
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SMI-EDITOR: EDIT-BASED SMILES LANGUAGE
MODEL WITH FRAGMENT-LEVEL SUPERVISION

Anonymous authors
Paper under double-blind review

ABSTRACT

SMILES, as a crucial textual representation of molecular information, is increas-
ingly drawing interest for its pre-trained language models. However, most existing
pre-trained SMILES language models (LMs) only provide supervision at the single-
token level during pre-training and fail to fully leverage substructural information
of molecules. This limitation results in the pre-training task being overly simplis-
tic and further preventing the models from capturing richer molecular semantic
information. Additionally, during pre-training, these SMILES LMs only process
corrupted SMILES inputs, never encountering any valid SMILES as input, leading
to a train-inference mismatch. To address these challenges, we propose SMI-
EDITOR, a novel edit-based pre-trained SMILES language model. SMI-EDITOR
randomly disrupts substructures within a molecule and feeds the resulting SMILES
back into the model, which then attempts to restore the original SMILES through an
editing process. This training method not only introduces a fragment-level training
signal but also allows the use of valid SMILES as inputs, enabling the model to
learn how to edit these incomplete structures back to complete molecules. This
significantly enhances the model’s scalability and capability to learn fragment-level
molecular information. Experimental results show that the SMI-EDITOR performs
well across multiple downstream molecular tasks, achieving state-of-the-art results,
and even surpasses several 3D molecular representation models in performance.

1 INTRODUCTION

With the widespread application of AI technology in various molecular-related tasks, enhancing
the modeling of SMILES data has emerged as a research focal point. Due to the textual nature of
SMILES data, we can conveniently apply experiences from text modeling to address challenges in
SMILES modeling, and the knowledge extracted from SMILES data often aligns more easily with
textual knowledge. A large number of research has attempted to design SMILES language models
to explore the knowledge inherent in SMILES sequences (Wang et al., 2019a; Chithrananda et al.,
2020; Bagal et al., 2021; Ross et al., 2022) , and significant efforts have been made to align the
learned knowledge from SMILES with textual knowledge Edwards et al. (2022); Pei et al. (2023);
Liu et al. (2023b), aiming to boost the application effectiveness in downstream tasks such as property
prediction and molecular design. A core issue in these model designs is how to more efficiently mine
important molecular-related knowledge from SMILES data. Therefore, this paper seeks to address
this issue by attempting to design a SMILES language model with enhanced modeling capabilities.

Current designs of SMILES language models often follow similar approaches used for natural
language models, such as predicting missing tokens in a corrupted SMILES context (e.g., MLM,
CLM). However, this can also lead to many problems. (i) SMILES data differs from text in that
individual tokens in text are independent semantic units (like words, phrases, or subwords), whereas
in SMILES, individual tokens often represent single atoms, chemical bonds, or special symbols.
However, molecules typically depend more on specific substructures (like functional groups) for
functionality, meaning that the functional information usually reflects at the substructure level. This
suggests that if a SMILES language model focuses solely on modeling the relationships between
individual tokens and their SMILES contexts, it would struggle to learn the semantic information of
specific molecular substructures. (ii) Moreover, predicting a single missing token in a given SMILES
context is very easy. This can cause the model’s capacity to reach a saturation point quickly during
training, preventing it from acquiring additional and more comprehensive molecular knowledge. As

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

a result, this affects the model’s scalability and its effectiveness in generalizing to a wider range of
molecular data. (iii) Additionally, as these models are trained on corrupted SMILES contexts which
contain the special symbol [MASK] that does not exist in real SMILES, their ability to model the
semantic content of complete SMILES is compromised.

To address these challenges, we propose an edit-based SMILES language model with fragment-level
supervision. (i) First, to help the model learn richer substructure-related molecular information, we
designed a fragment-level supervision signal. By randomly dropping substructures in molecules
and having the model learn to recover this information, the model can acquire more comprehensive
fragment-level semantic knowledge. (ii) We also devised an edit-based pre-training objective,
allowing us to input a valid SMILES sequence and restore missing substructures through edits.

In summary, the contributions of this paper are threefold:

• We analyze the behavior of current SMILES masked language models (MLMs) during the pre-
training phase and downstream tasks, and further identify that current SMILES MLMs exhibit rapid
saturation problem during pre-training and have a weak ability to model the molecular substructure
information. Previous research lacks a systematic analysis of these issues.

• To address the limitations of existing models, we introduce the first edit-based pre-trained language
model for SMILES, enabling the transformation of a valid SMILES sequence into a structurally
closely related one. This approach resolves the train-inference mismatch issue in current SMILES
language models. Additionally, we incorporate fragment-level supervision, enhancing the model’s
ability to learn richer semantic knowledge from SMILES and improving its overall performance.

• Extensive experiments demonstrate that the SMI-EDITOR model achieves state-of-the-art perfor-
mance on multiple molecular property prediction tasks, surpassing several 3D molecular models,
and the ablation and analysis experiments designed in this study confirm the effectiveness and
better scalability of the SMI-EDITOR model.

2 RELATD WORKS

SMILES, as a key sequential representation of molecular information, has become a significant
focus in molecular representation learning. Numerous Pre-trained SMILES Language Models (Wang
et al., 2019a; Chithrananda et al., 2020; Ross et al., 2022) have been proposed to address various
challenges in SMILES-based molecular modeling, and their effectiveness has been validated across
many downstream tasks (Bagal et al., 2021; Tong et al., 2021) . Edit-based generative models,
another important approach to sequence modeling, have been widely applied in tasks such as machine
translation, summarization, and grammatical error correction. In this section, we first introduce
representative work in Pre-trained SMILES Language Models, followed by a discussion on Edit-based
Language Models for sequence modeling.

2.1 PRE-TRAINED SMILES LANGUAGE MODEL

Similar to text, SMILES is a type of sequential information. Early pre-trained SMILES language
models adopted methods from text modeling. Wang et al. (2019a) introduced SMILES-BERT, inspired
by the BERT model (Devlin et al., 2018) and the masked language model (MLM) training objective,
demonstrating its effectiveness in molecular property prediction tasks. Likewise, Chithrananda
et al. (2020) developed ChemBERTa, based on RoBERTa(Liu et al., 2019b), to capture SMILES
semantics using the MLM objective. Ross et al. (2022) proposed Molformer, trained on a larger
dataset with MLM training objective, showing that SMILES models can capture molecular properties
and structure. As a result, MLM-based models have become dominant in SMILES representation
learning. In addition, generative pre-training approaches have also been applied. The MolGPT model
(Bagal et al., 2021) uses an autoregressive approach, while Tong et al. (2021) applied generative
models to drug design. Liu et al. (2023b) further unified SMILES and textual data through generative
pre-training. Overall, pre-trained SMILES language models, particularly those based on the MLM
objective, are now essential in molecular modeling research.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0 20K 40K 60K 80K 100k
Training steps

0

2

4

6

8

Tr
ai

n
Lo

ss

0.2

0.4

0.6

0.8

1.0

M
as

ke
d

Ac
cu

ra
cySmall MLM Train Loss

Base MLM Train Loss
Big MLM Train Loss
Small MLM MaskedAcc
Base MLM MaskedAcc
Big MLM MaskedAcc

(a) Training Curves: Model Scales

0 20K 40K 60K 80K 100k
Training steps

0

2

4

6

8

Va
lid

 L
os

s

0.0

0.2

0.4

0.6

0.8

1.0

M
as

ke
d

Ac
cu

ra
cySmall MLM Valid Loss

Base MLM Valid Loss
Big MLM Valid Loss
Small MLM MaskedAcc
Base MLM MaskedAcc
Big MLM MaskedAcc

(b) Validation Curves: Model Scales

0 20K 40K 60K 80K 100k
Training steps

0

1

2

3

4

5

6

Tr
ai

n
Lo

ss

0.2

0.4

0.6

0.8

1.0

M
as

ke
d

Ac
cu

ra
cy

MaskRatio 15% MLM Train Loss
MaskRatio 30% MLM Train Loss
MaskRatio 45% MLM Train Loss
MaskRatio 15% MLM MaskedAcc
MaskRatio 30% MLM MaskedAcc
MaskRatio 45% MLM MaskedAcc

(c) Training Curves: Mask Ratios

Figure 2: Rapid Saturation Problem. We train SMILES MLMs of various sizes and masking ratios
using the dataset from Zhou et al. (2023). Figure (a) displays the training loss and masking prediction
accuracy of different-sized models, showing a rapid decrease in loss and an increase in accuracy at
the start of the training. Figure (b) presents similar trends for the validation set. Figure (c) illustrates
the training loss and accuracy for models with different masking ratios, showing similar patterns.

2.2 EDIT-BASED LANGUAGE MODEL

Edit-based sequence generation offers a faster, more flexible alternative to traditional autoregressive
methods. Malmi et al. (2019) introduced the LASERTAGGER model, which uses tags (keep,
delete, add) to edit sequences, while the Felix model (Mallinson et al., 2020) combines a pointer-
based mechanism with an MLM model to handle insertions and deletions. Recognizing that edit
operations from an input sequence to a target output can be diverse and difficult to compute directly,
Gu et al. (2019) developed the Levenshtein Transformer (LevT) model. This model calculates
the minimum levenshtein distance between the input and target sequences to create an optimal
sequence of edit operations, using this as the training objective. This approach significantly improves
performance on tasks such as machine translation and post-editing. LevT was further applied
to lexically constrained translation tasks with notable success (Susanto et al., 2020). To resolve
inconsistencies between training and inference, Zheng et al. (2023) introduced a dual training
objective, improving performance in tasks such as summarization and grammatical error correction.
Overall, edit-based models have proven highly efficient across many tasks and are a key research area
in sequence modeling.

3 UNDERSTANDING THE BEHAVIOR OF MLM

SMILES MLM

[M] C ([M] O [M] C

C =)
Figure 1: The framework
of MLM for SMILES.

Masked Language Model (MLM) is a widely used approach for modeling
textual information and has been extensively applied in SMILES modeling
(Wang et al., 2019a; Chithrananda et al., 2020; Ross et al., 2022). During
the training process of MLM model, tokens in the SMILES sequence,
including single atoms, chemical bonds, or special symbols, are randomly
masked with a fixed masked ratio of 15%. The model is then tasked with
learning to accurately predict these masked tokens, as shown in Figure 1.
To further assess the effectiveness and capabilities of MLMs for SMILES
data, we conducted a series of experiments.

3.1 RAPID SATURATION PROBLEM

Rapid Saturation During Pre-training. To investigate whether the MLM model experiences rapid
saturation during training and how this issue impacts the model’s scalability, we trained MLMs of
various scale and compared their training curves (Details of models with different scale can be found
in Appendix C). As shown in Figure 2a, while the training loss rapidly decreases, the mask-prediction
accuracy on training set of the models quickly rose above 90% within the first 5,000 steps. By around
10,000 steps, the mask-prediction accuracy on training set of all models exceeded 95%. A similar
rapid saturation phenomenon is observed on the validation set. As shown in Figure 2b, the validation
loss drops quickly after training begins, while mask-prediction accuracy rises sharply. All models of
varying scales exhibit the same rapid saturation phenomenon, including the small model with only
6.7M parameters. These results indicate that the MLM pre-training task is overly simplistic, allowing
even very small models to converge quickly, which limits the model’s capacity and scalability for

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2 1 0 1 2
Changes in Predicted Values

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
De

ns
ity

HG Del (Avg:-0.14)
Rand Del (Avg:-0.04)

(a) ESOL Dataset

0.5 0.0 0.5 1.0 1.5 2.0
Changes in Predicted Values

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
De

ns
ity

HG Del (Avg:0.49)
Rand Del (Avg:0.42)

(b) FreeSolv Dataset

Figure 3: Substructure Semantics Modeling. We compared two molecular perturbation meth-
ods—removing hydrophilic groups and randomly deleting atoms—and their effects on the model’s
predictions of hydrophilicity and related properties. Figure (a) presents the impact of these perturba-
tions on model predictions in the ESOL dataset, including the distribution of prediction changes. The
average prediction change is similar for both methods (-0.14 vs. -0.04) and shows similar distributions.
Figure (b) shows the effects on the FreeSolv dataset, also with similar average prediction change.

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Changes in Predicted Values

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
De

ns
ity

HG Del (Avg:0.19)
Rand Del (Avg:0.85)

(a) ESOL Dataset

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25
Changes in Predicted Values

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

No
rm

al
ize

d
De

ns
ity

HG Del (Avg:0.38)
Rand Del (Avg:-0.01)

(b) FreeSolv Dataset

Figure 4: Substructure Semantics Modeling from SMI-EDITOR. We compared the effects of
two molecular perturbation methods on the SMI-EDITOR’s predictions of hydrophilicity and related
properties. Figure (a) and Figure (b) show that the impact of deleting hydrophilic groups (HG Del)
and randomly deleting atoms (Rand Del) on the model’s predictions differs significantly, both in the
average change in prediction values and their distributions.

more complex tasks. We also test the performance of MLM models of different sizes and training
steps on downstream tasks, and the detailed results can be found in Appendix D. The results on
downstream tasks also suggest that the scalability of MLM models is limited.

Different Mask Ratio Cannot Alleviate Rapid Saturation. One possible reason for the rapid
saturation problem in MLM pre-training is that only 15% of tokens are masked during training,
providing the model with too little training information and making token prediction too easy, which
leads to rapid saturation. To investigate whether this is the cause, we trained large-scale MLM models
with different mask ratios (15%, 30%, 45%). The training curves are shown in Figure 2c. The results
show that MLM models with different mask ratios all show a rapid decrease in training loss at the
beginning of training, quickly converging to a very low level. And even with a mask ratio of 45%,
the training loss still drops rapidly, and by 10K steps, the mask-prediction accuracy already exceeds
92%. This indicates that increasing the mask ratio does not prevent the MLM model from converging
quickly, limiting its scalability. It further demonstrates that the emergence of rapid saturation is not
due to a low mask ratio, but rather because the MLM training task is relatively simple and lacks
sufficient information for SMILES data.

3.2 CHALLENGES IN MODELING SUBSTRUCTURE SEMANTICS

To evaluate the ability of MLM to learn molecular substructures semantics, such as functional
groups, we design experiments to analyze whether the model can accurately capture functional
group information closely related to molecular properties. We use two molecular property prediction

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

CC(=O)Oc1ccccc1C(=O)O
Original SMILES

Fragments Dropping

Data Processing

CC(=O)Oc1ccccc1C(=O)O
Resulting SMILES

SMILES Encoder

Expert Editing Policy

Transformer Block

Transformer Block

Transformer Block

···

Embedding Layer

Fragmentation

Placeholder Insertion

[p][p][p][p][p][p]Oc1ccccc1C(=O)O

Token Deletion

Oc1ccccc1C(=O)O

Token Prediction

CC(=O)Oc1ccccc1C(=O)O

S
upervision S

ignalsInsertion

Expert Input

Figure 5: Overall Framework of SMI-EDITOR. The framework includes a data processing module,
a SMILES encoder, and an edit-based pre-training process. In data processing, some fragments of
the input molecule are randomly removed, and the resulting SMILES is fed into the model. The
pre-training goal for the model is to edit the corrupted SMILES to recover the original SMILES.
To enable this, we add three different heads for token deletion, placeholder insertion, and token
prediction to the SMILES encoder (see Appendix A for details). An expert provides training signals
for these operations to help the model learn how to recover the original SMILES through editing.

datasets, ESOL and FreeSolv (Wu et al., 2017), both of which are highly relevant to molecular
hydrophilicity. Specifically, the ESOL dataset provides information on the water solubility of
molecules, while the FreeSolv dataset focuses on hydrogen free energy, both of which are tightly
linked to hydrophilic groups within the molecules.

In our approach, we first fine-tune the MLM model on these datasets using linear probing. Then,
we traverse the SMILES of all molecules in the datasets and remove the hydrophilic groups (e.g.,
-OH, -COOH, -NH2, etc.) identified in each molecule. We compare the predicted values of the model
before and after the removal. As a control, we also randomly delete atoms from these molecules and
compare the predicted changes in molecular properties.

As shown in Figure 3, the changes in predicted values after deleting hydrophilic groups (HG Del) are
similar to those from random deletions (Rand Del) in both the ESOL and FreeSolv datasets. This
indicates that the model struggles to differentiate between the effects of removing hydrophilic groups
and random atoms on molecular properties. This result further suggests that the MLM model fails to
effectively capture the semantic information of important substructures in SMILES.

4 EDIT-BASED PRE-TRAINING FRAMEWORK

To address the limitations of MLM-based SMILES language models, we propose a novel SMILES
language model that employs an edit-based training objective. To enhance the model’s ability to
capture the semantics of substructures within molecules, we introduce fragment-level supervision
during pre-training, which includes randomly discarding parts of substructures and requiring the
model to predict the missing components. This method enables the model to effectively learn
substructure semantics. In contrast, MLM models only operate on corrupted SMILES contexts with
unreal [MASK] symbols, leading to inconsistencies between training and testing. To mitigate this
issue, we input complete and valid SMILES sequences into the model, requiring it to reconstruct the
missing substructures through an editing approach. Moreover, the editing framework offers greater
flexibility compared to MLM, as it imposes no specific restrictions on input forms. This allows us to
create more versatile model inputs by removing certain substructures from a molecule, converting it
back to SMILES, and then feeding it into the model. In this section, we will discuss SMI-EDITOR
from both model design and pre-training framework perspectives.

4.1 SMILES ENCODER WITH EDITING OPERATIONS

In the edit-based pre-training process, the model should be capable of modeling editing operations.
Specifically, when given a SMILES sequence with missing substructures, the model needs to accu-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

rately predict the editing operations required to complete these missing substructures. To address this,
we have designed a SMILES encoder that supports editing operation modeling.

Model Architecture. The core architecture of the model remains a Transformer Encoder built from
multiple stacked Transformer blocks. Each transformer blocks contains a multi-head self-attention
layer and a feed-forward layer (Vaswani et al., 2017). The SMILES representations extracted by
the Transformer Encoder are then passed to the Editing Operations Head, which is responsible for
predicting the required editing operations. Similar to existing Edit-based Language Models (Gu
et al., 2019), the model needs to handle two types of editing operations: deletion and insertion.
Specifically, the model completes missing parts of the SMILES sequence by removing redundant
parts and inserting the missing substructures. This requires an additional prediction head to handle
these editing operations effectively. Consequently, the model gains the capability to model editing
operations proficiently.

Deletion Operations Head. For a given input token, there are two possible deletion operations:
delete or not delete. Therefore, the deletion operation is essentially a token-level binary classification
problem. Let xE

i denote the representation of the i-th input token extracted by the Encoder. The
probability of deleting the i-th token, denoted as πdel

θ (i), can be expressed as:

πdel
θ (i) = Softmax(W T

d xE
i)

Here, Wd is a matrix of size H × 2, H is the hidden size.

Insertion Operations Heads. Modeling the insertion operation is more complex compared to the
deletion operation. Similar to LevT, the insertion operation is modeled in two steps. In the first step,
the model needs to predict the positions and number of tokens to be inserted into the original input
sequence. At these predicted positions, placeholders [P] are inserted to represent the tokens that
will be added. In the second step, the model predicts the actual tokens for each placeholder [P].

For the first step, given the length of the SMILES, we constrain the model to insert at most 255 tokens
at a time. Thus, this step can be seen as a 256-class classification problem for each token position.
The probability of inserting tokens at the i-th position, denoted as πins

θ (i), can be expressed as:

πins
θ (i) = Softmax(W T

inx
E
i)

Here, Win is a matrix of size H × 256.

In the second step, the task is conceptually similar to what is done in MLM models. For each [P]
symbol, the model needs to predict the probability distribution over the vocabulary for the token at
that position. Therefore, the probability distribution for the token corresponding to the [P] at the
i-th position, denoted as πtok

θ (i), can be expressed as:

πtok
θ (i) = Softmax(W T

tokx
E
i)

Here, Wtok is a matrix of size H × vob, where vob represents the size of the vocabulary.

4.2 EDIT-BASED PRE-TRAINING WITH FRAGMENT-LEVEL SUPERVISION

After constructing the SMILES encoder with editing operations, the next crucial step is to build
an edit-based pre-training framework and provide fragment-level self-supervised training signals.
Unlike traditional masked language models, an edit-based model can transform a valid SMILES
input into the target SMILES through editing operations. First, we fragment the input molecule using
rule-based molecule fragmentation, breaking it into different fragments. A subset of these fragments
is then randomly selected and removed from the original molecule. The resulting corrupted molecule
is converted back into a SMILES representation and fed into the SMILES Encoder. We train the
encoder to predict the correct editing process required to restore the corrupted molecule to its original
and complete form.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Molecule Fragmentation and Fragments Dropping. To provide the model with fragment-level
training signals, we first need to split the input molecule M into multiple fragments {f1, f2, ...}. The
BRICS algorithm (Degen et al., 2008) is a commonly used method for molecular fragmentation,
which divides a molecule into fragments based on predefined rules, such as molecular functional
groups. However, BRICS often generates relatively large fragments, and removing these fragments
can overly disrupt the molecule, leading to the loss of important core structures, like rings. To
address this, we adopt a similar fragmentation approach with RMCF (Wang et al., 2022a), where we
further split the links between rings and side chains on top of BRICS, resulting in smaller molecular
fragments. After cutting the molecule, we randomly select and discard some fragments with a certain
probability. The remaining fragments are then reassembled into a corrupted molecule M̂ . The model
is tasked with recovering the original molecule’s SMILES from the given SMILES of M̂ through an
edit-based approach.

Edit-based Training Objective with Dual Loss. The core pre-training task of the SMI-EDITOR

model is to take the SMILES of a corrupted molecule M̂ as input and attempt to restore it to the
SMILES of the original molecule M through an editing process. Specifically, SMI-EDITOR takes
the SMILES of a corrupted molecule M̂ as input, and generates a valid SMILES output through
deletion and insertion operations. However, traditional edit-based models like LevT only provide
training signals for deletion by teaching the model to remove incorrect tokens it inserted. This limits
the model’s ability to learn how to delete the incorrect parts in the input SMILES. To overcome this
problem, we introduce the dual deletion loss, which trains the model to correctly delete incorrect
tokens from the initial SMILES input.

To provide proper training signals for the model, we adopt the imitation learning method from LevT,
which supervises the model by minimizing the Levenshtein distance between the input and target
output. The training objective is defined as follows:

LDualDel
θ = −

∑
yi∈M̂

d∗
i
∈d∗

log πdel
θ (d∗i |i, M̂)

Here, d∗ is the optimal deletion action determined by an expert to minimize the Levenshtein
distance to the target output y∗ which is the SMILES of molecule M . This is formulated as
d∗ = argmindD(y∗, ε(M̂, d)), where D is the Levenshtein distance, πdel

θ is the Deletion Classifier,
and ε represents the environment in LevT’s Markov Decision Process. ε(M̂, d) applies the deletion
action d to the initial input SMILES M̂ , removing selected tokens.

In addition to the dual deletion loss, we retain the original LevT’s training objective LLevT
θ (details

of LLevT
θ can be found in Appendix A), which supervises both deletion and insertion actions by

minimizing the Levenshtein distance between the input and target output. Thus, the final training
objective is:

Lθ = LDualDel
θ + LLevT

θ

Through this edit-based pre-training process, we equip the SMI-EDITOR model with fragment-level
training signals, enabling it to learn how to transform the SMILES of a corrupted molecule M̂ into
the SMILES of the original molecule M via fragment editing.

5 EXPERIMENTS

In this section, we first evaluate the performance of SMI-EDITOR on molecular property prediction
tasks and compare it with baseline models (Section 5.2). The results show that SMI-EDITOR
outperforms both the MLM and 3D molecular models, achieving state-of-the-art performance. To
further validate the model design and pre-training framework, we conduct ablation studies on training
signals and editing operations (Section 5.3). Additionally, analytical experiments confirm that SMI-
EDITOR has a stronger ability to capture the semantics of molecular substructures compared to MLM
models. Analysis of the training curves also demonstrates that SMI-EDITOR mitigates the issue of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: The overall results on 7 molecule property classification datasets. We report ROC-AUC
score (higher is better) under scaffold splitting. The best results are bold. The second-best results are
underlined. For more detailed information about the dataset, please refer to Table 7.

Datasets BACE↑ BBBP↑ Tox21↑ SIDER↑ MUV↑ ClinTox↑ ToxCast↑ Mean↑
Molecules 1531 2039 7831 1427 93087 1478 8575 -

D-MPNN 80.9 71.0 75.9 57.0 78.6 90.6 65.5 74.2
Attentive FP 78.4 64.3 76.1 60.6 76.6 84.7 63.7 72.1
N-GramRF 77.9 69.7 74.3 66.8 76.9 77.5 - -
GROVER 82.6 70.0 74.3 64.8 62.5 81.2 65.4 71.5

GraphMVP 81.2 72.4 75.9 63.9 77.7 79.1 63.1 73.3
InfoGraph 77.8 67.5 73.2 59.9 74.1 76.5 63.7 70.4
MolCLR 82.4 72.2 75.0 58.9 79.4 91.2 69.2 75.5

Mole-BERT 80.8 71.9 76.8 62.8 78.6 78.9 64.3 73.4
3D InfoMax 79.7 69.1 74.5 60.6 74.4 79.9 64.4 71.8

MoleculeSDE 80.4 73.2 76.5 59.6 79.9 86.6 65.2 74.5

SMI-MLM 77.8 68.6 75.1 61.2 75.1 89.8 64.9 73.2
SMI-EDITOR 80.3 77.4 77.1 63.0 80.2 98.9 67.4 77.8

rapid saturation and enhances the training stability (Section 5.4). Additionally, we provide details on
the training data, baseline models, and implementation used in the experiments (Section 5.1).

5.1 EXPERIMENT SETTINGS

Datasets. For pre-training, we use the large-scale molecular dataset provided by Zhou et al. (2023),
which includes SMILES information for 19 million molecules. For fine-tuning, we employ the
widely recognized MoleculeNet benchmark (Wu et al., 2018). For more details about this dataset,
please refer to Appendix H. We follow the same data split as used by Zhou et al. (2023) and tokenize
SMILES sequences with the regular expression from Schwaller et al. (2018).

Baselines. We evaluate our approach against various supervised learning and pre-training baselines,
including both SMILES-based and 3D molecular pre-training models. The supervised methods
include D-MPNN (Yang et al., 2019) and AttentiveFP (Xiong et al., 2019), both of which are based on
graph neural networks (GNNs). For 2D and 3D molecular pre-training, we consider several methods:
N-gram (Liu et al., 2019a), GROVER (Rong et al., 2020), GraphMVP (Liu et al., 2021), MolCLR
(Wang et al., 2022b), InfoGraph (Sun et al., 2019), Mole-BERT (Xia et al.), 3D InfoMax (Stärk et al.,
2022), and MoleculeSDE (Liu et al., 2023a). For a fair comparison, we train a SMILES model based
on MLM pre-training, referred to as SMI-MLM, using the same training data, model architecture,
and training hyperparameters as SMI-EDITOR.

Implementation Details. We use a Transformer block with a hidden size of 768 and 12 attention
heads, comprising 12 layers in the SMILES encoder, which contains a total of 86.3 million trainable
parameters. During pre-training, the fragment drop ratio is set to 0.15. For downstream tasks, we
use the same fine-tuning dataset established by Uni-Mol. (cf. Appendix F for more details about
hyper-parameter configuration.)

5.2 RESULTS ON MOLECULAR PROPERTY CLASSIFICATION TASKS

Tasks Details. We evaluate SMI-EDITOR on the MoleculeNet (Wu et al., 2017) benchmark
and compare its performance with baseline models. We evaluate SMI-EDITOR on 7 widely used
molecular property prediction tasks. For detailed hyperparameters used in different tasks, please refer
to Appendix G. For all seven molecular property prediction tasks, we input the normalized SMILES
information into the model and perform further fine-tuning for each task. The hyperparameters for
each task are detailed in the supplementary materials. ROC-AUC is used as the evaluation metric,
and the results are summarized in Table 1.

Results. SMI-EDITOR achieves state-of-the-art (SOTA) performance on 4 tasks and closely
matches the SOTA models on the remaining tasks. Compared to the MLM model SMI-MLM,
which uses the same training settings, training data, and evaluation processes for downstream tasks,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

SMI-EDITOR demonstrates superior performance across all seven tasks, validating the effectiveness
of its pre-training framework. Additionally, SMI-EDITOR outperforms several molecular representa-
tion learning models that utilize 3D information, indicating that SMILES contains important and rich
semantic information related to molecular properties and that SMI-EDITOR effectively captures this
information. SMI-EDITOR also demonstrated the strongest average performance across all 7 tasks,
indicating that it outperforms other baseline models in these prediction tasks.

5.3 ABLATION STUDIES

5.3.1 ABLATION STUDIES ON FRAGMENT-LEVEL SUPERVISION

Table 2: Ablation Studies on Fragment-level Supervision. Fragment-level supervision provide
more informative and useful training signals than atom-level supervision and are crucial for helping
the model learn multi-level semantic information in molecules.

Method BACE↑ BBBP↑ Tox21↑ SIDER↑ ToxCast↑ Mean↑
SMI-EDITOR-AtomsDropping 80.0 73.4 76.5 59.2 66.6 71.1
SMI-EDITOR-AtomsMasking 80.4 73.2 75.0 58.3 64.6 70.3

SMI-MLM 77.8 68.6 75.1 61.2 64.9 69.5

SMI-EDITOR 80.3 77.4 77.1 63.0 67.4 73.0

Experimental Settings. To explore the impact of fragment-level supervision signals on model
performance, we train SMI-EDITOR models using two different pre-training strategies. The first
model, SMI-EDITOR-AtomsDropping, replaces the fragment dropping process in pre-training with
random atom dropping. After discarding certain atoms, we input the modified SMILES into the
model, asking it to restore the original SMILES through an editing approach. The second model,
SMI-EDITOR-AtomsMasking, uses random token masking similar to MLM, where selected tokens
are replaced with [MASK], and the model is tasked with restoring the original SMILES via editing.
The performance of these models is presented in Table 2.

Results Analysis. The results show a significant decline in performance when fragment dropping is
replaced with random atom dropping (SMI-EDITOR-AtomsDropping vs. SMI-EDITOR), indicating
that the fragment-level supervision signal enables the model to learn more important and nuanced
semantic information. Furthermore, when random atom dropping is replaced with random token mask-
ing, performance decreases again (SMI-EDITOR-AtomsMasking vs. SMI-EDITOR-AtomsDropping).
This suggests that while both random token masking and random atom dropping introduce atom-level
training signals, the introduction of the unrealistic special symbol [MASA] through token masking
adversely affects model performance. Compared to these two models, SMI-MLM exhibits even
poorer performance, demonstrating that this editing training approach effectively helps the model
learn richer semantic knowledge.

5.3.2 ABLATION STUDIES ON EDITING OPERATIONS

Table 3: Ablation Studies on Editing Operations. The placeholder insertion process, which is
absent in MLM models, enables the model to learn richer and more diverse semantic information.

Method BACE↑ BBBP↑ Tox21↑ SIDER↑ ToxCast↑ Mean↑
w/o PlhIns 76.1 69.7 76.9 55.5 66.2 68.9

w/o TokPred 79.8 69.2 75.4 57.4 65.9 69.5
w/o TokDel 79.0 73.5 77.3 61.9 64.9 71.3
w/o DualDel 78.4 70.1 76.4 59.5 64.4 69.8

SMI-EDITOR 80.3 77.4 77.1 63.0 67.4 73.0

Experimental Settings. To investigate the impact of different training signals from the editing
operations in the SMI-EDITOR model on its performance, we train four variations of the SMI-
EDITOR model. These models are obtained by removing the training signals for placeholder insertion,
token prediction, token deletion, and dual token deletion (setting the training loss weight to zero),
corresponding to the three editing operations in the original LevT model and the dual deletion loss.
The detailed results are presented in Table 3.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Results Analysis: Why SMI-EDITOR is Better than SMI-MLM. The results indicate that the
ablation of any of these four editing operations leads to a significant decline in model performance.
Notably, removing the placeholder insertion operation results in the largest performance loss. This
operation primarily models the position of missing fragments within the SMILES, highlighting the
importance of teaching the model to predict the locations of these fragments for capturing critical
semantic information and improving performance. In contrast, the MLM model attempts to predict
masked tokens based on their given positions, which simplifies the pre-training task and limits the
model’s exposure to important semantic information, ultimately affecting its performance. Moreover,
SMI-EDITOR provides supervision signals for each token in the sequence, but the MLM model only
provides supervision signals for [MASK] tokens, which limits the semantic richness of the model.

Results Analysis: Dual Deletion Loss is More Useful. Additionally, the ablation of the dual
deletion operation also causes a significant decline in model performance, with a more pronounced
drop than when token deletion is removed. This indicates that the dual deletion loss incorporated into
our model provides more useful and richer training signals than token deletion loss in LevT.

5.4 ANALYTICAL EXPERIMENTS

SMI-EDITOR Understands Substructure Semantics. Similar to the analysis in Section 3.2,
we tested SMI-EDITOR’s response to two different molecular perturbation methods on the ESOL
and FreeSolv datasets. As shown in Figure 4, compared to the results in Figure 3, SMI-EDITOR
exhibits distinct prediction changes for the two perturbation methods on both the ESOL and FreeSolv
datasets. This indicates that SMI-EDITOR can clearly differentiate between the impact of removing
hydrophilic groups and randomly deleting atoms on molecular properties, demonstrating that it
models the semantics of key molecular substructures more effectively than the MLM model.

0 20K 40K 60K 80K 100k
Training steps

4

5

6

7

8

9

10

Tr
ai

n
Lo

ss Small Model Train Loss
Base Model Train Loss
Big Model Train Loss

Figure 6: The training loss curves of
different-sized SMI-EDITOR models.
The loss curves consistently show a sta-
ble downward trend throughout the train-
ing process, and the model loss gradually
decreases as the model size increases.

SMI-EDITOR Enhances Training Stability and Model
Scalability. We train SMI-EDITOR of different sizes and
compare their training curve variations. As shown in Fig-
ure 6, the losses of the SMI-EDITOR models consistently
exhibit a more pronounced downward trend throughout
the training process compared to the MLM models (Figure
2a), further alleviating the rapid saturation problem. Ad-
ditionally, unlike the MLM, the training loss of the SMI-
EDITOR shows more distinct differences across sizes. As
the model size increases, the loss steadily decreases, with
the larger model (Big Model) converging more stably than
the MLM, indicating better scalability for SMI-EDITOR.
We also analyze the training and validation loss curves
for the three types of editing operations in SMI-EDITOR,
confirming the model’s scalability during pre-training; de-
tailed results can be found in Appendix B. Additionally,
we evaluate the performance of SMI-EDITOR models of
different sizes on downstream tasks, demonstrating that SMI-EDITOR exhibits better scalability and
stability compared to the MLM model (SMI-MLM). Detailed results can be found in Appendix E.

6 CONCLUSIONS

In this paper, we analyze the behavior and shortcomings of masked language models (MLMs) on
SMILES data. Through the examination of training curves, we demonstrate that training MLMs on
SMILES data encounters rapid saturation issues. Further analytical experiments reveal that MLMs
struggle to effectively capture the semantics of important molecular substructures. To address these
issues, we propose the edit-based pre-training molecular representation learning model SMI-EDITOR,
which enhances the model’s ability to capture substructure semantics by learning how to recover the
missing fragments through edit operations. Extensive experiments on molecular property prediction
tasks validate the effectiveness of SMI-EDITOR, and ablation studies confirm the advantages of its
design over traditional MLMs in modeling molecular substructure semantics and training stability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Viraj Bagal, Rishal Aggarwal, PK Vinod, and U Deva Priyakumar. Molgpt: molecular generation
using a transformer-decoder model. Journal of Chemical Information and Modeling, 62(9):
2064–2076, 2021.

Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. Chemberta: large-scale self-
supervised pretraining for molecular property prediction. arXiv preprint arXiv:2010.09885, 2020.

Jorg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of compiling
and using’drug-like’chemical fragment spaces. ChemMedChem, 3(10):1503, 2008.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and Heng Ji. Translation
between molecules and natural language. arXiv preprint arXiv:2204.11817, 2022.

Zhiyi Fu, Wangchunshu Zhou, Jingjing Xu, Hao Zhou, and Lei Li. Contextual representation learning
beyond masked language modeling. arXiv preprint arXiv:2204.04163, 2022.

Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. Advances in neural informa-
tion processing systems, 32, 2019.

Yuqiang Han, Xiaoyang Xu, Chang-Yu Hsieh, Keyan Ding, Hongxia Xu, Renjun Xu, Tingjun Hou,
Qiang Zhang, and Huajun Chen. Retrosynthesis prediction with an iterative string editing model.
Nature Communications, 15(1):6404, 2024.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy. Spanbert:
Improving pre-training by representing and predicting spans. Transactions of the association for
computational linguistics, 8:64–77, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Shengchao Liu, Mehmet F Demirel, and Yingyu Liang. N-gram graph: Simple unsupervised repre-
sentation for graphs, with applications to molecules. Advances in neural information processing
systems, 32, 2019a.

Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, and Jian Tang. Pre-
training molecular graph representation with 3d geometry. arXiv preprint arXiv:2110.07728,
2021.

Shengchao Liu, Weitao Du, Zhi-Ming Ma, Hongyu Guo, and Jian Tang. A group symmetric stochastic
differential equation model for molecule multi-modal pretraining. In International Conference on
Machine Learning, pp. 21497–21526. PMLR, 2023a.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

Zequn Liu, Wei Zhang, Yingce Xia, Lijun Wu, Shufang Xie, Tao Qin, Ming Zhang, and Tie-
Yan Liu. Molxpt: Wrapping molecules with text for generative pre-training. arXiv preprint
arXiv:2305.10688, 2023b.

Jonathan Mallinson, Aliaksei Severyn, Eric Malmi, and Guillermo Garrido. Felix: Flexible text
editing through tagging and insertion. arXiv preprint arXiv:2003.10687, 2020.

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil Mirylenka, and Aliaksei Severyn. Encode, tag,
realize: High-precision text editing. arXiv preprint arXiv:1909.01187, 2019.

Qizhi Pei, Wei Zhang, Jinhua Zhu, Kehan Wu, Kaiyuan Gao, Lijun Wu, Yingce Xia, and Rui Yan.
Biot5: Enriching cross-modal integration in biology with chemical knowledge and natural language
associations. arXiv preprint arXiv:2310.07276, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems, 33:12559–12571, 2020.

Jerret Ross, Brian Belgodere, Vijil Chenthamarakshan, Inkit Padhi, Youssef Mroueh, and Payel Das.
Large-scale chemical language representations capture molecular structure and properties. Nature
Machine Intelligence, 4(12):1256–1264, 2022.

Philippe Schwaller, Theophile Gaudin, David Lanyi, Costas Bekas, and Teodoro Laino. “found in
translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-
to-sequence models. Chemical science, 9(28):6091–6098, 2018.

Philippe Schwaller et al. Molecular transformer: a model for uncertainty-calibrated chemical reaction
prediction. ACS central science, 5(9):1572–1583, 2019.

Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago, Stephan
Günnemann, and Pietro Liò. 3d infomax improves gnns for molecular property prediction. In
International Conference on Machine Learning, pp. 20479–20502. PMLR, 2022.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. arXiv preprint
arXiv:1908.01000, 2019.

Raymond Hendy Susanto, Shamil Chollampatt, and Liling Tan. Lexically constrained neural machine
translation with levenshtein transformer. arXiv preprint arXiv:2004.12681, 2020.

Xiaochu Tong, Xiaohong Liu, Xiaoqin Tan, Xutong Li, Jiaxin Jiang, Zhaoping Xiong, Tingyang
Xu, Hualiang Jiang, Nan Qiao, and Mingyue Zheng. Generative models for de novo drug design.
Journal of Medicinal Chemistry, 64(19):14011–14027, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Lihao Wang, Yi Zhou, Yiqun Wang, Xiaoqing Zheng, Xuanjing Huang, and Hao Zhou. Regularized
molecular conformation fields. Advances in Neural Information Processing Systems, 35:18929–
18941, 2022a.

Sheng Wang, Yuzhi Guo, Yuhong Wang, Hongmao Sun, and Junzhou Huang. Smiles-bert: large
scale unsupervised pre-training for molecular property prediction. In Proceedings of the 10th ACM
international conference on bioinformatics, computational biology and health informatics, pp.
429–436, 2019a.

Sheng Wang et al. Smiles-bert: large scale unsupervised pre-training for molecular property prediction.
In Proceedings of the 10th ACM international conference on bioinformatics, computational biology
and health informatics, 2019b.

Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molecular contrastive
learning of representations via graph neural networks. Nature Machine Intelligence, 4(3):279–287,
2022b.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay S. Pande. Moleculenet: A benchmark for molecular machine
learning. CoRR, abs/1703.00564, 2017. URL http://arxiv.org/abs/1703.00564.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

12

http://arxiv.org/abs/1703.00564

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, and Stan Z
Li. Mole-bert: Rethinking pre-training graph neural networks for molecules. In The Eleventh
International Conference on Learning Representations.

Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li, Zhaojun
Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, et al. Pushing the boundaries of molecular
representation for drug discovery with the graph attention mechanism. Journal of medicinal
chemistry, 63(16):8749–8760, 2019.

Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-
Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, et al. Analyzing learned molecular
representations for property prediction. Journal of chemical information and modeling, 59(8):
3370–3388, 2019.

Kangjie Zheng, Longyue Wang, Zhihao Wang, Binqi Chen, Ming Zhang, and Zhaopeng Tu. Towards a
unified training for levenshtein transformer. In ICASSP 2023-2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng Zhang,
and Guolin Ke. Uni-mol: a universal 3d molecular representation learning framework. 2023.

Jinhua Zhu et al. Dual-view molecular pre-training. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2023.

A DETAILS OF LEVENSHTEIN TRANSFORMER

The Levenshtein Transformer (LevT) is a non-autoregressive editing generation model that employs
a three-step editing process: token deletion, placeholder insertion, and token prediction. LevT
is trained using imitation learning with a dual policy: (i) learning to insert tokens by predicting
those that have been randomly deleted from the target output, and (ii) learning to delete tokens by
identifying incorrect tokens generated by the insertion module. Below are more details about the
training objective of LevT, denoted as LLevT

θ .

Placeholder Insertion Loss. In this step, the model needs to determine how many placeholders [P]
should be inserted at specific positions in the original input, which will later be replaced by concrete
words in subsequent steps. Therefore, the core operation here is a classification task that predicts how
many words need to be inserted after each token in the input sequence. For practical implementation,
LevT limits the maximum number of words that can be inserted after each token to 255. Thus, this
step essentially becomes a 256-class classification task at each token, predicting the number of words
(0-255) to insert after each token. This process can be represented as follows:

Lins
θ = −

∑
yi∈y0
p∗
i
∈p∗

log πins
θ (p∗i |i, y0)

where p∗i is the optimal placeholder insertion action found by the expert that minimizes the Leven-
shtein distance to the target output y∗ which is the SMILES of molecule M , and can be formalized as
p∗i = argminpD(y∗, ε(y0, p)), y0 is the initial input of the model which is the SMILES of molecule
M̂ , D is the Levenshtein distance measurement, πdel

θ is LevT’s Deletion Classifier, and ε is the
environment in the Markov Decision Process of LevT which receives editing actions and returns the
modified sequence, and ε(y0, p) means applies the insertion action p to the initial input sequence
y0 (e.g. insert some placeholders in y0). Details of ε can be found in LevT’s framework (Gu et al.,
2019).

Token Prediction Loss. In this step, the task is to predict a real word for each placeholder [P] in
the sequence y1 = ε(y0, p

∗) that has had placeholders inserted. This process is very similar to that of
MLM, as it essentially involves a classification problem where the number of classes is equal to the
size of the vocabulary.

Ltok
θ = −

∑
yi∈y1,t∗

i
∈t∗

yi=<[P]>

log πtok
θ (t∗i |i, y′)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

where t∗i is the optimal insertion action found by the expert that minimizes the Levenshtein distance
to the target output y∗, y1 is the modified sequence by applying the optimal placeholder action
p∗ to the input sequence y0, and these terms can be formalized as: t∗i = argmintD(y∗, ε(y1, t)),
y1 = ε(y0, p

∗), d∗ or p∗ = argmind,pD(y∗, ε(y0, {d, p})). πtok
θ is token classifier.

Token Deletion Loss. In the insertion step, the model may have inserted incorrect words, so in this
step, it needs to predict which of the previously inserted words are incorrect and should be deleted.
Essentially, this step involves learning how to ”correct” the errors made during the insertion phase.
Specifically, the input to this step is the output from the insertion module, y2 = ε(y1, t), where t
represents the actions predicted by the model in the token prediction step. Since the task is to decide
whether each token in y2 should be deleted, this step is essentially a binary classification task for
each token, which can be represented as follows:

Ldel
θ = −

∑
yi∈y2
d∗
i
∈d∗

log πdel
θ (d∗i |i, y2)

where d∗i is the optimal delete action found by the expert that minimizes the Levenshtein distance
to the target output y∗ which is the SMILES of molecule M , and can be formalized as d∗i =
argmindD(y∗, ε(y2, d)) , πdel

θ is LevT’s deletion classifier.

Total Loss. Since the editing process of LevT consists of three steps—token deletion, placeholder
insertion, and token prediction—the overall training objective of LevT is the sum of the training
objectives for these three processes:

LLevT
θ = Lins

θ + Ltok
θ + Ldel

θ

In summary, unlike MLM models, which provide training signals only for each [MASK] symbol in
the input sequence, the LevT model offers training signals for every token in both the Placeholder
Insertion and Token Deletion steps. This requires the model to determine whether each token in the
input sequence should be deleted and whether new tokens should be inserted after each existing token,
thus providing richer semantic information to the model.

B MORE TRAINING CURVES OF SMI-EDITOR

0 20K 40K 60K 80K 100k
Training steps

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ai

n
Lo

ss TokDel Train Loss (Small)
TokDel Train Loss (Base)
TokDel Train Loss (Big)

(a) Token Deletion

0 20K 40K 60K 80K 100k
Training steps

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Tr
ai

n
Lo

ss PlhIns Train Loss (Small)
PlhIns Train Loss (Base)
PlhIns Train Loss (Big)

(b) Placeholder Insertion

0 20K 40K 60K 80K 100k
Training steps

2

3

4

5

6

Tr
ai

n
Lo

ss TokPred Train Loss (Small)
TokPred Train Loss (Base)
TokPred Train Loss (Big)

(c) Token Prediction

Figure 7: Training Loss Curves of Editing Operations. We train SMI-EDITOR models of varying
sizes and compare their loss curves during training for three different editing operations. As shown
in the results, the loss for the token prediction process represented in Figure (c) is consistently the
highest among the three type of losses, while the loss for token deletion is the lowest. Furthermore,
as the model size increases, all three types of loss exhibit a stable downward trend.

We present the changes in training and validation loss curves for SMI-EDITOR models of varying
sizes during training. As shown in Figure 7 and Figure 8, both training and validation losses for the
three types of editing operations exhibit a stable downward trend as model scale increases. The loss
from the token prediction process consistently constitutes the largest portion of the overall training
loss. Interestingly, during the edit-based pre-training, the token prediction task is similar to that of
MLM, as it involves predicting the real tokens corresponding to each placeholder token [P], aiming
to restore the complete target SMILES. However, unlike the results in Figure 2, the token prediction
loss in the SMI-EDITOR pre-training does not show rapid saturation phenomenon in the early training

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 20K 40K 60K 80K 100k
Training steps

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Va
lid

 L
os

s
TokDel Valid Loss (Small)
TokDel Valid Loss (Base)
TokDel Valid Loss (Big)

(a) Token Deletion

0 20K 40K 60K 80K 100k
Training steps

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Va
lid

 L
os

s

PlhIns Valid Loss (Small)
PlhIns Valid Loss (Base)
PlhIns Valid Loss (Big)

(b) Placeholder Insertion

0 20K 40K 60K 80K 100k
Training steps

2

3

4

5

6

Va
lid

 L
os

s

TokPred Valid Loss (Small)
TokPred Valid Loss (Base)
TokPred Valid Loss (Big)

(c) Token Prediction

Figure 8: Validation Loss Curves of Editing Operations. Similar to the training loss curves, the
validation loss for the token prediction process shown in Figure (c) consistently remains the highest
among the three types, while the loss for token deletion is the lowest. Additionally, as the model size
increases, the validation loss for all three editing operations exhibits a stable downward trend.

stages. Even in the later training phases, the token prediction loss shows a steady decline. This further
emphasizes the benefit of introducing fragment-level training signals; by removing substructures
and then asking the model to predict them instead of randomly masking tokens, we achieve a
training task with better scalability.

C HYPER-PARAMETERS FOR MODELS OF VARYING SCALES

In Table 4, we present the specific training hyperparameters for the models of different sizes (Big,
Base, Small) used in this study. Notably, while the training objectives differ for the MLM and
SMI-EDITOR models, all other model settings remain consistent, including the listed training
hyperparameters and training datasets, to ensure the comparability of results.

Table 4: Hyper-parameters for pre-train models with different scales.

Model Max Tokens Layers Attn Heads Embed Dim FFN Dim Dropout Num of Paras

Big 64K 9 12 768 2048 0.1 50.5M
Base 64K 6 8 512 2048 0.1 19.4M
Small 64K 3 8 512 1024 0 6.8M

D PERFORMANCE OF MLM MODELS ON DOWNSTREAM TASK

0 20K 40K 60K 80K 100k
Steps

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Te
st

 A
gg

-A
U

C
 (B

es
t V

al
id

)

Small MLM - BBBP Downstream
Big MLM - BBBP Downstream

Figure 9: The performance of MLM models of different sizes and training steps on BBBP task.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We test the performance of MLM models (SMI-MLM) of different sizes and training steps on the
BBBP task. To reduce variability and ensure accuracy, we evaluate each checkpoint on the downstream
tasks five times and take the average of the results. As shown in Figure 9, increasing the model’s
scale does not consistently improve the model’s performance on the downstream task and even in
many cases, small model exhibits stronger performance. This indicates that the semantic information
learned by the larger MLM model do not translate into better downstream task performance. Instead,
the larger models exhibit greater variability in their performance compared to the small model. This
results suggest that the scalability and stability of MLM models is very limited.

E PERFORMANCE OF SMI-EDITOR ON DOWNSTREAM TASK

0 20K 40K 60K 80K 100k
Steps

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

Te
st

 A
gg

-A
U

C
 (B

es
t V

al
id

)

Small SMI-Editor - BBBP Downstream
Big SMI-Editor - BBBP Downstream

Figure 10: The performance of SMI-EDITOR of different sizes and training steps on BBBP task.

We also test the performance of SMI-EDITOR of different sizes and training steps on the BBBP task,
and the results are shown in Figure 10. We also evaluate each checkpoint on the downstream tasks
five times and take the average of the results to ensure accuracy. Compared to the performance of
the MLM model (Figure 9), the larger SMI-EDITOR model (Big Model) consistently outperforms
the smaller models (Small Model). As the number of training steps increases, the performance gap
between the large and small models becomes increasingly significant. In contrast, larger MLM
models do not show this trend, as different-sized MLM models exhibit similar performance on
downstream tasks. Moreover, the larger MLM models exhibit greater performance fluctuations
compared to the smaller MLM models. However, the larger SMI-EDITOR model demonstrates
greater performance stability than the MLM model, as the larger SMI-EDITOR model does not
exhibit increased performance fluctuations compared to the smaller SMI-EDITOR models. These
results indicate that the SMI-EDITOR model offers better training stability and model scalability
than the MLM model.

F HYPER-PARAMETER CONFIGURATION FOR PRE-TRAINING

We implement SMI-EDITOR using 12 stacked Transformer layers, each with 12 attention heads.
The model dimension and feedforward dimension of each Transformer layer are 768 and 3072. The
total number of SMI-EDITOR’s parameters is 86.3M. We use Adam (Kingma & Ba, 2014) and
polynomial learning rate scheduler to train SMI-EDITOR and set the learning rate 5e-4 warmup step
10K. The total training step is 120K and each batch has 64k tokens at maximum. We implement the
SMI-EDITOR model using the Fairseq library and train SMI-EDITOR on four Tesla A40 GPU for
about 2 days.

For more pre-training hyper-parameters, please refer to Table 5.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: SMI-EDITOR hyper-parameters for pre-training.

Hyper-parameters Value

Learning rate 5e-4
LR scheduler polynomial decay

Warmup updates 10K
Max updates 120K
Max tokens 64k

FFN dropout 0.1
Attention dropout 0.1
Activation dropout 0

Num of layers 12
Num of attention heads 12
Encoder embedding dim 768

Encoder FFN dim 3072
Adam (β1, β2) (0.9,0.98)

Fragments Drop ratio 0.15
Vocabulary size 369

Activation function GELU
Weight Decay 0.0

Clip Norm 1.0

G HYPER-PARAMETER CONFIGURATION FOR FINE-TUNING

In different downstream task, we use different hyper-parameters. For detailed fine-tuning hyper-
parameters, please refer to Table 6.

Table 6: SMI-EDITOR hyper-parameters for fine-tuning.

Tasks Epochs Batch size Learning rate Warmup Ratio Dropout Pooler-dropout

BACE 60 64 1e-4 0.06 0.1 0.2
BBBP 40 128 4e-4 0.06 0.1 0.1
TOX21 80 128 1e-4 0.06 0.1 0.1
SIDER 100 32 5e-4 0.4 0.1 0
MUV 40 128 2e-5 0.2 0.1 0.1

ClinTox 100 256 5e-5 0.1 0.1 0.5
ToxCast 80 64 1e-4 0.06 0.1 0.1

H DETAILS OF FINE-TUNING DATASETS

We perform a comprehensive set of experiments on the MoleculeNet(Wu et al., 2018) benchmark,
focusing on the molecular property prediction task. MoleculeNet has emerged as one of the most
widely recognized and utilized benchmarks in the field of molecular property prediction, providing a
standardized platform for evaluating machine learning models designed to predict various molecular
properties. Its datasets encompass a broad range of molecular tasks, and address diverse scientific
problems such as drug discovery, toxicity prediction and so on.

In this section, we provide a detailed summary of the statistics and fundamental characteristics of
the MoleculeNet datasets we use in Table 7. This table offers information about the dataset sizes,
task types, and compositions, providing readers with essential background information to better
understand the experimental setup and subsequent analysis.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Summary information of the MoleculeNet benchmark datasets.

Dataset Tasks Task type Molecules (train/valid/test) Describe

BACE 1 Classification 1,210/151/151 Binding results of human
BACE-1 inhibitors

BBBP 1 Classification 1,631/204/204 Blood-brain barrier pene-
tration

ClinTox 2 Multi-label classification 1,182/148/148 Clinical trial toxicity and
FDA approval status

Tox21 12 Multi-label classification 6,264/783/783 Qualitative toxicity mea-
surements

ToxCast 617 Multi-label classification 6,860/858/858 Toxicology data based on
in vitro screening

SIDER 27 Multi-label classification 1,141/143/143 Adverse drug reactions to
the 27 systemic organs

MUV 17 Multi-label classification 74,469/9,309/9,309 A subset of PubChem
BioAssay

I PERFORMANCE OF SMI-EDITOR ON DEEPCHEM DATA

We re-evaluated the performance of SMI-EDITOR on various downstream tasks of MoleculeNet
benchmark using the data splits provided by DeepChem1. Previously, our experiments were based on
a different data split, which made it difficult to compare our model against others built on this dataset.
Therefore, we re-tested SMI-EDITOR on DeepChem splits and included comparisons with more
baseline models. Detailed results are presented in Table A1. As shown in Table A1, SMI-EDITOR
achieves significant performance gains over baseline models, reaching state-of-the-art levels
with noticeable average performance improvements. Below is a detailed analysis of these results:

• SMI-EDITOR outperforms models trained with various paradigms: On average, SMI-
EDITOR surpasses molecular representation learning models like MolCLR and DMPTF,
which use contrastive pretraining, as well as models like ChemBerta and SMI-MLM,
which use masked language modeling. It also outperforms autoregressive language models
like Galactica and graph-based models like MolCLR, MGSSL, and MoMu. These results
highlight the potential of SMILES language models.

• SMI-EDITOR achieves competitive performance with less training data: SMI-EDITOR
outperforms DMPTF, which is trained on over 100 million compounds, despite using
only 19 million compounds for training. This demonstrates SMI-EDITOR’s higher data
efficiency, enabled by its ability to effectively leverage substructure information from
SMILES sequences.

Table 8: Overall results on MoleculeNet datasets using DeepChem splits. ROC-AUC scores (higher
is better) are reported for all tasks. The best results are bolded

Method BBBP↑ Tox21↑ ClinTox↑ HIV↑ BACE↑ SIDER↑ Mean↑

GEM 72.4 78.1 90.1 80.6 85.6 67.2 79.0
ChemBerta 64.3 - 90.6 62.2 - - -
MolCLR 73.6 79.8 93.2 80.6 89.0 68.0 80.7
MGSSL 70.5 76.5 80.7 79.5 79.7 61.8 74.8
DMPTF 78.1 78.8 95.0 81.0 89.3 69.2 81.9
Galactica 66.1 68.9 82.6 74.5 61.7 63.2 69.5
MoMu 70.5 75.6 79.9 76.2 77.1 60.5 73.3

SMI-MLM 89.4 76.2 90.6 79.8 86.6 66.5 81.5
SMI-EDITOR 93.5 81.4 95.2 81.6 89.9 69.8 85.2

1https://github.com/deepchem/deepchem

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Train Loss (b) Train PPL

Figure 11: The training loss and perplexity (PPL) curves of the SMI-GPT model.

J PERFORMANCE ADVANTAGES OF SMI-EDITOR OVER AUTO-REGRESSIVE
MODELS

To comprehensively compare SMI-EDITOR with autoregressive models, we trained a decoder-only
model with identical architecture and size to SMI-EDITOR using an autoregressive language modeling
objective, referred to as SMI-GPT. We evaluated SMI-GPT’s performance across several downstream
tasks, with results shown in Table 9. The findings indicate that SMI-EDITOR can perform better than
SMI-GPT. Below is an analysis of these results:

Table 9: Results of SMI-EDITOR and SMI-GPT on MoleculeNet datasets using DeepChem splits.
ROC-AUC scores (higher is better) are reported for all tasks The best results are bolded

Method BBBP↑ Tox21↑ ClinTox↑ HIV↑ BACE↑ SIDER↑ Mean↑

SMI-GPT(NT) 88.5 74.3 88.9 68.8 76.2 63.7 76.7
SMI-GPT(Emb) 91.2 75.1 91.4 79.4 86.2 67.1 81.7

MoMu 70.5 75.6 79.9 76.2 77.1 60.5 73.3
SMI-MLM 89.4 76.2 90.6 79.8 86.6 66.5 81.5

SMI-EDITOR 93.5 81.4 95.2 81.6 89.9 69.8 85.2

1. Implementation details for SMI-GPT(NT) and SMI-GPT(Emb):

SMI-GPT(NT): This approach uses next-token prediction for downstream classification tasks by
appending a special token (e.g., Label0, Label1) at the end of each SMILES sequence to denote
the classes of sample’s label. The model learns to predict the correct label token during fine-tuning.
SMI-GPT(Emb): The representations of each token in the SMILES string extracted by the SMI-GPT
model are processed using mean pooling. The resulting pooled representation is then fed into a
classification head, which predicts the class of the SMILES.

2. Advantages of the encoder-only SMI-EDITOR architecture:

As shown in Table A2, SMI-EDITOR consistently outperforms SMI-GPT(Emb) and SMI-GPT(NT),
highlighting its superior semantic learning capabilities. SMI-GPT(Emb) achieves better performance
than SMI-GPT(NT), suggesting that pretraining-based feature transfer is preferable for molecular
property prediction tasks. Therefore, the encoder-only pre-trained model is highly suitable for
molecular property prediction tasks.

3. Rapid convergence in autoregressive LMs: we provide the training curve of the SMI-GPT model
in Figure 11, which shows that the loss decreases rapidly during the early stages of training. Similarly,
the perplexity also drops quickly, reaching approximately 1.6 at the 40K training step. By the end
of training, the model’s Perplexity falls below 1.6, which is significantly lower than the perplexity
typically observed for GPT models trained on text data.

4. Why does this phenomenon occur?

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

For auto-regressive language models, each time a new token is generated, it receives all preceding
tokens as prefix input. This means that when the model generates tokens at later positions, it has access
to more comprehensive contextual information (i.e., a longer prefix and more complete sequence
information). As a result, the prediction difficulty for tokens in later positions is significantly
reduced, allowing the model to converge more easily. A key difference between SMI-EDITOR
and SMI-GPT is that in SMI-EDITOR, each discarded token is predicted independently, with equal
importance assigned to the prediction of each token. This enables SMI-EDITOR to better capture the
complete semantic information encoded in the tokens.

In summary, compared to LLMs on text data, GPT models on SMILES data converge significantly
faster and achieve much lower perplexity. This indicates that SMILES data is inherently easier
to fit than text. Therefore, it is crucial to design effective methods to extract richer semantic
information from SMILES. SMI-EDITOR represents a meaningful and successful exploration in
this direction, highlighting the importance of leveraging substructural fragment information
within SMILES data.

K PERFORMANCE OF SMI-EDITOR WITH FRAGMENT CORRECTION

Training SMI-EDITOR to correct errors and remove extraneous components did not improve
performance: We implemented a version of SMI-EDITOR that learns to correct erroneous functional
groups and remove extraneous substructures, referred to as SMI-EDITOR-Cor. However, SMI-
EDITOR-Cor did not outperform the original SMI-EDITOR on downstream tasks. Considering the
increased complexity and training cost of SMI-EDITOR-Cor (due to longer input sequences), we
focused on SMI-EDITOR in the submitted draft. Table 12 below compares the performance of
SMI-EDITOR and SMI-EDITOR-Cor, showing that their performance is similar, demonstrating the
limited benefit of incorporating these tasks.

Analysis of SMI-EDITOR-Cor’s performance: We attribute SMI-EDITOR-Cor’s lack of improve-
ment to the following reasons:

• Correcting errors and removing extraneous components provide limited additional
training signals: SMI-EDITOR’s training comprises two major steps: deletion and insertion.
During deletion, erroneous functional groups and extraneous substructures are removed,
while the insertion step involves learning to recover the correct tokens in the appropriate
positions. Thus adding erroneous functional groups or extraneous substructures affects
only the deletion step, which is a simpler task providing limited information. Moreover, as
shown in Table 3 of the main text, ablating the token deletion (TokDel) step has minimal
performance impact.

• Identifying erroneous functional groups and extraneous structures is too simple for the
model: SMI-EDITOR-Cor constructs erroneous inputs through random substitutions, often
resulting in chemically invalid SMILES that are easy for the model to identify. Consequently,
the simplicity of the training task limits further performance improvement.

Table 10: Performance comparison between SMI-EDITOR-Cor and SMI-EDITOR.

Method BACE↑ BBBP↑ SIDER↑ Tox21↑ ToxCast↑ Mean↑

SMI-EDITOR-Cor 80.6 77.1 62.2 76.8 68.0 72.9
SMI-EDITOR 80.3 77.4 63.0 77.1 67.4 73.0

L HOW THE FRAGMENT DROP RATIO AFFECT SMI-EDITOR

To investigate the impact of the fragment drop ratio on SMI-EDITOR, we trained SMI-EDITOR
models with different drop ratios (15%, 30%, 45%) and analyzed their training curves and downstream
task performance. The results indicate that increasing the drop ratio significantly raises training loss
for SMI-EDITOR, suggesting that its pretraining task is more challenging than MLM. Below are the
detailed findings:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 20K 40K 60K 80K 100k
Training steps

3

4

5

6

7

8

9

10

Tr
ai

n
Lo

ss DropRatio 15% Train Loss
DropRatio 30% Train Loss
DropRatio 45% Train Loss

(a) Train Loss

0 20K 40K 60K 80K 100k
Training steps

3

4

5

6

7

8

9

10

Va
lid

 L
os

s

DropRatio 15% Valid Loss
DropRatio 30% Valid Loss
DropRatio 45% Valid Loss

(b) Valid Loss

Figure 12: The training loss and valid loss of the SMI-EDITOR with different fragment drop ratios.

1. Impact on SMI-EDITOR’s convergence: We plotted the training and validation loss curves
for SMI-EDITOR with varying drop ratios in Figure 12. The results show that as the drop ratio
increases, both training and validation losses rise significantly. Compared to Figure 2c of the
paper, the loss increase for SMI-EDITOR is more pronounced than for MLM, confirming that
SMI-EDITOR’s task is inherently more challenging.

2. Impact on downstream task performance: We evaluated the performance of SMI-EDITOR
and MLM models with varying drop or mask ratios. The results are summarized in Table 11. From
Table 11, it can be observed that as the mask ratio increases, the average performance of the SMI-
MLMmodel shows no significant change, while the performance of the SMI-EDITOR model declines
as the drop ratio increases. This indicates that SMI-EDITOR represents a more challenging training
task.

Here is a more detailed explanation:

• SMI-EDITOR discards chemically meaningful substructures that often serve as standalone
semantic units. This also makes predicting the discarded fragments more difficult than
predicting individual masked tokens. Dropping more substructures severely disrupts the
molecular structure, making it harder for the model to reconstruct the original molecule.

• MLM, on the other hand, randomly masks tokens in SMILES sequences. Since SMILES
tokens often represent individual atoms or bonds, masking does not typically disrupt the
molecular semantics significantly. For instance, masking one or two atoms of a functional
group like −COOH still leaves enough contextual information to reconstruct it. Additionally,
the probability of masking an entire functional group is low due to MLM’s token-based
masking mechanism. This explains why MLM performance is less sensitive to mask ratio
increases, as also reflected in Figure 2c of the paper: Different Mask Ratios Cannot Alleviate
Rapid Saturation.

Table 11: Performance of SMI-EDITOR and SMI-MLMwith different drop or mask ratios on
downstream tasks.

Method BACE↑ BBBP↑ SIDER↑ Tox21↑ ToxCast↑ Mean↑

SMI-MLM(15%) 77.8 68.6 61.2 75.1 64.9 69.5
SMI-MLM(30%) 78.3 70.2 58.2 76.0 63.7 69.3
SMI-MLM(45%) 78.4 66.1 59.3 76.4 65.5 69.1

SMI-EDITOR(15%) 80.3 77.4 63.0 77.1 67.4 73.0
SMI-EDITOR(30%) 81.6 73.3 59.6 77.0 66.8 71.7
SMI-EDITOR(45%) 79.3 72.2 61.1 77.8 67.1 71.5

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

M PERFORMANCE OF SMI-EDITOR ON MOLECULAR PROPERTY REGRESSION
TASKS

We evaluated the model’s performance on three molecular property regression tasks, as shown in
Table 12. SMI-EDITOR achieved the best performance compared to baseline models and significantly
outperformed the MLM model.

Table 12: Performance of SMI-EDITOR on molecular property regression tasks.

Method ESOL↓ FreeSolv↓ Lipo↓

MPNN 0.58 1.150 0.7190
DMPTF 0.700 - -

A-FP 0.503 0.736 0.578
SMI-MLM 0.576 0.709 0.642

SMI-EDITOR 0.362 0.524 0.565

N A CASE STUDY FOR FRAGMENTS ASSEMBLE

O THE SCALABILITY OF SMI-EDITOR

We added results showing the performance of SMI-EDITOR and SMI-MLMmodels of varying sizes
on downstream tasks, which further demonstrate SMI-EDITOR’s strong scalability. These results
are shown in Table 14. It is evident that while increasing model size has minimal impact on MLM
models, larger SMI-EDITOR models show more consistent performance gains. This confirms the
claim that SMI-EDITOR has better scalability compared to MLM models.

Table 13: Performance of SMI-EDITOR and SMI-MLMwith different scales on downstream tasks.

Method BACE↑ BBBP↑ SIDER↑ Tox21↑ ToxCast↑ Mean↑

SMI-MLM(Small) 76.8 69.6 60.5 75.3 64.2 69.2
SMI-MLM(Base) 76.6 69.3 59.9 75.3 64.4 69.1
SMI-MLM(Big) 77.4 68.7 60.8 75.1 65.3 69.4

SMI-EDITOR(Small) 78.3 72.6 59.4 75.6 65.1 70.2
SMI-EDITOR(Base) 79.2 73.2 61.0 75.7 65.8 71.0
SMI-EDITOR(Big) 79.3 74.2 60.9 76.7 66.4 71.5

P THE TRAINING COST OF SMI-EDITOR

We measured that the training cost of SMI-EDITOR is approximately three times that of MLM
models (SMI-MLM) for the same model size, training hyperparameters, and data. However, the
training cost of SMI-EDITOR remains acceptable. To better analyze the impact of training cost, we
trained an MLM model with equivalent computational cost (SMI-MLM(More)). Results showed that
SMI-MLM(More) performed worse than the original SMI-MLMand significantly lagged behind
SMI-EDITOR, highlighting that merely increasing MLM training cost does not yield better results.
Below is a detailed analysis:

1. Reasons for higher training cost in SMI-EDITOR: SMI-EDITOR requires computing expert
actions (using a computationally expensive dynamic programming algorithm) and modeling three
different editing operations, which introduces additional overhead.

2. Acceptable training cost: Training SMI-EDITOR on a dataset with 19M compounds using four
RTX 3090 GPUs took approximately 24.6 hours. Scaling SMI-EDITOR to larger datasets (e.g.,
100M+ compounds) is feasible, demonstrating its potential for broader applications.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Input SMILES: CC(=O)Nc1ccc(O)cc1

Identifying
Bonds to Break

BRICS Bonds

Bonds Between Ring and Side-
chain Atoms

Break Bonds

Fragments
[1*]C(C)=O [*:1]N[*:2] [*:2]c1ccc([*:3])cc1 [*:3]O

Drop Assemble

[*:1]N[*:2]

[*:2]c1ccc([*:3])cc1

[*:3]O
Using dummy atoms to reconstruct topological information

Sanitize
C

anonicalize

Nc1ccc(O)cc1

Figure 13: An Example Workflow of Molecule Fragmentation and Assemble with Paracetamol

3. SMI-EDITOR performs better under the same training cost with MLM: We trained SMI-
MLM(More) with the same computational cost as SMI-EDITOR by increasing its training steps
from 120K to 360K. Table 14 shows that SMI-MLM(More) performs worse than the SMI-EDITOR
and original SMI-MLM. This is due to rapid saturation issues in MLM training on SMILES data.
This also indicates that the speed of model training is not the most important factor; what
matters more is whether the model can efficiently extract high-quality semantic representations.
This highlights the importance of designing more powerful training schemes like SMI-EDITOR to
effectively extract meaningful information from SMILES.

4. Higher performance ceiling for SMI-EDITOR: Although the inclusion of Experts slows down
the training speed of the SMI-EDITOR model, it also enriches the semantic information the model
learns. This gives SMI-EDITOR greater scalability and a higher performance ceiling compared to
SMI-MLM. As shown in Table D1, SMI-EDITOR benefits more from increased model size and
training cost. This makes SMI-EDITOR a better choice when given the same training budget.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 14: Performance of SMI-EDITOR and SMI-MLMwith different scales on downstream tasks.

Method BACE↑ BBBP↑ SIDER↑ Tox21↑ ToxCast↑ Mean↑

SMI-MLM(More) 74.3 66.2 49.5 73.3 62.3 65.1
SMI-MLM 77.8 68.6 61.2 75.1 64.9 69.5

SMI-EDITOR 80.3 77.4 63.0 77.1 67.4 73.0

0 100 200 300 400 500
Molecular Weight

12

10

8

6

4

2

0

2

So
lu

bi
lit

y

R = -0.69

Figure 14: The relationship between molecular weight and solubility in the ESOL training set

Q A MORE DETAILED ANALYSIS OF THE MODEL’S SUBSTRUCTURE MODELING
CAPABILITY.

The observed trends for the FreeSolv dataset are fully consistent with our expectations and
align with the definition of its physical properties. On the other hand, the performance on the
ESOL dataset is influenced by additional factors such as molecular weight. We also designed more
analytical experiments to further investigate the behavior of the SMI-EDITOR model, and the results
demonstrate that the model’s behavior aligns with expectations. Detailed explanations are as follows.

For the FreeSolv dataset, the observed trends align with its physical property definitions.
FreeSolv reflects the hydration free energy of compounds, defined as the free energy change when a
compound transitions from a non-dissolved state to a dissolved state. When hydrophilic groups in
a molecule are reduced, the change in hydration free energy increases, leading to higher hydration
free energy. Thus, when we remove hydrophilic groups from the molecule, the model predicts an
increase in hydration free energy, consistent with the trend observed in Figure 5(b), which matches
our expectations.

For the ESOL task, the model predictions are significantly influenced by molecular weight. The
ESOL dataset reflects compound solubility, which is strongly negatively correlated with molecular
weight: the larger the molecular weight, the lower the solubility. We plotted a scatter diagram
(Figure 14) showing the relationship between molecular weight and solubility in the ESOL training
set. A clear negative correlation with a coefficient of R = −0.69 is observed. Consequently, when
functional groups or atoms are removed from a molecule, its molecular weight decreases, leading the
model to predict an increase in solubility. **This explains why, in Figure 5(a), the model predicts
increased solubility regardless of whether hydrophilic groups or random groups are removed**. The

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

2 1 0 1
Changes in Predicted Values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d
De

ns
ity

HG Rep (Avg:-0.96)
Rand Rep (Avg:-0.09)

(a) SMI-EDITOR

2 1 0 1 2
Changes in Predicted Values

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
De

ns
ity

HG Rep (Avg:-0.21)
Rand Rep (Avg:-0.20)

(b) SMI-MLM

Figure 15: Substructure Semantics Modeling on ESOL Dataset. We compared the effects
of two molecular perturbation methods on the SMI-EDITOR’s and SMI-MLM’s predictions of
hydrophilicity. Figure (a) show that the impact of replacing hydrophilic groups (HG Rep) and
randomly replacing atoms (Rand Rep) on the model’s predictions differs significantly, both in the
average change in prediction values and their distributions.

2 1 0 1 2 3
Changes in Predicted Values

0.0

0.1

0.2

0.3

0.4

0.5

0.6

No
rm

al
ize

d
De

ns
ity

HG Rep (Avg:-0.36)
Rand Rep (Avg:-0.17)

Figure 16: Substructure Semantics Modeling on ESOL Dataset of Auto-regressive LM.

increase is more significant with random deletions, demonstrating the model’s ability to distinguish
between hydrophilic group deletions and random deletions.

To eliminate the influence of molecular weight, we designed a hydrophilic group replacement
scheme (HG Rep). We replaced all hydrophilic groups in a molecule with non-hydrophilic groups
of similar molecular weight (e.g., methyl, ethyl, propyl) and compared this hydrophilic group
replacement scheme (HG Rep) with a random group replacement scheme (Rand Rep), where random
groups were replaced with others of similar weight. The results, shown in Figure ??, reveal that
SMI-EDITOR effectively distinguishes between HG Rep and Rand Rep, demonstrating its ability to
model key molecular group semantics. It also correctly predicts that replacing hydrophilic groups
reduces molecular solubility.

Furthermore, we plotted the distribution of predicted changes for MLM models and Auto-regressive
language models (Auto-regressive LM) before and after these replacement operations in Figure
16. The results show that these models perform significantly worse than the SMI-EDITOR in
distinguishing between random replacements and hydrophilic group replacements. This further
highlights the superiority of the SMI-EDITOR in modeling the semantics of molecular substructures.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

R SMI-EDITOR’S PERFORMANCE ON RETROSYNTHESIS PREDICTION TASKS

Considering that the original SMI-EDITOR is an encoder-only model and cannot be directly applied
to generative tasks, we further pretrained a model based on an encoder-decoder architecture, referred
to as SMI-EDITOR-Gen. We tested its performance on the retrosynthesis prediction task, where it
achieved state-of-the-art results. Below is a detailed discussion:

Model Details of SMI-EDITOR-Gen. SMI-EDITOR-Gen adopts a transformer architecture with
a base-sized scale (Vaswani et al., 2017) and the specific model size details are provided in Table
15. During pretraining, the input to the encoder consists of SMILES strings with missing molecular
fragments, while the decoder’s pretraining task is to reconstruct the original SMILES. Following
approaches commonly used in machine translation (Vaswani et al., 2017) , the features extracted
by the encoder are passed to the decoder through encoder-decoder attention (Vaswani et al., 2017) .
Compared to SMI-EDITOR, the most significant difference is that the encoder-decoder architecture
enables SMI-EDITOR-Gen to perform sequence-to-sequence generative tasks**, allowing us to
explore the model’s capabilities in such tasks.

SMI-EDITOR-Gen Exhibits Strong Performance in Retrosynthesis Prediction Tasks. Following
the experimental setup of EditRetro(Han et al., 2024), we evaluated SMI-EDITOR-Gen on the
retrosynthesis prediction task. During fine-tuning, we applied the same fine-tuning strategies and data
augmentation techniques as EditRetro. The experimental results, shown in Table D4, demonstrate
that SMI-EDITOR-Gen achieved strong performance on the USPTO-50K dataset. This validates that
the pretraining approach proposed by SMI-EDITOR also exhibits excellent performance and great
potential in generative tasks.

Table 15: Top-k exact match accuracy of SMI-EDITOR and baselines on the USPTO-50k dataset.

Top-1 ↑ Top-3 ↑ Top-5 ↑ Top-10 ↑
RetroPrime 51.4% 70.8% 74.0% 76.1%
Transformer 42.4% 58.6% 63.8% 67.7%
SCROP 43.7% 60.0% 65.2% 68.7%
MEGAN 48.1% 70.7% 78.4% 86.1%
GTA 51.1% 67.6% 74.8% 81.6%
Retroformer 53.2% 71.1% 76.6% 82.1%
Graph2Edits 55.1% 77.3% 83.4% 89.4%
R-SMILE 56.3% 79.2% 86.2% 91.0%
EditRetro 60.8% 80.6% 86.0% 90.3%
SMI-EDITOR 61.2% 80.9% 86.4% 89.7%

S SPE TOKENIZER DOES NOT IMPROVE SMILES MLM PERFORMANCE

We trained a SMILES MLM model with SPE tokenizer, SMI-MLM(SPE), using the same architec-
ture and hyperparameters as SMI-EDITOR, and evaluated it on multiple tasks. As shown in Table 16,
SMI-MLM(SPE) performs similarly to SMI-MLMand significantly worse than SMI-EDITOR. This
demonstrates that introducing SPE cannot replicate the effectiveness of SMI-EDITOR. The reasons
are:

• Limited Fragment Diversity: SPE relies on a fixed vocabulary, limiting the diversity of
fragment-level information it can capture. In contrast, SMI-EDITOR dynamically fragments
molecules using the BRICS algorithm, capturing a wider variety of molecular substructures.

• Topology Information Leakage: SPE-based models retain token position information,
which is tied to molecular topology in SMILES, making the prediction task easier but less
effective.

• Lack of Chemical Context: SMI-EDITOR fragments molecules based on chemical rules,
allowing it to capture substructure information more relevant to molecular properties, unlike
SPE, which relies on character pair frequencies.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

• Superior Performance with Fragment-Level Supervision: A MLM model trained with
fragment-level supervision, SMI-MLM(Frag), outperforms SMI-MLM(SPE), as shown in
Table 16. This validates the effectiveness of SMI-EDITOR’s training approach.

Table 16: Performance comparison of MLM models with different pretraining strategies.

BACE↑ BBBP↑ SIDER↑ Tox21↑ ToxCast↑ Mean↑
SMI-MLM 77.8 68.6 61.2 75.1 64.9 69.5
SMI-MLM(SPE) 76.7 71.1 59.3 74.7 65.3 69.4
SMI-MLM(SPAN) 78.6 67.2 59.4 76.1 62.3 68.7
SMI-MLM(Frag) 79.4 73.3 62.1 74.0 64.8 70.7
SMI-EDITOR 80.3 77.4 63.0 77.1 67.4 73.0

T MASKED SPAN LANGUAGE MODEL DOES NOT IMPROVE SMILES LM
PERFORMANCE

1. To highlight the differences between SMI-EDITOR and MSLMs, we trained a SMILES model
using MSLM, which randomly masks continuous sequences in SMILES and predicts the missing
parts (similar to SpanBERT(Joshi et al., 2020)). This model, referred to as SMI-MLM(SPAN),
shows performance comparable to SMI-MLMbut significantly worse than SMI-EDITOR (see Table
16). This further demonstrates SMI-EDITOR’s advantages over traditional MSLMs. Reasons for
Poor Performance of Traditional MSLMs:

• Differences between Text Data and SMILES Data. Unlike text, molecular data has
complex topological structures. In text, adjacent tokens often have strong semantic relevance,
and continuous spans convey related information, making span masking effective for learning
local semantics. However, SMILES lacks such locality; a single functional group may not
appear contiguous, and adjacent tokens may lack strong relevance. For example, aromatic
rings with multiple substituents often appear discontinuous in SMILES (we provide a
specific case CASE1). This limits the effectiveness of applying span masking directly to
SMILES data.

• Traditional MSLM (e.g., T5(Raffel et al., 2020)) and SMI-EDITOR Have Different
Implementations; Traditional MSLM is Unsuitable for SMILES Data. Text data’s
semantic continuity enables models like T5 to use random span masking, where continuous
text segments are masked for prediction. In contrast, SMILES lacks this continuity, so
SMI-EDITOR uses a fragmentation algorithm to split molecules into chemically meaningful
fragments. The model predicts missing fragments, which may not correspond to continuous
SMILES segments. Unlike traditional MSLM, SMI-EDITOR focuses on masking chemically
significant fragments, a key difference in its design.

• Better Performance of SMI-MLM(Frag). The improved performance of SMI-
MLM(Frag) over SMI-MLM(SPAN) highlights the superiority of SMI-EDITOR’s fragment-
level supervision. While SMI-MLM(SPAN) uses the traditional MSLM approach, SMI-
MLM(Frag) incorporates supervision signals similar to SMI-EDITOR, enabling it to better
capture molecular substructure information.

CASE1 When does SMILES exhibit discontinuity: SMILES is a linearized representa-
tion of graph-structured molecules, which inherently causes discrepancies between molec-
ular topology and sequence-level representation. For example, when a ring contains
multiple substituents, its representation in SMILES often becomes discontinuous. Con-
sider Glibenclamide, a drug used for diabetes treatment, with the canonical SMILES:
COc1ccc(Cl)cc1C(=O)NCCc2ccc(S(=O)(=O)NC(=O)NC3CCCCC3)cc2. Here, the bolded atoms
originate from the same aromatic ring, but due to the multiple substituents, this ring is represented
discontinuously in SMILES. Additionally, the aromatic carbon cc2 is adjacent to CCC3 atoms from a
distant cycloalkane ring. Such discontinuities are common in SMILES and adversely affect Masked
Span Language Models.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

U COMPARISON BETWEEN SMI-EDITOR AND CONTRASTIVE LEARNING

Similarities: Both contrastive learning and SMI-Editor aim to learn alignment.

• Contrastive learning aligns representations of different views. The core idea of con-
trastive learning is to bring the representations of different views of the same sample
(positive pairs) closer while pushing representations of different samples (negative pairs)
apart. Essentially, this process learns the correct alignment between views of the same
sample.

• SMI-Editor aligns representations of missing substructures and contexts. As Fu et al.
(2022) noted, MLM models align the representations of contexts and missing words during
training. Similarly, SMI-Editor aligns the representations of missing substructures and their
contexts. For example, given the input Nc1ccc(O)cc1, the model need to predict the complete
molecule CC(=O)Nc1ccc(O)cc1. SMI-Editor can effectively align the representation of the
missing fragment CC(=O) with the context Nc1ccc(O)cc‘ through this process.

Differences: The alignment targets differ between the two paradigms.

• Contrastive learning focuses on global information: The representations to be aligned
often correspond to different augmented views of the same molecule, such as through atom
deletion, bond deletion, or subgraph deletion. These views typically preserve the molecule’s
overall structure and thus contain global information.

• SMI-Editor emphasizes aligning local substructure information with global context:
In SMI-Editor, the context typically corresponds to the molecule’s backbone, representing
global information, while the missing substructures contain local information.

• SMI-Editor is more sensitive to local structure information: By aligning local substruc-
tures with global context, SMI-Editor learns finer-grained semantics from SMILES data,
making it better suited to capturing detailed molecular information than contrastive learning.

V K-FOLD CROSS-VALIDATION OF THE SMI-EDITOR MODEL.

Using a 5-fold setup, we evaluated SMI-EDITOR’s performance on the training sets of BACE, BBBP,
SIDER, Tox21, and ToxCast. The results are shown in Table 17. These results demonstrate that
SMI-EDITOR exhibits strong performance and stability across downstream tasks.

Implementation Details: Each dataset was evenly divided into five parts. In each run, one part was
selected as the validation set, while the remaining four parts were used as the training set. The model
was trained and evaluated on the validation set. This process was repeated five times to complete all
runs.

Table 17: 5-fold cross-validation results of the SMI-Editor model.

BACE↑ BBBP↑ SIDER↑ Tox21↑ ToxCast↑
Run 1 91.92 97.64 62.59 83.69 75.83
Run 2 91.86 96.27 66.89 84.09 73.31
Run 3 90.82 98.53 62.60 84.87 73.52
Run 4 91.13 98.77 63.32 83.95 74.60
Run 5 90.68 97.84 63.50 85.83 75.51

Mean 91.28 97.81 63.78 84.48 74.55
Std 0.58 0.97 1.78 0.87 1.13

W BROAD APPLICATIONS OF ATOM-LEVEL TOKENIZERS

Currently, many SMILES language models, including masked language models (MLM) and au-
toregressive language models, rely on atom-level tokenizers to process molecular representations.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Atom-level tokenizers break down SMILES strings into individual atomic units or tokens, such as
atoms and simple symbols (e.g., ”C”, ”O”, ”=”). This approach simplifies the tokenization process and
aligns well with the intrinsic atomic structure of molecules, enabling models to capture fine-grained
atomic interactions and features. For example, MolXPT (Liu et al., 2023b) and Dual-view Molecular
Pre-training (Zhu et al., 2023) explicitly leverage atom-level tokenization to enhance the granularity
of molecular representations, facilitating downstream tasks such as molecule generation and property
prediction.

Atom-level tokenization has the advantage of maintaining a straightforward correspondence between
the SMILES representation and the underlying molecular structure, making it easier for the model to
interpret local chemical environments. This granularity is particularly beneficial for tasks that require
precise predictions. For instance, studies such as ChemBERTa (Chithrananda et al., 2020), Molecular
Transformer (Schwaller et al., 2019), and SMILES-BERT (Wang et al., 2019b) demonstrate that
atom-level tokenization can achieve good performance in molecular property prediction tasks.

29

	Introduction
	Relatd Works
	Pre-trained SMILES Language Model
	Edit-based Language Model

	Understanding the Behavior of MLM
	Rapid Saturation Problem
	Challenges in Modeling Substructure Semantics

	Edit-based Pre-training Framework
	SMILES Encoder with Editing Operations
	Edit-based Pre-training with Fragment-level Supervision

	Experiments
	Experiment Settings
	Results on Molecular Property Classification Tasks
	Ablation Studies
	Ablation Studies on Fragment-level Supervision
	Ablation Studies on Editing Operations

	Analytical Experiments

	Conclusions
	Details of Levenshtein Transformer
	More training curves of SMI-Editor
	Hyper-parameters for models of varying scales
	Performance of MLM Models on Downstream Task
	Performance of SMI-Editor on Downstream Task
	Hyper-Parameter Configuration for Pre-training
	Hyper-Parameter Configuration for Fine-tuning
	Details of Fine-tuning Datasets
	Performance of SMI-Editor on DeepChem Data
	Performance Advantages of SMI-Editor Over Auto-regressive Models
	Performance of SMI-Editor with Fragment Correction
	How the fragment drop ratio affect SMI-Editor
	Performance of SMI-Editor on molecular property regression tasks
	A case study for fragments assemble
	The scalability of SMI-Editor
	The training cost of SMI-Editor
	A more detailed analysis of the model's substructure modeling capability.
	SMI-Editor's Performance on Retrosynthesis Prediction Tasks
	SPE Tokenizer Does Not Improve SMILES MLM Performance
	Masked Span Language Model Does Not Improve SMILES LM Performance
	Comparison between SMI-Editor and contrastive learning
	K-fold cross-validation of the SMI-Editor model.
	Broad Applications of Atom-Level Tokenizers

