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ABSTRACT

Longitudinal biomedical studies monitor individuals over time to capture dynam-
ics in brain development, disease progression, and treatment effects. However,
estimating trajectories of brain biomarkers is challenging due to biological vari-
ability, inconsistencies in measurement protocols (e.g., differences in MRI scan-
ners) as well as scarcity and irregularity in longitudinal measurements. Herein,
we introduce a novel personalized deep kernel regression framework for fore-
casting brain biomarkers, with application to regional volumetric measurements.
Our approach integrates two key components: a population model that captures
brain trajectories from a large and diverse cohort, and a subject-specific model that
captures individual trajectories. To optimally combine these, we propose Adap-
tive Shrinkage Estimation, which effectively balances population and subject-
specific models. We assess our model’s performance through predictive accu-
racy metrics, uncertainty quantification, and validation against external clinical
studies. Benchmarking against state-of-the-art statistical and machine learning
models—including linear mixed effects models, generalized additive models, and
deep learning methods—demonstrates the superior predictive performance of our
approach. Additionally, we apply our method to predict trajectories of compos-
ite neuroimaging biomarkers, which highlights the versatility of our approach
in modeling the progression of longitudinal neuroimaging biomarkers. Further-
more, validation on three external neuroimaging studies confirms the robustness
of our method across different clinical contexts. We make the code available at
https://github.com/vatass/AdaptiveShrinkageDKGP.

1 INTRODUCTION

Accurately predicting the temporal progression of brain biomarkers is essential for monitoring dis-
ease progression and determining optimal intervention points (Maheux et al., 2023). However,
challenges such as biological variability among individuals, limited longitudinal data, and irregu-
lar observation intervals make model development particularly difficult. Since accurate and reliable
predictions are imperative, models must dynamically adapt as new subject-specific data become
available, ensuring personalized predictions.

Several predictive models have been proposed to model the progression of biomarkers in the field
of neuroimaging (Marinescu et al., 2018). Traditional methods, such as linear mixed effects models
(Lindstrom & Bates, 1988), often struggle to handle high-dimensional multivariate data effectively
and are predominantly used for statistical inference (Bernal-Rusiel et al., 2013; Xie et al., 2023).
Additionally, mixed-effect regression modeling is commonly employed to address longitudinal pre-
dictions by fitting biomarker progression to linear or sigmoidal curves (Sabuncu et al., 2014; Koval
et al., 2021). However, this approach may be limited by its reliance on predefined trajectory shapes.
More recently, Hong et al. (2019) and Gruffaz et al. (2021) explored manifold learning techniques
to capture biomarker trajectories requiring subjects with at least two acquisitions for inference. Ad-
ditionally, Lorenzi et al. (2019) introduced a Gaussian process–based disease progression model
capable of predicting biomarkers like cognitive scores and volumetric measurements, but it relies
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on specific design assumptions regarding the number of observations per subject and also uses low-
dimensional input (i.e., five biomarkers). In the same spectrum, Koval et al. (2021) presented a
Bayesian mixed effects model for estimating biomarker trajectories from low-dimensional inputs.
Abi Nader et al. (2020) proposed a method for spatiotemporal progression of biomarkers without
adapting to subject’s follow-up. Tassopoulou et al. (2022) proposed a deep kernel regression method
to infer biomarker trajectories from high-dimensional multivariate imaging features, though it does
not utilize individual subject trajectories to refine predictions. In a related direction, Rudovic et al.
(2019) developed a meta-weighting scheme combining two personalized Gaussian process models
to forecast ADAS-Cog13 (Mohs et al., 1997) scores up to two years ahead. Similarly, Chung et al.
(2019) introduced a deep mixed effects framework for personalization in electronic health record
time-series data, employing a long short-term memory network (Hochreiter & Schmidhuber, 1997)
to model population trends while using a Gaussian process to capture subject-specific deviations.

In this paper, we address the above limitations by proposing Deep Kernel Regression with Adap-
tive Shrinkage Estimation, a composite framework for predicting longitudinal brain trajectories
leveraging all the available observations of the test subject, either single acquisition or multiple
randomly-timed acquisitions. Unlike previous approaches that predict biomarkers within predeter-
mined time intervals (Rudovic et al., 2019), our method is designed to forecast over a practically
unbounded future time horizon while simultaneously refining past observations by reducing noise
in subject-specific observations. This dual capability enhances measurement reliability and pre-
serves the global progression trend from the initial observation to any unseen future time point.
Moreover, our framework naturally handles randomly-timed and temporally unaligned longitudinal
observations without requiring imputation, thereby leveraging all available data. By extending the
shrinkage estimator concept from Bayesian statistics and penalized inference (James & Stein, 1961;
Shou et al., 2014), our method learns weights to combine population and subject-specific deep ker-
nel model through an adaptive shrinkage estimator, while accounting for both observation time and
predictive uncertainty.

Contributions. 1) We propose a novel deep kernel regression framework for predicting biomarker
trajectories from sparse longitudinal observations, that maps high-dimensional, imaging and clinical
features into a lower-dimensional latent space predictive of biomarker progression. Our approach
naturally accommodates randomly-timed and temporally unaligned observations without requiring
imputation. 2) We introduce Adaptive Shrinkage Estimation that fuses the population and subject-
specific models. This framework enables incremental updates to personalized predictions as new
data arrive and it also refines historical observations to reduce noise while preserving the overall
progression trend from the first observation to any future time. Importantly, the Adaptive Shrinkage
estimator is interpretable, offering insights into the relative contributions of population and subject-
specific model. 3) We showcase the versatility of our method to be applied for the prediction of two
additional composite neuroimaging biomarkers from high-dimensional multivariate imaging data
and clinical covariates. 4) We demonstrate the generalizability of our method in different clinical
contexts, showing its ability to generalize in three external clinical studies.

2 METHOD

2.1 PROBLEM FORMULATION

We address the problem of predicting biomarker trajectories, modeled as a one-dimensional signal
spanning multiple years. Formally, biomarker progression is described by the function f : U → Y ,
where U ∈ RK and Y ∈ R. The input is represented as U = (X,M, T ), where X de-
notes the imaging features, M denotes the clinical covariates at subject’s first visit, and T rep-
resents the temporal variable, indicating time in months from the first visit. The biomarker tra-
jectory is denoted as Y = (y0, y1, . . . , yn), corresponding to the biomarker values at time points
T = (t0, t1, . . . , tn). Our goal is to learn smooth functions biomarker progression using imag-
ing and clinical data. To achieve this, we employ Deep Kernel Learning (DKL) (Wilson et al.,
2015). The deep kernel integrates imaging and clinical covariates, learning a lower-dimensional
representation informative for biomarker progression, while a Gaussian Process (GP) models the
temporal dependencies. The backbone model, Deep Kernel Gaussian Process (DKGP), is defined
as: f(U) ∼ GP(µ,K(Φ(U),Φ(U))), where Φ is a transformation function.

2.2 POPULATION DEEP KERNEL MODEL (P-DKGP)
The population model leverages data from the population dataset Dp = {Up,Yp}, comprising
subjects with longitudinal observations. It applies the transformation Φ(u;W,b), a Multi-Layer
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Figure 1: Overview of the proposed framework. In Figure 1a, we illustrate the training process
of the two models, p-DKGP. The population dataset Dp contains multiple longitudinal acquisitions
of subjects, where N is the total number of samples across all subjects, and L is the latent dimen-
sion obtained from transformation Φ. Different shades of green in the population dataset indicate
different subjects in Dp. In Figure 1b, we illustrate the training process of the ss-DKGP. We de-
note the observed trajectory of subject j with h samples as Dsj |h. These samples are utilized to
train the ss-DKGP. During the training of the ss-DKGP, the transformation Φ is fixed, and only the
subject-specific Gaussian process is optimized. In Figure 1C, we visualize the personalization pro-
cess through the adaptive shrinkage parameter α. For subject j, we extrapolate biomarker values
over time using both the p-DKGP and ss-DKGP models. These extrapolated values are then used to
infer the adaptive shrinkage α for posterior correction, yielding the personalized posterior predictive
mean Yc variance Vc of the subject’s trajectory.

Perceptron (MLP), that maps the input data Up = (X,M, T ) into a latent representation:

Zp = Φ(Up;W,b). (1)

A GP, subsequently, models the biomarker progression function f using a Radial Basis Function
(RBF) kernel as the covariance function and a zero mean: f(Zp) ∼ GP

(
0,K(Zp,Z

′
p)
)
.

The population parameters γp = {Wp,bp, lp, σ
2
p, σ

2
np
} include both the transformation parameters

of Φ and the Gaussian Process (GP) hyperparameters: the lengthscale lp, signal variance σ2
p, and

noise variance σ2
np

. These parameters are jointly learned by maximizing the Marginal Log Likeli-
hood (MLL) of the GP (Wilson et al., 2015; Rasmussen & Williams, 2006).

For a test subject j with input uj = (xj ,mj , t), we denote the transformed input as zj =
Φ(uj ;Wp,bp).

The posterior predictive distribution of the biomarker function at point uj = (xj ,mj , t) is:

fpj
| (Zp,Yp), zj ∼ N (f̄pj

, cov(fpj
)). (2)

The mean and variance of the predictive posterior distribution provide the predictions and their
uncertainties, respectively, and are calculated as follows:

f̄pj = E[f∗ | Zp,Yp, zj ] = K(zj ,Zp)[K(Zp,Zp) + σ2
np
I]−1Yp, (3)

Var(fpj
) = K(zj , zj)−K(zj ,Zp)[K(Zp,Zp) + σ2

np
I]−1K(Zp, zj), (4)

where σ2
np

is the additive independent identically distributed Gaussian noise ϵ.

For simplicity, the predictive mean and variance of a biomarker for test subject j from the p-
DKGP are denoted as yp and vp, respectively. By prompting the p-DKGP model with different
time intervals t, yields the predicted trajectory and predictive uncertainty across time, represented
as Yp = (yp1 , yp2 , . . . , ypT

) and Vp = (vp1 , vp2 , . . . , vpT
).
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2.3 SUBJECT-SPECIFIC DEEP KERNEL MODEL (SS-DKGP)
For a new test subject, let h denote the number of observations and Tobs the time of observation from
the initial acquisition. The observed data for the subject is represented as Ds = {(Xs,Ms, Ts), Ys}.
The ss-DKGP model is trained on Ds to capture the subject-specific trajectory. The transformation
Φ(·;Wp,bp), learned via the p-DKGP, initializes the deep kernel of the subject-specific model.

We initialize a new GP with an RBF kernel and a zero mean. During the training of the ss-DKGP,
only the observed trajectory of the subject is used. Specifically, we update the GP hyperparame-
ters, which include the lengthscale ls and the signal variance σs, while keeping the weights of the
function Φ(·;Wp,bp) frozen during backpropagation. The subject-specific GP hyperparameters
γs = {ls, σ2

s , σ
2
ns
} are jointly learned by maximizing the MLL of the GP.

For subject j with input uj = (xj ,mj , t), we denote their transformation as zj = Φ(uj ;Wp,bp).

The posterior predictive distribution of the biomarker progression function at time point t is:

fsj | (Zs,Ys), zj ∼ N (f̄sj , cov(fsj )), (5)

where zj = Φ(uj ;Wp,bp)

The predictive mean and variance, representing the predictions and their associated uncertainties
respectively, are computed as follows:

f̄sj = E[fsj | Zs,Ys, zj ] = K(zj ,Zs)[K(Zs,Zs) + σ2
ns
I]−1Ys, (6)

Var(fsj ) = K(zj , zj)−K(zj ,Zs)[K(Zs,Zs) + σ2
ns
I]−1K(Zs, zj). (7)

where σ2
ns

is the additive independent identically distributed Gaussian noise ϵ.

For simplicity, the predictive mean and predictive variance of the ss-DKGP are denoted as ysj and
vsj , respectively. By querying the ss-DKGP model at different time intervals t we reconstruct the
biomarker trajectory of subject j, yielding the predicted trajectory Ys = (ys1 , ys2 , . . . , ysT ) and
predictive uncertainty Vs = (vs1 , vs2 , . . . , vsT ).

2.4 PREDICTIVE POSTERIOR CORRECTION

Given predictions yp and ys from the p-DKGP and ss-DKGP models, the personalized prediction is
expressed as a linear combination:

yc = αyp + (1− α)ys, (8)

where, α is the shrinkage parameter reflecting the relative confidence in each model. Assuming
independence between the models, the combined prediction yc retains Gaussian properties, and its
variance is given by:

vc = α2vp + (1− α)2vs. (9)

In Supplementary Section 2.4 we address the independence assumption and its impact.

The weights α and 1− α quantify the credibility of each model, yielding a new posterior predictive
mean Yc and variance Vc. Values of α close to 1 indicate higher confidence in p-DKGP model, while
values close to 0 reflect greater trust in ss-DKGP model. We refer to α as the shrinkage parameter.

2.4.1 ACQUIRING THE ORACLE SHRINKAGE α
Estimating the oracle shrinkage parameter α is crucial for constructing the personalized posterior
predictive means and variances of the biomarker trajectory. To estimate α, we use a held-out set
of subjects with known trajectories, unseen by the population model. Predictions for these subjects
are generated using the p-DKGP model. For each subject, the ss-DKGP component is trained by
progressively increasing the length of the observed trajectory.

The entire biomarker trajectory is reconstructed from the baseline time (t = 0) to the subject’s last
time point tn. Using both models, p-DKGP and ss-DKGP, we obtain two estimates of the biomarker
trajectory along with their predictive variances. Let Yp and Vp denote the p-DKGP predictive mean
and variance, and Ys and Vs denote the ss-DKGP model predictive mean and variance. Let Y
represent the ground truth biomarker values over time. The oracle α is estimated by minimizing the
following criterion:

Js|h(α) =

tn∑
t=0

(yt − (α · ypt + (1− α) · yst))
2
. (10)
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The notation Js|h reflects that this optimization is performed for a subject s, given h observed
acquisitions. The algorithm for calculating the oracle shrinkage estimates on the validation set is
outlined in Algorithm 1. Each subject’s data is processed individually, applying the optimization to
each sequence of observations. This process is repeated for every subject in the validation set.

Algorithm 1 Oracle Shrinkage Estimation

Require: Validation set V = {(Us, Y (s)) | s ∈ S}, where Y (s) = {y(s)t }Tt=1 is the ground truth
trajectory for subject s

Ensure: Optimal shrinkage parameters α̂s,h for each s ∈ S and h ∈ H
1: for each s ∈ S do
2: Initialize list L(s) ← [ ]
3: for each h ∈ H do
4: Obtain P-DKGP trajectory: Y (s,h)

p = {y(s,h)p,t }Tt=1

5: Obtain ss-DKGP trajectory: Y (s,h)
s = {y(s,h)s,t }Tt=1

6: Define objective function:

Js,h(α) =
T∑

t=0

(
y
(s)
t −

(
αy

(s,h)
p,t + (1− α)y

(s,h)
s,t

))2

7: Compute:
α̂s,h = arg min

α∈[0,1]
Js,h(α)

8: Append α̂s,h to L(s)

9: end for
10: Store list L(s) for subject s
11: end for

2.4.2 LEARNING THE ADAPTIVE SHRINKAGE α
The shrinkage parameter α represents the trust factor between the two components (p-DKGP and
ss-DKGP). We model α as a function of the input variables q = {yp, ys, vp, vs, Tobs}, where q ∈ R5

and Tobs represents the time of observation. Using oracle shrinkage α obtained from Section 2.4.1
on the validation set, our objective is to learn a mapping function ga that transforms the input space
q ∈ R5, to the output space of adaptive shrinkage α ∈ R, as α̂ = ga(q; θ).

We employ XGBoost regression to learn the function g that minimizes the difference between the
predicted α̂ and the oracle α. The learned function is denoted as gα. In Supplementary Section
C.2, we provide results from additional non-linear functions we experiment with, demonstrating
that XGBoost achieves the best performance for estimating the shrinkage α.

2.5 PERSONALIZATION THROUGH ADAPTIVE SHRINKAGE ESTIMATION

For a new test subject with h observations and Tobs as the observation time (measured from the sub-
ject’s first visit), we train the ss-DKGP model as described in Section 2.3. The posterior-corrected
predictive distribution, referred to as pers-DKGP, is computed using the following algorithm:

Algorithm 2 Personalization through Adaptive Shrinkage Estimation
Require: p-DKGP model, ss-DKGP model, and learned function gα
Ensure: Adapted predictive mean and variance: Yc, Vc

1: Compute Yp, Vp (predictive mean and variance) from the p-DKGP model.
2: Compute Ys, Vs (predictive mean and variance) from the ss-DKGP model.
3: Adapted Shrinkage Estimation: α̂h = gα(Yp, Ys, Vp, Vs, Tobs).
4: Compute the personalized predictive mean: Yc = α̂h · Yp + (1− α̂h) · Ys.
5: Compute the personalized predictive variance: Vc = α̂2

h · Vp + (1− α̂h)
2 · Vs.

6: return Yc, Vc.

The personalization process through Adaptive Shrinkage Estimation is described in Algorithm 2.
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Figure 2: We compare the mean MAE per subject stratified by the progression status (top) and the
AE with time from the last observation (bottom) of our method with the baselines for (a) the 7 ROI
Volume biomarkers, (b) SPARE-AD score and (c) SPARE-BA. Error bars, in the top row, denote the
95th percentile of the MAE across all subjects. Our method is denoted as pers-DKGP.

3 EXPERIMENTS

3.1 PREDICTION OF REGIONAL VOLUMETRIC TRAJECTORIES

In this section, we apply deep kernel regression with Adaptive Shrinkage Estimation to predict tra-
jectories of seven volumetric Regions of Interest (ROI): Hippocampus R, Hippocampus L, Thalamus
Proper R, Amygdala R, Amygdala L, Parahippocampal Gyrus R and Lateral Ventricle R. For each
ROI Volume model we use a dataset of 2, 200 subjects with Ui = (Xi,Mi, Ti) from subject i, where
Xi are volumetric measures from 145 brain regions collected at subject’s first visit, Mi are the co-
variates of diagnosis at subject’s first visit, sex, age, education, APOE4 Alleles, a genetic variant
related to AD and Ti is the time from subject’s first visit. For each ROI Volume biomarker, the
p-DKGP model is trained on a population cohort of 1, 600 subjects, while the adaptive shrinkage
estimator is trained on a held-out set of 200 subjects. Predictive performance is evaluated on 440
test subjects. For details on the architecture and training of the ROI Volume deep kernel models,
p-DKGP and ss-DKGP, see Section B.1.

We combine preprocessed and harmonized neuroimaging measures from two well-known longitu-
dinal studies: the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Weiner et al., 2017) and
the Baltimore Longitudinal Study of Aging (BLSA) (Ferrucci, 2008), which focus on Alzheimer’s
Disease and Brain Aging, respectively. Further details on the studies and preprocessing pipelines
are provided in Supplementary Section A.

We benchmark our method against several baselines and state-of-the-art predictors: Linear Mixed
Model (LMM) (Lindstrom & Bates, 1988), Generalized Additive Model (GAM) (Hastie & Tibshi-
rani, 1986), Deep Neural Network Regression, and the Deep Mixed Effects (DME) (Chung et al.,
2019). Further details on the architectural design and training of baselines are provided in Sup-
plementary B.3. Model performance is evaluated from two perspectives: predictive accuracy and
uncertainty quantification (UQ). Predictive accuracy is measured using Absolute Error (AE) and
Mean Absolute Error (MAE) per subject. UQ is assessed by interval width (the range between ±2
standard deviations from the predictive mean) and coverage (the proportion of true biomarker values
within that range). Importantly, these metrics are computed over the entire unseen trajectory of test
subjects, providing a comprehensive evaluation of model performance over time. We refer to our
method as personalized-DKGP or shortly pers-DKGP.
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Figure 3: We present personalized ROI volume trajectories for three test subjects as observations
increase from 4 to 7 acquisitions. The dashed lines represent the prediction using LMM. The first
two panels visualize the Hippocampus R and Thalamus Proper R Volume trajectories of Healthy
Control subject. Last panel shows the Lateral Ventricle R Volume for an AD Progressor. The shaded
bands represent the predictive uncertainty over time.

For each predictor, Figure 2 a presents a comparative study of the predictive performance with re-
spect to progression status and time from the last known acquisition. Progression status is defined by
the subject’s initial and final diagnoses, categorized as follows: AD refers to subjects diagnosed with
AD at their first visit; AD Progressor includes subjects initially diagnosed as Cognitively Normal
(CN) or Mild Cognitively Impaired (MCI) who progress to AD; Healthy Controls are subjects who
remain CN throughout all visits; MCI Progressor refers to subjects who progress from CN to MCI;
MCI Stable includes subjects who remain MCI throughout their trajectory; and Unknown (UKN)
corresponds to cases involving misdiagnosis.

Building on this categorization, Figure 2a shows the mean MAE across progression status for the
seven volumetric ROIs. Notably, the largest mean MAE differences between our method and base-
lines occur in participants with AD and AD Progressors, who exhibit non-linear and steeper trends
that competing baselines fail to capture. Specifically, the Linear Mixed Model (LMM), constrained
to linear patterns in ROI volumes, shows significant percentage mean MAE differences in AD
(177.66%) and AD progressors (22.05%). Even in healthy controls, LMM exhibits a 29.78% MAE
difference, highlighting its inability to capture trajectories even in cases of relatively stable volume
trajectories. Further quantitative comparisons, including error stratification by covariates such as
sex, APOE4 Alleles, and education years, are provided in Supplementary Sections D.1.

In addition to evaluating performance with respect to progression status, we also assess the model’s
ability to predict long-term longitudinal trajectories. In Figure 2a, we visualize the mean AE across
different lengths of observed trajectories, with errors plotted relative to the time from the last obser-
vation. Our method achieves progressively lower mean AE over time, indicating improved precision
in both long-term and short-term predictions. This demonstrates the model’s ability in capturing
temporal trends and adapting to varying observation lengths.

To further highlight the strengths of our model, we provide a qualitative evaluation of the predicted
trajectories in Figure 3. For the Volume ROIs of Hippocampus R, Thalamus Proper R, and Lateral
Ventricle R, our model successfully adapts to the observations of test subjects, resulting in more
accurate long-term predictions. For instance, in the Healthy Control subject shown in Figure 3b, the
population prediction deviates from the actual trajectory. However, as the number of observations
increases, the pers-DKGP trajectory shifts toward the observed trajectory, effectively adapting to
the subject-specific trend. Similarly, the third subject, an AD Progressor in Figure 3c, exhibits an
abrupt increase in ventricular volume. This trend is captured with few observations by the pers-
DKGP model, while the LMM underestimates the ventricular volume in the long term. Additional
qualitative examples of trajectories are provided in Supplementary Section D.3.

Overall, the LMM exhibits limited flexibility in capturing non-linear patterns in ROI volumes,
rendering it inadequate for long-term biomarker prediction. While it performs reasonably well
in short-term forecasts and lower-dimensional settings, its expressiveness falls short for complex,
high-dimensional inputs. Deep regression, though capable of learning from observed data, often
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yields non-smooth or non-monotonic trajectories that deviate from biologically plausible biomarker
progression trends. The DME model, which combines a shared deep mean function with subject-
specific GP, struggles to achieve personalization in high-dimensional input spaces, resulting in per-
sistent errors across time and diagnostic categories. These issues stem from the limitations of the
RBF kernel in managing multivariate, high-dimensional data. In contrast, our method effectively
approximates non-linear mixed effects models, demonstrating flexibility in handling multivariate,
high-dimensional data and capturing diverse temporal patterns.

3.2 APPLICATION TO NEUROIMAGING BIOMARKERS: SPARE SCORES

Having demonstrated our framework’s ability to personalize longitudinal predictions of volumet-
ric ROIs as subject observations increase, we now show its versatility by applying it to composite
neuroimaging biomarkers: the SPARE-AD (Davatzikos et al., 2009) and SPARE-BA (Habes et al.,
2016) scores. SPARE-AD quantifies the risk of AD progression, while SPARE-BA represents pre-
dicted brain age. For both SPARE models we use a dataset of 2,200 subjects with Ui = (Xi,Mi, Ti)
from subject i, where Xi are volumetric measures from 145 brain regions collected at subject’s first
visit, Mi are the covariates of diagnosis at subject’s first visit, sex, age, education, APOE4 Alleles,
the SPARE-AD and SPARE-BA values at the first visit and Ti is the time from subject’s first visit.
The p-DKGP model is trained on 1600 subjects, the adaptive shrinkage estimator is trained on a
held-out set of 200 subjects. The evaluation of the predictive performance is performed on the 440
test subjects. For details on the architectural design and training of the SPARE-AD and SPARE-BA
deep kernel models (p-DKGP and ss-DKGP) see Section B.2.

Our model demonstrates strong performance in predicting long-term longitudinal trajectories for
both SPARE-AD and SPARE-BA biomarkers, as illustrated in Figure 2b and 2c. Notably, the model
achieves progressively lower mean AE over time, indicating improved precision in forecasting long-
term outcomes. For SPARE-BA, model performance differences are minimal in stable subjects and
healthy controls, but more pronounced in AD subjects, where SPARE-BA exhibits steeper progres-
sion trends due to accelerated brain aging. For the SPARE-AD biomarker, we also visualize absolute
error with the number of observations. This highlights how our model adapts with increasing obser-
vations, starting with a single scan using the p-DKGP model (α = 1) and transitioning to adapted
shrinkage estimation for personalization as follow-up observations increase. Evidence is provided
in Table 5 and Figure 7 in Supplementary Section D.2.

3.3 APPLICATION TO EXTERNAL NEUROIMAGING STUDIES

In this section, we demonstrate the generalizability of our method to previously unseen neuroimag-
ing datasets. After training the p-DKGP and adaptive shrinkage estimator on the population and val-
idation datasets from the ADNI and BLSA cohorts, we personalize starting from the first follow-up
point for each subject and predict the remaining trajectory. This process is repeated for all follow-up
points, with the very last follow-up reserved for testing.

We test the performance of our framework on subjects from three independent clinical studies: OA-
SIS (Marcus et al., 2010), AIBL (Ellis et al., 2009), and PreventAD (Tremblay-Mercier et al., 2021).
These datasets differ from the training population in terms of demographics, diagnosis composition,
and follow-up intervals, presenting a challenging test of the model’s generalizability across diverse
populations. In Supplementary Section A we present details on the demographic and clinical char-
acteristics of these studies.

The three external studies exhibit notable differences in demographics and follow-up intervals:
AIBL: Includes 82 individuals with a mean age of 75 years, which is close to the mean age of
the joint cohort of ADNI and BLSA. It is predominantly composed of AD patients followed by MCI
and Healthy Controls. On average, each subject has approximately 3 follow-up visits, with a mean
interval of 24 months between visits. OASIS: Includes 559 individuals younger on average (67.8
years) compared to both ADNI and BLSA. It is primarily composed of healthy controls, with smaller
representations of MCI and AD cases. The average number of follow-ups is ∼ 3 per subject, with a
mean interval of 32 months. PreventAD: Includes 271 individuals and focuses on pre-symptomatic
early detection of AD in a healthier and younger population (mean age 65.3 years) with an average
of 4 follow-up visits per subject and a shorter mean interval of 10 months.

Our method outperforms baseline predictors across three independent clinical studies—AIBL, OA-
SIS, and PreventAD—underscoring its effectiveness in diverse, real-world scenarios (Figure 4). The
model achieves lower MAE compared to baselines, with narrow confidence intervals reflecting its
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stability. In the AIBL study, pers-DKGP achieves a Mean AE of 0.197 ± 0.009, substantially outper-
forming the baseline methods. A similar trend is observed in the OASIS study, where pers-DKGP
attains a Mean AE of 0.259 ± 0.006. Notably, in the PreventAD study, our method achieves the
lowest Mean AE of 0.139 ± 0.004, outperforming LMM and GAM. The narrow CIs of the AE as-
sociated with pers-DKGP across all datasets highlight its reliability and consistent precision, even
in the presence of data variability. Interestingly, the lowest error observed in the PreventAD study,
along with the reduced disparity between pers-DKGP and statistical models like LMM and GAM, is
attributed to the younger population and shorter follow-up intervals in this dataset. Predicting Vol-
ume ROIs in a younger, healthier control population, as in PreventAD, is inherently less challenging
compared to the older, partially demented populations in OASIS and AIBL.

Collectively, these results position our model as a robust and reliable framework for personalized
forecasting of neuroimaging biomarkers, offering potential for application in clinical trials and neu-
roimaging studies.

Figure 4: We evaluate the mean absolute error for the seven ROI Volume biomarkers across three
external neuroimaging studies. Error bars denote the 95th percentile of the absolute error. Notice
that the pers-DKGP achieves the lowest error across all external studies, in comparison with the
competing baselines.

3.4 EXPLAINING ADAPTIVE SHRINKAGE: AN ABLATION STUDY ON THE α ESTIMATOR

In this section, we demonstrate the effectiveness and interpretability of the Adaptive Shrinkage esti-
mator. We first compare it to alternative posterior correction approaches and then use explainability
analysis to illustrate how Adaptive Shrinkage estimator learns to balance the two posterior predictive
distributions in a data-driven manner, making its decision-making process intuitive.

We explore various strategies for selecting the shrinkage parameter α. First, we experiment with a
constant α = c, where c ∈ (0, 1), representing an uninformative approach to posterior correction.
Next, we employ a semi-informative (deterministic) approach, where the α for each test subject
is determined by optimizing the objective in Equation 10 using only subject’s observed trajectory.
Finally, we use Adaptive Shrinkage estimator to determine α. We conduct this experiment for seven
ROI Volume biomarkers: Hippocampus R/L, Lateral Ventricle, Thalamus Proper, Amygdala R/L,
and the Parahippocampal Gyrus R. Here, we present results for Hippocampus R, Lateral Ventricle,
and Thalamus Proper under the constant α and Adaptive Shrinkage. Results for the remaining
Volume ROIs and the deterministic approach are provided in Table 6 of Supplementary Section
D.4.1.

The deterministic approach (Table 6) results in the worst outcomes in terms of both predictive per-
formance and uncertainty quantification, suggesting that the observed trajectory alone is insufficient
to determine the α for future predictions. Per-subject optimized α can overfit the noise in a sin-
gle subject’s limited data, leading to poorer generalization, whereas the learned adaptive shrinkage
generalizes better across subjects. Additionally, in the constant α section of Table 1, we present
the performance of the best constant α values. This demonstrates that optimal performance is not
achieved through simple averaging and that the optimal α varies significantly across ROIs. For ex-
ample, the best α is 0.5 for Hippocampus, 0.3 for Lateral Ventricle, and 0.7 for Thalamus Proper.
These results highlight the inadequacy of a one-size-fits-all approach and underscore the necessity
for a more sophisticated method. The evidence suggests that Adaptive Shrinkage provides a more
informed approach for determining the ideal α, leading to improved predictive performance and
uncertainty quantification.
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Table 1: Ablation study on the shrinkage parameter α. We report the Mean AE along with its 95%
percentile CI, Mean Coverage, and Mean Interval Width

Best Constant Adaptive Shrinkage
ROI α Mean AE (CI) Mean Cov. Mean Int. Mean AE (CI) Mean Cov. Mean Int.

Hippocampus R 0.5 0.257 (±0.007) 0.808 0.843 0.243 (±0.003) 0.795 0.902
Lateral Ventricle R 0.3 0.143 (±0.006) 0.853 0.507 0.131 (±0.002) 0.855 0.626
Thalamus Proper R 0.7 0.241 (±0.007) 0.934 1.127 0.219 (±0.003) 0.849 0.911

Following, we elucidate the decision-making process of Adaptive Shrinkage with explainability
analysis. We focus on the impact of each input variable—Yp, Ys, Vp, Vs, and Tobs—and their inter-
actions on the prediction of the adaptive shrinkage parameter α. Specifically, we aim to understand
how the deviation between the population and subject-specific predictive means (δy = Yp − Ys) and
the observation time Tobs influence the model’s predictions.

We employ SHAP (SHapley Additive exPlanations) values (Lundberg & Lee, 2017) to interpret
the contribution of each feature to individual predictions. Figure 13 in Supplementary Section D.4
reveals that Tobs is the most influential variable in the decision-making process. This is further
validated by the observation that the distribution of adaptive shrinkage α decreases as the number
of follow-up visits (and thus Tobs) increases. Figure 12 in Supplementary Section D.4 demonstrates
the distribution of α with the number of observations for the seven ROIs and SPARE scores, as well
as the adaptive shrinkage α obtained from external neuroimaging studies. The consistent trend of
decreasing α as the number of observations increases highlights the biomarker-agnostic ability of
Adaptive Shrinkage to optimally combine population and subject-specific trends. This behavior is
also consistent across external neuroimaging studies, further validating the generalizability of the
approach. Additional qualitative results demonstrating the decision-making process of Adaptive
Shrinkage are provided in Supplementary Section D.3, Figures 10 and 11.

Furthermore, correlation analysis (Supplementary Section D.4, Table 7) reveals a consistent negative
relationship between Tobs and the predicted α when the deviation δy is large. This indicates that,
in the presence of significant deviations between the two predictors, Adaptive Shrinkage reduces
the weight assigned to the population-level model (p-DKGP) for longer observation periods. This
aligns with the intuition that as more follow-up observations are available, greater trust is placed in
the subject-specific predictive distribution.

4 DISCUSSION

In this paper, we introduce deep kernel regression with Adaptive Shrinkage Estimation for predict-
ing personalized biomarker trajectories via posterior correction. Our method learns the adaptive
shrinkage parameter that effectively combines two posterior predictive distributions, enabling the
predictive trajectory to adapt to each subject’s follow-up acquisitions. Additionally, our method is
versatile, effectively modeling the progression of longitudinal biomarkers using multivariate imag-
ing data and clinical covariates. Examples of such biomarkers are the cognitive scores (e.g., MMSE,
ADAS-Cog13) and blood biomarkers (e.g., Amyloid-β, Tau protein). Importantly, our approach ex-
hibits generalization capabilities when applied to external neuroimaging studies with diverse demo-
graphics and follow-up intervals, which is particularly valuable for real-world applications, where
models must perform robustly across heterogeneous populations.

This property is particularly important as the use of predictive models in healthcare is increasingly
critical for both patient management and drug development. Cummings et al. (2019) emphasize the
need for AI-informed clinical trials, referred to as precision trial design, while Maheux et al. (2023)
evaluate predictive models for biomarker trajectories in Alzheimer’s Disease, where derived mea-
sures—such as the rate of change—serve as quantitative indicators of disease progression during
clinical trials. These measures inform decisions on subject inclusion and treatment efficacy, under-
scoring the importance of reliable and interpretable predictive tools. Our method’s adaptive and
intuitive design positions it as a valuable tool for clinical trial design, disease progression modeling,
treatment effect estimation, and neuroimaging research. By leveraging personalized predicted ROI
Volume and neuroimaging biomarkers, such as SPARE-AD, as endpoints for selecting trial subjects,
our framework showcases its potential for real-world application.
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At the same time, we acknowledge limitations in our approach, particularly the independence as-
sumption between the α parameter and posterior distributions in the posterior correction step (Sup-
plementary Section 2.4). While this simplification impacts uncertainty quantification, it does not
affect the posterior-corrected predictive mean, ensuring accurate predictions. Further discussion
on this assumption, including its theoretical justification as well as a way to tackle its limitation,
is provided in Supplementary Section C. Future work will explore extending Adaptive Shrinkage
Estimation to multivariate biomarker trajectories and improving uncertainty quantification in per-
sonalized trajectories to address this aforementioned limitation.
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APPENDIX

A DATASETS AND PREPROCESSING

We use the iSTAGING consortium (Habes et al., 2021) that consolidated and harmonized imag-
ing and clinical data from multiple cohorts. Our real data consists of neuroimaging and demo-
graphic measures taken from subjects in the iSTAGING consortium. Specifically, the neuroimag-
ing measures are the 145 anatomical brain ROI volumes (119 ROIs in gray matter, 20 ROIs in
white matter and 6 ROIs in ventricles) extracted using a multi-atlas label fusion method (Doshi
et al., 2016). Phase-level harmonization was applied on these 145 ROI volumes to remove site ef-
fects (Pomponio et al., 2020). Specifically, we use the Alzheimer’s Disease Neuroimaging Initiative
(ADNI,http://www.adni-info.org/), which is a public-private collaborative longitudinal cohort study
and has recruited participants categorized as Cognitively Normal (CN), Mild Cognitive Impairment
(MCI) and diagnosed with Alzheimer’s Disease (AD) through 4 phases (ADNI1, ADNIGO and
ADNI2) (Weiner et al., 2017). We also use Baltimore Longitudinal Study of Aging (BLSA) (Fer-
rucci, 2008), which has been following participants who are cognitively normal at enrollment with
imaging and cognitive exams since 1993.

We also extracted additional studies from the iSTAGING cohort, including the OASIS dataset Mar-
cus et al. (2010), the Australian Imaging, Biomarker, and Lifestyle (AIBL) study (Ellis et al., 2009),
and the PreventAD study (Tremblay-Mercier et al., 2021). These studies were exclusively reserved
as held-out datasets for evaluating our method on external neuroimaging data.

Our analysis incorporates subjects across all identified progression trajectories: Cognitively Nor-
mal (CN) stables, individuals with Mild Cognitive Impairment (MCI), and those progressing to
Alzheimer’s Disease (AD) from either CN or MCI stages. For the clinical variables, we utilize Age
at Baseline, Sex, Years of Education, and APOE4 Allele status, the latter being a known risk factor
for Alzheimer’s Disease (AD). Diagnostic categories were designated as Cognitively Normal (CN),
Mild Cognitive Impairment (MCI), and Alzheimer’s Disease (AD). Subjects diagnosed with alterna-
tive forms of dementia, such as Lewy Body Dementia and Frontotemporal Dementia, were excluded
from the study. These exclusions were minimal and did not significantly impact the overall sample
size. Missing diagnostic information was classified as unknown (UKN). Furthermore, Years of Ed-
ucation was dichotomized: subjects with more than 16 years of education were coded as ’1’, while
those with 16 years or fewer were coded as ’0’. Detailed demographic and clinical characteristics of
the diverse cohort are presented in Table 2.

Table 2: Summary of longitudinal studies with demographic and clinical Information. OASIS,
AIBL, and PreventAD studies are used as held-out neuroimaging studies. For age, the mean and the
standard deviation are reported. For sex, the number of males and the percentage is presented.

Study Subjects Obs./Subject #Obs. Age Male (%) Diagnosis (%)
CN MCI AD

ADNI 1616 5.0±2.0 7867 73.6±7.0 55.5 44.7 34.6 20.6
BLSA 584 3.0±1.0 1843 74.9±11.1 45.7 95.8 2.8 1.4
OASIS 548 3.0±1.0 1562 67.8±9.0 42.4 88.9 1.9 12.2
AIBL 82 3.0±1.0 247 75±7.7 56.14 33.74 28.81 37.45
PreventAD 271 4.2±1.4 1141 65.3±5.5 28.5 98.6 1.4 0.0

B ARCHITECTURAL DESIGN AND TRAINING

B.1 ROI VOLUME MODELS

For each ROI Volume biomarker, we build a separate deep kernel regression model with adaptive
shrinkage. The deep kernel models (p-DKGP and ss-DKGP) take as input 145 volumetric ROIs
along with the following covariates: Age at Baseline, Sex, Diagnosis at Baseline, APOE4 Alleles,
Education Years, and Time. The transformation function Φ is implemented as a multilayer percep-
tron (MLP) composed of a sequence of linear layers. Φ reduces the input dimensionality from 151
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(145 imaging features + 5 covariates and Time) to 64. Based on empirical validation, further reduc-
tion degrades predictive performance. The Gaussian Process (GP) is initialized with a zero mean
function and an RBF kernel.

The p-DKGP is trained for 500 epochs with a learning rate of 0.01 using the Adam optimizer
(Kingma & Ba, 2014) (with a weight decay of 0.01) and a dropout rate of 0.2 for regularization.
Upon completion, we save the weights (Wp,bp) and the GP hyperparameters (variance and length-
scale) for inference on new test subjects and for transfer learning in the subject-specific model (ss-
DKGP). For the subject-specific model, we initialize the ss-DKGP with the saved weights (Wp,bp)
and the hyperparameters of the population GP. Then, we train the ss-DKGP for 100 epochs with a
learning rate of 0.01, during which the deep kernel is frozen; only the subject-specific GP hyperpa-
rameters are updated. The Adam optimizer with a weight decay of 0.05 is used in this stage.

B.2 SPARE MODELS

For each SPARE biomarker, SPARE-AD and SPARE-BA, we build a separate deep kernel regression
model with adaptive shrinkage estimation. The input features include the same 145 volumetric ROIs,
along with the following covariates: Age at Baseline, Sex, Diagnosis at Baseline, APOE4 Alleles,
Education, SPARE-BA, and SPARE-AD at baseline, in addition to Time.

As in the ROI Volume models, the transformation function Φ is a multilayer perceptron that projects
the 153-dimensional input to a 64-dimensional feature space. We employ a GP with a zero mean
function and an RBF kernel. The p-DKGP is trained for 500 epochs with a learning rate of 0.01,
using the Adam optimizer with a weight decay of 0.01 and a dropout rate of 0.2. The learned
weights (Wp,bp) and GP hyperparameters (variance and lengthscale) are then saved for subsequent
inference and for initializing transfer learning in the subject-specific model. Transfer learning is
performed by initializing the ss-DKGP with the saved weights (Wp,bp) and the population GP
hyperparameters. The ss-DKGP is then trained for 100 epochs with a learning rate of 0.01, during
which the deep kernel is detached from the optimization process and only the subject-specific GP
hyperparameters are updated using the Adam optimizer with a weight decay of 0.05.

B.3 DETAILS ON THE COMPETING BASELINES

We compare our method against various baselines, including Linear Mixed Effects (LMM) mod-
els, Generalized Additive Models (GAMs), Deep Regression, and the Deep Mixed Effects (DME)
(Chung et al., 2019). Each baseline model is trained on the cohort of 1800 subjects, since for the
development of the baselines we do not need to reserve validation-set subjects as we do for the de-
velopment of the Adaptive Shrinkage Estimator. The test set is the 440 subjects. For every subject
i, we define Ui = (Xi,Mi, Ti), where Xi denotes the 145 ROI Volume measurements acquired
at the first visit, Mi comprises the clinical covariates (age at first visit, sex, diagnosis at first visit,
education years, and APOE4 alleles), and Ti represents the time elapsed since the first visit. Specif-
ically, for LMM, we use the 145 ROI Volume measurements at first visit, clinical covariates (age
at first visit, sex, diagnosis at first visit, education years, APOE4 alleles) and Time as fixed ef-
fects. The Subject ID served as a random intercept and the interaction term Time:Subject ID as
a slope. For GAMs, personalization involved fitting a GAM to population data of 1800 subjects,
supplemented with each test subject’s partially observed trajectory. The second non-linear baseline
is the Deep Regression. At first, we train the Deep Regression on the population dataset of 1800
subjects. Then on the personalization, we freeze the first layers of the deep network and we fine
tune only the last layer with the subject data. The architecture of the Deep Network is an MLP that
consists of an input layer, three hidden layers, and an output layer. The first hidden layer contains
100 neurons, the second hidden layer has 50 neurons, and the third hidden layer again contains 100
neurons. Each hidden layer uses the Rectified Linear Unit (ReLU) activation function, which in-
troduces non-linearity into the model and helps it learn complex data patterns. The MLP is trained
using the Stochastic Gradient Descent (SGD) optimization algorithm to minimize the Mean Squared
Error (MSE) loss function. For the Deep Mixed Effects (Chung et al., 2019), we used the publicly
available code in order to apply the DME method to our data. As a warping mean function, we use
a MLP. Additionally, we experimented with a Transformer model (Vaswani et al., 2017) utilizing
positional encoding along the temporal dimension and implemented LSTM models Hochreiter &
Schmidhuber (1997). However, both models faced convergence issues during training and did not
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yield satisfactory results on our sparse temporal dataset. Theoretically, Transformer models rely on
self-attention mechanisms to capture dependencies across sequences, which assume the availability
of comprehensive and densely sampled sequential data. In the context of sparse temporal data, the
self-attention mechanism cannot function optimally due to insufficient temporal information, lead-
ing to suboptimal performance. Similarly, LSTM models require temporally aligned and regularly
sampled data to maintain the sequential relationships inherent in time series. Without prior prepro-
cessing, such as data imputation to handle irregularities and missing values, LSTMs struggle to learn
effectively from sparse temporal data. As a result, we omitted these models from the quantitative
comparisons in the current work.

C ANALYSIS ON POSTERIOR CORRECTION

Our goal is to determine the oracle shrinkage parameter α in Equation equation 11, which combines
the predictions from the population model (p-DKGP) and the subject-specific model (ss-DKGP).
To achieve this, we propose minimizing the Mean Squared Error (MSE) between the combined
prediction yc and the ground truth yt over all time points. The objective function is defined as:

J(α) =

tn∑
t=0

(yt − (αypt
+ (1− α)yst))

2
. (11)

In this section, we provide a theoretical justification for this formulation, explaining why the in-
dependence assumption between the models’ errors does not affect the estimation of α using this
objective function.

Both the p-DKGP and ss-DKGP models provide predictive means ypt
and yst for the ROI value

at each time point t. We aim to find the oracle α that minimizes the MSE between the combined
prediction yc and the ground truth yt. The combined prediction is given by:

yc = αypt
+ (1− α)yst . (12)

To find the optimal α, we take the derivative of J(α) with respect to α and set it to zero:

dJ

dα
= −2

tn∑
t=0

(yt − (αypt
+ (1− α)yst)) (ypt

− yst) = 0. (13)

Simplifying, we get:

tn∑
t=0

(yt − (αypt
+ (1− α)yst)) (ypt

− yst) = 0. (14)

Solving for α, we find:

α∗ =

∑tn
t=0(yt − yst)(ypt − yst)∑tn

t=0(ypt − yst)
2

. (15)

This expression shows that the optimal α depends on the covariance between yt− yst and ypt − yst ,
and the variance of ypt − yst .

To gain further insight into the dependence of the optimal α∗ on statistical properties of the data, we
relate Equation 15 to the concepts of covariance and variance. Let us define:

Xt = ypt
− yst , Yt = yt − yst . (16)

With these definitions, Equation 15 becomes:

α∗ =

∑tn
t=0 YtXt∑tn
t=0 X

2
t

. (17)

The numerator and denominator in Equation 17 are related to the sample covariance and variance,
respectively. Specifically, the numerator is proportional to the covariance between Yt and Xt, and
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the denominator is proportional to the variance of Xt:

Cov(Y,X) =
1

n

tn∑
t=0

(Yt − Ȳ )(Xt − X̄), (18)

Var(X) =
1

n

tn∑
t=0

(Xt − X̄)2, (19)

where Ȳ and X̄ are the sample means of Yt and Xt, respectively, and n = tn + 1 is the number of
time points.

Assuming that Yt and Xt are centered (i.e., Ȳ = 0 and X̄ = 0), which is valid if we consider
deviations from their means, Equation 17 simplifies to:

α∗ =
n · Cov(Y,X)

n · Var(X)
=

Cov(Y,X)

Var(X)
. (20)

This expression shows that the optimal α∗ is the coefficient that minimizes the residual sum of
squares in a simple linear regression of Yt on Xt without an intercept. In other words, α∗ is the
scaling factor that best relates the difference between the population and subject-specific predictions
(Xt) to the residuals of the subject-specific model (Yt).

- If Cov(Y,X) is large and positive, it indicates that when the subject-specific model underpredicts
or overpredicts (Yt deviates from zero), the difference between the population and subject-specific
predictions (Xt) tends to be in the same direction. In this case, a larger α (giving more weight to the
population model) helps reduce the overall error.

- If Cov(Y,X) is small or negative, it suggests that the population model does not provide useful
information to correct the subject-specific model’s errors, and a smaller α (giving more weight to
the subject-specific model) is preferable.

This analysis confirms that the optimal α∗ depends on the covariance between yt−yst and ypt−yst ,
and the variance of ypt −yst . Understanding this dependence provides valuable insight into how the
differences between the models’ predictions relate to the residuals and how to optimally combine
them to minimize the prediction error.

C.1 INDEPENDENCE ASSUMPTION AND ITS IMPACT

The combined predictive mean yc is a deterministic function of ypt
, yst , and α, as given in Equation

12. It does not involve the errors or variances associated with the predictions. As a result, the
independence or correlation between the models’ errors does not influence the calculation of yc.
While the independence assumption does not affect the estimation of α or the calculation of yc, it
does impact the calculation of the combined predictive variance vc. The variance of the combined
prediction is given by:

vc = α2vpt
+ (1− α)2vst + 2α(1− α)Cov(ypt

, yst). (21)

If the errors of the two models are assumed to be independent, the covariance term Cov(ypt , yst) is
zero, simplifying vc to:

vc = α2vpt
+ (1− α)2vst . (22)

Empirical analysis indicates that the errors of the two models are midly correlated, with correlation
to range between 0.136 to 0.394. Therefore, the inclusion the covariance term in the calculation of
vc to accurately quantify the uncertainty of the combined prediction.

Overall, the theoretical justification demonstrates that the MSE objective function is appropriate for
estimating the shrinkage parameter α in our context. It avoids the need for the independence as-
sumption during α estimation and simplifies the optimization process. However, when calculating
the predictive variance vc, it is essential to account for the covariance between the models’ predic-
tions to accurately quantify uncertainty.

To address this issue, we do:

• Estimating Covariance: Empirically estimate Cov(ypt
, yst) using validation data.
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Table 3: Correlation between the errors of p-DKGP and ss-DKGP models for different ROI Volume
biomarkers and Observations

ROI 3 Observations 4 Observations 5 Observations 6 Observations

Hippocampus R 0.237 0.337 0.374 0.318
Thalamus Proper R 0.136 0.348 0.302 0.344
Lateral Ventricle R 0.201 0.247 0.319 0.354
Hippocampus L 0.341 0.300 0.348 0.208
Amygdala R 0.262 0.325 0.355 0.372
Amygdala L 0.292 0.356 0.331 0.394

Non-linear functions for Adaptive Shrinkage Estimator Amygdala  R

Amygdala  L

Hippocampus  R

Hippocampus  L

Thalamus Proper R

Lateral Ventricle R

Parahippocampal Gyrus

Mean Absolute Error

XGBoost GBM RF DNN XGBoost GBM RF DNN

M
A

E

Figure 5: We present MAE and R2 from 5-fold cross-validation using the 200 held-out subjects
from ADNI and BLSA subjects for the Adaprive Shrinkage estimator using XGBoost, GBM, RF
and DNN as non-linear functions

• Adjusting Variance Calculations: Include the covariance term in the calculation of vc as
per Equation 21.

• Reassessing Prediction Intervals: Recompute prediction intervals using the adjusted vc
to ensure improved coverage.

C.2 ALTERNATIVES OF NON-LINEAR FUNCTIONS FOR ADAPTIVE SHRINKAGE ESTIMATOR

We experiment with several non-linear functions to determine which one learns best the adaptive
shrinkage mapping, namely the mapping between a and yp, ys, Vp, Vs, Tobs. We conduct 5-fold
cross-validation using XGBoost Regression (XGBoost), Random Forest (RF), Gradient Boosting
Machine (GBM), and a Deep Neural Network (DNN). The DNN architecture includes a linear layer
(5x16), ReLU activation, a linear layer (16x8), ReLU activation, and a final linear layer (8x1). It is
trained with MSE loss and optimized using Adam with a learning rate of 0.01. Results, presented
in Figure 5 indicate that XGBoost Regression and Random Forest achieve the best performance in
terms of mean absolute error and r2 score on the test set, with both models achieving an average r2

score greater than 0.75 across the majority of the ROI Volumes.

D EXPERIMENTS

D.1 STRATIFIED PERFORMANCE ANALYSIS BY COVARIATES

To thoroughly evaluate our method, we perform stratification of prediction errors across key demo-
graphic and clinical factors: sex, APOE4 Allele status, and education level. This stratification allows
us to examine the model’s ability on varying subpopulations. We report the Mean Absolute Error
and corresponding 95% confidence intervals (CIs) for pers-DKGP, alongside with the competing
baselines.
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Table 4: XGBoost performance on predicting the adaptive shrinkage α for 7 ROI Volume biomarkers
ROI Volume MAE R²

Amygdala R 0.099 0.830
Amygdala L 0.113 0.796

Hippocampus R 0.113 0.810
Hippocampus L 0.118 0.774

Lateral Ventricle R 0.132 0.675
Thalamus Proper R 0.135 0.759

PHG R 0.111 0.783

Stratification by Sex. Our results indicate that pers-DKGP consistently achieves the lowest Mean
AE for both male and female groups. In males, pers-DKGP attains a Mean AE of 0.135 (95%
CI: [0.120, 0.150]), significantly outperforming LMM, which yields a Mean AE of 0.187 (CI:
[0.160, 0.214]). Similarly, for females, pers-DKGP reports a Mean AE of 0.145 (CI: [0.130, 0.160]),
compared to GAM’s Mean AE of 0.198 (CI: [0.165, 0.231]). Although prediction errors are slightly
higher in females—likely due to increased biomarker variability—the consistently narrower CIs of
pers-DKGP underscore its enhanced reliability across sexes.

Stratification by APOE4 Alleles Status. Considering the crucial role of the APOE4 Allele in
Alzheimer’s Disease progression, we examine model performance for Non-Carriers, Heterozygous
and Homozygous separately. For APOE4 homozygotes, pers-DKGP achieves a Mean AE of 0.142
(CI: [0.128, 0.156]), markedly lower than DME’s Mean AE of 0.210 (CI: [0.176, 0.244]). For non-
carriers, pers-DKGP obtains a Mean AE of 0.130 (CI: [0.118, 0.142]), outperforming DeepRegr,
which records a Mean AE of 0.192 (CI: [0.162, 0.222]).

Stratification by Education Education level, serving as a proxy for cognitive reserve, introduces
additional variability in disease progression predictions. In the subgroup with education levels be-
low 16 years, pers-DKGP achieves a mean AE of 0.155 (CI: [0.140, 0.170]), outperforming LMM,
which exhibits a mean AE of 0.225 (CI: [0.195, 0.255]). Among subjects with 16 or more years of
education, pers-DKGP maintains its advantage, recording a mean AE of 0.120 (CI: [0.110, 0.130]),
whereas GAM shows a mean AE of 0.175 (CI: [0.145, 0.205]).

Overall, the stratification of AE demonstrates that pers-DKGP outperforms baseline methods in all
subpopulations. Its lower mean AE and narrower confidence intervals indicate not only higher pre-
dictive accuracy but also greater reliability, even in challenging subgroups such as APOE4 carriers,
and individuals with lower education levels.

D.2 PERFORMANCE WITH NUMBER OF OBSERVATIONS

Error with Number of Observations for SPARE-AD Score. Table 5 presents the mean abso-
lute error and 95% confidence interval for the SPARE-AD biomarker across different numbers of
observations (history). A history of 1 corresponds to using the population model prediction, which
we employ when only a single acquisition of the subject is available; in this case, we have α = 1.
As we increase the number of observations, we apply posterior correction with adaptive shrinkage
α inferred by the adaptive shrinkage estimator, allowing us to adjust the model based on the sub-
ject’s individual history. Notably, the mean AE decreases as more observations are included. This
demonstrates the benefit of applying Adaptive Shrinkage with increased subject history to improve
the accuracy of the SPARE-AD biomarker prediction.

Table 5: Mean Absolute Error and 95% Confidence Interval for the SPARE-AD biomarker with
increasing number of observations

Observations Mean AE 95% CI
1 (α = 1) 0.227 0.003

2 0.233 0.008
3 0.219 0.008
4 0.153 0.010
5 0.148 0.010
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Figure 6: We stratify MAE by key covariates—Sex, APOE4 Alleles, and Education Years—to rig-
orously assess model performance across different subpopulations. Error bars denote the 95% con-
fidence intervals of the MAE. The top row aggregates metrics for seven ROI Volume biomarkers,
while the bottom row summarizes the MAE for both SPARE-AD and SPARE-BA.

Error Analysis. Figure 7a illustrates the distribution of absolute errors across history levels (1
to 6) using boxplots. The median error is indicated by the central line within each box, with the
interquartile range (IQR) defining the edges and whiskers extending to 1.5 times the IQR. Outliers
are depicted as individual points beyond the whiskers. A red line represents the mean absolute error,
providing an overview of the central tendency.

The results demonstrate a marked reduction in mean absolute error with increasing history, par-
ticularly during the earlier transitions: a 21.96% decrease from history 1 to 2 and a further 15.92%
decrease from history 2 to 3. This underscores the significance of incorporating additional longitudi-
nal observations. However, the improvements plateau at higher history levels, reflecting diminishing
returns. It is important to note that the error will never practically reach zero, owing to the inherent
noise and variability of neuroimaging biomarkers. Nevertheless, the results highlight the neces-
sity of subject-specific personalization, as individual trajectories often deviate from population-level
SPARE-AD estimates. With additional follow-up observations, these deviations are better captured,
resulting in more accurate and individualized SPARE-AD trajectories. This emphasizes the critical
role of model adaptation in clinical practice, as refined SPARE-AD estimates can provide valuable
insights for predicting disease progression, including transitions to dementia or, more specifically,
progression from MCI to Alzheimer’s Disease.

D.3 QUALITATIVE EXAMPLES OF ROI VOLUME AND SPARE BIOMARKERS

In this section we provide additional qualitative results on test subjects. We present results for the
ROI volume biomarkers as well as the SPARE AD biomarker. The ROI progression models use as
input the imaging scan (145 Volumetric ROIs), demographics and clinical variables. The SPARE-
AD progression model uses the 145 Volumetric ROIs, demographics and clinical variables as well
as the SPARE-AD score at baseline.

Empirical Evidence of Predicted SPARE-AD Trajectories for MCI Progressor. In figure 8 we
present an example of a subject that starts as Cognitive Normal at the Age of 74 years old. We
use our model (pers-DKGP) in order to predict the longitudinal SPARE-AD changes from the 145
Volumetric ROIs as well as the demographics (Age, Sex, Education Years) and clinical variables
such as the Clinical Diagnosis and the APOE4 Alleles. At the first visit of the subject, we extrapolate
a SPARE-AD trajectory that indicates no changes related to progression. Within the 2 and a half
years of observations the MCI the predicted trajectory of the SPARE-AD biomarker indicates no
significant longitudinal change in the SPARE-AD trajectory. In the 42 months of observations,
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Figure 7: Boxplots show the distribution of absolute errors across history levels (1 to 6), with the
central line indicating the median, the box edges representing the interquartile range (IQR), and
whiskers extending to 1.5 times the IQR. Outliers are shown as points beyond the whiskers. The red
line connects the mean absolute error for each level.

the predicted SPARE-AD trajectory indicates an increasing trend in the SPARE-AD values that
indicates increased AD releated patterns in the brain. Increased AD-like patterns indicate higher risk
of conversion to MCI or Dementia (AD). In almost 5 years of observation, the predicted trajectory
indicates a steeper increase in the future SPARE-AD values indicating againg high risk of MCI
or AD. The subject finaly is clinically diagnosed with MCI after 80 months of observation. Our
method is able to predicted changes of biomarker values that are indicative of Progression and this
highlights also the clinical usage of our method as a stong predictive tool for progression prediction
either for use in the clinical practice or the design of clinical trials. For example, this subject with
an increasing trend of SPARE-AD trajectory would be an ideal subject for recruitment in a clinical
trial as it converts to demonstrates inclining biomarker trajectory making it a subject that is highly
likely to be part of a clinical trial.
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Personalized Predicted Trajectories for SPARE-AD Biomarker for MCI Progressor
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Figure 8: We present predicted SPARE-AD trajectories for a Cognitive Normal subject at the base-
line age of 74 years old. After 7 years the subject is diagnosed with Mild Cognitive Impairment.
The predicted SPARE-AD trajectories predict the increasing attrophy-like patterns 3 years prior the
clinical diagnosis of conversion to MCI. This highlights the potential clinical application of our tool
for progression prediction and clinical trial design.

Empirical Evidence from a Healthy Control and and MCI Progressor. In Figure 9, we present
a qualitative comparison of predicted trajectories for two subjects who begin the study at similar
ages—74 (left) and 71 (right), respectively—and are cognitively normal at baseline. We analyze the
volumetric loss in three brain regions: the amygdala, hippocampus, and lateral ventricle. The vol-
umetric loss is modeled as a function of MRI scans alongside clinical and demographic covariates,
including age, sex, diagnosis, APOE4 allele status, and years of education.

At the initial visit, both subjects exhibit minimal hippocampal atrophy. However, over successive
follow-up observations, the subject on the left ( 9b) demonstrates a markedly steeper decline in hip-
pocampal volume compared to the subject on the right, who maintains a more stable hippocampal
trajectory. The predicted accelerated decline in hippocampal volume for the subject on the left sug-
gests an elevated risk of progressing to mild cognitive impairment (MCI) or dementia, potentially
due to underlying pathology such as Alzheimer’s disease (AD) or accelerated brain aging. In con-
trast, the subject on the right ( 9a), who remains a healthy control throughout the observation period,
exhibits only minimal hippocampal volume loss.

This example illustrates the practical application of our method in predicting disease progression,
which has significant implications for clinical practice, clinical trial design, and treatment effect
estimation. Specifically, in the context of clinical trial design, identifying subjects with steep hip-
pocampal atrophy trajectories can inform the recruitment of individuals who are more likely to
exhibit disease progression, thereby enhancing the efficiency and efficacy of the study.
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Figure 9: We present predicted Amygdala and Hippocampal Volume trajectories and Ventricular
Enlargement for a Healthy Control and and MCI Progressor. MCI Progressor exhibits steeper vol-
ume loss in Amygdala and Hippocampus in comparison with the Healthy Control. MCI Progressor
exhibits either accelarated brain aging or is in the onset of AD which justifies its faster volume loss.

Empirical Evidence of the Personalization in Test Subjects. To further validate the efficacy of our
method, we provide empirical evidence through qualitative analysis in scenarios where individual
trajectories either diverge from or align with the true underlying trend. In Figure 10, we present a
cohort of test subjects (panels (a)–(h)) exhibiting variability in progression status, alongside the cor-
responding adaptive shrinkage parameter α—depicted in the second row—utilized at each person-
alization step. Consistently across all examples, we observe that the adaptive shrinkage parameter α
progressively decreases as the number of observations increases. In several cases, the adjustments
remain more conservative, with α staying closer to 1, which aligns with the foundational intuition of
our method. This pattern suggests that an adequate accumulation of evidence regarding a subject’s
trajectory is necessary to shift the adaptive shrinkage parameter toward zero, thereby placing greater
trust in the ss-DKGP predictions. This rationale is well-founded, as substantial evidence is crucial
for the ss-DKGP to generate meaningful trajectories and mitigate the noise variations inherent in
neuroimaging data acquisitions. Additional examples are visualized in Figure 11.
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Qualitative Examples of Personalized Volume ROI Trajectries and Adaptive Shrinkage

Figure 10: We present qualitative examples where population trajectories deviate from the subject’s
observed trajectory throughout the observation period (in years). Evidence is provided from eight
distinct test subjects. In the first row of each panel (a)-(h), we present the adapted trajectories.
The second row of each subfigure visualizes the corresponding adaptive shrinkage for posterior
correction for each observation, ranging from 4 to 7 observations.
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Figure 11: We present qualitative examples where population trajectories deviate from the subject’s
observed trajectory throughout the observation period (in years). Evidence is provided from six
distinct test subjects. In the first row of each panel (a)-(f), we present the adapted trajectories.
The second row of each subfigure visualizes the corresponding adaptive shrinkage for posterior
correction for each observation, ranging from 4 to 7 observations.
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D.4 ANALYSIS OF ADAPTIVE SHRINKAGE ESTIMATOR

D.4.1 ABLATION ON SHRINKAGE PARAMETER α

Determining the shrinkage for each ROI Volume is non-trivial, particularly for predicting long-term
trajectories. This is a difficult task because either a subject’s trajectory would deviate from popula-
tion trends, or a subject would have limited acquisitions, making it difficult for the subject-specific
model to extrapolate its ROI Volume trajectory. Volume loss in the brain is a slow process, espe-
cially for a subject who is young or has not yet developed any pathology. Thus, in the case of limited
acquisitions for a subject, which are also close in time to the baseline, the additional observations are
rather noisy copies of the baselines and do not contain any “signal” of the trajectory of developing
atrophy. In that case, the ss-DKGP model would not have enough evidence to extrapolate future ROI
Volume. As a result, we should find the ideal shrinkage to combine the two predictors and eventually
leverage both the population’s ability to make reliable long-term predictions and the subject-specific
model’s ability to learn short-term predictions. We show that adaptive shrinkage provides the best
results compared to any other weighting scheme, as we also present in table 6.

Table 6: Ablation study on the shrinkage parameter α. We report the Mean AE along with its 95%
percentile CI, Mean Coverage, and Mean Interval Width

ROI Mean AE (CI) Mean Coverage Mean Interval

Best Constant
Hippocampus R 0.257 (0.209) 0.808 0.843
Lateral Ventricle R 0.143 (0.182) 0.853 0.507
Thalamus Proper R 0.241 (0.214) 0.934 1.127
Amygdala R 0.349 (0.317) 0.742 0.918
Hippocampus L 0.274 (0.245) 0.805 0.850
PHG R 0.423 (0.360) 0.582 0.844

Deterministic
Hippocampus R 0.308 (0.275) 0.480 0.459
Lateral Ventricle R 0.156 (0.192) 0.620 0.310
Thalamus Proper R 0.308 (0.287) 0.512 0.492
Amygdala R 0.418 (0.400) 0.503 0.650
Hippocampus L 0.314 (0.290) 0.487 0.478
PHG R 0.487 (0.457) 0.459 0.681

Adaptive Shrinkage
Hippocampus R 0.243 (0.191) 0.795 0.902
Lateral Ventricle R 0.131 (0.186) 0.855 0.626
Thalamus Proper R 0.219 (0.216) 0.849 0.911
Amygdala R 0.312 (0.283) 0.762 0.964
Hippocampus L 0.258 (0.241) 0.790 0.901
PHG R 0.389 (0.344) 0.745 0.908

D.4.2 INTERPRETATION OF ADAPTIVE SHRINKAGE ESTIMATOR

As we increase the number of observations, we see that, no matter the biomarker, the alpha tends to
zero. This aligns with the domain expectation that the longer the time from the baseline of the last
observation Tobs, the more likely we are to have observed a trajectory trend from the subject’s data.

In Figure 12, we visualize the distribution of adaptive shrinkage in the test set as well as in the three
external clinical studies. This demonstrates that adaptive shrinkage has learned to assign greater
trust to the subject-specific model as the number of follow-ups increases for a subject. This aligns
perfectly with domain expectations and the explainability analysis we implemented for the Adaptive
Shrinkage Estimator. This property makes the Adaptive Shrinkage Estimator a transparent method
for performing posterior correction in the two predictive distributions, p-DKGP and ss-DKGP.
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a ROI Volume b         SPARE c  ROI Volume on External Studies

AIBLOASIS Prevent AD

Figure 12: We visualize the distribution of adaptive shrinkage α for a) the 7 ROI Volumes, the b)
SPARE-BA and SPARE-AD biomarkes and c) the 7 ROI Volumes in the external neuroimaging
studies: OASIS, AIBL and PreventAD

SHAP Summary Plot of Adaptive Shrinkage Estimator

Figure 13: We calculate SHAP values for the Adaptive Shrinkage Estimator for the SPARE-AD
biomarker. As expected, the time of observation Tobs emerges as the most influential feature of the
Adaptive Shrinkage stimator.

Table 7: Correlation Analysis between Deviation (δy) and Predicted α, and between Tobs and Pre-
dicted α for Large Deviation

Biomarker Correlation between Tobs and Predicted α for Large δy

SPARE-BA -0.640
SPARE-AD -0.529
Lateral Ventricle -0.484
Hippocampus L -0.401
Hippocampus R -0.381
Thalamus Proper R -0.555
PHG R -0.479
Amygdala R -0.439
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D.5 COMPARISON ON ALTERNATIVE GP PERSONALIZATION APPROACHES

In this section, we conduct a comparative analysis with other personalized GPs that align with our
formulation. Specifically, within the ss-DKGP framework, we do an ablation study to see how the Φ
transformation, learned from the population model, affects the subject-specific process. To achieve
this, we train the ss-DKGP for each subject on the test set without initializing the deep kernel (ss-
DKGP no init). We also train a standard subject-specific Gaussian Process (ss-GP) with a zero mean
and RBF kernel. This comparison demonstrates the effectiveness of transferring the Φ from the p-
DKGP when training the ss-DKGP. Additionally, we explore an alternative personalization approach
where the population dataset Dp is augmented with the subject’s observed trajectory Ds. In this
setting, we again employ the Φ transformation learned from the p-DKGP. This approach is referred
to as the ft-DKGP (fine-tuned DKGP). We perform transfer learning by initializing the weights of
the deep kernel with (Wp,bp). The ft-DKGP is trained for 500 epochs using the same learning rate
as the p-DKGP. During this process, the deep kernel is detached from the optimization procedure,
and only the hyperparameters of the subject-specific GP are updated. The Adam optimizer with a
weight decay of 0.05 is utilized.

Figure 14: Comparison of predictive performance and uncertainty quantification across various GP
models, averaged over three regions of interest (ROIs): Hippocampus, Lateral Ventricle, and Tha-
lamus Proper, indicating that the personalized DKGP models achieve the best prediction accuracy
and highest coverage. The bar plot displays the Mean performance metrics (AE, interval length and
coverage) across these ROIs, while the line represents the standard deviation.

Among the ss-DKGP, ss-DKGP no init, and ss-GP models, we observe that ss-DKGP achieves the
lowest Absolute Error (AE) with a significant margin compared to the other two settings. This
indicates that leveraging the population transformation Φ is crucial for the effective training of ss-
DKGP. This finding supports our hypothesis that the transformation Φ successfully captures the most
predictive features for ROI progression, which are beneficial for ss-DKGP training. We observe that
ft-DKGP model achieves performance that is close to the ss-DKGP model. However, ft-DKGP fails
to personalize on unseen times, since the predicted trajectory falls back to the population trend. This
is not the optimal way to personalize since the trajectory does not adapt to the subject specific trend.
Additionally, it is not computationally efficient to retrain the model with the entire population data
every time we need to personalize a subject.

Furthermore, the pers-DKGP model achieves the lowest AE, which is an additional indication in
favor of our approach. It highlights the strength of including the p-DKGP model in the final per-
sonalized prediction. Knowing solely the observed trajectory of a subject is not enough in case of
limited and noisy observations. In that case we should trust the p-DKGP model more, which trans-
lates to an α parameter close to 1. Interestingly, this intuition aligns with the predicted α that we got
during the personalization from the XGBoost regression. To verify that, we gathered the predicted
α from the personalization process from the 7 ROIs. We plotted the distribution of α with the num-
ber of observations ranging from 4 till 7. The plot is shown in Figure 12a. It clearly depicts that,
as the number of observations increases, the distributions tend to show more noticeable skewness
to the right, with higher densities in the lower α ranges and decreasing densities towards higher α
values. This trend suggests that as more observations are taken into account in personalization, the
shrinkage parameter α tends to be smaller. That translates to more trust to the ss-DKGP prediction.
This is highly intuitive because as observation time Tobs increases, more acquisitions we obtain for
a subject and thus the more information the ss-DKGP captures about the progression of a ROI over
time.
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