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On Bitrates of Very Sparse Superposition Codes
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Abstract
Sparse autoencoders have been used to interpret
activity inside large language models as “super-
position codes” for sparse, high-dimensional sig-
nals. The encoder layers of these autoencoders
use simple methods, which we will call “one-
step estimates,” to read latent sparse signals from
vectors of hidden neuron activations. This work
investigates the reliability of one-step estimates
on a generic family of sparse inference problems.
We show that these estimates are remarkably in-
efficient from the point of view of coding the-
ory: even in a “very sparse” regime, they are
only reliable when the dimension of the code ex-
ceeds the entropy of the latent signal by a fac-
tor of 2.7 dimensions per bit. In comparison, a
very naive iterative method called matching pur-
suit can read superposition codes given just 1.3
dimensions per bit. This opens the question of
whether neural networks can achieve similar bi-
trates in their internal representations.

1. Introduction
If each neuron in a neural network signaled a meaningful
“feature” of its input, we could hope to reverse-engineer
the network’s overall behavior on a neuron-by-neuron ba-
sis. However, individual neurons of real-world networks
often lack clear interpretations. For example, both lan-
guage models and vision models have been found to learn
neurons that correlate simultaneously with apparently un-
related features. (See for example (Nguyen et al., 2016),
(Zhang & Wang, 2023) and (Olah et al., 2020).)

The difficulty of interpreting a network in terms of its
local activity—and in particular, the appearance of so-
called “polysemantic neurons”—is not surprising from a
connectionist viewpoint. Since at least the 1980s, propo-
nents of neural networks have argued that these systems

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
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Figure 1. A coarse code representing a point on a plane. Each
“neuron,” drawn as a red or blue square, encodes whether the
point belongs to an associated “receptive field.” Although no neu-
ron gives specific information on the position of the point, the
overall code determines its position with reasonable accuracy.

may naturally use distributed representations—coding
schemes where individual features are represented by pat-
terns spread over many neurons, and conversely where each
neuron carries information on many features. (This term
was apparently coined in (Rumelhart et al., 1986), Chap-
ter 3.) In contrast, a local representation would dedicate
each neuron to a single feature. (See (Thorpe, 1989) for a
general discussion of local and distributed codes.) Figure 1
illustrates a classic example of a coarse code, one kind of
distributed representation.

It is not clear how deep neural networks learn to represent
information in their hidden layers or to what extent this
information can be interpreted. However, should “inter-
pretable features” exist, the connectivist viewpoint makes
it natural that they would be stored with non-local codes.
This is a common assumption in interpretability research
today; for example, when (Meng et al., 2022) intervened
on an MLP layer of a language model to “edit” a factual as-
sociation, both the “subject” and the “fact” were modeled
as vectors of neuron activations rather than as individual
neurons.

How can we infer latent features learned by a neural net-
work? One simple proposal is to model an activation vector
x as a linear projection

x = Fy

of some high-dimensional and sparse vector y of latent fea-
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On Bitrates of Very Sparse Superposition Codes

tures. We refer to the columns of F as codewords and the
whole matrix F as a dictionary. Since x is a linear super-
position of codewords, we will call it a superposition code
for y. The task of inferring the sparse vector y from x is
known as sparse reconstruction, and the task of inferring
the dictionary F from a distribution over x is called dictio-
nary learning. Both of these problems have been studied
in the field of compressive sensing, although with differ-
ent applications in mind. (See (Elad, 2010) for a review of
classic work in the context of signal and image processing.)

Already in 2015, (Faruqui et al., 2015) used a dictionary
learning method to derive sparse latent codes for word em-
beddings and argued that these latents were more inter-
pretable than the original embedding dimensions. More re-
cently, a series of works beginning with (Yun et al., 2021)
have applied dictionary learning to the internal represen-
tations of transformer-based language models. (Cunning-
ham et al., 2023) suggested the use of sparse autoen-
coders (SAEs) and (Templeton et al., 2024; Gao et al.,
2024) scaled sparse autoencoders to production-size large
language models.

Sparse latents learned by SAEs are often highly in-
tepretable, and (Templeton et al., 2024) showed that inter-
vening at the level of features allows “steering” language
models in predictable ways. However, even SAEs with
very high-dimensional latents suffer from an apparently ir-
reducible reconstruction error (Gao et al., 2024). Under-
standing the limitations of SAEs—and dictionary learning
in general—is an important open question in interpretabil-
ity (Sharkey et al., 2025).

2. Contributions
To infer a latent representation y from an activation vector
x, sparse autoencoders use an estimate like ŷ(x) = σ(Gx)
for some learnable matrix G : RN×d and some simple non-
linear thresholding function σ. Meanwhile, the literature
on compressive sensing is concerned mainly with iterative
methods for sparse inference. Throughout this paper, we
will refer to autoencoder estimates as “one-step estimates.”

It is natural that iterative methods for sparse reconstruction
will perform more reliably than one-step estimates, but the
nature of this gap is not obvious in general. Informally
speaking, how bad are one-step estimates?

In this work, we answer this question in a toy scenario de-
signed to model the “very sparse” latents learned by sparse
autoencoders in practice. Our main contributions are the
following.

1. We prove a theoretical guarantee on the performance
of one-step methods and indicate simple “rules of
thumb” that hold in practice. (See Section 3.3.)
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Figure 2. An overview of the minimum codeword dimension d re-
quired for three different methods to reliably decode a uniformly
chosen k-sparse subset of {1, . . . , 220} from a superposition of
Rademacher codewords. Threshold and top-k decoding are “one-
step” methods used by sparse autoencoders, while matching pur-
suit is a simple iterative method. The inverse “bitrate” d/H(k),
where H(k) = log2

󰀃
N
k

󰀄
≈ k log2(eN/k), is indicated by the

right axis.

2. We show empirically that the gap between one-step
methods and iterative methods is significant, even for
very sparse latents. In comparison to a simple method
called matching pursuit, one-step methods require the
dimension d of the superposition code to be larger by
a constant factor. (See Section 3.5.)

From the point of coding theory, one natural measure for
the efficiency of a sparse recovery method is its bitrate: that
is, the ratio H/d between the entropy H of the latent signal
and the minimum dimension d of the code x = Fy needed
to recover y. In this language, matching pursuit can decode
“very sparse” superposition codes at a rate of roughly one
bit per dimension. On the other hand, one-step methods re-
quire upwards of 2.7 dimensions per bit. This rate increases
as y becomes less sparse; for a latent vector y ∈ R220 with
100 non-zero entries, one-step estimates require about 5 di-
mensions per bit. (See Figure 2.)

How “efficient,” in terms of bitrate, are the codes used by
real neural networks? On one hand, it would not make
sense for a network to use a code that requires a lengthy
iterative decoding process before it can be used. On the
other hand, it may still be possible for a network to learn to
use codes that are “too efficient” to be entirely decoded by
a one-step estimate. Overall, we hope this question informs
future work on modeling distributed representations.
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3. Encoding Sets with Superposition Codes
We begin by describing the “toy scenario” to be studied.

Given a large number N, consider a map F that “encodes”
each subset y ⊆ [N ] = {1, . . . , N} by a linear combina-
tion

x = Fy =
󰁛

i∈Y

fi ∈ Rd,

where the vectors {fi ∈ Rd : i ∈ [N ]} are chosen in ad-
vance and where the dimension d of the encoding is ex-
pected to be much smaller than N. As above, we call the
vectors fi codewords for the elements of [N ] and call the
image Fy a superposition code for the set y. It will often
be useful to view y as a vector in {0, 1}N with coefficients

yi =

󰀫
1 : i ∈ y

0 : otherwise

and view F as a matrix of column vectors [f1 . . . fN ],
called the dictionary. For simplicity, we’ll model our sub-
set as a random variable Y uniformly distributed over the
subsets of some fixed size k ≪ N.

Ultimately, we are interested in understanding what might
limit the success of SAEs and how other sparse dictionary
learning methods may be designed. As a first step, this
work addresses the following question.

Question 1. When can Y be reliably decoded from the su-
perposition code X = FY with the methods used by sparse
autoencoders? Can other computationally efficient meth-
ods do significantly better?

Specifically, we’re interested in understanding how large
the dimension d needs to be as a function of (N, k) for
some class of method to recover Y, assuming the dictionary
F is known. (We do not study the problem of learning the
dictionary.) Since Y is a discrete variable, we will focus on
conditions for exact recovery. We’ll also focus on a regime
where Y resembles the very sparse latent representations
learned by sparse autoencoders trained on large language
models. (Gao et al., 2024) discusses scaling the number of
latent features on the order of N = 220 with sparsity on the
order of k = 28, so we use this as our reference.

To map vectors of activations to latent sparse
representations—in our language, to infer X from
Y —sparse autoencoders essentially employ one-layer
networks. For example, (Templeton et al., 2024) used a
ReLU unit to estimate each coefficient of Y. Since the
coefficients Yi in our toy scenario are either 0 or 1, a
natural analog would be a thresholding rule of the form

Ŷi(x) =

󰀫
1 : 〈λi, X〉 ≥ 1

0 : otherwise

Since the number k of non-zero coefficients is known be-
forehand, we can also choose the threshold adaptively so
that only k of the Ŷi are non-zero. This is called top-k de-
coding. (Gao et al., 2024) showed that, in practice, top-k
autoencoders perform better than their ReLU variants. We
refer to both approaches as “one-step estimates.”

On the other hand, the field of compressive sensing offers a
vast literature on iterative methods to recover a sparse vec-
tor from a linear projection. It is known that, in general,
iterative methods are much more reliable than one-step es-
timates. Indeed, the first iteration of an iterative shrinkage
method (see Chapter 6 of (Elad, 2010)) is formally identi-
cal to the kind of ReLU network employed by (Templeton
et al., 2024). However, to our knowledge, a comparison of
one-step estimates with iterative methods in the very sparse
regime encountered by sparse autoencoders has so far been
lacking.

The following sections are organized as follows.

• Section 3.1 reviews some basic ideas from informa-
tion theory and introduces bitrate as a measurement
for the efficiency of an inference method.

• Section 3.2 reviews the idea of a matched filter and
motivates the two one-step estimates we will consider.

• Section 3.3 studies the reliability of one-step estimates
when the dictionary F is random.

• Section 3.4 argues that random dictionaries are “al-
most optimal” when k ≪ N.

• Section 3.5 discusses the empirical performance of an
iterative method called matching pursuit.

3.1. Information Theory Bounds

In practice, each dimension of the superposition code FY
carries a finite amount of information on the set Y. At best,
the information that one dimension can store is determined
by the number of states in its numeric datatype—a 16 bit
floating point can store nearly 16 bits, and so on. However,
under the moderate assumption that the projection FX can
still be decoded after the addition of a certain level of white
noise, classic results from information theory put more re-
alistic bounds on the dimension of our encoding.

Proposition 1. For a given dictionary F ∈ Rd×N , suppose
there exists a decoding map D so that

D(FY + Z) = Y

with probability at least (1−p), where Z is a vector of i.i.d.
Gaussians with variance VZ . Suppose additionally that the
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maximum variance of any coefficient of the code X = FY
if VX . Define

C =
1

2
ln

󰀕
1 +

VX

VZ

󰀖
.

Then

d ≥ C−1

󰀕
(1− p) ln

󰀕
N

k

󰀖
− ln 2

󰀖
.

(See Appendix A for a standard proof.) When p is small
and ln

󰀃
N
k

󰀄
is large, this means roughly that the “bitrate”

R = log2

󰀕
N

k

󰀖󰀡
d

cannot exceed the “channel capacity” C/ ln 2. (We alter-
nate between bits and nats as convenient.) On the other
hand, a classic result of information theory is that, as some
block size parameter goes to infinity, there exist arbitrarily
reliable coding schemes that essentially meet the channel
capacity. In the remainder of this work, we will measure
the minimum dimension d required for a certain inference
method to recover Y in terms of the corresponding bitrate
R.

Of course, it will be useful to have an estimate for the en-
tropy ln

󰀃
N
k

󰀄
. For fixed k,

󰀃
N
k

󰀄
is a polynomial in N and

so

ln

󰀕
N

k

󰀖
= k lnN +O(1).

Indeed, k lnN is the entropy of an array of k elements of
[N ] drawn with replacement. A better estimate for the en-
tropy of a small subset is

ln

󰀕
N

k

󰀖
≤ k ln(eN/k) = k lnN − k ln k + k.

In fact, when k is small compared to N, k ln(eN/k) is an
extremely good approximation. For example,

ln

󰀕
220

28

󰀖
≈ 28 ln(220e/28) = 128(1 + 12 ln 2)

holds with a relative error of about 0.3%. (See Appendix B
for a discussion of this estimate.)

3.2. Matched Filters and One-Step Estimates

Now, we turn to the problem of decoding a superposition
code. Let’s begin by reviewing the simpler problem of in-
ferring a random scalar S from a sum

X = Sf + Z (1)

where f ∈ Rd is known but the “noise term” Z ∈ Rd is
an unobserved Gaussian vector. In signal processing, the

problem of recovering an unobserved variable from a noisy
process is known as filtering.

In a linear system with Gaussian noise, like Equation (1),
optimal filtering can be done using a linear function of the
measurement data. Specifically, suppose Z has mean zero
and non-singular covariance Σ, and define an inner product
by 〈v, w〉Σ = xTΣ−1y. Then the posterior of S conditional
on X is determined by the function

λ(X) =
〈f,X〉Σ
󰀂f󰀂2Σ

,

which we will call the matched filter for S. If S ∈ {0, 1}
is a binary variable, a routine calculations shows that the
log odds of the posterior on S is given by

ln
P(S = 1|X = x)

P(S = 0|X = x)

= ρ

󰀕
λ(x)− 1

2

󰀖
+ ln

P(S = 1)

P(S = 0)
, (2)

where ρ = 󰀂f󰀂2Σ is the “signal-to-noise ratio” of the filter
λ. See Appendix D for a review.

We now return to our original problem. Let’s focus on es-
timating just one scalar Yi from the sum

X = Yifi +
󰁛

j ∕=i

Yjfj .

The “noise term” here is not Gaussian, and the exact
Bayesian posterior on Yi turns out to be intractable in gen-
eral. However, we can try to estimate Yi by approximating󰁓

j ∕=i Yjfi by a Gaussian vector of the same covariance.
The corresponding matched filter for Yi can be understood
as a kind of least squares estimate.

In the following, let us assume that the codewords fi ∈ Rd

are unit vectors. (It is natural for all the codewords fi to
have the same magnitude if each coefficient Yi needs to be
encoded with the same precision, as they do in our sce-
nario.) If we assume further that the empirical distribu-
tion over codewords fi is approximately isotropic, then the
matched filter for Yi is approximately

λi(X) = 〈fi, X〉.

(If the distribution over codewords is not isotropic, we can
first apply a linear transformation to “whiten” the distribu-
tion of X.)

A one-step estimate is an estimate for Y that relies directly
on the matched filters λi. From Equation (2), the maximum
likelihood estimate for Yi under our simplified Gaussian
model is 1 if

〈fi, X〉 ≥ 1

ρ
ln

P(Yi = 1)

P(Yi = 0)
+

1

2
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and 0 otherwise. If we assume the signal-to-noise ratio ρ is
very large, the decision boundary becomes approximately
1/2. This leads to the simpler of the two one-step estimates
that we will consider.

Definition 1. Given X = FY, the threshold decoding is

Ŷi =

󰀫
1 : 〈fi, X〉 ≥ 1/2

0 : otherwise.

On the other hand, if we know (or guess) the size k of the
set Y in advance, the following is a natural way to make use
of that information. (In the context of sparse autoencoders,
this method was introduced by (Makhzani & Frey, 2014).)

Definition 2. Given X = FY, the top-k decoding is the
set Ŷ of k elements whose codewords fi have largest inner
products with X. (Ties are broken arbitrarily.)

Note that whenever threshold decoding succeeds at recov-
ering Y, top-k decoding succeeds as well.

3.3. One-Step Estimates with Random Codewords

In this section, we show rigorously that one-step estimates
are reliable so long as d = Ω(k lnN) and the dictionary
F is random. Our theoretical results agree with numerical
experiments, and we find that remarkably simple “rules of
thumb” govern the performance of one-step estimates in
practice. (See Figure 3.)

If inner products 〈fi, fj〉 between distinct codewords are
“small enough” in some sense, then the matched filters
〈fi, X〉 will be reliable and we can expect one-step esti-
mates to succeed. Indeed,

〈fi, X〉 =
󰀭
fi,

󰁛

j

Yjfj

󰀮
=

󰁛

j

Yj〈fi, fj〉

= Yi +
󰁛

j ∕=i

Yj〈fi, fj〉

󰁿 󰁾󰁽 󰂀
ξi

, (3)

where the total “crosstalk” ξi is a sum of either (k − 1) or
k inner products 〈fi, fj〉.

One simple way to produce a dictionary of almost-
orthogonal codewords is to choose them randomly. For ex-
ample, the following fact is representative of many similar
results in high-dimensional geometry.

Proposition 2. Let d > 2󰂃−2(2 lnN + ln p−1), and let

{F1, . . . , FN} ⊆ {−1/
√
d, 1/

√
d}d

be random vectors with independent, uniformly distributed
entries. Then |〈Fi, Fj〉| < 󰂃 for all i ∕= j with probability
at least (1− p).

See Appendix C for a review.

Let’s call a pair (v, w) of vectors “󰂃-orthogonal” when
|〈v, w〉| < 󰂃. When all codewords are pairwise 󰂃-
orthogonal in the sense of Proposition 2, the crosstalk ξi
in Equation (3) is bounded strictly by 󰂃k in absolute value.
Putting 󰂃 = k/2 gives the following corollary.

Corollary 1. Let d ≥ 8k2(2 lnN + ln p−1), and let
F ∈ Rd×N be a dictionary of random codewords in the
conditions of Proposition 2. Then with probability at least
(1− p), every k-element subset Y ⊆ [N ] is recovered from
its superposition code FY by threshold decoding.

For fixed k, we conclude that the dimension d of our code-
words only needs to grow as Ω(lnN). However, the fac-
tor of 16k2 turns out to be very pessimistic; in practice,
for almost all sets to be reliably encoded, we only need
Ω(k lnN) dimensions.

Proposition 3. Let F ∈ Rd×N be a Rademacher dictio-
nary in the conditions above. Fix a k-element set y ∈ [N ]
and some p ∈ (0, 1). If

d ≥ 8k(lnN + ln p−1),

then y is accurately recovered from the random variable
X = Fy by threshold decoding with probability at least
(1− p).

As a heuristic guide for this result, consider the crosstalk
ξi encountered by a matched filter 〈fi, X〉. If we view the
other (N − 1) codewords as random Rademacher vectors
Fj , we find that each inner product 〈fi, Fj〉 is a sum of
d independent Rademacher variables scaled to have total
variance 1/d. It follows that the variance of ξi is at most
k/d. To keep the power of this crosstalk below some fixed
threshold, we conclude that d must grow linearly with re-
spect to k. For a full proof, see Appendix E.

Note that, unlike Corollary 1, Proposition 3 does not guar-
antee that any fixed dictionary can reliably encode many
sets y. However, we can easily derive such a guarantee with
a Markov inequality.

Corollary 2. Let F ∈ Rd×N be a Rademacher dictionary
as above and let 󰂃, p > 0. If

d ≥ 8k(lnN + ln(󰂃p)−1),

then with probability at least (1− p) it is true that at least
(1 − 󰂃)

󰀃
N
k

󰀄
subsets y are accurately decoded from their

images X = Fy by threshold decoding.

The prediction of Proposition 3 agrees well with numer-
ical experiments, graphed in Figure 3. In fact, even as N
varies over several orders of magnitude, the slightly weaker
condition d ≥ 8k lnN characterizes the regime where the

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

On Bitrates of Very Sparse Superposition Codes

set Y can be decoded with reasonably high probability by
threshold decoding.

Top-k decoding performs significantly better but admits a
similar “rule of thumb”: for all values of N trialed,

d = 4k ln kN

is very close to the smallest dimension needed for top-k
decoding to succeed with high probability. See Appendix F
for an informal derivation of this bound.

3.4. Are Random Codewords Optimal?

So far, we’ve considered the performance of threshold and
top-k decodings at recovering a subset from a superposition
code with a random dictionary F . One natural question is
whether we can do better if the dictionary is optimized. Of
course, when d ≥ N, we can make the codewords fi ex-
actly orthogonal. For this reason, the performance of one-
step decodings shown in the top row of Figure 3 is much
worse than is possible; we never need more than N dimen-
sions to store a latent vector of dimension N.

However, when the ratio d/N is small—say, smaller than
1/10—we conjecture that optimizing the dictionary gives
practically no improvement over a random initialization.
Unfortunately, we are not aware of a theoretical justifica-
tion for this fact.

To see why this may be true, recall the “crosstalk” terms

ξi =
󰁛

j ∕=i

Yj〈fi, fj〉

from the previous section. For each i, this is a sum of be-
tween k and (k − 1) numbers drawn without replacement
from the sequence

(〈fi, fj〉)j ∕=i.

Let’s fix the dictionary F and consider the empirical distri-
bution defined by this sequence. Suppose this distribution
has zero mean and variance

γi(F ) =
1

N − 1

󰁛

j ∕=i

〈fi, fj〉2.

When k is moderately large but much smaller than N, we
expect the crosstalk ξi to behave like a centered Gaussian
with variance kγi. Specifically, we expect that the probabil-
ity of its tail events with respect to the random set Y will be
governed by the product kγi. If we assume that tail events
for the different variables ξi are “sufficiently independent,”
we conclude overall that the typical value of γi(F ) is the
limiting factor for the reliability of one-step estimates.
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Figure 3. Empirical performance of threshold decoding (left)
and top-k decoding (right) at the problem of recovering a k-
element subset of [N ] from a projection into d dimensions by a
Rademacher random matrix. In the left column, we plot the rela-
tion d = 8k lnN . On the right, we plot d = 4k ln(kN) and its
lower bound of d = 4k lnN.
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A dictionary chosen to have smaller “interference scales”
γi would, in particular, have smaller average squared inter-
ference

γ(F ) =
1

N

N󰁛

i=1

γi =

󰀕
n

2

󰀖−1 󰁛

i ∕=j

〈fi, fj〉2.

For a random dictionary F, γ(F ) equals 1/d in expectation.
Can we decrease this value significantly by optimization?

Using projected gradient descent, we minimized γ(F ) sub-
ject to the constraint of maintaining unit norm codewords.
We tested dictionaries with between N = 64 and 65536
codewords and with codeword dimensions between d = 16
and 1024. In each case, we initialized with a random
Rademacher dictionary and optimized to convergence with
standard criteria. Our results are plotted in Figure 4.

As d approaches N, we find that the optimal value γopt of
γ(F ) converges to 0, as expected. On the other hand, when
d ≪ N, γopt is very close to 1/d, its expected value un-
der a random initialization. For example, with N = 216

(not plotted), the optimal value of γ(F ) is indistinguish-
able from 1/d on a log-log plot.

Furthermore, we find a striking regularity. Empirically, the
ratio γopt/d

−1 = dγopt between the optimal value of γ and
its expected value at initialization turns out to be a function
of the relative dimension d/N. Since this holds as N ranges
over several orders of magnitude, it is natural to believe it
may hold in general.

Claim 1. For given (N, d), the optimal value of γ(F ) for
a dictionary F ∈ Rd×N of unit norm codewords is

γopt(N, d) =
κ(d/N)

d

for some function κ. Furthermore, κ(r) is close to 1 for
small values of r.

If true, this means that the values γi(F ) governing the scale
of crosstalk suffered by matched filters can’t be made sig-
nificantly smaller than 1/d when d ≤ 󰂃N for small 󰂃.

We’re not aware of theoretical results in this direction. Note
in particular that this is not obviously related to work on
sphere packing (see (Cohn & Zhao, 2014)) since we are
interested in the scale of the distribution of inner products
rather than in maximum values.

3.5. Comparison with Compressive Sensing

Together, Section 3.3 and Section 3.4 provide strong evi-
dence that when k ≤ 󰂃N, one-step estimates need nearly
d ≥ 4k lnN dimensions to read a subset from a superpo-
sition code, even when the dictionary F is optimized. In
the sense of Section 3.1, this means that the “bitrate” of a
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Figure 4. Top: The mean squared interference γ(F ) of a dictio-
nary F obtained by running projected gradient descent to conver-
gence. The dotted line shows γinit = 1/d, the mean squared in-
terference attained in expectation by a random initialization. The
best interference for N = 216 found by gradient descent (not
graphed) is nearly indistinguishable from the dotted line. Bot-
tom: A plot of ratio γopt/γinit by which gradient descent improves
γ relative to its expected value at initialization against the ratio
d/N between codeword dimension and dictionary size.

superposition code is at most

R = log2

󰀕
N

k

󰀖󰀡
(4k lnN)

≤ k log2 (eN/k)

4k lnN
=

1

4 ln 2

󰀕
1− ln k − 1

lnN

󰀖
(4)

bits per dimension. (Note that 4 ln 2 > 2.7.)

There are several ways to interpret this conclusion. On one
hand, it means that one-step estimates are “asymptotically
inefficient” in terms of required bitrate when k is moder-
ately large compared to N. More specifically, in a regime
where N goes to infinity but ln k/ lnN converges to 1, we
predict that one-step estimates only succeed when the bi-
trate R converges to zero.

In particular, one-step estimates are asymptotically ineffi-
cient when k/N ≥ 󰂃 for some positive 󰂃. Indeed, to have
d ≥ 4k lnN we would need d = Ω(N ln(N)), while the
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entropy of Y grows no faster than O(N). On the other
hand, a hallmark result of compressive sensing implies that,
when k/N ≤ 󰂃, the vector y can be recovered from its im-
age Fy under a random projection by a certain convex opti-
mization problem so long as d ≥ κ(󰂃)N for some constant
κ(󰂃); for example, see (Candes & Tao, 2005). The failure
of our one-step estimates in this particular regime is easy
to prove.

On the other hand, in a sparser regime where ln k/ lnN <
󰂃 for some 󰂃 < 1, it follows from Proposition 3 that one-
step estimates are “information-efficient” in the sense that
they can be decoded from superposition codes with bitrate
larger than some positive δ. However, it is also of interest
to have non-asymptotic information on the required bitrate.
From Equation (4) we find that one-step estimates need at
least 2.7 bits per dimension. Can iterative methods do bet-
ter?

There is an extensive literature on theory of compressive
sensing. (Reeves et al., 2019) shows that, in our language,
superposition codes with a random dictionary are essen-
tially optimal in the information-theoretic sense when ideal
maximum-likelihood inference is used as the decoder. A
series of earlier works (Joseph & Barron, 2012; 2014; Rush
et al., 2017) on superposition codes also showed that, un-
der some conditions on y, certain decoding schemes admit
bitrates up to theoretical channel capacity in the presence
of Gaussian noise. However, to our knowledge, practical
guarantees on the performance of iterative methods are not
available for our range of k and N.

Figure 5 shows the results of a numerical experiment using
an iterative method called matching pursuit, first suggested
in (Bergeaud & Mallat, 1995). This is a simple “greedy”
algorithm that initializes y = 0 and, at each of k iterations,
increments the index of y whose corresponding codeword
has largest inner product with x− Fy.

We find empirically that matching pursuit far outperforms
top-k decoding for the range of N and k considered ear-
lier. Remarkably, decoding tends to be successful with even
odds when d = k log2(eN/k), meaning that matching pur-
suit requires only slightly more than one dimension per bit.
When d ≥ 1.3 log2(eN/k), decoding is very reliable when
N = 216 and N = 220.

4. Conclusions and Future Work
Previous work showed that sparse autoencoders can help
learn interpretable representations of the activity inside a
neural network. However, the success of these methods is
limited for reasons that are not yet well understood.

In this work, we have identified one point of view that
might explain their limited success. In a toy scenario,
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Figure 5. Empirical performance of matching pursuit at the prob-
lem of decoding a k-element subset of [N ] from a superposi-
tion code with Rademacher dictionary. Note the difference of
vertical axis scale compared to Figure 3. The bold line shows
the relation d = k log2(eN/k), and the dotted line shows d =
1.3k log2(eN/k).

we showed that the simple estimates these models use
to infer sparse representations are less “efficient,” in an
information-theoretic sense, than a simple iterative method.
This is true even when the signal to be inferred is ex-
tremely sparse. To our knowledge, this kind of explicit,
non-asymptotic comparison was not previously available in
the literature.

Of course, we do not suggest that the latent signal stored
by a typical neural representation is well-modeled as a uni-
formly random k-sparse subset. However, the “bitrate gap”
between one-step estimates and matching pursuit opens a
natural question: how much information can neural net-
works typically encode in their internal activity? Can they,
like matching pursuit, read around one bit of mutual infor-
mation from each neuron? If they can, our findings suggest
that sparse autoencoders may be fundamentally unable to
decode their representations. Overall, we hope the point of
view of coding efficiency helps inspire better interpretabil-
ity methods in future work.
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5. Impact Statement
This paper considers basic problems that may be relevant
to interpretability of neural networks. We do not feel that
any broader societal consequences need to be highlighted.

References
Bergeaud, F. and Mallat, S. Matching pursuit of images. In

Proceedings., International Conference on Image Pro-
cessing, volume 1, pp. 53–56 vol.1, October 1995. doi:
10.1109/ICIP.1995.529037.

Candes, E. and Tao, T. Decoding by linear program-
ming. IEEE Transactions on Information Theory, 51
(12):4203–4215, December 2005. ISSN 1557-9654. doi:
10.1109/TIT.2005.858979. Conference Name: IEEE
Transactions on Information Theory.

Cohn, H. and Zhao, Y. Sphere packing bounds via spherical
codes. Duke Mathematical Journal, 163(10), July 2014.
ISSN 0012-7094. doi: 10.1215/00127094-2738857.
arXiv:1212.5966 [math].

Cunningham, H., Ewart, A., Riggs, L., Huben, R., and
Sharkey, L. Sparse Autoencoders Find Highly Inter-
pretable Features in Language Models, October 2023.
arXiv:2309.08600.

Dasgupta, S. and Gupta, A. An elementary proof of a the-
orem of Johnson and Lindenstrauss. Random Structures
& Algorithms, 22(1):60–65, January 2003. ISSN 1042-
9832, 1098-2418. doi: 10.1002/rsa.10073.

Elad, M. Sparse and redundant representations: from
theory to applications in signal and image processing.
Springer, New York, 2010. ISBN 978-1-4419-7010-7
978-1-4419-7011-4. OCLC: ocn646114450.

Faruqui, M., Tsvetkov, Y., Yogatama, D., Dyer, C., and
Smith, N. A. Sparse Overcomplete Word Vector Rep-
resentations. In Zong, C. and Strube, M. (eds.), Pro-
ceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pp. 1491–1500, Beijing, China,
July 2015. Association for Computational Linguistics.
doi: 10.3115/v1/P15-1144.

Foucart, S. and Rauhut, H. Sparse Recovery with Ran-
dom Matrices. In Foucart, S. and Rauhut, H. (eds.), A
Mathematical Introduction to Compressive Sensing, pp.
271–310. Springer, New York, NY, 2013. ISBN 978-0-
8176-4948-7. doi: 10.1007/978-0-8176-4948-7 9.

Gao, L., la Tour, T. D., Tillman, H., Goh, G., Troll,
R., Radford, A., Sutskever, I., Leike, J., and Wu, J.

Scaling and evaluating sparse autoencoders, June 2024.
arXiv:2406.04093 [cs].

Joseph, A. and Barron, A. R. Least Squares Superposition
Codes of Moderate Dictionary Size Are Reliable at Rates
up to Capacity. IEEE Transactions on Information The-
ory, 58(5):2541–2557, May 2012. ISSN 1557-9654. doi:
10.1109/TIT.2012.2184847. Conference Name: IEEE
Transactions on Information Theory.

Joseph, A. and Barron, A. R. Fast Sparse Superposi-
tion Codes Have Near Exponential Error Probability for
$R<{\cal C}$. IEEE Trans. Inf. Theor., 60(2):919–942,
February 2014. ISSN 0018-9448. doi: 10.1109/TIT.
2013.2289865.

Makhzani, A. and Frey, B. k-Sparse Autoencoders, March
2014. arXiv:1312.5663.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locat-
ing and editing factual associations in GPT. Advances
in Neural Information Processing Systems, 35:17359–
17372, 2022.

Nguyen, A., Yosinski, J., and Clune, J. Multifaceted Fea-
ture Visualization: Uncovering the Different Types of
Features Learned By Each Neuron in Deep Neural Net-
works, May 2016. arXiv:1602.03616 [cs].

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom In: An Introduction to Cir-
cuits. Distill, 5(3):10.23915/distill.00024.001, March
2020. ISSN 2476-0757. doi: 10.23915/distill.00024.
001.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, .
Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, 12(85):2825–2830, 2011.
ISSN 1533-7928.

Reeves, G., Xu, J., and Zadik, I. The All-or-Nothing Phe-
nomenon in Sparse Linear Regression. In Proceedings of
the Thirty-Second Conference on Learning Theory, pp.
2652–2663. PMLR, June 2019. ISSN: 2640-3498.

Rumelhart, D. E., McClelland, J. L., and AU. Parallel
Distributed Processing: Explorations in the Microstruc-
ture of Cognition: Foundations. The MIT Press, 1986.
ISBN 978-0-262-29140-8. doi: 10.7551/mitpress/5236.
001.0001.

Rush, C., Greig, A., and Venkataramanan, R. Capacity-
achieving Sparse Superposition Codes via Approximate
Message Passing Decoding. January 2017. ISSN 0018-
9448. doi: 10.17863/CAM.8183. Publisher: IEEE.

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

On Bitrates of Very Sparse Superposition Codes

Sharkey, L., Chughtai, B., Batson, J., Lindsey, J., Wu,
J., Bushnaq, L., Goldowsky-Dill, N., Heimersheim, S.,
Ortega, A., Bloom, J., Biderman, S., Garriga-Alonso,
A., Conmy, A., Nanda, N., Rumbelow, J., Wattenberg,
M., Schoots, N., Miller, J., Michaud, E. J., Casper, S.,
Tegmark, M., Saunders, W., Bau, D., Todd, E., Geiger,
A., Geva, M., Hoogland, J., Murfet, D., and McGrath, T.
Open Problems in Mechanistic Interpretability, January
2025. arXiv:2501.16496 [cs].

Templeton, A., Conerly, T., Marcus, J., Lindsey, J.,
Bricken, T., Chen, B., Pearce, A., Citro, C., Ameisen, E.,
Jones, A., Cunningham, H., Turner, N. L., McDougall,
C., MacDiarmid, M., Freeman, C. D., Sumers, T. R.,
Rees, E., Batson, J., Jermyn, A., Carter, S., Olah, C., and
Henighan, T. Scaling Monosemanticity: Extracting In-
terpretable Features from Claude 3 Sonnet. Transformer
Circuits Thread, May 2024.

Thomas, M. and Joy, A. T. Elements of information theory.
Wiley-Interscience, 2006.

Thorpe, S. Local vs. Distributed Coding. Intellectica, 8
(2):3–40, 1989. doi: 10.3406/intel.1989.873. Publisher:
Perse - Portail des revues scientifiques en SHS.

Vershynin, R. High-Dimensional Probability: An Intro-
duction with Applications in Data Science. Cambridge
Series in Statistical and Probabilistic Mathematics. Cam-
bridge University Press, Cambridge, 2018. ISBN 978-1-
108-41519-4. doi: 10.1017/9781108231596.

Yun, Z., Chen, Y., Olshausen, B., and LeCun, Y. Trans-
former visualization via dictionary learning: contextual-
ized embedding as a linear superposition of transformer
factors. In Agirre, E., Apidianaki, M., and Vuli, I. (eds.),
Proceedings of Deep Learning Inside Out (DeeLIO):
The 2nd Workshop on Knowledge Extraction and Inte-
gration for Deep Learning Architectures, pp. 1–10, On-
line, June 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.deelio-1.1.

Zhang, C. and Wang, Y. A sample survey study of poly-
semantic neurons in deep CNNs. In International Con-
ference on Computer Graphics, Artificial Intelligence,
and Data Processing (ICCAID 2022), volume 12604, pp.
849–855. SPIE, May 2023. doi: 10.1117/12.2674650.

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

On Bitrates of Very Sparse Superposition Codes

A. Proof of Proposition 1
We restate Proposition 1 for convenience.

Proposition. For a given dictionary F ∈ Rd×N , suppose
there exists a decoding map D so that

D(FY + Z) = Y

with probability at least (1 − p), where Z a vector of i.i.d.
Gaussians with variance VZ . Suppose additionally that the
maximum variance of any coefficient of the code X = FY
if VX . Define

C =
1

2
ln

󰀕
1 +

VX

VZ

󰀖
.

Then

d ≥ C−1

󰀕
(1− p) ln

󰀕
N

k

󰀖
− ln 2

󰀖
.

Proof. By results on the capacity of Gaussian channels (see
(Thomas & Joy, 2006), Chapter 9) we can bound the mu-
tual information between X and X + Z as

I(X,X + Z) ≤ d

2
ln(1 + ρ)

where ρ is an upper bound for the signal-to-noise ratio of
each entry of X + Z. In our case, we can put ρ = VX/VZ .

Now, let D is a decoding in the conditions above. Then a
relaxation of Fano’s inequality shows

I(Y,D(FY + Z)) ≥ (1− p) ln

󰀕
N

k

󰀖
− ln 2.

But since I(Y, FY +Z) ≥ I(Y,D(FY +Z)), we conclude
that overall

d

2
ln

󰀕
1 +

VX

VZ

󰀖
≥ (1− p) ln

󰀕
N

k

󰀖
− ln 2.

B. Estimates for the Binomial Coefficient
To estimate ln

󰀃
N
k

󰀄
, it is helpful to first remember the ele-

mentary inequalities

󰀕
N

k

󰀖k

≤
󰀕
N

k

󰀖
≤

󰀕
eN

k

󰀖k

.

Taking logarithms gives

k ln(N/k) ≤ ln

󰀕
N

k

󰀖
≤ k ln(eN/k),

and so ln
󰀃
N
k

󰀄
= k ln(N/k) +O(k).

In this work, we claimed the upper bound k ln(eN/k) is
a very good approximation when k ≪ N . To see why,
substitute the leading-order Stirling approximation lnn! =
n lnn−n+O(lnn) into the binomial coefficient to obtain

ln

󰀕
N

k

󰀖
= (N − k) ln

󰀕
N

N − k

󰀖

+ k ln

󰀕
N

k

󰀖
+O(lnN).

Putting s = k/N , this simplifies to:

ln

󰀕
N

k

󰀖
= h(s)N +O(lnN),

where
h(s) = −s ln s− (1− s) ln(1− s)

is the binary entropy function. For small s, note that

h(s) = −s ln s+ s+O(s2),

and so overall

ln

󰀕
N

k

󰀖
= k lnN − k ln k + k +O(s2N) +O(lnN).

In a regime where s = k/N converges to 0, we find that
the estimate ln

󰀃
N
k

󰀄
≈ k ln(eN/k) is almost optimal in the

sense that

ln

󰀕
N

k

󰀖
= (k +O(1)) lnN − k ln k + (1 + o(1))k.

There is also a natural way to see this approximation from
the point of view of coding theory. Consider a random sub-
set Y ⊆ [N ] where each element is included independently
with probability s = k/N . Then the entropy of Y is

H(Y ) = h(s)N = sN ln s−1 + sN +O(s2N)

= k ln(eN/k) +O(s2N),

the leading term of which matches our estimate for ln
󰀃
N
k

󰀄
.

C. Review of Chernoff Bounds
The results of Section 3.3 rely on well-known facts about
tails of independent sums of “sub-Gaussian” distributions.
Many references are available on this topic; for exam-
ple, see Chapter 2 of (Vershynin, 2018). For complete-
ness, here we provide an essentially self-contained proof
of Proposition 2 based on the Chernoff bound for a sum of
Rademacher variables.

Given a random variable X, define the cumulant generating
function KX(λ) as

KX(λ) = lnE exp(λX).

11
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For example, the cumulant generating function of a unit
Gaussian Z is KZ(λ) = λ2/2. Chernoff bounds are the
following upper bounds on the probability of the tail event
X ≥ a in terms of the cumulant generating function.

Proposition 4. For λ > 0, suppose KX(λ) exists. Then

ln P(X ≥ a) ≤ −λa+KX(λ).

Proof. By a Markov inequality,

P(X ≥ a) = P(eλX ≥ eλa)

≤ E exp(λX − λa)

= exp(−λa+KX(λ)).

For a unit Gaussian, this gives

ln P(Z ≥ a) ≤ −λa+
1

2
λ2.

Minimizing with respect to λ then gives

ln P(Z ≥ a) ≤ −1

2
a2.

In fact, this is the best possible leading-order term; by well-
known bounds on Mills ratios,

P(Z ≥ a) = −1

2
a2 − ln a+O(1).

Now, let Xn be a sum of independent Rademacher vari-
ables, each uniformly distributed over {−1, 1}. We intu-
itively expect Xn/

√
n to be distributed like a unit Gaussian

for large n, and so we may hope that P(Xn/
√
n ≥ a) is

similarly bounded as a function of a. A Chernoff bound lets
us formalize this.

For any variable with |X| ≤ 1, it is relatively easy to show
that

KX(λ) ≤ λ2

2
.

For us, it is enough to know that this holds for the cumulant
generating function KX(λ) = cosh(λ) of a Rademacher
variable. It follows that the same bound holds for a sum
Xn of n independent Rademachers scaled by 1/

√
n:

KXn/
√
n(λ) = n cosh(λ/

√
n) ≤ λ2

2
.

Therefore, for a > 0, we can bound the tail of Xn in ex-
actly the way that we would bound the tail of a Gaussian
with standard deviation

√
n:

ln P(Xn ≥ a) = lnP(Xn/
√
n ≥ a/

√
n) ≤ − a2

2n
.

This gives us the tool we need to prove Proposition 2, re-
stated here for convenience.

Proposition. Let d > 2󰂃−2(2 lnN + ln p−1), and let

{F1, . . . , FN} ⊆ {−1/
√
d, 1/

√
d}d

be random vectors with independent, uniformly distributed
entries. Then |〈Fi, Fj〉| < 󰂃 for all i ∕= j with probability
at least (1− p).

Proof. Each inner product I = 〈Fi, Fj〉 is distributed like
a sum of d Rademacher variables scaled by 1/d. By the
Chernoff bound above, we have that

ln P(I ≥ 󰂃) = P(Xd/d ≥ 󰂃) ≤ −d2󰂃2

2d
= −1

2
d󰂃2.

By symmetry P(I ≥ 󰂃) = P(I ≤ −󰂃), and so by a union
bound

ln P(|〈Fi, Fj〉| ≥ 󰂃) ≤ ln(2P(I ≥ 󰂃)) ≤ −1

2
d󰂃2 + ln 2.

To conclude that |〈Fi, Fj〉| < 󰂃 for all
󰀃
N
2

󰀄
< N2/2 pairs

of vectors with probability at least 1− p by a union bound,
it suffices that

−1

2
d󰂃2 + ln 2 ≤ ln

p

N2/2

= −2 lnN + ln 2 + ln p,

which is equivalent to the condition on d above.

The interested reader should also compare this result to the
Johnson-Lindenstrauss lemma, which is proved in a very
similar way. (See (Dasgupta & Gupta, 2003) for a proof, or
the last section of (Foucart & Rauhut, 2013) for a discus-
sion of the JL lemma with some broader context.)

D. Review of Matched Filters
Consider the problem of inferring a scalar S from the sum

X = Sf + Z

where f ∈ Rn and Z is a Gaussian variable independent
from S. Suppose for simplicity that Z has non-singular co-
variance Σ, so that − ln p(z) = 1/2󰀂z󰀂2Σ where

󰀂z󰀂2Σ = zTΣ−1z.

Then a routine calculation shows that

− ln p(S = s|X = x)

= C(x)− ln p(s) +
1

2

󰀕
s− 〈f, x〉Σ

󰀂f󰀂2Σ

󰀖2

󰀂f󰀂2Σ (5)

where C(x) is a constant depending only on x and 〈−,−〉Σ
is the inner product associated with the norm 󰀂−󰀂Σ. In par-
ticular, the distribution of S conditional on X is only a

12
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function of the inner product 〈f,X〉Σ. The matched filter
for S is the linear function

λ(X) =
〈f,X〉Σ
󰀂f󰀂2Σ

,

and can be understood as providing the maximum likeli-
hood estimate for S conditional on X under a uniform im-
proper prior.

The quality of our matched filter is measured by its signal-
to-noise ratio (SNR)

ρ =
(λ(f))2

VarZ λ(Z)
= 󰀂f󰀂2Σ.

Up to a scalar, λ can be characterized as the linear func-
tion that maximizes this quantity. Under an improper prior,
Equation (5) shows the posterior distribution on S condi-
tional on X is Gaussian with mean λ(X) and precision ρ.

E. Proof of Proposition 3
We return to the proof of Proposition 3, restated here for
convenience.

Proposition. Let F ∈ Rd×N be a Rademacher dictionary
in the conditions above. Fix a k-element set y ∈ [N ] and
some p ∈ (0, 1). If

d ≥ 8k(lnN + ln p−1),

then y is accurately recovered from the random variable
X = Fy by threshold decoding with probability at least
(1− p).

Proof. Where X1, X2, . . . is a sequence of independent
Rademacher variables of unit variance, denote

b(d, r) = P

󰀣
d󰁛

i=1

Xi ≥
√
dr

󰀤
.

By a Chernoff bound, we know that

ln b(d, r) ≤ −1

2
r2 (6)

holds uniformly over d.

Now, consider a dictionary F in the conditions above, and
let us view its codewords Fi as random vectors. Note that
we can assume w.l.o.g. that y = {1, ..., k}, so that X =
Fy = F1 + · · ·+ Fk.

Suppose that we apply threshold decoding with threshold
τ, so that

Ŷi =

󰀫
1 : 〈Fi, X〉 ≥ τ

0 : otherwise.

For i = 1, . . . , k, let Ai denote the event that yi = 1 ∕= Ŷi.
Then

P(Ai) = P(〈Fi, X〉 < τ)

= P

󰀳

󰁅󰁅󰁃
k󰁛

j ∕=i
j=1

〈Fi, Fj〉 < τ − 1

󰀴

󰁆󰁆󰁄 .

The sum above is distributed like a sum of (k − 1)d inde-
pendent Rademacher variables scaled by 1/d. Overall,

P(Ai) = P

󰀳

󰁃1

d

(k−1)d󰁛

i=1

Xi ≥ 1− τ

󰀴

󰁄

= b

󰀣
(k − 1)d, (1− τ)

󰁵
d

k − 1

󰀤
.

Similarly, for i = k+1, . . . , N, let Bi denote the event that
yi is not correctly inferred. Then the same reasoning shows

z P(Bi) = P(〈Fi, F1 + · · ·+ Fk〉 > τ)

= P

󰀣
1

d

kd󰁛

i=1

Xi ≥ τ

󰀤
= b

󰀣
kd, τ

󰁵
d

k

󰀤
.

Overall, using Equation (6), we have

P(Ai) ≤ exp

󰀕
− (1− τ)2

2
· d

k − 1

󰀖

≤ exp

󰀕
− (1− τ)2

2
· d
k

󰀖

and

P(Bi) ≤ exp

󰀕
−τ2

2
· d
k

󰀖
.

With τ = 1/2, the probability of failure is bounded as

P

󰀣
k󰁞

i=1

Ai ∪
N󰁞

i=k+1

Bi

󰀤
≤

k󰁛

i=1

P(Ai) +

N󰁛

i=k+1

P(Bi)

≤ k exp

󰀕
− d

8k

󰀖
+ (N − k) exp

󰀕
− d

8k

󰀖

= N exp

󰀕
− d

8k

󰀖
.

Setting this bound less than p and rearranging proves the
theorem.

F. Possible Extensions of Proposition 3
In practice, the numerical experiments reported in Sec-
tion 3.3 show that threshold decoding succeeds with little
more than d = 8k lnN dimensions. In fact, it is likely pos-
sible to prove the conclusion of Proposition 3 under slightly

13
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milder conditions by using a refinement of the Chernoff
bound. For example, recall from Appendix C that the ac-
tual probability of a Gaussian tail event Z ≥ a is

ln P(Z ≥ a) = −1

2
a2 − ln a+O(1),

which is slightly less than −1/2a2 for large a. (Note that,
when d satisfies the conditions of Proposition 3, the param-
eter a used in the Chernoff bound grows on the order of√
lnN.)

Numerical experiments also showed that top-k decoding
succeeds with only slightly more than 4k ln(kN) dimen-
sions. We believe it is also possible to prove a bound to
justify this empirical observation.

To see how, let us denote Ai,j for the event that

〈Fi, X〉 ≥ 〈FjX〉.

Then top-k decoding succeeds so long as no event Ai,j

holds for i ∈ {k + 1, . . . , N} and j ∈ {1, . . . , k}. Each
event is identically distributed, so by a union bound we
conclude that top-k decoding succeeds with probability at
least (1− p) if

ln P(〈Fk+1, X〉 ≥ 〈F1, X〉) ≤ ln p− ln(k(N − k)).

Both inner products above have variance 1/d and are, in
some sense, approximately independent. We therefore ex-
pect that their difference can be approximated Gaussian
variable with variance 2/d. A Chernoff bound would then
give

ln P(〈Fk+1, X〉 − 〈F1, X〉 ≥ 0) ≤ −
󰁳
d/2

2

2
= −d

4
.

In terms of d, this means we need only

d ≥ 4(ln(k(N − k)) + ln p−1)

≈ 4(ln(kN) + ln p−1).

Again, we expect that improving the Chernoff bound with
lower-order terms would show that only slightly more than
4k ln(kN) dimensions are enough.

G. Empirical Results on Basis Pursuit
Denoising

We used the implementation of LASSO regression avail-
able in sklearn (Pedregosa et al., 2011) to infer sparse sub-
sets of {1, . . . , 216} from superposition codes by minimiz-
ing the objective

1

2d
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Figure 6. Empirical performance of basis pursuit decoding for
N = 216. The bold line plots d = k log2(eN/k), and the dotted
line plot d = 0.8k log2(eN/k).

with respect to ŷ. In compressive sensing, this is known
as basis pursuit denoising (BPDN). Results are graphed in
Figure 6. Compared to the performance of matching pur-
suit shown in Figure 5, we find that BPDN can recover a
subset from even fewer dimensions; around 0.8 bits per di-
mension are enough.
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