Under review as a conference paper at ICLR 2025

SMI-EDITOR: EDIT-BASED SMILES LANGUAGE
MODEL WITH FRAGMENT-LEVEL SUPERVISION

Anonymous authors
Paper under double-blind review

ABSTRACT

SMILES, as a crucial textual representation of molecular information, is increas-
ingly drawing interest for its pre-trained language models. However, most existing
pre-trained SMILES language models (LMs) only provide supervision at the single-
token level during pre-training and fail to fully leverage substructural information
of molecules. This limitation results in the pre-training task being overly simplis-
tic and further preventing the models from capturing richer molecular semantic
information. Additionally, during pre-training, these SMILES LMs only process
corrupted SMILES inputs, never encountering any valid SMILES as input, leading
to a train-inference mismatch. To address these challenges, we propose SMI-
EDITOR, a novel edit-based pre-trained SMILES language model. SMI-EDITOR
randomly disrupts substructures within a molecule and feeds the resulting SMILES
back into the model, which then attempts to restore the original SMILES through an
editing process. This training method not only introduces a fragment-level training
signal but also allows the use of valid SMILES as inputs, enabling the model to
learn how to edit these incomplete structures back to complete molecules. This
significantly enhances the model’s scalability and capability to learn fragment-level
molecular information. Experimental results show that the SMI-EDITOR performs
well across multiple downstream molecular tasks, achieving state-of-the-art results,
and even surpasses several 3D molecular representation models in performance.

1 INTRODUCTION

With the widespread application of Al technology in various molecular-related tasks, enhancing
the modeling of SMILES data has emerged as a research focal point. Due to the textual nature of
SMILES data, we can conveniently apply experiences from text modeling to address challenges in
SMILES modeling, and the knowledge extracted from SMILES data often aligns more easily with
textual knowledge. A large number of research has attempted to design SMILES language models
to explore the knowledge inherent in SMILES sequences (Wang et al., 2019aj |Chithrananda et al.,
2020; |[Bagal et al., 2021} |Ross et al., |2022) , and significant efforts have been made to align the
learned knowledge from SMILES with textual knowledge Edwards et al.|(2022); [Pei et al.| (2023));
Liu et al.[(2023b), aiming to boost the application effectiveness in downstream tasks such as property
prediction and molecular design. A core issue in these model designs is how to more efficiently mine
important molecular-related knowledge from SMILES data. Therefore, this paper seeks to address
this issue by attempting to design a SMILES language model with enhanced modeling capabilities.

Current designs of SMILES language models often follow similar approaches used for natural
language models, such as predicting missing tokens in a corrupted SMILES context (e.g., MLM,
CLM). However, this can also lead to many problems. (i) SMILES data differs from text in that
individual tokens in text are independent semantic units (like words, phrases, or subwords), whereas
in SMILES, individual tokens often represent single atoms, chemical bonds, or special symbols.
However, molecules typically depend more on specific substructures (like functional groups) for
functionality, meaning that the functional information usually reflects at the substructure level. This
suggests that if a SMILES language model focuses solely on modeling the relationships between
individual tokens and their SMILES contexts, it would struggle to learn the semantic information of
specific molecular substructures. (ii) Moreover, predicting a single missing token in a given SMILES
context is very easy. This can cause the model’s capacity to reach a saturation point quickly during
training, preventing it from acquiring additional and more comprehensive molecular knowledge. As

Under review as a conference paper at ICLR 2025

a result, this affects the model’s scalability and its effectiveness in generalizing to a wider range of
molecular data. (iii) Additionally, as these models are trained on corrupted SMILES contexts which
contain the special symbol [MASK] that does not exist in real SMILES, their ability to model the
semantic content of complete SMILES is compromised.

To address these challenges, we propose an edit-based SMILES language model with fragment-level
supervision. (i) First, to help the model learn richer substructure-related molecular information, we
designed a fragment-level supervision signal. By randomly dropping substructures in molecules
and having the model learn to recover this information, the model can acquire more comprehensive
fragment-level semantic knowledge. (ii) We also devised an edit-based pre-training objective,
allowing us to input a valid SMILES sequence and restore missing substructures through edits.

In summary, the contributions of this paper are threefold:

* We analyze the behavior of current SMILES masked language models (MLMs) during the pre-
training phase and downstream tasks, and further identify that current SMILES MLMs exhibit rapid
saturation problem during pre-training and have a weak ability to model the molecular substructure
information. Previous research lacks a systematic analysis of these issues.

* To address the limitations of existing models, we introduce the first edit-based pre-trained language
model for SMILES, enabling the transformation of a valid SMILES sequence into a structurally
closely related one. This approach resolves the train-inference mismatch issue in current SMILES
language models. Additionally, we incorporate fragment-level supervision, enhancing the model’s
ability to learn richer semantic knowledge from SMILES and improving its overall performance.

* Extensive experiments demonstrate that the SMI-EDITOR model achieves state-of-the-art perfor-
mance on multiple molecular property prediction tasks, surpassing several 3D molecular models,
and the ablation and analysis experiments designed in this study confirm the effectiveness and
better scalability of the SMI-EDITOR model.

2 RELATD WORKS

SMILES, as a key sequential representation of molecular information, has become a significant
focus in molecular representation learning. Numerous Pre-trained SMILES Language Models (Wang
et al., [2019a; (Chithrananda et al.| |2020; [Ross et al., [2022) have been proposed to address various
challenges in SMILES-based molecular modeling, and their effectiveness has been validated across
many downstream tasks (Bagal et al., 2021} [Tong et al., 2021) . Edit-based generative models,
another important approach to sequence modeling, have been widely applied in tasks such as machine
translation, summarization, and grammatical error correction. In this section, we first introduce
representative work in Pre-trained SMILES Language Models, followed by a discussion on Edit-based
Language Models for sequence modeling.

2.1 PRE-TRAINED SMILES LANGUAGE MODEL

Similar to text, SMILES is a type of sequential information. Early pre-trained SMILES language
models adopted methods from text modeling. [Wang et al.|(2019a) introduced SMILES-BERT, inspired
by the BERT model (Devlin et al.|[2018) and the masked language model (MLM) training objective,
demonstrating its effectiveness in molecular property prediction tasks. Likewise, |Chithrananda
et al.| (2020) developed ChemBERTa, based on RoOBERTa(L1u et al., [2019b), to capture SMILES
semantics using the MLM objective. Ross et al.| (2022) proposed Molformer, trained on a larger
dataset with MLM training objective, showing that SMILES models can capture molecular properties
and structure. As a result, MLM-based models have become dominant in SMILES representation
learning. In addition, generative pre-training approaches have also been applied. The MolGPT model
(Bagal et al.|, 2021) uses an autoregressive approach, while [Tong et al.|(2021) applied generative
models to drug design. [Liu et al.|(2023b) further unified SMILES and textual data through generative
pre-training. Overall, pre-trained SMILES language models, particularly those based on the MLM
objective, are now essential in molecular modeling research.

Under review as a conference paper at ICLR 2025

> > >

" Small MLM Train Loss 8 ” Small MLM Valid Loss 3 ” Maskiaalio 15% MLM Tram Loss 3
» Base MLM Train Loss a g Base MLM Valid Loss 3 17 MaskRatio 30% MLM Train Loss 8
3 Big MLM Train Loss 2 = Big MLM Valid Loss 2 3 MaskRatio 45% MLM Train Loss <<(->
_% Small MLM MaskedAcc - T Small MLM MaskedAcc kel _% MaskRatio 15% MLM MaskedAcc o
=2 Base MLM MaskedAcc 4 € & Base MLM MaskedAce |~ £ S MaskRatio 30% MLM MaskedAcc | &
—— Big MLM MaskedAcc 2 —— Big MLM MaskedAcc 8 MaskRatio 45% MLM MaskedAce 8

= = =

0 20K 40K 60K 80K 100k 0 20K 40K 60K 80K 100k 0 20K 40K 60K 80K 100k
Training steps Training steps Training steps

(a) Training Curves: Model Scales (b) Validation Curves: Model Scales (c) Training Curves: Mask Ratios

Figure 2: Rapid Saturation Problem. We train SMILES MLMs of various sizes and masking ratios
using the dataset from Zhou et al.[(2023). Figure (a) displays the training loss and masking prediction
accuracy of different-sized models, showing a rapid decrease in loss and an increase in accuracy at
the start of the training. Figure (b) presents similar trends for the validation set. Figure (c) illustrates
the training loss and accuracy for models with different masking ratios, showing similar patterns.

2.2 EDIT-BASED LANGUAGE MODEL

Edit-based sequence generation offers a faster, more flexible alternative to traditional autoregressive
methods. Malmi et al| (2019) introduced the LASERTAGGER model, which uses tags (keep,
delete, add) to edit sequences, while the Felix model (Mallinson et al., 2020) combines a pointer-
based mechanism with an MLM model to handle insertions and deletions. Recognizing that edit
operations from an input sequence to a target output can be diverse and difficult to compute directly,
Gu et al.| (2019) developed the Levenshtein Transformer (LevT) model. This model calculates
the minimum levenshtein distance between the input and target sequences to create an optimal
sequence of edit operations, using this as the training objective. This approach significantly improves
performance on tasks such as machine translation and post-editing. LevT was further applied
to lexically constrained translation tasks with notable success (Susanto et al., 2020). To resolve
inconsistencies between training and inference, [Zheng et al.| (2023) introduced a dual training
objective, improving performance in tasks such as summarization and grammatical error correction.
Overall, edit-based models have proven highly efficient across many tasks and are a key research area
in sequence modeling.

3 UNDERSTANDING THE BEHAVIOR OF MLLM

Masked Language Model (MLM) is a widely used approach for modeling [M]C ([M] O [M]C
textual information and has been extensively applied in SMILES modeling '} {} [} [l [L [L
(Wang et al.| 2019a; |Chithrananda et al.| 2020; Ross et al.,|2022)). During

the training process of MLM model, tokens in the SMILES sequence, SMILES MLM
including single atoms, chemical bonds, or special symbols, are randomly

masked with a fixed masked ratio of 15%. The model is then tasked with] Il il
learning to accurately predict these masked tokens, as shown in Figure[T} C =)

To further assess the effectiveness and capabilities of MLMs for SMILES ~ Figure 1: The framework
data, we conducted a series of experiments. of MLM for SMILES.

3.1 RAPID SATURATION PROBLEM

Rapid Saturation During Pre-training. To investigate whether the MLM model experiences rapid
saturation during training and how this issue impacts the model’s scalability, we trained MLMs of
various scale and compared their training curves (Details of models with different scale can be found
in Appendix[C). As shown in Figure[2a] while the training loss rapidly decreases, the mask-prediction
accuracy on training set of the models quickly rose above 90% within the first 5,000 steps. By around
10,000 steps, the mask-prediction accuracy on training set of all models exceeded 95%. A similar
rapid saturation phenomenon is observed on the validation set. As shown in Figure 2b] the validation
loss drops quickly after training begins, while mask-prediction accuracy rises sharply. All models of
varying scales exhibit the same rapid saturation phenomenon, including the small model with only
6.7M parameters. These results indicate that the MLM pre-training task is overly simplistic, allowing
even very small models to converge quickly, which limits the model’s capacity and scalability for

Under review as a conference paper at ICLR 2025

HG Del (Avg:-0.14)
Rand Del (Avg:-0.04)

HG Del (Avg:0.49)
Rand Del (Avg:0.42)

o
0
= =
=) N

/\

’/‘ - /\/\
-2 -1 0 2 : -0.5 0.0 0.5 1.0 15 2.0

1
Changes in Predicted Values Changes in Predicted Values
(a) ESOL Dataset (b) FreeSolv Dataset

I
IS

Normalized Density
=) =] =]

N B o
\
Normalized Density
o o
o [e2]

o
N

0.0

o
o

Figure 3: Substructure Semantics Modeling. We compared two molecular perturbation meth-
ods—removing hydrophilic groups and randomly deleting atoms—and their effects on the model’s
predictions of hydrophilicity and related properties. Figure (a) presents the impact of these perturba-
tions on model predictions in the ESOL dataset, including the distribution of prediction changes. The
average prediction change is similar for both methods (-0.14 vs. -0.04) and shows similar distributions.
Figure (b) shows the effects on the FreeSolv dataset, also with similar average prediction change.

1.0
HG Del (Avg:0.19) 1.75 HG Del (Avg:0.38)
> Rand Del (Avg:0.85) > Rand Del (Avg:-0.01)
0.8 =150
(%] (%]
3 o]
a 06 a 1.25
© ©
9 $ 1.00
N N
0.4 5 0.75
£ £ 050
So2 S
0.25
0.05==2 — 0.00
-15 -10 -05 00 05 10 15 20 —0.75 —0.50 —0.25 0.00 0.25 050 0.75 1.00 1.25
Changes in Predicted Values Changes in Predicted Values
(a) ESOL Dataset (b) FreeSolv Dataset

Figure 4: Substructure Semantics Modeling from SMI-EDITOR. We compared the effects of
two molecular perturbation methods on the SMI-EDITOR’s predictions of hydrophilicity and related
properties. Figure (a) and Figure (b) show that the impact of deleting hydrophilic groups (HG Del)
and randomly deleting atoms (Rand Del) on the model’s predictions differs significantly, both in the
average change in prediction values and their distributions.

more complex tasks. We also test the performance of MLM models of different sizes and training
steps on downstream tasks, and the detailed results can be found in Appendix [D] The results on
downstream tasks also suggest that the scalability of MLM models is limited.

Different Mask Ratio Cannot Alleviate Rapid Saturation. One possible reason for the rapid
saturation problem in MLM pre-training is that only 15% of tokens are masked during training,
providing the model with too little training information and making token prediction too easy, which
leads to rapid saturation. To investigate whether this is the cause, we trained large-scale MLM models
with different mask ratios (15%, 30%, 45%). The training curves are shown in Figure[2c| The results
show that MLM models with different mask ratios all show a rapid decrease in training loss at the
beginning of training, quickly converging to a very low level. And even with a mask ratio of 45%,
the training loss still drops rapidly, and by 10K steps, the mask-prediction accuracy already exceeds
92%. This indicates that increasing the mask ratio does not prevent the MLM model from converging
quickly, limiting its scalability. It further demonstrates that the emergence of rapid saturation is not
due to a low mask ratio, but rather because the MLM training task is relatively simple and lacks
sufficient information for SMILES data.

3.2 CHALLENGES IN MODELING SUBSTRUCTURE SEMANTICS

To evaluate the ability of MLM to learn molecular substructures semantics, such as functional
groups, we design experiments to analyze whether the model can accurately capture functional
group information closely related to molecular properties. We use two molecular property prediction

Under review as a conference paper at ICLR 2025

Data Processing

Original SMILES Expert Editing Policy
CC(=0)O0c1ccccc1C(=0)0

CC(=0)O0c1ccccc1C(=0)0

Fragmentation SMILES Encoder 4
Token Prediction 0
=
) m Transformer Block °
Fragments Dropping X [0)
kS <
Ox ; [p][p][p][p][p][p]‘0c1ccccclc(=0)0 g-
o 2 Transformer Block . >
i ; Placeholder Insertion %’
0“ “OH . =1
Insertion 9
Transformer Block n

Oct 1C(=0)0
¥ c ccccc‘ (=0)

Resulting SMILES

€6¢=030c1cccec1C(=0)0 Embedding Layer

Token Deletion

Figure 5: Overall Framework of SMI-EDITOR. The framework includes a data processing module,
a SMILES encoder, and an edit-based pre-training process. In data processing, some fragments of
the input molecule are randomly removed, and the resulting SMILES is fed into the model. The
pre-training goal for the model is to edit the corrupted SMILES to recover the original SMILES.
To enable this, we add three different heads for token deletion, placeholder insertion, and token
prediction to the SMILES encoder (see Appendix [A]for details). An expert provides training signals
for these operations to help the model learn how to recover the original SMILES through editing.

datasets, ESOL and FreeSolv (Wu et al., 2017), both of which are highly relevant to molecular
hydrophilicity. Specifically, the ESOL dataset provides information on the water solubility of
molecules, while the FreeSolv dataset focuses on hydrogen free energy, both of which are tightly
linked to hydrophilic groups within the molecules.

In our approach, we first fine-tune the MLM model on these datasets using linear probing. Then,
we traverse the SMILES of all molecules in the datasets and remove the hydrophilic groups (e.g.,
—OH, —COOH, —NH,, etc.) identified in each molecule. We compare the predicted values of the model
before and after the removal. As a control, we also randomly delete atoms from these molecules and
compare the predicted changes in molecular properties.

As shown in Figure 3| the changes in predicted values after deleting hydrophilic groups (HG Del) are
similar to those from random deletions (Rand Del) in both the ESOL and FreeSolv datasets. This
indicates that the model struggles to differentiate between the effects of removing hydrophilic groups
and random atoms on molecular properties. This result further suggests that the MLM model fails to
effectively capture the semantic information of important substructures in SMILES.

4 EDIT-BASED PRE-TRAINING FRAMEWORK

To address the limitations of MLM-based SMILES language models, we propose a novel SMILES
language model that employs an edit-based training objective. To enhance the model’s ability to
capture the semantics of substructures within molecules, we introduce fragment-level supervision
during pre-training, which includes randomly discarding parts of substructures and requiring the
model to predict the missing components. This method enables the model to effectively learn
substructure semantics. In contrast, MLM models only operate on corrupted SMILES contexts with
unreal [MASK] symbols, leading to inconsistencies between training and testing. To mitigate this
issue, we input complete and valid SMILES sequences into the model, requiring it to reconstruct the
missing substructures through an editing approach. Moreover, the editing framework offers greater
flexibility compared to MLM, as it imposes no specific restrictions on input forms. This allows us to
create more versatile model inputs by removing certain substructures from a molecule, converting it
back to SMILES, and then feeding it into the model. In this section, we will discuss SMI-EDITOR
from both model design and pre-training framework perspectives.

4.1 SMILES ENCODER WITH EDITING OPERATIONS

In the edit-based pre-training process, the model should be capable of modeling editing operations.
Specifically, when given a SMILES sequence with missing substructures, the model needs to accu-

Under review as a conference paper at ICLR 2025

rately predict the editing operations required to complete these missing substructures. To address this,
we have designed a SMILES encoder that supports editing operation modeling.

Model Architecture. The core architecture of the model remains a Transformer Encoder built from
multiple stacked Transformer blocks. Each transformer blocks contains a multi-head self-attention
layer and a feed-forward layer (Vaswani et al.,[2017). The SMILES representations extracted by
the Transformer Encoder are then passed to the Editing Operations Head, which is responsible for
predicting the required editing operations. Similar to existing Edit-based Language Models (Gu
et al., 2019), the model needs to handle two types of editing operations: deletion and insertion.
Specifically, the model completes missing parts of the SMILES sequence by removing redundant
parts and inserting the missing substructures. This requires an additional prediction head to handle
these editing operations effectively. Consequently, the model gains the capability to model editing
operations proficiently.

Deletion Operations Head. For a given input token, there are two possible deletion operations:
delete or not delete. Therefore, the deletion operation is essentially a token-level binary classification
problem. Let = denote the representation of the i-th input token extracted by the Encoder. The

probability of deleting the i-th token, denoted as wgel (1), can be expressed as:

ﬂgel(i) = Softmax(WdTmlE)
Here, W, is a matrix of size H x 2, H is the hidden size.

Insertion Operations Heads. Modeling the insertion operation is more complex compared to the
deletion operation. Similar to LevT, the insertion operation is modeled in two steps. In the first step,
the model needs to predict the positions and number of tokens to be inserted into the original input
sequence. At these predicted positions, placeholders [P] are inserted to represent the tokens that
will be added. In the second step, the model predicts the actual tokens for each placeholder [P].

For the first step, given the length of the SMILES, we constrain the model to insert at most 255 tokens
at a time. Thus, this step can be seen as a 256-class classification problem for each token position.
The probability of inserting tokens at the i-th position, denoted as 7;"(¢), can be expressed as:

708 (4) = Softmax(W)

ini

Here, W;,, is a matrix of size H x 256.

In the second step, the task is conceptually similar to what is done in MLM models. For each [P]
symbol, the model needs to predict the probability distribution over the vocabulary for the token at
that position. Therefore, the probability distribution for the token corresponding to the [P] at the

i-th position, denoted as 77501‘(2'), can be expressed as:

7% (1) = Softmax(W,L, xF)

Here, W, is a matrix of size H X vob, where vob represents the size of the vocabulary.

4.2 EDIT-BASED PRE-TRAINING WITH FRAGMENT-LEVEL SUPERVISION

After constructing the SMILES encoder with editing operations, the next crucial step is to build
an edit-based pre-training framework and provide fragment-level self-supervised training signals.
Unlike traditional masked language models, an edit-based model can transform a valid SMILES
input into the target SMILES through editing operations. First, we fragment the input molecule using
rule-based molecule fragmentation, breaking it into different fragments. A subset of these fragments
is then randomly selected and removed from the original molecule. The resulting corrupted molecule
is converted back into a SMILES representation and fed into the SMILES Encoder. We train the
encoder to predict the correct editing process required to restore the corrupted molecule to its original
and complete form.

Under review as a conference paper at ICLR 2025

Molecule Fragmentation and Fragments Dropping. To provide the model with fragment-level
training signals, we first need to split the input molecule M into multiple fragments { f1, f2,...}. The
BRICS algorithm (Degen et al.| [2008) is a commonly used method for molecular fragmentation,
which divides a molecule into fragments based on predefined rules, such as molecular functional
groups. However, BRICS often generates relatively large fragments, and removing these fragments
can overly disrupt the molecule, leading to the loss of important core structures, like rings. To
address this, we adopt a similar fragmentation approach with RMCF (Wang et al.,2022a), where we
further split the links between rings and side chains on top of BRICS, resulting in smaller molecular
fragments. After cutting the molecule, we randomly select and discard some fragments with a certain
probability. The remaining fragments are then reassembled into a corrupted molecule M. The model
is tasked with recovering the original molecule’s SMILES from the given SMILES of M through an
edit-based approach.

Edit-based Training Objective with Dual Loss. The core pre-training task of the SMI-EDITOR
model is to take the SMILES of a corrupted molecule M as input and attempt to restore it to the
SMILES of the original molecule M through an editing process. Specifically, SMI-EDITOR takes
the SMILES of a corrupted molecule M as input, and generates a valid SMILES output through
deletion and insertion operations. However, traditional edit-based models like LevT only provide
training signals for deletion by teaching the model to remove incorrect tokens it inserted. This limits
the model’s ability to learn how to delete the incorrect parts in the input SMILES. To overcome this
problem, we introduce the dual deletion loss, which trains the model to correctly delete incorrect
tokens from the initial SMILES input.

To provide proper training signals for the model, we adopt the imitation learning method from LevT,
which supervises the model by minimizing the Levenshtein distance between the input and target
output. The training objective is defined as follows:

LRIl — N log mdel(d: i, A1)

y; €M
dfed*

Here, d* is the optimal deletion action determined by an expert to minimize the Levenshtein

distance to the target output y* which is the SMILES of molecule M. This is formulated as

d* = argmin,D(y*, E(M ,d)), where D is the Levenshtein distance, 74! is the Deletion Classifier,

and ¢ represents the environment in LevT’s Markov Decision Process. E(M ,d) applies the deletion
action d to the initial input SMILES M, removing selected tokens.

In addition to the dual deletion loss, we retain the original LevT’s training objective Elge"T (details
of EI(;eVT can be found in Appendix , which supervises both deletion and insertion actions by
minimizing the Levenshtein distance between the input and target output. Thus, the final training
objective is:

1Del T
£9 _ £6Dua De + Egev

Through this edit-based pre-training process, we equip the SMI-EDITOR model with fragment-level
training signals, enabling it to learn how to transform the SMILES of a corrupted molecule M into
the SMILES of the original molecule M via fragment editing.

5 EXPERIMENTS

In this section, we first evaluate the performance of SMI-EDITOR on molecular property prediction
tasks and compare it with baseline models (Section [5.2)). The results show that SMI-EDITOR
outperforms both the MLM and 3D molecular models, achieving state-of-the-art performance. To
further validate the model design and pre-training framework, we conduct ablation studies on training
signals and editing operations (Section[5.3). Additionally, analytical experiments confirm that SMI-
EDITOR has a stronger ability to capture the semantics of molecular substructures compared to MLM
models. Analysis of the training curves also demonstrates that SMI-EDITOR mitigates the issue of

Under review as a conference paper at ICLR 2025

Table 1: The overall results on 7 molecule property classification datasets. We report ROC-AUC
score (higher is better) under scaffold splitting. The best results are bold. The second-best results are
underlined. For more detailed information about the dataset, please refer to Table

Datasets BACEtT BBBP{ Tox211 SIDERT MUVt ClinToxt ToxCast? | Meant

Molecules 1531 2039 7831 1427 93087 1478 8575 -
D-MPNN 80.9 71.0 75.9 57.0 78.6 90.6 65.5 74.2
Attentive FP 78.4 64.3 76.1 60.6 76.6 84.7 63.7 72.1

N-Gramgrp 77.9 69.7 74.3 66.8 76.9 717.5 - -
GROVER 82.6 70.0 74.3 64.8 62.5 81.2 65.4 71.5
GraphM VP 81.2 72.4 75.9 63.9 77.7 79.1 63.1 73.3
InfoGraph 77.8 67.5 73.2 59.9 74.1 76.5 63.7 70.4
MolCLR 82.4 72.2 75.0 58.9 79.4 91.2 69.2 75.5
Mole-BERT 80.8 71.9 76.8 62.8 78.6 78.9 64.3 73.4
3D InfoMax 79.7 69.1 74.5 60.6 74.4 79.9 64.4 71.8
MoleculeSDE 80.4 73.2 76.5 59.6 79.9 86.6 65.2 74.5
SMI-MLM 77.8 68.6 75.1 61.2 75.1 89.8 64.9 73.2
SMI-EDITOR 80.3 77.4 77.1 63.0 80.2 98.9 67.4 77.8

rapid saturation and enhances the training stability (Section[5.4). Additionally, we provide details on
the training data, baseline models, and implementation used in the experiments (Section .

5.1 EXPERIMENT SETTINGS

Datasets. For pre-training, we use the large-scale molecular dataset provided by Zhou et al.|(2023),
which includes SMILES information for 19 million molecules. For fine-tuning, we employ the
widely recognized MoleculeNet benchmark (Wu et al., | 2018)). For more details about this dataset,
please refer to Appendix [H} We follow the same data split as used by [Zhou et al.| (2023) and tokenize
SMILES sequences with the regular expression from|Schwaller et al.[(2018)).

Baselines. We evaluate our approach against various supervised learning and pre-training baselines,
including both SMILES-based and 3D molecular pre-training models. The supervised methods
include D-MPNN (Yang et al.|[2019) and AttentiveFP (Xiong et al.,[2019), both of which are based on
graph neural networks (GNNs). For 2D and 3D molecular pre-training, we consider several methods:
N-gram (Liu et al.,|2019a), GROVER (Rong et al., 2020)), GraphM VP (Liu et al.|[2021)), MolCLR
(Wang et al.l 2022b), InfoGraph (Sun et al., 2019), Mole-BERT (Xia et al.), 3D InfoMax (Stérk et al.
2022)), and MoleculeSDE (Liu et al., 2023a). For a fair comparison, we train a SMILES model based
on MLM pre-training, referred to as SMI-MLM, using the same training data, model architecture,
and training hyperparameters as SMI-EDITOR.

Implementation Details. We use a Transformer block with a hidden size of 768 and 12 attention
heads, comprising 12 layers in the SMILES encoder, which contains a total of 86.3 million trainable
parameters. During pre-training, the fragment drop ratio is set to 0.15. For downstream tasks, we
use the same fine-tuning dataset established by Uni-Mol. (cf. Appendix [F| for more details about
hyper-parameter configuration.)

5.2 RESULTS ON MOLECULAR PROPERTY CLASSIFICATION TASKS

Tasks Details. We evaluate SMI-EDITOR on the MoleculeNet (Wu et al., |2017) benchmark
and compare its performance with baseline models. We evaluate SMI-EDITOR on 7 widely used
molecular property prediction tasks. For detailed hyperparameters used in different tasks, please refer
to Appendix |G| For all seven molecular property prediction tasks, we input the normalized SMILES
information into the model and perform further fine-tuning for each task. The hyperparameters for
each task are detailed in the supplementary materials. ROC-AUC is used as the evaluation metric,
and the results are summarized in Table [Tl

Results. SMI-EDITOR achieves state-of-the-art (SOTA) performance on 4 tasks and closely
matches the SOTA models on the remaining tasks. Compared to the MLM model SMI-MLM,
which uses the same training settings, training data, and evaluation processes for downstream tasks,

Under review as a conference paper at ICLR 2025

SMI-EDITOR demonstrates superior performance across all seven tasks, validating the effectiveness
of its pre-training framework. Additionally, SMI-EDITOR outperforms several molecular representa-
tion learning models that utilize 3D information, indicating that SMILES contains important and rich
semantic information related to molecular properties and that SMI-EDITOR effectively captures this
information. SMI-EDITOR also demonstrated the strongest average performance across all 7 tasks,
indicating that it outperforms other baseline models in these prediction tasks.

5.3 ABLATION STUDIES

5.3.1 ABLATION STUDIES ON FRAGMENT-LEVEL SUPERVISION

Table 2: Ablation Studies on Fragment-level Supervision. Fragment-level supervision provide
more informative and useful training signals than atom-level supervision and are crucial for helping
the model learn multi-level semantic information in molecules.

Method | BACEt BBBPt Tox21t SIDERT ToxCast? | Meant
SMI-EDITOR-AtomsDropping 80.0 73.4 76.5 59.2 66.6 71.1
SMI-EDITOR-AtomsMasking 80.4 73.2 75.0 58.3 64.6 70.3

SMI-MLM 77.8 68.6 75.1 61.2 64.9 69.5
SMI-EDITOR | 803 77.4 77.1 63.0 674 | 73.0

Experimental Settings. To explore the impact of fragment-level supervision signals on model
performance, we train SMI-EDITOR models using two different pre-training strategies. The first
model, SMI-EDITOR-AtomsDropping, replaces the fragment dropping process in pre-training with
random atom dropping. After discarding certain atoms, we input the modified SMILES into the
model, asking it to restore the original SMILES through an editing approach. The second model,
SMI-EDITOR-AtomsMasking, uses random token masking similar to MLM, where selected tokens
are replaced with [MASK], and the model is tasked with restoring the original SMILES via editing.
The performance of these models is presented in Table

Results Analysis. The results show a significant decline in performance when fragment dropping is
replaced with random atom dropping (SMI-EDITOR-AtomsDropping vs. SMI-EDITOR), indicating
that the fragment-level supervision signal enables the model to learn more important and nuanced
semantic information. Furthermore, when random atom dropping is replaced with random token mask-
ing, performance decreases again (SMI-EDITOR-AtomsMasking vs. SMI-EDITOR-AtomsDropping).
This suggests that while both random token masking and random atom dropping introduce atom-level
training signals, the introduction of the unrealistic special symbol [MASA] through token masking
adversely affects model performance. Compared to these two models, SMI-MLM exhibits even
poorer performance, demonstrating that this editing training approach effectively helps the model
learn richer semantic knowledge.

5.3.2 ABLATION STUDIES ON EDITING OPERATIONS

Table 3: Ablation Studies on Editing Operations. The placeholder insertion process, which is
absent in MLM models, enables the model to learn richer and more diverse semantic information.

Method \BACET BBBP{ Tox211 SIDERtT ToxCastf \ Meant

w/o PlhIns 76.1 69.7 76.9 55.5 66.2 68.9
w/o TokPred 79.8 69.2 75.4 574 65.9 69.5
w/o TokDel 79.0 73.5 71.3 61.9 64.9 713
w/o DualDel 78.4 70.1 76.4 59.5 64.4 69.8
SMI-EDITOR | 80.3 77.4 77.1 63.0 674 | 73.0

Experimental Settings. To investigate the impact of different training signals from the editing
operations in the SMI-EDITOR model on its performance, we train four variations of the SMI-
EDITOR model. These models are obtained by removing the training signals for placeholder insertion,
token prediction, token deletion, and dual token deletion (setting the training loss weight to zero),
corresponding to the three editing operations in the original LevT model and the dual deletion loss.
The detailed results are presented in Table

Under review as a conference paper at ICLR 2025

Results Analysis: Why SMI-EDITOR is Better than SMI-MLM. The results indicate that the
ablation of any of these four editing operations leads to a significant decline in model performance.
Notably, removing the placeholder insertion operation results in the largest performance loss. This
operation primarily models the position of missing fragments within the SMILES, highlighting the
importance of teaching the model to predict the locations of these fragments for capturing critical
semantic information and improving performance. In contrast, the MLM model attempts to predict
masked tokens based on their given positions, which simplifies the pre-training task and limits the
model’s exposure to important semantic information, ultimately affecting its performance. Moreover,
SMI-EDITOR provides supervision signals for each token in the sequence, but the MLM model only
provides supervision signals for [MASK] tokens, which limits the semantic richness of the model.

Results Analysis: Dual Deletion Loss is More Useful. Additionally, the ablation of the dual
deletion operation also causes a significant decline in model performance, with a more pronounced
drop than when token deletion is removed. This indicates that the dual deletion loss incorporated into
our model provides more useful and richer training signals than token deletion loss in LevT.

5.4 ANALYTICAL EXPERIMENTS

SMI-EDITOR Understands Substructure Semantics. Similar to the analysis in Section [3.2]
we tested SMI-EDITOR’s response to two different molecular perturbation methods on the ESOL
and FreeSolv datasets. As shown in Figure |4] compared to the results in Figure (3] SMI-EDITOR
exhibits distinct prediction changes for the two perturbation methods on both the ESOL and FreeSolv
datasets. This indicates that SMI-EDITOR can clearly differentiate between the impact of removing
hydrophilic groups and randomly deleting atoms on molecular properties, demonstrating that it
models the semantics of key molecular substructures more effectively than the MLM model.

SMI-EDITOR Enhances Training Stability and Model

Scalability. We train SMI-EDITOR of different sizes and

compare their training curve variations. As shown in Fig-

ure .@.the losses of the SMI-EDITOR models consistently % Small Model Train Loss

exhibit a more pronounced downward trend throughout 2 Base Model Train Loss

the training process compared to the MLM models (Figure & Big Model Train Loss
o . . =

[24), further alleviating the rapid saturation problem. Ad-

ditionally, unlike the MLM, the training loss of the SMI-

EDITOR shows more distinct differences across sizes. As

the model size increases, the loss steadily decreases, with 0 20K 40K 60K 8OK 100k

the larger model (Big Model) converging more stably than Training steps

the MLM, indicating better scalability for SMI-Eprror. Figure 6: The training loss curves of
We also analyze the training and validation loss curves different-sized SMI-EDITOR models.
for the three types of editing operations in SMI-EpITOR, 1he loss curves consistently show a sta-
confirming the model’s scalability during pre-training; de- Ple downward trend throughout the train-
tailed results can be found in Appendix [B] Additionally, 1ngprocess, and the model loss gradually
we evaluate the performance of SMI-EDITOR models of ~decreases as the model size increases.
different sizes on downstream tasks, demonstrating that SMI-EDITOR exhibits better scalability and
stability compared to the MLM model (SMI-MLM). Detailed results can be found in Appendix [E]

6 CONCLUSIONS

In this paper, we analyze the behavior and shortcomings of masked language models (MLMs) on
SMILES data. Through the examination of training curves, we demonstrate that training MLMs on
SMILES data encounters rapid saturation issues. Further analytical experiments reveal that MLMs
struggle to effectively capture the semantics of important molecular substructures. To address these
issues, we propose the edit-based pre-training molecular representation learning model SMI-EDITOR,
which enhances the model’s ability to capture substructure semantics by learning how to recover the
missing fragments through edit operations. Extensive experiments on molecular property prediction
tasks validate the effectiveness of SMI-EDITOR, and ablation studies confirm the advantages of its
design over traditional MLMs in modeling molecular substructure semantics and training stability.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Viraj Bagal, Rishal Aggarwal, PK Vinod, and U Deva Priyakumar. Molgpt: molecular generation
using a transformer-decoder model. Journal of Chemical Information and Modeling, 62(9):
2064-2076, 2021.

Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. Chemberta: large-scale self-
supervised pretraining for molecular property prediction. arXiv preprint arXiv:2010.09885, 2020.

Jorg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of compiling
and using’drug-like’chemical fragment spaces. ChemMedChem, 3(10):1503, 2008.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and Heng Ji. Translation
between molecules and natural language. arXiv preprint arXiv:2204.11817, 2022.

Zhiyi Fu, Wangchunshu Zhou, Jingjing Xu, Hao Zhou, and Lei Li. Contextual representation learning
beyond masked language modeling. arXiv preprint arXiv:2204.04163, 2022.

Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. Advances in neural informa-
tion processing systems, 32, 2019.

Yugiang Han, Xiaoyang Xu, Chang-Yu Hsieh, Keyan Ding, Hongxia Xu, Renjun Xu, Tingjun Hou,
Qiang Zhang, and Huajun Chen. Retrosynthesis prediction with an iterative string editing model.
Nature Communications, 15(1):6404, 2024.

Mandar Joshi, Danqgi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy. Spanbert:
Improving pre-training by representing and predicting spans. Transactions of the association for
computational linguistics, 8:64-77, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Shengchao Liu, Mehmet F Demirel, and Yingyu Liang. N-gram graph: Simple unsupervised repre-
sentation for graphs, with applications to molecules. Advances in neural information processing
systems, 32, 2019a.

Shengchao Liu, Hanchen Wang, Weiyang Liu, Joan Lasenby, Hongyu Guo, and Jian Tang. Pre-
training molecular graph representation with 3d geometry. arXiv preprint arXiv:2110.07728,
2021.

Shengchao Liu, Weitao Du, Zhi-Ming Ma, Hongyu Guo, and Jian Tang. A group symmetric stochastic
differential equation model for molecule multi-modal pretraining. In International Conference on
Machine Learning, pp. 21497-21526. PMLR, 2023a.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

Zequn Liu, Wei Zhang, Yingce Xia, Lijun Wu, Shufang Xie, Tao Qin, Ming Zhang, and Tie-
Yan Liu. Molxpt: Wrapping molecules with text for generative pre-training. arXiv preprint
arXiv:2305.10688, 2023b.

Jonathan Mallinson, Aliaksei Severyn, Eric Malmi, and Guillermo Garrido. Felix: Flexible text
editing through tagging and insertion. arXiv preprint arXiv:2003.10687, 2020.

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil Mirylenka, and Aliaksei Severyn. Encode, tag,
realize: High-precision text editing. arXiv preprint arXiv:1909.01187, 2019.

Qizhi Pei, Wei Zhang, Jinhua Zhu, Kehan Wu, Kaiyuan Gao, Lijun Wu, Yingce Xia, and Rui Yan.
Biot5: Enriching cross-modal integration in biology with chemical knowledge and natural language
associations. arXiv preprint arXiv:2310.07276, 2023.

11

Under review as a conference paper at ICLR 2025

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1-67, 2020.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems, 33:12559-12571, 2020.

Jerret Ross, Brian Belgodere, Vijil Chenthamarakshan, Inkit Padhi, Youssef Mroueh, and Payel Das.
Large-scale chemical language representations capture molecular structure and properties. Nature
Machine Intelligence, 4(12):1256-1264, 2022.

Philippe Schwaller, Theophile Gaudin, David Lanyi, Costas Bekas, and Teodoro Laino. “found in
translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-
to-sequence models. Chemical science, 9(28):6091-6098, 2018.

Philippe Schwaller et al. Molecular transformer: a model for uncertainty-calibrated chemical reaction
prediction. ACS central science, 5(9):1572—1583, 2019.

Hannes Stirk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago, Stephan
Gilinnemann, and Pietro Lio. 3d infomax improves gnns for molecular property prediction. In
International Conference on Machine Learning, pp. 20479-20502. PMLR, 2022.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. arXiv preprint
arXiv:1908.01000, 2019.

Raymond Hendy Susanto, Shamil Chollampatt, and Liling Tan. Lexically constrained neural machine
translation with levenshtein transformer. arXiv preprint arXiv:2004.12681, 2020.

Xiaochu Tong, Xiaohong Liu, Xiaoqin Tan, Xutong Li, Jiaxin Jiang, Zhaoping Xiong, Tingyang
Xu, Hualiang Jiang, Nan Qiao, and Mingyue Zheng. Generative models for de novo drug design.
Journal of Medicinal Chemistry, 64(19):14011-14027, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Lihao Wang, Yi Zhou, Yiqun Wang, Xiaoqing Zheng, Xuanjing Huang, and Hao Zhou. Regularized
molecular conformation fields. Advances in Neural Information Processing Systems, 35:18929—
18941, 2022a.

Sheng Wang, Yuzhi Guo, Yuhong Wang, Hongmao Sun, and Junzhou Huang. Smiles-bert: large
scale unsupervised pre-training for molecular property prediction. In Proceedings of the 10th ACM
international conference on bioinformatics, computational biology and health informatics, pp.
429-436, 2019a.

Sheng Wang et al. Smiles-bert: large scale unsupervised pre-training for molecular property prediction.
In Proceedings of the 10th ACM international conference on bioinformatics, computational biology

and health informatics, 2019b.

Yuyang Wang, Jianren Wang, Zhonglin Cao, and Amir Barati Farimani. Molecular contrastive
learning of representations via graph neural networks. Nature Machine Intelligence, 4(3):279-287,
2022b.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay S. Pande. Moleculenet: A benchmark for molecular machine
learning. CoRR, abs/1703.00564, 2017. URL http://arxiv.org/abs/1703.00564.

Zhenqgin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513-530, 2018.

12

http://arxiv.org/abs/1703.00564

Under review as a conference paper at ICLR 2025

Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, and Stan Z
Li. Mole-bert: Rethinking pre-training graph neural networks for molecules. In The Eleventh
International Conference on Learning Representations.

Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li, Zhaojun
Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, et al. Pushing the boundaries of molecular
representation for drug discovery with the graph attention mechanism. Journal of medicinal
chemistry, 63(16):8749-8760, 2019.

Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-
Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, et al. Analyzing learned molecular
representations for property prediction. Journal of chemical information and modeling, 59(8):
3370-3388, 2019.

Kangjie Zheng, Longyue Wang, Zhihao Wang, Binqi Chen, Ming Zhang, and Zhaopeng Tu. Towards a
unified training for levenshtein transformer. In ICASSP 2023-2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 1-5. IEEE, 2023.

Gengmo Zhou, Zhifeng Gao, Qiankun Ding, Hang Zheng, Hongteng Xu, Zhewei Wei, Linfeng Zhang,
and Guolin Ke. Uni-mol: a universal 3d molecular representation learning framework. 2023.

Jinhua Zhu et al. Dual-view molecular pre-training. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2023.

A DETAILS OF LEVENSHTEIN TRANSFORMER

The Levenshtein Transformer (LevT) is a non-autoregressive editing generation model that employs
a three-step editing process: token deletion, placeholder insertion, and token prediction. LevT
is trained using imitation learning with a dual policy: (i) learning to insert tokens by predicting
those that have been randomly deleted from the target output, and (ii) learning to delete tokens by
identifying incorrect tokens generated by the insertion module. Below are more details about the
training objective of LevT, denoted as £5°VT.

Placeholder Insertion Loss. In this step, the model needs to determine how many placeholders [P]
should be inserted at specific positions in the original input, which will later be replaced by concrete
words in subsequent steps. Therefore, the core operation here is a classification task that predicts how
many words need to be inserted after each token in the input sequence. For practical implementation,
LevT limits the maximum number of words that can be inserted after each token to 255. Thus, this
step essentially becomes a 256-class classification task at each token, predicting the number of words
(0-255) to insert after each token. This process can be represented as follows:

Ly =~ logmy*(vili, yo)

Y; €Y0
py €p*

where p; is the optimal placeholder insertion action found by the expert that minimizes the Leven-
shtein distance to the target output y* which is the SMILES of molecule M, and can be formalized as
p; = argmin,D(y*, &(yo, p)) Yo is the initial input of the model which is the SMILES of molecule

M , D is the Levenshtein distance measurement, wgel is LevT’s Deletion Classifier, and ¢ is the

environment in the Markov Decision Process of LevT which receives editing actions and returns the
modified sequence, and £(yo, p) means applies the insertion action p to the initial input sequence
Yo (e.g. insert some placeholders in yg). Details of € can be found in LevT’s framework (Gu et al.,
2019).

Token Prediction Loss. In this step, the task is to predict a real word for each placeholder [P] in
the sequence y; = (yo, p*) that has had placeholders inserted. This process is very similar to that of
MLM, as it essentially involves a classification problem where the number of classes is equal to the
size of the vocabulary.

tok __ tok /x| /
Ly =— E log mp™(t7]2, y")
Y; €yp,t] ELF
yi=<[P]>

13

Under review as a conference paper at ICLR 2025

where ¢} is the optimal insertion action found by the expert that minimizes the Levenshtein distance
to the target output y*, y; is the modified sequence by applying the optimal placeholder action
p* to the input sequence yo, and these terms can be formalized as: t} = argmin,D(y*, (y1,1)),
y1 = €(yo,p"), d* or p* = argmin, ,D(y*, e(yo, {d, p})). 7k is token classifier.

Token Deletion Loss. In the insertion step, the model may have inserted incorrect words, so in this
step, it needs to predict which of the previously inserted words are incorrect and should be deleted.
Essentially, this step involves learning how to correct” the errors made during the insertion phase.
Specifically, the input to this step is the output from the insertion module, y» = &(y1,t), where ¢
represents the actions predicted by the model in the token prediction step. Since the task is to decide
whether each token in y5 should be deleted, this step is essentially a binary classification task for
each token, which can be represented as follows:

del __ del/ g% :
L% = — E log 79 (df |4, y2)
i €
e

where dJ is the optimal delete action found by the expert that minimizes the Levenshtein distance
to the target output y* which is the SMILES of molecule A, and can be formalized as d} =
argmin,D(y*, e(ya,d)) , 73 is LevT’s deletion classifier.

Total Loss. Since the editing process of LevT consists of three steps—token deletion, placeholder
insertion, and token prediction—the overall training objective of LevT is the sum of the training
objectives for these three processes:

EgevT _ Ligns + ﬁtGOk + E(@iel

In summary, unlike MLM models, which provide training signals only for each [MASK] symbol in
the input sequence, the LevT model offers training signals for every token in both the Placeholder
Insertion and Token Deletion steps. This requires the model to determine whether each token in the
input sequence should be deleted and whether new tokens should be inserted after each existing token,
thus providing richer semantic information to the model.

B MORE TRAINING CURVES OF SMI-EDITOR

1 0 I
8 TokDel Train Loss (Small) 8 Plhins Train Loss (Small) § TokPred Train Loss (Small)
T:' TokDel Train Loss (Base) T:' Plhins Train Loss (Base) - TokPred Train Loss (Base)
© TokDel Train Loss (Big) © Plhins Train Loss (Big) © TokPred Train Loss (Big)
[= [= [=

0 20K 40K 60K 80K 100k 0 20K 40K 60K 80K 100k 0 20K 40_K_ 60K 80K 100k

Training steps Training steps Training steps
(a) Token Deletion (b) Placeholder Insertion (c) Token Prediction

Figure 7: Training Loss Curves of Editing Operations. We train SMI-EDITOR models of varying
sizes and compare their loss curves during training for three different editing operations. As shown
in the results, the loss for the token prediction process represented in Figure (c) is consistently the
highest among the three type of losses, while the loss for token deletion is the lowest. Furthermore,
as the model size increases, all three types of loss exhibit a stable downward trend.

We present the changes in training and validation loss curves for SMI-EDITOR models of varying
sizes during training. As shown in Figure|/|and Figure |8} both training and validation losses for the
three types of editing operations exhibit a stable downward trend as model scale increases. The loss
from the token prediction process consistently constitutes the largest portion of the overall training
loss. Interestingly, during the edit-based pre-training, the token prediction task is similar to that of
MLM, as it involves predicting the real tokens corresponding to each placeholder token [P], aiming
to restore the complete target SMILES. However, unlike the results in Figure 2] the token prediction
loss in the SMI-EDITOR pre-training does not show rapid saturation phenomenon in the early training

14

Under review as a conference paper at ICLR 2025

12} 123 1]
§ TokDel Valid Loss (Small) § Plhins Valid Loss (Small) § TokPred Valid Loss (Small)
= TokDel Valid Loss (Base) o Plhins Valid Loss (Base) o TokPred Valid Loss (Base)
= TokDel Valid Loss (Big) = Plhins Valid Loss (Big) = TokPred Valid Loss (Big)
© © ©
> > >
0 20K 40K 60K 80K 100k 0 20K 40K 60K 80K 100k 0 20K 40K 60K 80K 100k
Training steps Training steps Training steps
(a) Token Deletion (b) Placeholder Insertion (c) Token Prediction

Figure 8: Validation Loss Curves of Editing Operations. Similar to the training loss curves, the
validation loss for the token prediction process shown in Figure (c) consistently remains the highest
among the three types, while the loss for token deletion is the lowest. Additionally, as the model size
increases, the validation loss for all three editing operations exhibits a stable downward trend.

stages. Even in the later training phases, the token prediction loss shows a steady decline. This further
emphasizes the benefit of introducing fragment-level training signals; by removing substructures
and then asking the model to predict them instead of randomly masking tokens, we achieve a
training task with better scalability.

C HYPER-PARAMETERS FOR MODELS OF VARYING SCALES

In Table[d] we present the specific training hyperparameters for the models of different sizes (Big,
Base, Small) used in this study. Notably, while the training objectives differ for the MLM and
SMI-EDITOR models, all other model settings remain consistent, including the listed training
hyperparameters and training datasets, to ensure the comparability of results.

Table 4: Hyper-parameters for pre-train models with different scales.

Model Max Tokens Layers Attn Heads Embed Dim FFN Dim Dropout Num of Paras

Big 64K 9 12 768 2048 0.1 50.5M
Base 64K 6 8 512 2048 0.1 19.4M
Small 64K 3 8 512 1024 0 6.8M

D PERFORMANCE OF MLM MODELS ON DOWNSTREAM TASK

—0.76-
e
® 0.74-
>
5 0.72
O
M 0.701
=) 0.68-

(@)]

< 0.64 1
‘qcn')‘ 0621 Small MLM - BBBP Downstream
= —— Big MLM - BBBP Downstream

0.60

0 20K 40K 60K 80K 100k
Steps

Figure 9: The performance of MLM models of different sizes and training steps on BBBP task.

15

Under review as a conference paper at ICLR 2025

We test the performance of MLM models (SMI-MLM) of different sizes and training steps on the
BBBP task. To reduce variability and ensure accuracy, we evaluate each checkpoint on the downstream
tasks five times and take the average of the results. As shown in Figure[9] increasing the model’s
scale does not consistently improve the model’s performance on the downstream task and even in
many cases, small model exhibits stronger performance. This indicates that the semantic information
learned by the larger MLM model do not translate into better downstream task performance. Instead,
the larger models exhibit greater variability in their performance compared to the small model. This
results suggest that the scalability and stability of MLM models is very limited.

E PERFORMANCE OF SMI-EDITOR ON DOWNSTREAM TASK

—0.76-
O
© 0.74-
>
5 0.721
o}
M 0.701
8 0.68-
<
&5, 0.66-

[@)]

<C 0.64

» Small SMI-Editor - BBBP Downstream

D 0.62 . .

= —— Big SMI-Editor - BBBP Downstream
0.60

0 20K 40K 60K 80K 100k
Steps

Figure 10: The performance of SMI-EDITOR of different sizes and training steps on BBBP task.

We also test the performance of SMI-EDITOR of different sizes and training steps on the BBBP task,
and the results are shown in Figure[T0] We also evaluate each checkpoint on the downstream tasks
five times and take the average of the results to ensure accuracy. Compared to the performance of
the MLM model (Figure[9), the larger SMI-EDITOR model (Big Model) consistently outperforms
the smaller models (Small Model). As the number of training steps increases, the performance gap
between the large and small models becomes increasingly significant. In contrast, larger MLM
models do not show this trend, as different-sized MLM models exhibit similar performance on
downstream tasks. Moreover, the larger MLM models exhibit greater performance fluctuations
compared to the smaller MLM models. However, the larger SMI-EDITOR model demonstrates
greater performance stability than the MLM model, as the larger SMI-EDITOR model does not
exhibit increased performance fluctuations compared to the smaller SMI-EDITOR models. These
results indicate that the SMI-EDITOR model offers better training stability and model scalability
than the MLM model.

F HYPER-PARAMETER CONFIGURATION FOR PRE-TRAINING

We implement SMI-EDITOR using 12 stacked Transformer layers, each with 12 attention heads.
The model dimension and feedforward dimension of each Transformer layer are 768 and 3072. The
total number of SMI-EDITOR’s parameters is 86.3M. We use Adam (Kingma & Bal [2014)) and
polynomial learning rate scheduler to train SMI-EDITOR and set the learning rate Se-4 warmup step
10K. The total training step is 120K and each batch has 64k tokens at maximum. We implement the
SMI-EDITOR model using the Fairseq library and train SMI-EDITOR on four Tesla A40 GPU for
about 2 days.

For more pre-training hyper-parameters, please refer to Table[5]

16

Under review as a conference paper at ICLR 2025

Table 5: SMI-EDITOR hyper-parameters for pre-training.

Hyper-parameters Value
Learning rate Se-4
LR scheduler polynomial_decay
Warmup updates 10K
Max updates 120K
Max tokens 64k
FFN dropout 0.1
Attention dropout 0.1
Activation dropout 0
Num of layers 12
Num of attention heads 12
Encoder embedding dim 768
Encoder FFN dim 3072
Adam (81, 2) (0.9,0.98)
Fragments Drop ratio 0.15
Vocabulary size 369
Activation function GELU
Weight Decay 0.0
Clip Norm 1.0

G HYPER-PARAMETER CONFIGURATION FOR FINE-TUNING

In different downstream task, we use different hyper-parameters. For detailed fine-tuning hyper-
parameters, please refer to Table[q]

Table 6: SMI-EDITOR hyper-parameters for fine-tuning.

Tasks Epochs Batchsize Learning rate Warmup Ratio Dropout Pooler-dropout

BACE 60 64 le-4 0.06 0.1 0.2
BBBP 40 128 4e-4 0.06 0.1 0.1
TOX21 80 128 le-4 0.06 0.1 0.1
SIDER 100 32 Se-4 0.4 0.1 0

MUV 40 128 2e-5 0.2 0.1 0.1
ClinTox 100 256 Se-5 0.1 0.1 0.5
ToxCast 80 64 le-4 0.06 0.1 0.1

H DETAILS OF FINE-TUNING DATASETS

We perform a comprehensive set of experiments on the MoleculeNet(Wu et al., |2018)) benchmark,
focusing on the molecular property prediction task. MoleculeNet has emerged as one of the most
widely recognized and utilized benchmarks in the field of molecular property prediction, providing a
standardized platform for evaluating machine learning models designed to predict various molecular
properties. Its datasets encompass a broad range of molecular tasks, and address diverse scientific
problems such as drug discovery, toxicity prediction and so on.

In this section, we provide a detailed summary of the statistics and fundamental characteristics of
the MoleculeNet datasets we use in Table [/} This table offers information about the dataset sizes,
task types, and compositions, providing readers with essential background information to better
understand the experimental setup and subsequent analysis.

17

Under review as a conference paper at ICLR 2025

Table 7: Summary information of the MoleculeNet benchmark datasets.

Dataset Tasks Task type Molecules (train/valid/test) Describe
BACE 1 Classification 1,210/151/151 Binding results of human
BACE-1 inhibitors
BBBP 1 Classification 1,631/204/204 Blood-brain barrier pene-
tration
ClinTox 2 Multi-label classification 1,182/148/148 Clinical trial toxicity and
FDA approval status
Tox21 12 Multi-label classification 6,264/783/783 Qualitative toxicity mea-
surements
ToxCast 617 Multi-label classification 6,860/858/858 Toxicology data based on
in vitro screening
SIDER 27 Multi-label classification 1,141/143/143 Adverse drug reactions to
the 27 systemic organs
MUV 17 Multi-label classification 74,469/9,309/9,309 A subset of PubChem

BioAssay

I PERFORMANCE OF SMI-EDITOR ON DEEPCHEM DATA

We re-evaluated the performance of SMI-EDITOR on various downstream tasks of MoleculeNet
benchmark using the data splits provided by DeepCherrﬂ Previously, our experiments were based on
a different data split, which made it difficult to compare our model against others built on this dataset.
Therefore, we re-tested SMI-EDITOR on DeepChem splits and included comparisons with more
baseline models. Detailed results are presented in Table Al. As shown in Table A1, SMI-EDITOR
achieves significant performance gains over baseline models, reaching state-of-the-art levels
with noticeable average performance improvements. Below is a detailed analysis of these results:

* SMI-EDITOR outperforms models trained with various paradigms: On average, SMI-
EDITOR surpasses molecular representation learning models like MolCLR and DMP,
which use contrastive pretraining, as well as models like ChemBerta and SMI-MLM,
which use masked language modeling. It also outperforms autoregressive language models
like Galactica and graph-based models like MolCLR, MGSSL, and MoMu. These results
highlight the potential of SMILES language models.

* SMI-EDITOR achieves competitive performance with less training data: SMI-EDITOR
outperforms DMPrg, which is trained on over 100 million compounds, despite using
only 19 million compounds for training. This demonstrates SMI-EDITOR’s higher data
efficiency, enabled by its ability to effectively leverage substructure information from

SMILES

sequences.

Table 8: Overall results on MoleculeNet datasets using DeepChem splits. ROC-AUC scores (higher
is better) are reported for all tasks. The best results are bolded

Method BBBP{ Tox217 ClinToxt HIVYT BACEt SIDERT Mean?

GEM 72.4 78.1 90.1 80.6 85.6 67.2 79.0
ChemBerta 64.3 - 90.6 62.2 - - -

MolCLR 73.6 79.8 932 80.6 89.0 68.0 80.7
MGSSL 70.5 76.5 80.7 79.5 79.7 61.8 74.8
DMPrtr 78.1 78.8 95.0 81.0 89.3 69.2 81.9
Galactica 66.1 68.9 82.6 74.5 61.7 63.2 69.5
MoMu 70.5 75.6 79.9 76.2 77.1 60.5 73.3
SMI-MLM 89.4 76.2 90.6 79.8 86.6 66.5 81.5
SMI-EDITOR 93.5 814 95.2 81.6 89.9 69.8 85.2

"https://github.com/deepchem/deepchem

18

Under review as a conference paper at ICLR 2025

15
2.8
1.3 2.6
2.4
1.1
2.2
0.9 2
1.8
0.7
1.6
20k 60k 100k 140k 180k 0 40k 80k 120k 160k
(a) Train Loss (b) Train PPL

Figure 11: The training loss and perplexity (PPL) curves of the SMI-GPT model.

J PERFORMANCE ADVANTAGES OF SMI-EDITOR OVER AUTO-REGRESSIVE
MODELS

To comprehensively compare SMI-EDITOR with autoregressive models, we trained a decoder-only
model with identical architecture and size to SMI-EDITOR using an autoregressive language modeling
objective, referred to as SMI-GPT. We evaluated SMI-GPT’s performance across several downstream
tasks, with results shown in Table[9] The findings indicate that SMI-EDITOR can perform better than
SMI-GPT. Below is an analysis of these results:

Table 9: Results of SMI-EDITOR and SMI-GPT on MoleculeNet datasets using DeepChem splits.
ROC-AUC scores (higher is better) are reported for all tasks The best results are bolded

Method BBBP{ Tox2l? ClinTox] HIVf BACE! SIDERt Meant
SMI-GPT(NT) 885 74.3 88.9 68.8 762 63.7 76.7
SMI-GPT(Emb) 91.2 75.1 91.4 794 862 67.1 81.7
MoMu 70.5 75.6 79.9 762 771 60.5 733
SMI-MLM 89.4 76.2 90.6 798 866 66.5 81.5
SMI-EDITOR 93.5 81.4 95.2 81.6 89.9 69.8 85.2

1. Implementation details for SMI-GPT(NT) and SMI-GPT(Emb):

SMI-GPT(NT): This approach uses next-token prediction for downstream classification tasks by
appending a special token (e.g., Labely, Label;) at the end of each SMILES sequence to denote
the classes of sample’s label. The model learns to predict the correct label token during fine-tuning.
SMI-GPT(Emb): The representations of each token in the SMILES string extracted by the SMI-GPT
model are processed using mean pooling. The resulting pooled representation is then fed into a
classification head, which predicts the class of the SMILES.

2. Advantages of the encoder-only SMI-EDITOR architecture:

As shown in Table A2, SMI-EDITOR consistently outperforms SMI-GPT(Emb) and SMI-GPT(NT),
highlighting its superior semantic learning capabilities. SMI-GPT(Emb) achieves better performance
than SMI-GPT(NT), suggesting that pretraining-based feature transfer is preferable for molecular
property prediction tasks. Therefore, the encoder-only pre-trained model is highly suitable for
molecular property prediction tasks.

3. Rapid convergence in autoregressive LMs: we provide the training curve of the SMI-GPT model
in Figure[TT] which shows that the loss decreases rapidly during the early stages of training. Similarly,
the perplexity also drops quickly, reaching approximately 1.6 at the 40K training step. By the end
of training, the model’s Perplexity falls below 1.6, which is significantly lower than the perplexity
typically observed for GPT models trained on text data.

4. Why does this phenomenon occur?

19

Under review as a conference paper at ICLR 2025

For auto-regressive language models, each time a new token is generated, it receives all preceding
tokens as prefix input. This means that when the model generates tokens at later positions, it has access
to more comprehensive contextual information (i.e., a longer prefix and more complete sequence
information). As a result, the prediction difficulty for tokens in later positions is significantly
reduced, allowing the model to converge more easily. A key difference between SMI-EDITOR
and SMI-GPT is that in SMI-EDITOR, each discarded token is predicted independently, with equal
importance assigned to the prediction of each token. This enables SMI-EDITOR to better capture the
complete semantic information encoded in the tokens.

In summary, compared to LLMs on text data, GPT models on SMILES data converge significantly
faster and achieve much lower perplexity. This indicates that SMILES data is inherently easier
to fit than text. Therefore, it is crucial to design effective methods to extract richer semantic
information from SMILES. SMI-EDITOR represents a meaningful and successful exploration in
this direction, highlighting the importance of leveraging substructural fragment information
within SMILES data.

K PERFORMANCE OF SMI-EDITOR WITH FRAGMENT CORRECTION

Training SMI-EDITOR to correct errors and remove extraneous components did not improve
performance: We implemented a version of SMI-EDITOR that learns to correct erroneous functional
groups and remove extraneous substructures, referred to as SMI-EDITOR-Cor. However, SMI-
EDITOR-Cor did not outperform the original SMI-EDITOR on downstream tasks. Considering the
increased complexity and training cost of SMI-EDITOR-Cor (due to longer input sequences), we
focused on SMI-EDITOR in the submitted draft. Table [[2] below compares the performance of
SMI-EDITOR and SMI-EDITOR-Cor, showing that their performance is similar, demonstrating the
limited benefit of incorporating these tasks.

Analysis of SMI-EDITOR-Cor’s performance: We attribute SMI-EDITOR-Cor’s lack of improve-
ment to the following reasons:

* Correcting errors and removing extraneous components provide limited additional
training signals: SMI-EDITOR’s training comprises two major steps: deletion and insertion.
During deletion, erroneous functional groups and extraneous substructures are removed,
while the insertion step involves learning to recover the correct tokens in the appropriate
positions. Thus adding erroneous functional groups or extraneous substructures affects
only the deletion step, which is a simpler task providing limited information. Moreover, as
shown in Table [3|of the main text, ablating the token deletion (TokDel) step has minimal
performance impact.

* Identifying erroneous functional groups and extraneous structures is too simple for the
model: SMI-EDITOR-Cor constructs erroneous inputs through random substitutions, often
resulting in chemically invalid SMILES that are easy for the model to identify. Consequently,
the simplicity of the training task limits further performance improvement.

Table 10: Performance comparison between SMI-EDITOR-Cor and SMI-EDITOR.

Method BACET BBBP{ SIDERT Tox217 ToxCastf Meant
SMI-EDITOR-Cor 80.6 77.1 62.2 76.8 68.0 72.9
SMI-EDITOR 80.3 77.4 63.0 77.1 67.4 73.0

L HOW THE FRAGMENT DROP RATIO AFFECT SMI-EDITOR

To investigate the impact of the fragment drop ratio on SMI-EDITOR, we trained SMI-EDITOR
models with different drop ratios (15%, 30%, 45%) and analyzed their training curves and downstream
task performance. The results indicate that increasing the drop ratio significantly raises training loss
for SMI-EDITOR, suggesting that its pretraining task is more challenging than MLM. Below are the
detailed findings:

20

Under review as a conference paper at ICLR 2025

) 0
8 DropRatio 15% Train Loss § DropRatio 15% Valid Loss
_CI DropRatio 30% Train Loss s DropRatio 30% Valid Loss
‘© —— DropRatio 45% Train Loss | = —— DropRatio 45% Valid Loss
o (]
= >

0 20K 40K 60K 80K 100k 0 20K 40K 60K 80K 100k

Training steps Training steps
(a) Train Loss (b) Valid Loss

Figure 12: The training loss and valid loss of the SMI-EDITOR with different fragment drop ratios.

1. Impact on SMI-EDITOR’s convergence: We plotted the training and validation loss curves
for SMI-EDITOR with varying drop ratios in Figure The results show that as the drop ratio
increases, both training and validation losses rise significantly. Compared to Figure [2c| of the
paper, the loss increase for SMI-EDITOR is more pronounced than for MLM, confirming that
SMI-EDITOR’s task is inherently more challenging.

2. Impact on downstream task performance: We evaluated the performance of SMI-EDITOR
and MLM models with varying drop or mask ratios. The results are summarized in Table[TT] From
Table[TT] it can be observed that as the mask ratio increases, the average performance of the SMI-
MLMmodel shows no significant change, while the performance of the SMI-EDITOR model declines
as the drop ratio increases. This indicates that SMI-EDITOR represents a more challenging training
task.

Here is a more detailed explanation:

* SMI-EDITOR discards chemically meaningful substructures that often serve as standalone
semantic units. This also makes predicting the discarded fragments more difficult than
predicting individual masked tokens. Dropping more substructures severely disrupts the
molecular structure, making it harder for the model to reconstruct the original molecule.

* MLM, on the other hand, randomly masks tokens in SMILES sequences. Since SMILES
tokens often represent individual atoms or bonds, masking does not typically disrupt the
molecular semantics significantly. For instance, masking one or two atoms of a functional
group like —COOH still leaves enough contextual information to reconstruct it. Additionally,
the probability of masking an entire functional group is low due to MLM’s token-based
masking mechanism. This explains why MLM performance is less sensitive to mask ratio
increases, as also reflected in Figure[2c|of the paper: Different Mask Ratios Cannot Alleviate
Rapid Saturation.

Table 11: Performance of SMI-EDITOR and SMI-MLMwith different drop or mask ratios on
downstream tasks.

Method BACE! BBBP{ SIDER{ Tox21{ ToxCast! Meant
SMI-MLM(15%) 77.8 68.6 61.2 75.1 64.9 69.5
SMI-MLM(30%) 78.3 70.2 58.2 76.0 63.7 69.3
SMI-MLM(45%) 78.4 66.1 59.3 76.4 65.5 69.1

SMI-EDITOR(15%) 80.3 77.4 63.0 77.1 67.4 73.0
SMI-EDITOR(30%) 81.6 733 59.6 77.0 66.8 71.7
SMI-EDITOR(45%) 79.3 722 61.1 77.8 67.1 715

21

Under review as a conference paper at ICLR 2025

M PERFORMANCE OF SMI-EDITOR ON MOLECULAR PROPERTY REGRESSION
TASKS

We evaluated the model’s performance on three molecular property regression tasks, as shown in
Table[I2] SMI-EDITOR achieved the best performance compared to baseline models and significantly
outperformed the MLM model.

Table 12: Performance of SMI-EDITOR on molecular property regression tasks.

Method ESOL| FreeSolv] Lipol

MPNN 0.58 1.150 0.7190
DMPrg 0.700 - -
A-FP 0.503 0.736 0.578

SMI-MLM 0.576 0.709 0.642
SMI-EpITOR 0.362 0.524 0.565

N A CASE STUDY FOR FRAGMENTS ASSEMBLE

O THE SCALABILITY OF SMI-EDITOR

We added results showing the performance of SMI-EDITOR and SMI-MLMmodels of varying sizes
on downstream tasks, which further demonstrate SMI-EDITOR’s strong scalability. These results
are shown in Table[I4] It is evident that while increasing model size has minimal impact on MLM
models, larger SMI-EDITOR models show more consistent performance gains. This confirms the
claim that SMI-EDITOR has better scalability compared to MLLM models.

Table 13: Performance of SMI-EDITOR and SMI-MLMwith different scales on downstream tasks.

Method BACET BBBP{T SIDERtT Tox211T ToxCastf Mean?T
SMI-MLM(Small) 76.8 69.6 60.5 75.3 64.2 69.2
SMI-MLM(Base) 76.6 69.3 59.9 75.3 64.4 69.1

SMI-MLM(Big) 77.4 68.7 60.8 75.1 65.3 69.4
SMI-EDITOR(Small) 78.3 72.6 59.4 75.6 65.1 70.2
SMI-EDITOR(Base) 79.2 73.2 61.0 75.7 65.8 71.0
SMI-EDITOR(Big) 79.3 74.2 60.9 76.7 66.4 71.5

P THE TRAINING COST OF SMI-EDITOR

We measured that the training cost of SMI-EDITOR is approximately three times that of MLM
models (SMI-MLM) for the same model size, training hyperparameters, and data. However, the
training cost of SMI-EDITOR remains acceptable. To better analyze the impact of training cost, we
trained an MLM model with equivalent computational cost (SMI-MLM(More)). Results showed that
SMI-MLMMore) performed worse than the original SMI-MLMand significantly lagged behind
SMI-EDITOR, highlighting that merely increasing MLM training cost does not yield better results.
Below is a detailed analysis:

1. Reasons for higher training cost in SMI-EDITOR: SMI-EDITOR requires computing expert
actions (using a computationally expensive dynamic programming algorithm) and modeling three
different editing operations, which introduces additional overhead.

2. Acceptable training cost: Training SMI-EDITOR on a dataset with 19M compounds using four
RTX 3090 GPUs took approximately 24.6 hours. Scaling SMI-EDITOR to larger datasets (e.g.,
100M+ compounds) is feasible, demonstrating its potential for broader applications.

22

Under review as a conference paper at ICLR 2025

Input SMILES: CC(=0)Nclcee(O)ccl

jyon

Identifying
Bonds to Break

OH
)le @x 9¢ BRICS Bonds
H ¢ Bonds Between Ring and Side-

chain Atoms
Break Bonds

A
H
/\ —_
Fragments A~ O | o~ Nsa A/©/ Al

[1#]C(C)=0 | [*:1IN[*:2] [*:2]clcce([*:3])ecl [*:3]O

Drop Assemble

o [T H
[*:2]clece([*:3])ccl i /©/ 1
| :

[*:3]0 A—OH

OH
A\N /@

H
Ncleee(O)eel

azi[esiuoue)
azijues

Using dummy atoms to reconstruct topological information

Figure 13: An Example Workflow of Molecule Fragmentation and Assemble with Paracetamol

3. SMI-EDITOR performs better under the same training cost with MLM: We trained SMI-
MLM(More) with the same computational cost as SMI-EDITOR by increasing its training steps
from 120K to 360K. Table [I4]shows that SMI-MLM(More) performs worse than the SMI-EDITOR
and original SMI-MLM. This is due to rapid saturation issues in MLM training on SMILES data.
This also indicates that the speed of model training is not the most important factor; what
matters more is whether the model can efficiently extract high-quality semantic representations.
This highlights the importance of designing more powerful training schemes like SMI-EDITOR to
effectively extract meaningful information from SMILES.

4. Higher performance ceiling for SMI-EDITOR: Although the inclusion of Experts slows down
the training speed of the SMI-EDITOR model, it also enriches the semantic information the model
learns. This gives SMI-EDITOR greater scalability and a higher performance ceiling compared to
SMI-MLM. As shown in Table D1, SMI-EDITOR benefits more from increased model size and
training cost. This makes SMI-EDITOR a better choice when given the same training budget.

23

Under review as a conference paper at ICLR 2025

Table 14: Performance of SMI-EDITOR and SMI-MLMwith different scales on downstream tasks.

Method BACE? BBBP{ SIDER{ Tox211 ToxCast}] Mean?
SMI-MLM(More) 74.3 66.2 495 73.3 62.3 65.1
SMI-MLM 77.8 68.6 61.2 75.1 64.9 69.5
SMI-EDITOR 80.3 77.4 63.0 77.1 67.4 73.0

|
I

Solubility
|

|
0o

|
=
o

|
=
N

100 200 300 400 500
Molecular Weight

o~

Figure 14: The relationship between molecular weight and solubility in the ESOL training set

Q A MORE DETAILED ANALYSIS OF THE MODEL’S SUBSTRUCTURE MODELING
CAPABILITY.

The observed trends for the FreeSolv dataset are fully consistent with our expectations and
align with the definition of its physical properties. On the other hand, the performance on the
ESOL dataset is influenced by additional factors such as molecular weight. We also designed more
analytical experiments to further investigate the behavior of the SMI-EDITOR model, and the results
demonstrate that the model’s behavior aligns with expectations. Detailed explanations are as follows.

For the FreeSolv dataset, the observed trends align with its physical property definitions.
FreeSolv reflects the hydration free energy of compounds, defined as the free energy change when a
compound transitions from a non-dissolved state to a dissolved state. When hydrophilic groups in
a molecule are reduced, the change in hydration free energy increases, leading to higher hydration
free energy. Thus, when we remove hydrophilic groups from the molecule, the model predicts an
increase in hydration free energy, consistent with the trend observed in Figure 5(b), which matches
our expectations.

For the ESOL task, the model predictions are significantly influenced by molecular weight. The
ESOL dataset reflects compound solubility, which is strongly negatively correlated with molecular
weight: the larger the molecular weight, the lower the solubility. We plotted a scatter diagram
(Figure[T4) showing the relationship between molecular weight and solubility in the ESOL training
set. A clear negative correlation with a coefficient of R = —0.69 is observed. Consequently, when
functional groups or atoms are removed from a molecule, its molecular weight decreases, leading the
model to predict an increase in solubility. **This explains why, in Figure 5(a), the model predicts
increased solubility regardless of whether hydrophilic groups or random groups are removed**. The

24

Under review as a conference paper at ICLR 2025

1.0

0.8 HG Rep (Avg:-0.96) HG Rep (Avg:-0.21)
> Rand Rep (Avg:-0.09) > Rand Rep (Avg:-0.20)
0.7 £'0.8
))
g 0o 5
Qs Do.6
kel ©
Noa s
= =04
© @©
£ 03 £
_ _
Lo02 So2

0.1

0.0 = I 0.0 _2

Changes in Predlcted Values Changes in Pred|cted Values
(a) SMI-EDITOR (b) SMI-MLM

Figure 15: Substructure Semantics Modeling on ESOL Dataset. We compared the effects
of two molecular perturbation methods on the SMI-EDITOR’s and SMI-MLM’s predictions of
hydrophilicity. Figure (a) show that the impact of replacing hydrophilic groups (HG Rep) and
randomly replacing atoms (Rand Rep) on the model’s predictions differs significantly, both in the
average change in prediction values and their distributions.

0.6 HG Rep (Avg:-0.36)
> Rand Rep (Avg:-0.17)
=05
c
(]

Nno4

K

NO0.3

'©

0.2

—

s / \

0.1 /

L/ _

o
o

-2 -1 0 1 2 3
Changes in Predicted Values

Figure 16: Substructure Semantics Modeling on ESOL Dataset of Auto-regressive LM.

increase is more significant with random deletions, demonstrating the model’s ability to distinguish
between hydrophilic group deletions and random deletions.

To eliminate the influence of molecular weight, we designed a hydrophilic group replacement
scheme (HG Rep). We replaced all hydrophilic groups in a molecule with non-hydrophilic groups
of similar molecular weight (e.g., methyl, ethyl, propyl) and compared this hydrophilic group
replacement scheme (HG Rep) with a random group replacement scheme (Rand Rep), where random
groups were replaced with others of similar weight. The results, shown in Figure ??, reveal that
SMI-EDITOR effectively distinguishes between HG Rep and Rand Rep, demonstrating its ability to
model key molecular group semantics. It also correctly predicts that replacing hydrophilic groups
reduces molecular solubility.

Furthermore, we plotted the distribution of predicted changes for MLM models and Auto-regressive
language models (Auto-regressive LM) before and after these replacement operations in Figure
[[6] The results show that these models perform significantly worse than the SMI-EDITOR in
distinguishing between random replacements and hydrophilic group replacements. This further
highlights the superiority of the SMI-EDITOR in modeling the semantics of molecular substructures.

25

Under review as a conference paper at ICLR 2025

R SMI-EDITOR’S PERFORMANCE ON RETROSYNTHESIS PREDICTION TASKS

Considering that the original SMI-EDITOR is an encoder-only model and cannot be directly applied
to generative tasks, we further pretrained a model based on an encoder-decoder architecture, referred
to as SMI-EDITOR-Gen. We tested its performance on the retrosynthesis prediction task, where it
achieved state-of-the-art results. Below is a detailed discussion:

Model Details of SMI-EDITOR-Gen. SMI-EDITOR-Gen adopts a transformer architecture with
a base-sized scale (Vaswani et al., [2017) and the specific model size details are provided in Table
[I5] During pretraining, the input to the encoder consists of SMILES strings with missing molecular
fragments, while the decoder’s pretraining task is to reconstruct the original SMILES. Following
approaches commonly used in machine translation (Vaswani et al.,|[2017) , the features extracted
by the encoder are passed to the decoder through encoder-decoder attention (Vaswani et al.,[2017) .
Compared to SMI-EDITOR, the most significant difference is that the encoder-decoder architecture
enables SMI-EDITOR-Gen to perform sequence-to-sequence generative tasks**, allowing us to
explore the model’s capabilities in such tasks.

SMI-EDITOR-Gen Exhibits Strong Performance in Retrosynthesis Prediction Tasks. Following
the experimental setup of EditRetro(Han et al.| [2024), we evaluated SMI-EDITOR-Gen on the
retrosynthesis prediction task. During fine-tuning, we applied the same fine-tuning strategies and data
augmentation techniques as EditRetro. The experimental results, shown in Table D4, demonstrate
that SMI-EDITOR-Gen achieved strong performance on the USPTO-50K dataset. This validates that
the pretraining approach proposed by SMI-EDITOR also exhibits excellent performance and great
potential in generative tasks.

Table 15: Top-k exact match accuracy of SMI-EDITOR and baselines on the USPTO-50k dataset.

Top-11T Top-31 Top-51t Top-107T

RetroPrime 51.4% 70.8% 74.0% 76.1%
Transformer 42.4% 58.6% 63.8% 67.7%

SCROP 43.7% 60.0% 65.2% 68.7%
MEGAN 48.1% 70.7% 78.4% 86.1%
GTA 51.1% 67.6% 74.8% 81.6%

Retroformer 53.2% 71.1% 76.6% 82.1%
Graph2Edits 55.1% 77.3% 83.4% 89.4%
R-SMILE 56.3% 79.2% 86.2% 91.0%
EditRetro 60.8% 80.6% 86.0% 90.3%
SMI-EDITOR 61.2% 80.9% 86.4% 89.7%

S SPE TOKENIZER DOES NOT IMPROVE SMILES MLM PERFORMANCE

We trained a SMILES MLM model with SPE tokenizer, SMI-MLM(SPE), using the same architec-
ture and hyperparameters as SMI-EDITOR, and evaluated it on multiple tasks. As shown in Table [I6]
SMI-MLM(SPE) performs similarly to SMI-MLMand significantly worse than SMI-EDITOR. This
demonstrates that introducing SPE cannot replicate the effectiveness of SMI-EDITOR. The reasons
are:

* Limited Fragment Diversity: SPE relies on a fixed vocabulary, limiting the diversity of
fragment-level information it can capture. In contrast, SMI-EDITOR dynamically fragments
molecules using the BRICS algorithm, capturing a wider variety of molecular substructures.

* Topology Information Leakage: SPE-based models retain token position information,
which is tied to molecular topology in SMILES, making the prediction task easier but less
effective.

* Lack of Chemical Context: SMI-EDITOR fragments molecules based on chemical rules,
allowing it to capture substructure information more relevant to molecular properties, unlike
SPE, which relies on character pair frequencies.

26

Under review as a conference paper at ICLR 2025

¢ Superior Performance with Fragment-Level Supervision: A MLM model trained with
fragment-level supervision, SMI-MLM (Frag), outperforms SMI-MLM(SPE), as shown in
Table[T6] This validates the effectiveness of SMI-EDITOR’s training approach.

Table 16: Performance comparison of MLM models with different pretraining strategies.

BACET BBBP1T SIDERT Tox211 ToxCastf \ Meant

SMI-MLM 77.8 68.6 61.2 75.1 64.9 69.5
SMI-MLM(SPE) 76.7 71.1 59.3 74.7 65.3 69.4
SMI-MLM(SPAN) 78.6 67.2 59.4 76.1 62.3 68.7
SMI-MLM(Frag) 79.4 73.3 62.1 74.0 64.8 70.7
SMI-EDITOR 80.3 77.4 63.0 771 67.4 73.0

T MASKED SPAN LANGUAGE MODEL DOES NOT IMPROVE SMILES LM
PERFORMANCE

1. To highlight the differences between SMI-EDITOR and MSLMs, we trained a SMILES model
using MSLM, which randomly masks continuous sequences in SMILES and predicts the missing
parts (similar to SpanBERT(Joshi et al., [2020)). This model, referred to as SMI-MLM(SPAN),
shows performance comparable to SMI-MLMbut significantly worse than SMI-EDITOR (see Table
[I6). This further demonstrates SMI-EDITOR’s advantages over traditional MSLMs. Reasons for
Poor Performance of Traditional MSLM:s:

¢ Differences between Text Data and SMILES Data. Unlike text, molecular data has
complex topological structures. In text, adjacent tokens often have strong semantic relevance,
and continuous spans convey related information, making span masking effective for learning
local semantics. However, SMILES lacks such locality; a single functional group may not
appear contiguous, and adjacent tokens may lack strong relevance. For example, aromatic
rings with multiple substituents often appear discontinuous in SMILES (we provide a
specific case CASE1). This limits the effectiveness of applying span masking directly to
SMILES data.

 Traditional MSLM (e.g., T5(Raffel et al., 2020)) and SMI-EDITOR Have Different
Implementations; Traditional MSLM is Unsuitable for SMILES Data. Text data’s
semantic continuity enables models like TS to use random span masking, where continuous
text segments are masked for prediction. In contrast, SMILES lacks this continuity, so
SMI-EDITOR uses a fragmentation algorithm to split molecules into chemically meaningful
fragments. The model predicts missing fragments, which may not correspond to continuous
SMILES segments. Unlike traditional MSLM, SMI-EDITOR focuses on masking chemically
significant fragments, a key difference in its design.

* Better Performance of SMI-MLM(Frag). The improved performance of SMI-
MLM(Frag) over SMI-MLM(SPAN) highlights the superiority of SMI-EDITOR’s fragment-
level supervision. While SMI-MLM(SPAN) uses the traditional MSLM approach, SMI-
MLM(Frag) incorporates supervision signals similar to SMI-EDITOR, enabling it to better
capture molecular substructure information.

CASE1 When does SMILES exhibit discontinuity: SMILES is a linearized representa-
tion of graph-structured molecules, which inherently causes discrepancies between molec-
ular topology and sequence-level representation. For example, when a ring contains
multiple substituents, its representation in SMILES often becomes discontinuous. Con-
sider Glibenclamide, a drug used for diabetes treatment, with the canonical SMILES:
COclcec(Chec1C(=0)NCCe2cecece(S(=0)(=0O)NC(=0O)NC3CCCCC3)cc2. Here, the bolded atoms
originate from the same aromatic ring, but due to the multiple substituents, this ring is represented
discontinuously in SMILES. Additionally, the aromatic carbon cc2 is adjacent to CCC3 atoms from a
distant cycloalkane ring. Such discontinuities are common in SMILES and adversely affect Masked
Span Language Models.

27

Under review as a conference paper at ICLR 2025

U COMPARISON BETWEEN SMI-EDITOR AND CONTRASTIVE LEARNING

Similarities: Both contrastive learning and SMI-Editor aim to learn alignment.

* Contrastive learning aligns representations of different views. The core idea of con-
trastive learning is to bring the representations of different views of the same sample
(positive pairs) closer while pushing representations of different samples (negative pairs)
apart. Essentially, this process learns the correct alignment between views of the same
sample.

* SMI-Editor aligns representations of missing substructures and contexts. As|Fu et al.
(2022) noted, MLM models align the representations of contexts and missing words during
training. Similarly, SMI-Editor aligns the representations of missing substructures and their
contexts. For example, given the input Nclccc(O)ccl, the model need to predict the complete
molecule CC(=0)Nclcce(O)ccl. SMI-Editor can effectively align the representation of the
missing fragment CC(=0) with the context Nclccc(O)ce® through this process.

Differences: The alignment targets differ between the two paradigms.

» Contrastive learning focuses on global information: The representations to be aligned
often correspond to different augmented views of the same molecule, such as through atom
deletion, bond deletion, or subgraph deletion. These views typically preserve the molecule’s
overall structure and thus contain global information.

* SMI-Editor emphasizes aligning local substructure information with global context:
In SMI-Editor, the context typically corresponds to the molecule’s backbone, representing
global information, while the missing substructures contain local information.

» SMI-Editor is more sensitive to local structure information: By aligning local substruc-
tures with global context, SMI-Editor learns finer-grained semantics from SMILES data,
making it better suited to capturing detailed molecular information than contrastive learning.

V K-FOLD CROSS-VALIDATION OF THE SMI-EDITOR MODEL.

Using a 5-fold setup, we evaluated SMI-EDITOR’s performance on the training sets of BACE, BBBP,
SIDER, Tox21, and ToxCast. The results are shown in Table These results demonstrate that
SMI-EDITOR exhibits strong performance and stability across downstream tasks.

Implementation Details: Each dataset was evenly divided into five parts. In each run, one part was
selected as the validation set, while the remaining four parts were used as the training set. The model
was trained and evaluated on the validation set. This process was repeated five times to complete all
runs.

Table 17: 5-fold cross-validation results of the SMI-Editor model.

BACE? BBBPt SIDERT Tox217 ToxCast}

Runl 9192 97.64 62.59 83.69 75.83
Run2 91.86 96.27 66.89 84.09 73.31
Run3 90.82 98.53 62.60 84.87 73.52
Run4 91.13 98.77 63.32 83.95 74.60
Run5 90.68 97.84 63.50 85.83 75.51

Mean 91.28 97.81 63.78 84.48 74.55
Std 0.58 0.97 1.78 0.87 1.13

W BROAD APPLICATIONS OF ATOM-LEVEL TOKENIZERS

Currently, many SMILES language models, including masked language models (MLM) and au-
toregressive language models, rely on atom-level tokenizers to process molecular representations.

28

Under review as a conference paper at ICLR 2025

Atom-level tokenizers break down SMILES strings into individual atomic units or tokens, such as
atoms and simple symbols (e.g., ”C”, ”0”, ”’="). This approach simplifies the tokenization process and
aligns well with the intrinsic atomic structure of molecules, enabling models to capture fine-grained
atomic interactions and features. For example, MolXPT (Liu et al.l 2023b)) and Dual-view Molecular
Pre-training (Zhu et al., [2023) explicitly leverage atom-level tokenization to enhance the granularity
of molecular representations, facilitating downstream tasks such as molecule generation and property
prediction.

Atom-level tokenization has the advantage of maintaining a straightforward correspondence between
the SMILES representation and the underlying molecular structure, making it easier for the model to
interpret local chemical environments. This granularity is particularly beneficial for tasks that require
precise predictions. For instance, studies such as ChemBERTa (Chithrananda et al., [2020), Molecular
Transformer (Schwaller et al.l [2019), and SMILES-BERT (Wang et al., 2019b) demonstrate that
atom-level tokenization can achieve good performance in molecular property prediction tasks.

29

	Introduction
	Relatd Works
	Pre-trained SMILES Language Model
	Edit-based Language Model

	Understanding the Behavior of MLM
	Rapid Saturation Problem
	Challenges in Modeling Substructure Semantics

	Edit-based Pre-training Framework
	SMILES Encoder with Editing Operations
	Edit-based Pre-training with Fragment-level Supervision

	Experiments
	Experiment Settings
	Results on Molecular Property Classification Tasks
	Ablation Studies
	Ablation Studies on Fragment-level Supervision
	Ablation Studies on Editing Operations

	Analytical Experiments

	Conclusions
	Details of Levenshtein Transformer
	More training curves of SMI-Editor
	Hyper-parameters for models of varying scales
	Performance of MLM Models on Downstream Task
	Performance of SMI-Editor on Downstream Task
	Hyper-Parameter Configuration for Pre-training
	Hyper-Parameter Configuration for Fine-tuning
	Details of Fine-tuning Datasets
	Performance of SMI-Editor on DeepChem Data
	Performance Advantages of SMI-Editor Over Auto-regressive Models
	Performance of SMI-Editor with Fragment Correction
	How the fragment drop ratio affect SMI-Editor
	Performance of SMI-Editor on molecular property regression tasks
	A case study for fragments assemble
	The scalability of SMI-Editor
	The training cost of SMI-Editor
	A more detailed analysis of the model's substructure modeling capability.
	SMI-Editor's Performance on Retrosynthesis Prediction Tasks
	SPE Tokenizer Does Not Improve SMILES MLM Performance
	Masked Span Language Model Does Not Improve SMILES LM Performance
	Comparison between SMI-Editor and contrastive learning
	K-fold cross-validation of the SMI-Editor model.
	Broad Applications of Atom-Level Tokenizers

