

Recent multimodal methods for lyrics alignment have relied on large datasets. Our
approach introduces a box loss that directly incorporates timestamp information
into the loss function, enabling precise alignment and competitive results even
with limited training data. We also address the noise present in the public DALI
dataset, conducting a thorough cleaning process to improve the quality of training
data. Finally, we propose JamendoLyrics++, a substantial extension of the common
JamendoLyrics evaluation dataset, offering improved genre diversity for better
evaluation of lyrics alignment systems.

1 Introduction

Lyrics alignment is the task of synchronizing the lyrics of a song with its audio, enabling applications
in karaoke, lyrics-based music retrieval, and enhancing user experience in music streaming services,
among other use cases [1].

Early approaches to lyrics alignment faced significant challenges due to the lack of polyphonic
training datasets. These methods often adapted automatic speech recognition (ASR) systems to the
solo singing domain [2–4], using the DAMP a cappella singing dataset [5]. However, singing is
generally more complex than speech, exhibiting a wider pitch and temporal range. Furthermore, the
domain mismatch between solo singing and polyphonic audio resulted in poor performance on the
latter.

Results in lyrics alignment improved substantially with the release of the DALI v1 dataset [6],
providing time-aligned lyrics annotations for approximately 5k polyphonic songs, as well as the
use of larger internal datasets. Gupta et al. investigated music-informed audio features [7] and
genre-informed phone and silence models [8]. Demirel et al. explored low-resource lyrics alignment
using anchor word selection followed by anchor segmentation [9]. Huang et al. proposed a multi-task
learning approach [10] using pitch timestamps provided in DALI v2 [11].

These and other methods [12, 13] have been trained with a Connectionist Temporal Classification
(CTC) loss [14]. The recent work by Durand et al. is particularly novel for its use of a multimodal
contrastive learning approach [15]. They achieved state-of-the-art performance using a large internal
dataset of approximately 88k songs. That same year, Kang et al. presented a similar multimodal
method [16]. Their DALI-trained model was not able to achieve the same level of performance;
however, with a large internal dataset of approximately 67k songs and ensembling techniques, they
achieved competitive results. This raises the question of whether all multimodal methods require
large amounts of data.
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Building on the contrastive framework by [15], we propose improvements by incorporating timestamp
information directly into the contrastive loss, leading to better model performance and yielding
competitive results even when trained on the significantly smaller DALI dataset. This not only
shows that multimodal methods can excel with limited data but also ensures a fair comparison with
other state-of-the-art methods trained on DALI [8, 10]. Additionally, we discover and clean noisy
samples in the DALI dataset. Finally, we improve on JamendoLyrics [17], a commonly used test
set, by proposing JamendoLyrics++, which contains four times more manually annotated samples.
JamendoLyrics is limited by its small size, consisting of only 20 English songs. JamendoLyrics++
offers a larger, more comprehensive and genre-diverse collection, enabling more robust comparisons
and more accurate generalization estimates of model performance across different musical genres.

Our contributions can be summarized as follows:

• We propose a novel loss for contrastive lyrics alignment that incorporates timestamp infor-
mation. We open-source our code and checkpoints for open science and reproducibility.1

• We analyze DALI v2 and identify noisy samples, providing labels to facilitate dataset
cleaning.

• We propose JamendoLyrics++,2 an extension of JamendoLyrics with four times more data
and high genre diversity.

2 Methods

We base our approach on the similarity model by [15], proposing improvements and experimental
modifications. In the following we present the different components of the contrastive learning
framework. Specifically, we describe the text and audio encoders, the similarity matching and
contrastive learning procedure for training, and the alignment decoding. For an overview figure and
more details refer to the original paper. We conclude with a few comments.

Audio Encoder. The audio encoder fa is designed to detect the phonetic content of the singing voice
in the audio. It processes input spectrograms X ∈ RT×D with a duration of 5 seconds, where T is
the number of spectrogram frames and D is the number of frequency bins. The encoder is a residual
network comprising 10 residual convolutional blocks (RCBs), each containing 2 repetitions of group
normalization, ReLU activation, and a 2D convolutional layer with a 3× 3 kernel and 64 features.
The output is a 1D convolution layer applied on each time bin with E = 64 filters, resulting in an
embedding matrix A ∈ RT×E .

Text Encoder. The text encoder fl estimates how the singing voice could sound for any given lyrics
symbol. To account for the pronunciation dependence on neighboring symbols, the encoder processes
the subsequence sn−C , . . . , sn, . . . , sn+C for each symbol sn in the lyrics, which could be characters,
phonemes, or other text representations. These symbols are passed through a trainable embedding
layer, and a simple dense network with one hidden layer and ReLU activation, yielding an E-dim.
embedding for each symbol. A given N -symbol lyrics sequence is thus mapped to an embedding
matrix L ∈ RN×E . Both the text and audio encoder embeddings are l2 normalized to enable cosine
similarity comparisons.

Similarity Matching and Training. For training, a contrastive learning approach is employed.
Positive examples s+ are taken from the lyrics corresponding to a given audio segment, while
negative examples s− are sampled from the distribution ps over symbols obtained from all lyrics
in the dataset that do not appear in the audio segment. The similarity between the text and audio
embeddings is maximized for positive pairs and minimized for negative pairs with the following
objective

L = E(X,s+)∼pd

[
(m(X, s+)− 1)2 + Es−∼ps

m(X, s−)2
]
, (1)

where pd is the distribution over audio segments and symbols sampled from the corresponding lyrics
sequence, and m(X, s) = maxt∈[1,T ] fl(s) · fa(X)⊤t is the maximum similarity of symbol s over
the entire audio segment X.

Alignment Decoding. Post-training, the alignment is performed on a normalized similarity matrix
S = 1

2 (A · L⊤ + 1), ensuring that S ∈ [0, 1]T×N . A similarity matrix example is shown in Fig. 1.

1https://github.com/tikick/LyricsAlignment
2https://github.com/tikick/JamendoLyricspp
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Figure 1: The similarity matrix above, and the ground truth word alignment below. Observe the
vertical bright stripes at the start of each word.

The alignment is decoded using a modified Dynamic Time Warping (DTW) algorithm [18], which
excludes horizontal score accumulation and vertical steps. That is, the algorithm finds a monotonic
path that maximizes the cumulative similarity score across the diagonal steps. This decoding algorithm
is applied on the log-transformed similarity matrix. The authors thus interpret the similarity matrix S
as a probability matrix and decode the most likely path in the log space.

Frames Concentration. Inspecting the similarity matrix S (see Fig. 1) reveals that the model
concentrates all syllable/word information into the first few corresponding frames, which is suboptimal
for predicting token alignment and word ends. Since current evaluation metrics only use word starts,
this weakness remains hidden.

2.1 Multi-Loss

We propose to use a multi-loss approach. Most lyrics alignment models are trained with a CTC loss,
while [15] use a contrastive loss. To explore potential synergies, we added a linear layer to the audio
encoder to obtain a posteriorgram, i.e., a frame-wise distribution over symbols, in addition to the
frame embeddings. We train the model using a linear combination of contrastive and CTC loss.

2.2 Box Loss

While the contrastive objective encourages the model to distinguish whether a token is present within
an audio segment, it does not provide guidance on the temporal location of positive tokens. To address
this limitation, we propose a novel box loss that incorporates timestamp information directly into
the contrastive loss. To the best of our knowledge, this is the first instance where such information
is used within the loss rather than only for generating training samples. Specifically, we take the
maximum over the frames where the token appears according to the timestamps, rather than over
the entire audio segment as in Eq. 1, see Fig. 2; to account for potentially noisy timestamps in the
training dataset, we introduce a slack hyperparameter to widen the box. That is, we redefine the m
function for positive symbols s as follows

m(X, s) = maxt∈[tsstart−ζ,tsend+ζ]fl(s) · fa(X)⊤t , (2)
where tsstart, t

s
end are the start and end frames of symbol s, and ζ is the slack hyperparameter.

In addition, we explore a variant of the box loss, termed negative box loss, which eliminates the
need for negative sampling and instead designates tokens appearing only once within a segment as
negatives outside their defined box. Formally, the objective is

L = E(X,s+)∼pd

[
(m(X, s+)− 1)2 +m−(X, s+)2

]
, (3)

where m is defined as above and
m−(X, s) = maxt∈[1,tsstart−ζ)∪(tsend+ζ,T ]fl(s) · fa(X)⊤t (4)

if s is unique within X and 0 otherwise.
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Figure 2: The box loss. The maximum similarity of a lyrics token is taken withing the corresponding
box and not the entire audio segment. To account for noisy timestamps, a slack hyperparameter
widens the box (in light blue).

3 Experiments

Evaluation Dataset and Metrics. For evaluation we use the JamendoLyrics dataset, which has 20
word-level annotated songs. We compute two standard evaluation metrics: the Average Absolute
Error

AAE =

∑W
w=1 |twpred − twgt|

W
, (5)

and the Percentage of Correct Onsets with a tolerance window of 0.3 seconds

PCO =

∑W
w=1 1{|twpred − twgt| < 0.3}

W
, (6)

where W is the number of words in a song, and twpred, t
w
gt are the predicted and ground truth start

time of the w-th word. These metrics are averaged over all JamendoLyrics songs.

Training Dataset. The framework by [15], along with all experimental modifications, is trained
on the DALI dataset. The first DALI version comprises 5,358 English songs with word-level lyrics
annotations. DALI v2 extends this to 7,756 songs, including other languages. For our experiments,
we use the English subset of DALI v2 with available audio, consisting of 4,899 songs. Similar to [15],
we reserve 2% of the training data for validation. A 5-second sliding window with a 2.5-second hop
is used to generate samples, where the target lyrics are words fully contained within the window. We
use a text-to-phone converter [19] to obtain IPA characters as the text representation.

DALI Cleaning. Early experiments suggested substantial noise in the DALI dataset, as the best box
slack was quite large (1.5 seconds), and the JamendoLyrics and validation metrics were significantly
different. To investigate this, we used a model trained on an internal dataset (to avoid bias) to compute
the PCO score for each DALI song. We inspected songs with a PCO below 80% (around 1k songs)
for patterns in the deviation between ground truth and predicted timestamps, issues with lyrics, and
other anomalies. We documented our findings in a CSV file available on our GitHub repository. Our
analysis revealed that approximately 10% of the DALI songs have issues. We clean a subset of these
songs and discard the others, improving the dataset’s overall quality and reducing the best box slack
to 1 second. For more details on the identified issues and our cleaning method, please refer to the
Appendix.

Training. We train our models for 16 epochs and choose the checkpoint that achieves the highest
PCO score on the validation subset.

4 Results

Multi-Loss. We experimented with combining the contrastive and CTC loss in various proportions,
obtaining comparable results to the contrastive loss alone. This suggests that the two losses are
collinear rather than complementary. When placing high weight on the CTC loss, we observed a
slight performance decrease, consistent with the results of the CTC-only model reported by [15].
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Table 1: Performance comparison

Train Dataset DALI DALI Clean
Metric PCO AAE PCO AAE
Contrastive 92% 0.25 93% 0.24
Box 93% 0.24 94% 0.20
Negative Box 90% 0.41 90% 0.47

Table 2: Comparison with SOTA methods

PCO AAE Train Dataset
DSE [15] 93% 0.16 In-house 88k
GYL [8] 94% 0.22 DALI
HBE [10] 94% 0.23 DALI
Ours 94% 0.20 DALI

Box Loss and DALI Cleaning. Table 1 presents the performance comparison of our models using
different losses and datasets. An inspection of our models’ predictions revealed that most timestamps
were slightly delayed. We thus shifted all predictions forward by 0.1 seconds. Compared to the
contrastive loss baseline, the box loss provides a noticeable improvement in both evaluated metrics.
This, however, is not the case for the negative box loss. Cleaning the training data also contributed
to improved performance, with the exception of the negative box loss model, where performance
remained unchanged. This highlights the potential benefit of reducing noise in datasets such as DALI.
We encourage other researchers working on lyrics alignment to consider the noise in DALI.

We examinined the failure cases of our models. Most challenging songs from both DALI and
JamendoLyrics contain repeated syllables (e.g. “la la la”, “who oh oh”) or repeated words and lines.
We suspect these are challenging songs for many lyrics alignment systems. Missing a single repetition
can shift the alignment of subsequent repetitions; although most lyrics and audio may still match
overall, this misalignment negatively impacts both the PCO and AAE metrics.

Table 2 compares our best performing model with previous state-of-the-art (SOTA) methods. We also
conducted experiments using isolated vocals instead of the mixed audio. Contrary to expectations,
this significantly worsened performance.

5 JamendoLyrics++

Finally, we introduce JamendoLyrics++, an 80-song dataset that serves as a substantial extension
to the original JamendoLyrics dataset. This new dataset is a carefully curated subset of songs
from the Jamendo platform, selected from those that provide accompanying lyrics. Combined with
the original JamendoLyrics dataset of 20 English songs, this yields a total of 100 songs for lyrics
alignment evaluation. JamendoLyrics++ covers over 20 musical styles (see the Appendix for the
genre distribution), with a focus on the popular and very broad genres pop and rock [20], which
supports more comprehensive benchmarking of lyrics alignment models across different genres.

We processed the provided lyrics to ensure high-quality data. In particular, we added missing
repetitions of choruses or individual words and lines, removed any tags, and made small corrections
when the lyrics deviated from what was actually sung.

We employed a two-phase process to create the timestamps. First, we used one of our models to
generate initial, noisy timestamps. Next, to ensure precise annotations, we manually corrected and
refined the timestamps with a graphical interface.

On JamendoLyrics++ our best model achieves an AAE of 0.20 and a PCO of 95%.

6 Conclusions

We have introduced a timestamp-informed box loss for contrastive lyrics alignment, demonstrating its
effectiveness in achieving competitive results with reduced training data. Our approach also highlights
the importance of dataset quality, as shown through our DALI dataset cleaning efforts. Finally, the
release of the JamendoLyrics++ dataset offers a more robust benchmark for future research.
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A DALI Noise and Cleaning

Our analysis revealed that approximately 10% of the DALI songs have issues. About 100 songs
have mismatches between lyrics and audio, such as wrong lyrics (interestingly, a significant number
of these entries contain the Tetris lyrics by the Brentalfloss YouTube channel), English lyrics with
non-English singing, or audio without singing (karaoke). Another 100 songs display issues only
towards the end, such as additional lyrics paragraphs. Moreover, we identified various types of
timestamp offsets among more than 200 songs: a constant global offset, a linearly increasing or
decreasing offset, and different local offsets. Most offsets are quite small, not exceeding 1 second,
but some are as large as 8 seconds or more.

In an attempt to clean DALI, we correct timestamps with constant offsets and remove all other noisy
songs. This not only ensures that the data we train on is cleaner, but also that the measured validation
performance is more precise. Note that some songs, such as those with additional lyrics at the end,
do not pose a problem during training (as the audio is “missing” and no training samples are created),
but do pose a problem during validation (all words might need to be predicted earlier to make the
additional lyrics fit).

B JamendoLyrics++ Genre Distribution
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Figure 3: Distribution of genres in JamendoLyrics++. We observe that our dataset covers a wide
range of genres with focus on the popular and broad genres pop and rock.
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